

1 **Evaluation of bacterial glycerol dialkyl glycerol tetraether and ^2H -
2 ^{18}O biomarker proxies along a Central European topsoil transect**

3 Johannes Hepp^{1,2,*}, Imke Kathrin Schäfer³, Verena Lanny⁴, Jörg Franke³,
4 Marcel Bliedtner^{3,a}, Kazimierz Rozanski⁵, Bruno Glaser², Michael Zech^{2,6},
5 Timothy Ian Eglinton⁴, Roland Zech^{3,a}

6 ¹Chair of Geomorphology and BayCEER, University of Bayreuth, 95440 Bayreuth, Germany and

7 ²Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-University
8 Halle-Wittenberg, 06120 Halle, Germany

9 ³Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, 3012
10 Bern, Switzerland

11 ⁴Department of Earth Science, ETH Zurich, 8092 Zurich, Switzerland

12 ⁵Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-
13 059 Kraków, Poland

14 ⁶Institute of Geography, Faculty of Environmental Sciences, Technical University of Dresden, 01062
15 Dresden, Germany

16 ^anow at Institute of Geography, Chair of Physical Geography, Friedrich-Schiller University of Jena,
17 07743 Jena, Germany

18

19 *corresponding author (johannes-hepp@gmx.de)

20 **Keywords**

21 Leaf wax *n*-alkanes, hemicellulose sugars, pH, temperature, CBT, MBT', $\delta^2\text{H}$ and $\delta^{18}\text{O}$, relative
22 humidity

23 **Abstract**

24 Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and
25 the stable isotopic composition of biomarkers, such as $\delta^2\text{H}$ of leaf wax-derived *n*-alkanes ($\delta^2\text{H}_{n\text{-alkane}}$) or $\delta^{18}\text{O}$ of hemicellulose-derived sugars ($\delta^{18}\text{O}_{\text{sugar}}$) are increasingly used for the
26 reconstruction of past climate and environmental conditions. Plant-derived $\delta^2\text{H}_{n\text{-alkane}}$ and
27 $\delta^{18}\text{O}_{\text{sugar}}$ values record the isotopic composition of plant source water ($\delta^2\text{H}_{\text{source-water}}$ and
28 $\delta^{18}\text{O}_{\text{source-water}}$), which usually reflects mean annual precipitation ($\delta^2\text{H}_{\text{precipitation}}$ and
29 $\delta^{18}\text{O}_{\text{precipitation}}$), modulated by evapotranspirative leaf water enrichment and biosynthetic
30 fractionation (ε_{bio}). Accuracy and precision of respective proxies should be ideally evaluated at
31 a regional scale. For this study, we analysed topsoils below coniferous and deciduous forests,
32 as well as grassland soils along a Central European transect in order to investigate the variability
33 and robustness of various proxies, and to identify effects related to vegetation. Soil pH-values
34 derived from brGDGTs correlate reasonably well with measured soil pH-values, but
35 systematically overestimate them ($\Delta\text{pH} = 0.6 \pm 0.6$). The branched vs. isoprenoid tetraether
36 index (BIT) can give some indication whether the pH reconstruction is reliable. Temperatures
37 derived from brGDGTs overestimate mean annual air temperatures slightly ($\Delta T_{\text{MA}} = 0.5^\circ\text{C} \pm 2.4$). Apparent isotopic fractionation ($\varepsilon_{n\text{-alkane/precipitation}}$ and $\varepsilon_{\text{sugar/precipitation}}$) is lower for
38 grassland sites than for forest sites due to “signal damping”, i.e. grass biomarkers do not record
39 the full evapotranspirative leaf water enrichment. Coupling $\delta^2\text{H}_{n\text{-alkane}}$ with $\delta^{18}\text{O}_{\text{sugar}}$ allows to
40 reconstruct the stable isotopic composition of the source water more accurately than without
41 the coupled approach ($\Delta\delta^2\text{H} = \sim-21\text{‰} \pm 22$ and $\Delta\delta^{18}\text{O} = \sim-2.9\text{‰} \pm 2.8$). Similarly, relative
42 humidity during daytime and vegetation period (RH_{MDV}) can be reconstructed using the coupled
43 isotope approach ($\Delta\text{RH}_{\text{MDV}} = \sim-17 \pm 12$). Especially for coniferous sites, reconstructed RH_{MDV}
44 values as well as source water isotope composition underestimate the measured values. This
45 can be likely explained by understory grass vegetation at the coniferous sites contributing
46 significantly to the *n*-alkane pool but only marginally to the sugar pool in the topsoils.
47 Vegetation-dependent variable “signal damping” and ε_{bio} (regarding ^2H between *n*-alkanes and
48 leaf water) along our European transect are difficult to quantify but likely contribute to the
49 observed underestimation in the source water isotope composition and RH reconstructions.
50 Microclimate variability could cause the rather large uncertainties. Vegetation-related effects
51 do, by contrast, not affect the brGDGT-derived reconstructions. Overall, GDGTs and the
52 coupled $\delta^2\text{H}_{n\text{-alkane}}\text{-}\delta^{18}\text{O}_{\text{sugar}}$ approach have great potential for more quantitative paleoclimate
53 reconstructions.
54

