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ABSTRACT

The use of high resolution imagery in remote sensing has the potential to improve
understanding of patch level variability in plant structure and community composition that may
be lost at coarser scales. Random forest (RF) is a machine learning technique that has gained
considerable traction in remote sensing applications due to its ability to produce accurate
classifications with highly dimensional data and relatively efficient computing times. The aim of
this study was to test the ability of RF to classify five plant communities located both on and off
prairie dog towns in mixed grass prairie landscapes of north central South Dakota, and assess the
stability of RF models among different years. During 2015 and 2016, Pleiades satellites were
tasked to image the study site for a total of five monthly collections each summer (June-
October). Training polygons were mapped in 2016 for the five plant communities and used to
train separate 2015 and 2016 RF models. The RF models for 2015 and 2016 were highly
effective at predicting different vegetation types associated with, and remote from, prairie dog
towns (misclassification rates < 5% for each plant community). However, comparisons between
the predicted plant community map using the 2015 imagery and one created with the 2016
imagery indicate 6.7% of pixels on-town and 24.3% of pixels off-town changed class
membership depending on the year used. Given the low model misclassification error rates, one
would assume that low changes in class belonging between years. The results show that while
RF models may predict with a high degree of accuracy, overlap of plant communities and inter-
annual differences in rainfall may cause instability in fitted models. Researchers should be
aware of similarities between target plant communities as well as issues that may arise with

using single season or single year images to produce vegetation classification maps.
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INTRODUCTION

Remote sensing of rangelands greatly improves our ability to study and understand
complex ecological interactions across the landscape. One of the main advantages of remote
sensing data is its capacity to cover wide areas, allowing assessment of plant communities at
landscape level scales as compared to traditional point-based assessments (Ramoelo et al. 2015;
Yu et al. 2018). Numerous studies have demonstrated the utility of remote sensing applications
in monitoring rangeland condition, including mapping of vegetation communities, plant species
composition, biomass estimation, and impact of grazing intensity on the landscape (Blanco et al.
2008; Franke et al. 2012). Successive images throughout a growing season may potentially help
explain patterns of cattle distribution and landscape utilization across temporal scales, or capture
phenological changes within the landscape to distinguish differences in warm- and cool-season
grass life history, or changes associated with early brown-down in forb- versus grass-dominated

communities on prairie dog towns.

Within the Northern Great Plains, black tailed prairie dog colonization is an issue of
concern for livestock producers (Miller et al. 2007). Competition between prairie dogs and
livestock is a major concern for land managers looking to optimize beef production while still
conserving wildlife species (Augustine and Springer 2013). Prairie dogs can reduce availability
of forage for livestock by directly reducing the quantity of forage available (through direct

consumption, clipping plants to increase predator detection, and building soil mounds), and by



https://doi.org/10.5194/bg-2019-194
Preprint. Discussion started: 20 June 2019
(© Author(s) 2019. CC BY 4.0 License.

72
73
74
75
76
77

78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

changing species composition (Derner et al. 2006). Older core areas of prairie dog towns often
become characterized by extensive areas of bare ground and low vegetation production, which is
generally limited to annual forb and dwarf shrub species. Pastures containing extensive areas of
bare ground due to prairie dog colonization may potentially depress livestock forage intake rates
and ultimately beef production. Understanding the impact of prairie dogs on plant communities,
and use patterns of livestock within rangelands occupied by prairie dogs requires the ability to

map plant communities at landscape scales.

Advances in remote sensing technology have facilitated the mapping and assessment of a
broad range of habitats at different scales (Corbane et al. 2015). For example, Schmidtlein et al.
(2007) used hyperspectral imagery at 2m resolution in combination with ordination techniques to
map functional plant group gradients in a Bavarian pasture. Within the Delaware Gap National
Recreation Area, multiple Landsat 7 scenes were used (30m resolution) with classification tree
algorithms to map forest and plant communities for the National Park Service Vegetation
Mapping Program (de Colstoun et al. 2003). In Majella National Park, Italy, 4m resolution
imagery was used with NDVI to map and predict grass and herbaceous biomass variability over
a 200 km? area (Cho et al. 2007). While the focus of many of these remote sensing studies is on
mapping plant communities at landscape scales to study land use changes and address
conservation related issues, the utility of using thematic maps derived from high resolution
satellite imagery to study plant and animal interactions has been less explored.

Several methods for accurately classifying plant communities using remote sensing
techniques have been used in numerous ecological and natural resource studies. One method,
random forest classification (RF), has gained considerable traction in the remote sensing

community for its ability to produce accurate classifications, handle highly dimensional data, and



https://doi.org/10.5194/bg-2019-194
Preprint. Discussion started: 20 June 2019
(© Author(s) 2019. CC BY 4.0 License.

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

provide efficient computing times (Belgiu and Dragut 2016). RF is seen as an improvement over
simple classification tree analysis by reducing noise and misclassification of outliers (Laliberte et
al. 2007; Nitze et al. 2015). RF is an ensemble decision tree classifier which combines bootstrap
sampling to construct several individual decision trees from which a class probability is assigned
(Mellor et al. 2013). RF builds each tree using a deterministic algorithm selecting a random set
of variables and a random sample from the calibration data set (Ramoelo et al. 2015).

The utility of random forest algorithms has been proven in remote sensing applications.
Lowe and Kulkarni (2015) showed that RF outperformed maximum likelihood, support vector
machine, and neural network classification models using two Landsat scenes. Ramoelo et al.
(2015) successfully used RF modeling to predict leaf nitrogen content using World-View 2
satellite images in grassland and forest communities. Similarly, Mutanga et al. (2012) concluded
that RF regression modelling provided an effective methodology for variable selection and
predicting biomass in wetland environments. The greatest limitation of the general use of RF has
been, and continues to be, due to the lack of off-the-shelf tools for RF implementation within the
most common GIS and remote sensing software packages (Hamiton 2013).

Considerable research has focused on the application of RF classification across different
plant communities at various scales, however, concerns exist over the transferability of these
models to different sites or between seasons. Previous research has shown that RF models have
a high degree of classification accuracy at local scales, but model accuracy decreases
significantly when applied to spatially separated sites, showing a lack of stability in the model
(Juel et al. 2015). Other research has focused on the use of seasonality of image acquisition on
improvement of RF models due to spectral differences in plant communities as a result of

phenological change during a growing season. Corcoran et al. (2013) showed an improvement
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of RF model accuracy in classifying wetlands in northern Minnesota with the inclusion of spring
Landsat 5 images across two years over a full season versus summer only, and fall only models.

Many of the plant community classification studies in remote sensing tend to focus on
acquiring a single image or multiple images across a single growing season, reducing the
influence of inter-annual precipitation on NDVI values (Adjorlolo et al. 2014; Beeri et al. 2007;
Guo et al. 2000). Furthermore, most research studies focus solely on spectral differences in plant
communities and fail to analyze community differences on the ground at the species level (de
Colstoun et al. 2003; Geerken et al. 2005). While classification rates are often reported in
studies, the potential overlap in plant community species is rarely explored as a potential source
of error within the models. Additionally, very little research has examined how yearly
differences in NDVI values across plant communities can alter classification models, especially
in high resolution satellite imagery.

We conducted a large, collaborative study from 2012-2016 designed to evaluate livestock
production on mixed-grass prairie pastures with varying levels of prairie dog occupation. A
major goal of that study was to determine which plant communities on the pastures cattle
preferred to graze, and how those preferences shifted within and between years. Plant
communities on the site were categorized based on location (on- or off-town) and visually
apparent dominant plant functional groups. We expected the plant communities to remain
relatively stable during the study, however their signatures on satellite imagery could change
within and between years as a result of the timing and magnitude of rainfall and dry periods,
timing of green up, phenological progression, and other factors. The overall goal, then, was to
develop maps that accurately classify plant communities based on satellite imagery collected

between seasons and years. Specific objectives of this study were to 1) determine differences in
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the five identified plant communities based on species composition, 2) assess the utility of using
a RF model with high resolution satellite imagery to classify plant communities of interest within
the Northern Great Plains, and 3) determine the stability of the RF model when using subsequent
years of satellite imagery with identical training data. Our ability to map and understand these
plant dynamics and patterns at large scales will give researchers insight into applying RF models
across years. Research from this study will allow us to better assess how plant communities
drive cattle foraging behavior, and evaluate how changes throughout a growing season can cause
cattle to shift behavior in response to new resources becoming available.
METHODS