56 **1 Introduction**

57 Information about the variability and consequences of past climate changes is a prerequisite for
58 precise predictions regarding the present climate change. Molecular fossils, so called
59 biomarkers, have great potential to enhance our understanding about variations of past climate
60 and environmental changes. Lipid biomarkers in particular are increasingly used for
61 paleoclimate and environmental reconstructions (e.g. Brincat et al., 2000; Eglinton and
62 Eglinton, 2008; Rach et al., 2014; Romero-Viana et al., 2012; Schreuder et al., 2016). However
63 strengths and limitations of respective proxies need to be known (Dang et al., 2016). For this,
64 calibrations using modern reference samples are essential.

65 One famous and widely applied lipid biomarker group are terrestrial branched glycerol dialkyl
66 glycerol tetraethers (brGDGTs). They are synthesized in the cell membranes of anaerobe
67 heterotrophic soil bacteria (Oppermann et al., 2010; Weijers et al., 2010) have great potential
68 for the reconstruction of past environmental conditions (e.g. Coffinet et al., 2017; Schreuder et
69 al., 2016; Zech et al., 2012), although some uncertainties exist. Calibration studies suggest that
70 the relative abundance of the individual brGDGTs varies with mean annual air temperature
71 (T_{MA}) and soil pH (Peterse et al., 2012; Weijers et al., 2007), at least across large, global climate
72 gradients or along pronounced altitudinal gradients (Wang et al., 2017). However, in arid
73 regions the production of brGDGT is limited, while isoprenoidal GDGTs (iGDGTs) produced
74 by archaea provide the dominant part of the overall soil GDGT pool (Anderson et al., 2014;
75 Dang et al., 2016; Dirghangi et al., 2013; Wang et al., 2013; Xie et al., 2012). The ratio of
76 brGDGTs vs. isoprenoid GDGTs (BIT) can be used as indication whether a reconstruction of
77 T_{MA} and pH will be reliable. Moreover, Mueller-Niggemann et al. (2016) revealed an influence
78 of the vegetation cover on the brGDGT producing soil microbes. From field experiments, it is
79 known that vegetation type and mulching practice strongly effect soil temperature and moisture
80 (Awe et al., 2015; Liu et al., 2014). Thus, multiple factors can be expected to influence soil
81 microbial communities and GDGT production. So far, little is known about the variability of
82 GDGT proxies on a regional scale, and a calibration study with small climate gradient but with
83 different vegetation types might be useful.

84 Concerning paleohydrology proxies, compound-specific stable hydrogen isotopes of leaf wax
85 biomarkers, such as long chain *n*-alkanes ($\delta^2H_{n\text{-alkanes}}$) record the isotopic signal of precipitation
86 and therefore past climate and environmental conditions (Sachse et al., 2004, 2006). However,
87 various influencing factors are known e.g. the moisture source to leaf waxes (Pedentchouk and
88 Zhou, 2018 and Sachse et al., 2012 for review). Next is the evapotranspiration of leaf water
89 (Feehins and Sessions, 2010; Kahmen et al., 2013; Zech et al., 2015), which is strongly driven
90 by relative air humidity (RH; e.g. Cernusak et al., 2016 for review). In addition, a strong
91 precipitation signal is known to be incorporated into long chain leaf waxes (Hou et al., 2008;
92 Rao et al., 2009; Sachse et al., 2004). In paleoclimate studies, it is often not feasible to
93 disentangle between the evapotranspirative enrichment from the precipitation signal. Zech et
94 al. (2013) proposed to couple $\delta^2H_{n\text{-alkane}}$ results with oxygen stable isotopes of hemicellulose-
95 derived sugars ($\delta^{18}O_{\text{sugar}}$). Assuming constant biosynthetic fractionation (ε_{bio}) for the different
96 compound classes (*n*-alkanes and hemicellulose sugars), this coupling enables the
97 reconstruction of the isotopic composition of leaf water, RH, δ^2H and $\delta^{18}O$ of plant source water
98 ($\approx \delta^2H$ and $\delta^{18}O$ of precipitation; Tuthorn et al., 2015). So far, a detailed evaluation of this

99 approach on the European scale, as well as related effects concerning vegetation changes is
100 missing.

101 We analysed topsoil samples under coniferous, deciduous and grassland vegetation along a
102 Central European transect in order to estimate the variability of the biomarker proxies. More
103 specifically, we aim to test whether:

104 (i) the vegetation type has an influence on the brGDGT proxies, the $\delta^2\text{H}_{n\text{-alkane}}$ and the $\delta^{18}\text{O}_{\text{sugar}}$
105 stable isotopic composition, as well as on reconstructed $\delta^2\text{H}_{\text{source-water}}$, $\delta^{18}\text{O}_{\text{source-water}}$ and RH.

106 (ii) the published brGDGT proxies used for reconstructing mean annual temperature and soil
107 pH are sensitive enough to reflect the medium changes in temperature and soil pH along our
108 transect.

109 (iii) the coupled $\delta^2\text{H}_{n\text{-alkane}}$ - $\delta^{18}\text{O}_{\text{sugar}}$ approach enables a $\delta^2\text{H}$ and $\delta^{18}\text{O}$ of precipitation and RH
110 reconstruction along the transect.

111

112 **2 Material and methods**

113 **2.1 Geographical setting and sampling**

114 In November 2012, we collected 29 topsoil samples (0-5 cm depth) from 16 locations along a
115 transect from Southern Germany to Southern Sweden (Fig. 1A). We distinguished between sites
116 with coniferous forest (con, n = 9), deciduous forest (dec, n = 14) and grassland (grass, n = 6)
117 vegetation cover (for more details see Schäfer et al. (2016) and Tab. S1).

118

119 **2.2 Database of instrumental climate variables and isotope composition of precipitation**

120 Climate data was derived from close-by weather observation stations operating by the regional
121 institutions (Deutscher Wetterdienst (DWD) for Germany, Danmarks Meteorologiske Institut
122 (DMI) for Denmark and the Sveriges Meteorologiska och Hydrologiska Institute (SMHI) for
123 Sweden). The DWD provides hourly data for each station (DWD Climate Data Center, 2018b),
124 enabling not only the calculation of T_{MA} , but also of the mean annual relative air humidity
125 (RH_{MA}), mean temperature and relative air humidity during the vegetation period (T and
126 RH_{MV}), and of daytime temperature and relative humidity averages over the vegetation period
127 (T and RH_{MDV}). In addition, annual precipitation observations were used to derive the mean
128 annual precipitation amount (P_{MA} ; DWD Climate Data Center, 2018b). From the DMI, the
129 respective climate variables were derived from published technical reports (Cappelen, 2002;
130 Frich et al., 1997; Laursen et al., 1999). The SMHI provides open data from which we derived
131 the climate variables for the Swedish sites (Swedish Meteorological and Hydrological Institute,
132 2018). For more details about the climate database used for calculations and comparisons, the
133 reader is referred to Tab. S2.