Study site

The study area (45.74N, 100.65W) is located near McLaughlin, South Dakota on a
northern mixed-grass prairie ecosystem. Native prairie pastures (810 ha total area) were leased
from 2012-2016; pastures were continuously stocked with yearling steers from June-October of
each year to achieve 50% utilization. Of the 810 ha, approximately 186 ha were occupied by
black-tailed prairie dogs (Cynomys ludovicianus). Predominant soils at the site are clays and
loams. Ecological sites, and the plant communities they support vary widely; Loamy and Clayey
are the predominant Ecological Sites at the site with inclusions of Dense Clay, Shallow Clay, and
Thin Claypan (Barth et al. 2014). Plant species dominating the site are largely native, including
western wheatgrass (Pascopyrum smithii Rydb.), green needlegrass (Nassella viridula Trin.), and
needle-and-thread (Hesperostipa comata Trin. & Rupr), intermixed with blue grama (Bouteloua
gracilis Willd. Ex Kunth), buffalograss (Bouteloua dactyloides Nutt.), and sedges (Carex spp.).
The most common non-native species on the site is Kentucky bluegrass (Poa gracilis Boivin &

Love). Woody draws occupy moist drainage areas; vegetation consists primarily of bur oak
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(Quercus macrocarpa Nutt.), American plum (Prunus americana Marshall), and chokecherry
(Prunus virginiana L.). These draws are frequently flanked by snowberry-dominated patches
(Symphoricarpos occidentalis Hook.). Plant communities on areas occupied by prairie dog
towns on the site are largely dominated by western wheatgrass and shortgrasses (buffalograss,
blue grama, and sedges) intermixed with patches of bare ground and annual forb dominated
areas. Common annual forbs on prairie dog towns include prostrate knotweed (Polygonum
aviculare L.), fetid marigold (Dyssodia papposa Vent.), dwarf horseweed (Conyza ramosissima
Cronquist), and scarlet globemallow (Sphaeralcea coccinea Nutt.). Mean annual rainfall at the
site is 446 mm and average growing season (May through September) temperature is 15.3°C

(Mesonet).

Five plant communities of interest for our study site were identified: 1) Forb-dominated
sites on prairie dog towns (PDF), 2) Grass-dominated sites on prairie dog towns (PDG), 3)
Snowberry-dominated sites off-town (SNOW), 4) Cool season grass-dominated sites off-town
(COOL), and 5) Warm season-dominated sites off-town (WARM).
Training sites

To facilitate classification, training site polygons were mapped for PDF, PDG, COOL,
WARM, and SNOW plant communities using ArcPad for Trimble GPS units in the summer of
2016. Twenty training sites were mapped for each of the plant communities except WARM, for
which only 8 sites were mapped due to the difficulty of finding homogenous stands of warm
season grasses. Plant species in the Northern Great Plains are dominated by cool season species;
warm season species, where they occur, are typically intermixed into stands of cool season
species. Training sites for each plant community were selected from across the entire study area

to capture potential site differences across research pastures. Sites were mapped in the field by
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walking the perimeter of the plant community patch with a Trimble GPS unit. Training polygon
perimeter boundaries were always at least 3 meters interior of patch edge to minimize error
introduced to the training data as a result of GPS signal noise. Identified patches were then
converted into a polygon shapefile within ArcGIS to be used as training polygons for the RF
classification algorithm. Within each training site polygon, three 0.25 m? plots were randomly
located. Within each plot, percent cover by species was recorded in the summer of 2016 at the
time of polygon mapping.