134 For comprising German precipitation ($\delta^2\text{H}$ and $\delta^{18}\text{O}$) along the transect, we realized a
135 regionalisation (called $\delta^2\text{H}_{\text{GIPR}}$ and $\delta^{18}\text{O}_{\text{GIPR}}$) using online available data from 34 German GNIP
136 stations, 4 Austrian ANIP stations and the Groningen GNIP station (van Geldern et al., 2014;
137 IAEA/WMO, 2018; Stumpp et al., 2014; Umweltbundesamt GmbH, 2018), following the
138 approach of Schlotter (2007). However, instead of the multivariate regression procedure applied

139 by Schlotter (2007), we used a random forest approach (Hothorn et al., 2006; Strobl et al., 2007,
 140 2008) to describe the relationship of squared latitude, latitude, longitude and altitude vs. long
 141 term weighted means of precipitation $\delta^2\text{H}$ and $\delta^{18}\text{O}$, and realized the prediction for each site
 142 (see supplementary method description for more information). For the Danish and Swedish
 143 sites, such a procedure was not possible. Hence, the annual precipitation $\delta^2\text{H}$ and $\delta^{18}\text{O}$ values
 144 were derived from the Online Isotopes in Precipitation Calculator (OIPC, version 3.1), therefore
 145 called $\delta^2\text{H}_{\text{OIPC}}$ and $\delta^{18}\text{O}_{\text{OIPC}}$ (Bowen, 2018; Bowen and Revenaugh, 2003; IAEA/WMO, 2015).
 146 The finally used $\delta^2\text{H}_{\text{GIPR,OIPC}}$ and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ data are given in Tab. S1.

147 The T_{MA} along the transect ranges from 5.3 to 10.6°C, and P_{MA} ranges from 554 to 1769 mm
 148 (Fig. 1B). Precipitation $\delta^2\text{H}$ and $\delta^{18}\text{O}$ shows moderate changes along the transect, $\delta^2\text{H}_{\text{GIPR,OIPC}}$
 149 varies between -52 and -79‰, and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ ranges from -7.4 to -10.9‰ (Fig. 1C).

150 Correlations between $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ and P_{MA}, altitude of the locations, T_{MA} are given in the
 151 supplementary material (Fig. S1 to S3), along with a $\delta^2\text{H}_{\text{GIPR,OIPC}}$ vs. $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ scatter plot
 152 (Fig. S4).

153
 154 **Fig. 1.** (A) Sample locations (red dots, map source: US National Park Service), (B) variations
 155 of mean annual air temperature (T_{MA}, red dots and line) and mean annual precipitation (P_{MA},
 156 blue bars) derived from close-by climate station data, and (C) hydrogen and oxygen stable
 157 isotope composition of precipitation ($\delta^2\text{H}_{\text{GIPR,OIPC}}$ and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$, respectively) as derived for
 158 the sampled transect locations (see section 2.2 GIPR $\delta^2\text{H}$ and $\delta^{18}\text{O}$ generation procedure). The
 159 reader is referred to section 2.2 (and Tab. S1 and S2) for database and reference information of
 160 data plotted in (B) and (C).

162 **2.3 Soil extractions and analysis**

163 **2.3.1 GDGTs and pH**

164 A detailed description of sample preparation for lipid analysis can be found in Schäfer et al.
165 (2016). Briefly, 1–6 g freeze-dried and grounded soil sample was microwave extracted with 15
166 ml dichloromethane (DCM)/methanol (MeOH) 9:1 (*v*:*v*) at 100°C for 1 h. Extracts were
167 separated over aminopropyl silica gel (Supelco, 45 µm) pipette columns. The nonpolar fraction
168 (including *n*-alkanes) was eluted with hexane and further purified over AgNO₃ coated silica
169 pipette columns (Supelco, 60–200 mesh) and zeolite (Geokleen Ltd.). The GDGT-containing
170 fraction was eluted with DCM:MeOH 1:1 (*v*:*v*), re-dissolved in hexane/isopropanol (IPA) 99:1
171 (*v*:*v*) and transferred over 0.45 µm PTFE filters into 300 µl inserts. For quantification, a known
172 amount of a C₄₆ diol standard was added after transfer. The samples were analysed at ETH
173 Zurich using an Agilent 1260 Infinity series HPLC–atmospheric chemical pressure ionization
174 mass spectrometer (HPLC-APCI-MS) equipped with a Grace Prevail Cyano column (150 mm
175 × 2.1 mm; 3 µm). The GDGTs were eluted isocratically with 90% A and 10% B for 5 min and
176 then with a linear gradient to 18% B for 34 min at 0.2 ml min⁻¹, where A=hexane and
177 B=hexane/isopropanol (9:1, *v*:*v*). Injection volume was 10 µl and single ion monitoring of
178 [M+H]⁺ was used to detect GDGTs.