Plant Community Analysis

Plant community analysis was performed on vegetation data collected from the three 0.25m?
plots measured in each training polygon. Differences between plant community compositions
were determined using a Multi-Response Permutation Procedure (MRPP) with the Sorensen
Bray-Curtis distance method. MRPP is a nonparametric procedure used for testing hypotheses
between two or more groups (Mitchell et al. 2015). Differences in community compositions
were analyzed separately between on-town groups (PD = PDF and PDG) and off-town groups
(NPD = COOL, WARM, and SNOW). Although differences between all 5 plant communities
are likely to occur, comparisons between on-town and off-town were not made. On-town and
off-town sites were mutually exclusive from each other; for example, PDG cannot occur off-
town. To analyze trends in species composition between plant community plots, Non-metric
Multidimensional Scaling (NMS) ordination was used (Kruskal 1964). Only species that
occurred in 3 or more plots were included in the ordination analysis. NMS analysis was
conducted using the Sorensen Bray-Curtis distance method with 250 iterations and a stability
criterion of 0.00001. Analysis was repeated five times to confirm ordination pattern in the data.

Similarity index matrices were generated to compare plot differences between off-town plant
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communities and between on-town plant communities and averaged by plant community. All
ordination analyses (MRPP and NMS) were performed using PC-ORD 6 software (McCune and
Mefford 2002).
Imagery

During the summers of 2015 and 2016, Pleiades satellites were tasked to image the study
site. Pleiades satellites, which are members of the SPOT family of satellites, are operated by
AIRBUS Defense and Space. This platform was chosen due to its high spatial resolution (0.5 m
pan chromatic, 2 m multispectral) and four band spectral resolution: pan chromatic (480-830
nm), red (600-720nm), green (490-610 nm), blue (430-550 nm), and near infrared (750-950 nm).
Pleiades satellites were designed for commercial tasking and monitoring, allowing multiple
revisits to a project site. A total of ten image collections were acquired in the summer of 2015
and 2016 (five each year) from June through October during the 1%-15% of each month (Table 1).
Image collection times were chosen to correspond to the time periods when cattle were actively
grazing on the site. Multispectral images were pan-sharpened and orthorectified by the image
provider (Apollo Imaging Corp). Boundaries of the prairie dog town were mapped in the fall of
2015 using a handheld Trimble GPS unit. Post collection processing of the images included
extracting off-town and on-town locations using the “Extract By Mask” tool in ArcGIS.
Separate RF models were developed for on-town and off-town plant communities because such
plant communities are mutually exclusive on the site (e.g. PDG cannot exist at off-town
locations). Each monthly image collection was converted into an NDVI image using the

formula:

NIR—-Red

NDVI =
NIR+Red

Random Forest model

10
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For the RF model, the Random Forest package of the Comprehensive R Archive Network
(CRAN) implemented by Liaw and Wiener (2002) was utilized. Training data were constructed
by stacking all satellite imagery spectral bands (Red, Blue, Green, and NIR) and NDV I bands for
each month of each year (25 total dimensions per year) to create a raster stack for each year’s
imagery (2015 and 2016). To train the model, pixel values were extracted from the satellite
imagery raster stack for each training polygon mapped in the field. The random forest models
were built using 100 decision trees and default number of nodes at each split, with plant
community data as the response category (WARM, COOL, SNOW, PDF, PDG) and spectral
band values as the predictor. Models built for comparison include 2015 off-town, 2015 on-town,
2016 off-town, and 2016 on-town. A combined years model was also constructed using all
available spectral data from 2015 and 2016 (50 dimensions).

Within the random forest package, Out of Bag (OOB) error rates were calculated by
reserving one-third of the training data to test the accuracy of the predictions. Models were then
used to predict class belonging for 2015 and 2016 raster stacks and the combined 2015 and 2016
stack. To assess the stability of the RF models from year to year, the “Combinatorial And” tool
in ArcGIS was used to create a new raster combining plant community prediction data from
2015 and 2016. The output was used to calculate percent of pixels that were unchanged between
the 2015 and 2016 model predictions and percent of change that occurred between years for
plant community predictions.