179 The pH of the samples was measured in the laboratory of the Soil Biogeochemistry group,
180 Institute of Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg,
181 using a pH meter in a 1:3 soil:water (*w*:*v*) mixture.

182

183 **2.3.2 δ²H_n-alkane**

184 The hydrogen isotopic composition of the highest concentrated *n*-alkanes (*n*-C₂₅, *n*-C₂₇, *n*-C₂₉,
185 *n*-C₃₁, and *n*-C₃₃) was determined using a TRACE GC Ultra Gas Chromatography connected to
186 a Delta V Plus Isotope Ratio Mass Spectrometer via a ²H pyrolysis reactor kept at 1420 °C (GC-
187 ²H-Py-IRMS; Thermo Scientific, Bremen, Germany) at ETH Zurich (Christoph et al., 2019).
188 For more details about *n*-alkane quantification the reader is referred to Schäfer et al. (2016).
189 The compound-specific ²H/¹H ratios were calibrated against an external standard with C₁₅–C₃₅
190 homologues. External standard mixtures (A4 mix from A. Schimmelmann, University of
191 Indiana) were run between the samples for multipoint linear normalization. The H⁺₃ factor was
192 determined on each measurement day and was constant throughout the periods of the sample
193 batches. Samples were analysed in duplicates, and results typically agreed within 4% (average
194 difference = 1.4%). All δ²H values are expressed relative to the Vienna Standard Mean Ocean
195 Water (V-SMOW).

196

197 **2.3.3 δ¹⁸O_{sugar}**

198 Hemicellulose sugars were extracted and purified using a slightly modified standard procedure
199 (Amelung et al., 1996; Guggenberger et al., 1994; Zech and Glaser, 2009). Briefly, myoinositol
200 was added to the samples prior to extraction as first internal standard. The sugars were released
201 hydrolytically using 4M trifluoroacetic acid for 4 h at 105°C, cleaned over glass fibre filters and
202 further purified using XAD and Dowex columns. Before derivatization with methylboronic acid
203 (Knapp, 1979), the samples were frozen, freeze-dried, and 3-O-methylglucose in dry pyridine

204 was added as second internal standard. Compound-specific hemicellulose sugar ^{18}O
 205 measurements were performed in the laboratory of the Soil Biogeochemistry group, Institute of
 206 Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, using GC-
 207 ^{18}O -Py-IRMS (all devices from Thermo Fisher Scientific, Bremen, Germany). Standard
 208 deviations of the triplicate measurements were 1.4‰ (over 29 investigated samples) for
 209 arabinose and xylose, respectively. We focus on these two hemicellulose-derived neutral sugars
 210 arabinose and xylose as they strongly predominate over fucose in terrestrial plants, soils and
 211 sediments (Hepp et al., 2016 and references therein). Rhamnose concentrations were too low to
 212 obtain reliable $\delta^{18}\text{O}$ results. All $\delta^{18}\text{O}$ values are expressed relative to the Vienna Standard Mean
 213 Ocean Water (V-SMOW).

214

215 **2.4 Theory and Calculations**

216 2.4.1 Calculations used for the GDGT-based reconstructions

217 The branched and isoprenoid tetraether (BIT) index is calculated according to Hopmans et al.
 218 (2004), for structures see Fig. S5:

$$219 \text{BIT} = \frac{\text{Ia+IIa+IIIa}}{\text{Ia+IIa+IIIa+crenarchaeol}}. \quad (1)$$

220 The cyclopentane moiety number of brGDGTs correlates negatively with soil pH (Weijers et
 221 al., 2007), which led to the development of the cyclization of branched tetraethers (CBT) ratio.
 222 CBT and the CBT based pH (pH_{CBT}) were calculated according to Peterse et al. (2012):

$$223 \text{CBT} = -\log \frac{\text{Ib+IIb}}{\text{Ia+IIa}}, \quad (2)$$

$$224 \text{pH}_{\text{CBT}} = 7.9 - 1.97 \times \text{CBT}. \quad (3)$$

225 The number of methyl groups in brGDGTs correlates negatively with T_{MA} and soil pH (Peterse
 226 et al., 2012; Weijers et al., 2007). Thus, the ratio of the methylation of branched tetraethers
 227 (MBT) ratio and the CBT ratio can be used to reconstruct T_{MA} . We use the equation given by
 228 Peterse et al. (2012):

$$229 \text{MBT}' = \frac{\text{Ia+Ib+Ic}}{\text{Ia+Ib+Ic+IIa+IIb+IIc+IIIa}}, \quad (4)$$

$$230 \text{T}_{\text{MA}} = 0.81 - 5.67 \times \text{CBT} + 31.0 \times \text{MBT}'. \quad (5)$$