Results and Discussion

MRPP pairwise comparisons were made within on-town communities (PDF vs. PDG)

and within off-town communities (COOL vs. WARM vs. SNOW), but not between on- and off-

town communities (Table 2). Each plant community was significantly different from all other

11
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communities within its on-town or off-town area (P < 0.001). Substantial differences are evident
between off-town plant communities in the 2-D plot of the NMS ordination (final stress =
15.465, instability < 0.00001 after 98 iterations), with some overlap occurring between
communities (Figure 1). The On-Town 2-D NMS ordination plot (final stress = 15.591,
instability = 0.0005 after 50 iterations) also indicates substantial differences between
communities, but with fairly minimal overlap (Figure 1). While there is some overlap between
plant communities, in general similarities between plant communities are low, with a similarity
index generated from a Sorensen (Bray-Curtis) distance matrix of 21.5 — 27.9% when comparing
off-town plant communities and 15.6% when comparing PDF and PDG (Table 2).

Variable importance factor graphs indicate that NDVI training values by month tend to
contribute the most to each model for both years, both on- and off-town (Figure 2). Similar
results were observed by (Mishra and Crews 2014), where spectral classification features (mean
NDVI or ratio NDV1) were the most significant for classifying vegetation morphology in a
savanna grassland. Differences between importance of months between years within site is
likely the result of interannual precipitation timing between the years, with plant communities
greening up or browning down earlier or later depending on seasonal rainfall. Results from the
RF model show low OOB misclassification error rates (Table 3) indicating a high degree of
accuracy in the model. The lower similarity index (Table 2) for on-town communities compared
to off-town communities may help explain the lower OOB classification error rates (Table 3) as
well as the lower frequency of pixels changing class in the on-town communities (Table 4).
OOB error rate was below 5% for all models. OOB accuracy is an unbiased estimate of the
overall classification accuracy eliminating the need for cross-validation (Breiman 2001).

Lawrence et al. (2006) showed OOB error rates to be reliable estimates of class accuracy for

12
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identifying invasive species. Similarly, OOB error rates have been reported to be reliable in
mapping corn and soybean fields across multiple years (Zhong et al. 2014). Belgiu and Dragug
(2016) acknowledge that the reliability of OOB error measurements needs to be further tested
using a variety of datasets in different scenarios

Consistency in error rates for plant communities appears to indicate stability in the 2015
and 2016 RF models which used identical training sites on consecutive yearly satellite imagery.
However, when comparing yearly predicted plant community maps, differences between
community classifications are slightly more pronounced, indicating the models may not be as
stable as predicted based solely on the OOB error rates. The pixels that were classified as
representing one plant community in 2015 and a different one in 2016 were 24.3% of the total
off-town pixels and 6.7% of total on-town pixels (Table 4). The pixels changing from COOL to
SNOW and SNOW to COOL represented the highest percentage of pixels that changed plant
community in off-town areas. COOL and SNOW plant communities, however, occupied the
largest area on the site, and represented 70.3 and 21.0% of total pixels in 2015 and 68.5 and 25.1
% of total off-town pixels in 2016, respectively.

It is unlikely in this northern mixed-grass prairie ecosystem that all the changes in plant
communities indicated by classification of pixels were real changes from one plant community
type to another over one year. Such major shifts in species composition typically occur much
more slowly. The results from the plant community analysis indicate training sites were chosen
appropriately to account for differences in species composition on the ground, therefore apparent
changes are much more likely due to factors that affect the spectral signature of the vegetation.
One explanation for the difference in year to year classification could be attributed to the

interannual variability of rainfall between 2015 and 2016 (Figure 3). While overall total rainfall