231

232 2.4.2 Calculations and concepts used for the coupled $\delta^2\text{H}$ - $\delta^{18}\text{O}$ approach

233 The apparent fractionation is calculated according to Cernusak et al. (2016):

$$234 \varepsilon_{n\text{-alkane/precipitation}} = \left(\frac{\delta^2\text{H}_{n\text{-alkane}} - \delta^2\text{H}_{\text{GIPR,OIPC}}}{1 + \delta^2\text{H}_{\text{GIPR,OIPC}}/1000} \right), \quad (6)$$

$$235 \varepsilon_{\text{sugar/precipitation}} = \left(\frac{\delta^{18}\text{O}_{\text{sugar}} - \delta^{18}\text{O}_{\text{GIPR,OIPC}}}{1 + \delta^{18}\text{O}_{\text{GIPR,OIPC}}/1000} \right). \quad (7)$$

236 The isotopic composition of leaf water ($\delta^2\text{H}_{\text{leaf-water}}$ and $\delta^{18}\text{O}_{\text{leaf-water}}$) can be calculated using ε_{bio}
 237 for $\delta^2\text{H}_{n\text{-alkane}}$ (-160‰, Sachse et al., 2012; Sessions et al., 1999) and $\delta^{18}\text{O}_{\text{sugar}}$ (+27‰, Cernusak
 238 et al., 2003; Schmidt et al., 2001):

$$239 \delta^2\text{H}_{\text{leaf-water}} = \left(\frac{1000 + \delta^2\text{H}_{n\text{-alkane}}}{1000 + \varepsilon_{\text{bio}}(n\text{-alkane})} \right) \times 10^3 - 1000, \quad (8)$$

240
$$\delta^{18}\text{O}_{\text{leaf-water}} = \left(\frac{1000 + \delta^{18}\text{O}_{\text{sugar}}}{1000 + \varepsilon_{\text{bio}} (\text{sugar})} \right) \times 10^3 - 1000. \quad (9)$$

241 Zech et al. (2013) introduced the conceptual model for the coupled $\delta^2\text{H}_{n\text{-alkane}}-\delta^{18}\text{O}_{\text{sugar}}$ approach
 242 in detail. Briefly, the coupled approach is based on the following assumptions (illustrated in
 243 Fig. 8): (i) The isotopic composition of precipitation, which is set to be equal to the plant source
 244 water, typically plots along the global meteoric water line (GMWL; $\delta^2\text{H} = 8 \times \delta^{18}\text{O} + 10$) in a
 245 $\delta^{18}\text{O}$ vs. $\delta^2\text{H}$ space (Craig, 1961); (ii) Source water uptake by plants does not lead to any
 246 fractionation (e.g. Dawson et al., 2002), and significant evaporation of soil water can be
 247 excluded; (iii) Evapotranspiration leads to enrichment of the remaining leaf water along the
 248 local evaporation line (LEL; Allison et al., 1985; Bariac et al., 1994; Walker and Brunel, 1990),
 249 compared to the source water taken up by the plant; (iv) The biosynthetic fractionation is
 250 assumed to be constant. In addition, isotopic equilibrium between plant source water (~
 251 weighted mean annual precipitation) and the local atmospheric water vapour is assumed.
 252 Further assumption concerns the isotope steady-state in the evaporating leaf water reservoir.
 253 The coupled approach allows for reconstructing the isotopic composition of plant source water
 254 ($\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$) from the reconstructed leaf water, by calculating the intercepts
 255 of the LELs with the GMWL (Zech et al., 2013). The slope of the LEL (S_{LEL}) can be assessed
 256 by the following equation (Gat, 1971):

257
$$S_{\text{LEL}} = \frac{\varepsilon_2^* + C_k^2}{\varepsilon_{18}^* + C_k^{18}}, \quad (10)$$

258 where ε^* are equilibrium isotope fractionation factors and C_k are kinetic fractionation factors.
 259 The latter equals to 25.1‰ and 28.5‰, for C_k^2 and C_k^{18} , respectively (Merlivat, 1978). The
 260 equilibrium fractionation factors can be derived from empirical equations (Horita and
 261 Wesolowski, 1994) by using T_{MDV} values. For two Danish sites T_{MDV} are not available, instead
 262 T_{MV} is used here (section 2.2 and Tab. S2).