13
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between years was similar, differences in timing of precipitation that occurred likely affected
timing of green up and dormancy for many of the cool and warm season species on the site. This,
then, would create different NDVI patterns between years (Figure 4). Wehlage et al. (2016) for
example, found that yearly rainfall differences resulted in large differences in NDV1 and biomass
measurements across two years in a dry mixed-grass prairie. Goward and Prince (1995)
suggested that the relationship between NDVI and annual rainfall in any given year also depends
on the previous year history of rainfall at the site, and Oesterheld et al. (2001) showed that
annual above ground primary production of shortgrass communities is related to current as well
as previous two years precipitation. The above average rainfall at the study site in 2015 could
have added to the increase in average NDVI in 2016 when compared to 2015 through an increase
in cumulative biomass or production at the site. Another possible cause for changes in plant
community classifications between years is overlap of plant community species where two plant
communities share a boundary. The edges of plant communities in the NGP are seldom sharp;
more often there is a transition zone, where species from each community intermingle. This,
along with variability in phenological development of different plants (e.g. cool season vs. warm
season) associated with precipitation, as mentioned above, could result in pixels appearing to be
associated with one plant community in one year and its neighboring plant community the next.
It should also be noted that plant communities in the region, which are predominantly comprised
of cool season grasses, often include varying levels of warm season species; and snowberry
thickets often have an understory of grasses, especially near the perimeter. Thus one should
expect some level of spectral mixing within each community, and the possibility that climatic
factors could result in changes in NDVI values that, at least initially, might suggest apparent

changes between plant communities.

14
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As noted above, one issue with using categorically classified vegetation maps is that plant
communities in space are rarely mutually exclusive, and tend to change along a continuum with
environmental gradients (Equihua 1990). Thus, within both on-town and off-town plant
communities, transition zones are likely to account for a portion of the classification change
between plant communities between years (Figure 5). Alternative approaches to mapping plant
communities can be the recognition of fuzzy properties enabling a single point in space to exhibit
characteristics of a number of plant communities (Duff et al. 2014; Fisher 2010). For example,
Schmidtlein et al. (2007) used NMS of species data in combination with imaging spectroscopy to
produce ordination maps of community structure. While fuzzy classification maps are more
likely to give a better picture of plant community composition on a per pixel basis, they are also
more difficult to use to draw inferences of species dominance and livestock use across
landscapes.

A final RF model combining all available bands and NDVI values for 2015 and 2016
reduced error rates for all plant communities below 1% (Table 3). While we have shown that
error rates may not result in more stable predictions, using all available data for a model will
likely improve accuracy and result in a more accurate thematic map (Figure 6). Zhou et al.
(2018) using RF models showed that using a combination of four seasons of Sentinel-1 images
and a GaoFen-1 satellite winter image produced the highest classification rate of urban land
cover scenes over individual seasonal images. Likewise, several other studies have reported
increases in classification accuracy in RF models with the addition of combined seasonal images,
hyperspectral data, LIDAR images, radar (SAR) images, and ancillary geographical data such as
elevation and soil types (Corcoran et al. 2013; Pu et al. 2018; Shi et al. 2018; Xia et al. 2018; Yu

et al. 2018). RF models have the ability to handle highly dimensional correlated data, and data

15
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combined from multiple different data sources across different temporal scales. The internal
information provided by the model, such as variable importance, can be a useful tool for
researchers to select features of greatest importance to reduce computation times in the instance
of large datasets. At the size of our study area (810 ha) and a maximum of 50 variables, the
combined 2015-16 data model only slightly added to computation time, but not enough to
warrant feature trimming from the dataset. Variable importance plots from the combined data
model also indicate that different months between years contribute highly to the classification
accuracy between models. For example June 2016 NDVI and October 2015 NDV I were the
most important for classification of the data based on the variable importance plot from the
combined years’ model.

Conclusions

Stability of models is important when applying similar techniques across different sites,
plant communities, and in this case years. Differences in year-to-year NDVI values may alter
classification results; those differences may be even more pronounced if only one or two satellite
imagery scenes are used from a single year. One of the main benefits to RF classification in
remote sensing is the relatively fast computing time (Belgiu and Dragut 2016), and, given the
availability of free satellite imagery, researchers would be prudent to include multiple images
across years and seasons in their model to improve accuracy. Furthermore, while the desired
outcome is often to produce thematic maps, recognizing that plant communities rarely exist in
discrete communities is important when trying to interpret remotely sensed classification maps.
This is likely to be magnified as pixel size increases, resulting in less “pure” vegetation structure

in the classified pixel. Further work should examine the reliability of OOB error rates across
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different scenarios, and the influence of year and timing of image acquisition on classification
results.
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543 Tables and Figures

Table 1. Acquisition dates of Pleiades satellite imagery tasked for each month (June — October) in 2015

and 2016.
2015 Dates of Acquisition 2016 Dates of Acquisition
6/1/2015 6/5/2016
7/9/2015 7/2/2016
8/4/2015 8/2/2016
9/1/2015 9/11/2016
10/8/2015 10/1/2016

544

Table 2: Similarity index (Sorensen (Bray-Curtis) distance method) values averaged by plot across
plant communities.