263 In a $\delta^{18}\text{O}$ - $\delta^2\text{H}$ diagram, the distance of the leaf water from the GMWL define the deuterium-
 264 excess of leaf water ($d_{\text{leaf-water}} = \delta^2\text{H}_{\text{leaf-water}} - 8 \times \delta^{18}\text{O}_{\text{leaf-water}}$, according Dansgaard, (1964); Fig.
 265 8). To convert $d_{\text{leaf-water}}$ into mean RH during daytime and vegetation period (RH_{MDV}), a
 266 simplified Craig-Gordon model can be applied (Zech et al., 2013):

267
$$RH = 1 - \frac{\Delta d}{\varepsilon_2^* - 8 \times \varepsilon_{18}^* + C_k^2 - 8 \times C_k^{18}}, \quad (11)$$

268 where Δd is the difference in $d_{\text{leaf-water}}$ and the deuterium-excess of source water ($d_{\text{source-water}}$).

269

270 2.5 Statistics

271 In the statistical analysis we checked sample distributions for normality (Shapiro and Wilk,
 272 1965) and for equal variance (Levene, 1960). If normality and equal variances are given, we
 273 perform an Analysis of Variance (ANOVA). If that is not the case, we conduct the non-
 274 parametric Kruskal-Wallis Test. ANOVA or Kruskal-Wallis are used to find significant
 275 differences ($\alpha=0.05$) between the vegetation types (deciduous, conifer and grass).

276 In order to describe the relation along a 1:1 line, the coefficient of correlation (R^2) was
 277 calculated as $R^2 = 1 - \sum (\text{modeled} - \text{measured})^2 / \sum (\text{measured} - \text{measured mean})^2$. The small
 278 r^2 is taken as coefficient of correlation of a linear regression between a dependent (y) and

279 explanatory variable(s). The root mean square error (RMSE) of the relationships was calculated
280 as $RMSE = \sqrt{\left(\frac{1}{n} \cdot \sum (\text{modeled} - \text{measured})^2\right)}$. All data plotting and statistical analysis was
281 realized in R (version 3.2.2; R Core Team, 2015).

282

283 **3 Results and Discussion**

284 **3.1 GDGT concentrations**

285 GDGT Ia has the highest concentration under all vegetation types, followed by GDGT IIa and
286 GDGT IIIa (Fig. 2). GDGT Ib, IIb and Ic occur in minor, GDGT IIc and IIIb only in trace
287 amounts. GDGT IIIc was below the detection limit in most of the samples (Tab. S3). Although
288 other studies document an influence of the vegetation cover on soil temperature and soil water
289 content, which control the microbial community composition in soils (Awe et al., 2015; Liu et
290 al., 2014; Mueller-Niggemann et al., 2016), we find no statistically different pattern of the
291 individual brGDGTs.

292

293 **Fig. 2.** Mean concentrations of individual brGDGTs as percentage of all brGDGTs for the three
294 investigated types. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest
295 sites (n=14); grass = grassland sites (n=6).

296 Total concentrations of brGDGTs range from 0.32 to 9.17 µg/g dry weight and tend to be
297 highest for the coniferous samples and lowest for the grasses (Fig. 3A, Tab. S3). Bulk brGDGT
298 concentrations lie within the range of other studies examining soils of mid latitude regions
299 (Huguet et al., 2010b, 2010a; Weijers et al., 2011). Similar concentrations in coniferous and
300 deciduous samples imply that brGDGT production does not strongly vary in soils below
301 different forest types. The grass samples show lower brGDGT concentrations compared to the
302 forest samples, but this is probably mainly due to ploughing of the grass sites in former times
303 and hence admixing of mineral subsoil material. The differences in brGDGT concentrations are
304 not significant (p-value = 0.06).