Community? Similarity Index (%)
COOL vs. SNOW 27.9
COOL vs. WARM 27.6
SNOW vs. WARM 21.5

PDG vs. PDF 15.6

545  !Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF);
546  plant communities in off-town areas are cool season grass-dominated (COOL), warm season

547  grass-dominated (WARM), and snowberry-dominated (SNOW).

548

549
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Figure 1. NMS ordination plots for plant communities located on and off of prairie dog towns,
based on plant cover by species data collected in 2016 on the study site in north central South
Dakota. Plant communities on prairie dog towns are grass-dominated (PDG) and forb-
dominated (PDF); plant communities in off-town areas are cool season grass-dominated
(COOL), warm season grass-dominated (WARM), and snowberry-dominated (SNOW).
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Figure 2: Variable importance reported as mean decrease in accuracy. Ten most important variables are shown, with B1 and B4
corresponding to spectral bands 1 and 4 respectively from Pleiades image. Variable importance is determined by the model output as the
decrease in accuracy due to the exclusion of that variable during the out of bag error calculation process. Higher mean decrease in accuracy
variables are more important in classifying the data.
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Table 3: Out of Bag misclassification error rates (%) for each plant community for 2015, 2016, and combined year
random forest models.

Plant Community! 2015 Model 2016 Model 2015-2016 Combined Model
cooL 0.20% 0.20% 0.03%
SNOW 2% 2% 0.60%
WARM 3% 5% 0.70%
PDG 0.30% 0.20% 0.07%
PDF 0.90% 0.70% 0.30%
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570

1 Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF);
plant communities in off-town areas are cool season grass-dominated (COOL), warm season
grass-dominated (WARM), and snowberry-dominated (SNOW).

Table 4: Percent of pixels within each area (prairie dog town and off-town) for each plant community
that remain unchanged and are changed between class belonging between 2015 and 2016 models.

Community Location Transitions! Percent of Total Area Pixels
Unchanged Pixels 93.3
Prairie Dog Town
PDG <> PDF 6.7
Unchanged Pixels 75.7
COOL <> SNOW 14.1
Off-Town
COOL <> WARM 6.7
SNOW <> WARM 3.5

Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF);
plant communities in off-town areas are cool season grass-dominated (COOL), warm season
grass-dominated (WARM), and snowberry-dominated (SNOW).
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Figure 3: Monthly and cumulative growing season precipitation patterns for 2015 and 2016 recorded at a weather station
located on the study area in north central SD (45.737296 N, -100.657540 W)( South Dakota Mesonet 2018).
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Figure 4: Comparison of mean monthly NDV1 for training polygons in five plant communities on the study site in north central
SD. Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated (PDF); plant communities in off-
town areas are cool season grass-dominated (COOL), warm season grass-dominated (WARM), and snowberry-dominated
(SNOW).
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588  Figure 5: Random forest classification maps from 2015 and 2016 of one pasture in the study area
589 innorth central South Dakota. Plant communities on prairie dog towns are grass-dominated

590 (PDG) and forb-dominated (PDF); plant communities in off-town areas are cool season grass-

591  dominated (COOL), warm season grass-dominated (WARM), and snowberry-dominated

592 (SNOW).
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Figure 6: Final random forest generated thematic map of the entire study site in north central South Dakota produced from the
combined 2015-2016 imagery data. Plant communities on prairie dog towns are grass-dominated (PDG) and forb-dominated
(PDF); plant communities in off-town areas are cool season grass-dominated (COOL), warm season grass-dominated (WARM),
and snowberry-dominated (SNOW).
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