305

306 **3.2 BIT index**

307 Most of the samples have a BIT index higher than 0.9 (Fig 3B and Tab. S3). The BIT-values
308 are typical for soils in humid and temperate climate regions (Weijers et al., 2006). However,

309 outliers exist. The most likely source of iGDGTs in soils are Thaumarchaeota, i.e. aerobic
 310 ammonia oxidizing archaea producing Crenarchaeol and its regioisomer (Schouten et al., 2013
 311 and references therein), when precipitation amount drops below 700-800 mm (Dang et al.,
 312 2016; Dirghangi et al., 2013). The P_{MA} data of our sampling sites mostly show precipitation >
 313 550 mm (Fig. 1B), but one has to be aware that this data is based on the climate station nearest
 314 to the respective sampling locations and microclimate effects, such as sunlight exposure,
 315 canopy cover or exposition might have a pronounced influence on the brGDGT vs. iGDGT
 316 distribution. Mueller-Niggemann et al. (2016) found higher BIT indices in upland soils
 317 compared to paddy soils and stated that the management type also influences BIT values in
 318 soils. Along our transect, grass sites tend to have slightly lower BIT-values than forest sites,
 319 probably due to the absence of a litter layer and hence, no isolation mechanism preventing
 320 evaporation of soil water. Differences between vegetation types are not significant (p-value =
 321 0.32).

322 **Fig. 3.** (A) Total concentrations of brGDGTs in $\mu\text{g g}^{-1}$ dry weight, as well as (B) BIT, (C) CBT
 323 and (D) MBT'. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites
 324 (n=14); grass = grassland sites (n=6). Box plots show median (red line), interquartile range
 325 (IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5IQR of lower
 326 quartile, and highest whisker still within 1.5IQR of upper quartile, dots mark outliers.
 327

328

329 **3.3 CBT-derived pH**

330 The CBT ratio shows a pronounced variation independent of vegetation type with values
 331 between 0.03 and 2.16 (Fig 3C). The coniferous samples tend to be highest, but the differences
 332 between vegetation types are not significant (p-value = 0.48). The CBT index can be related to
 333 pH in acidic and/or humid soils (e.g. Dirghangi et al., 2013; Mueller-Niggemann et al., 2016;
 334 Peterse et al., 2012; Weijers et al., 2007) but might be an indicator of soil water content and
 335 hence, precipitation in more arid and alkaline soils (e.g. Dang et al., 2016). There is a
 336 pronounced correlation between CBT and soil pH (Fig. 4), which is in good agreement with
 337 other studies from mid latitude regions where precipitation is relatively high (Anderson et al.,
 338 2014 and references therein). Moreover, the CBT to pH relationship in terms of slope and
 339 intersect in our dataset ($\text{CBT} = -0.47 \times \text{pH} + 3.5$, $r^2 = 0.7$, p-value < 0.0001, n = 29) is well
 340 comparable to the correlation described for the global calibration dataset of Peterse et al. (2012)
 341 ($\text{CBT} = -0.36 \times \text{pH} + 3.1$, $r^2 = 0.7$, p-value < 0.0001, n = 176).

342 However, there are some outliers in the CBT-pH correlation, which need a further examination
 343 (see locations grass L04, dec L10 and dec L12 as marked in Figs. 4 and 5). The outliers show
 344 lower BIT indices (< 0.85, Tab. S3). Even though the data from the nearest climate station
 345 suggest no abnormal P_{MA}. Local effects such as differences in the amount of sunlight exposure,
 346 nutrient availability for brGDGT producing organisms or, most likely soil water content might

347 influence the brGDGT production at these locations (Anderson et al., 2014; Dang et al., 2016).
 348 A lower BIT index as well as a lower CBT occur when soil water content decreases (Dang et
 349 al., 2016; Sun et al., 2016) or when aeration is high and less anoxic microhabitats for GDGT
 350 producing microbes exist (e.g. Dirghangi et al., 2013).

351
 352 **Fig. 4.** CBT to pH relationship in our dataset in comparison to the global calibration dataset
 353 from Peterse et al. (2012) ($CBT = -0.36 \times pH + 3.1$, $r^2 = 0.7$, p -value < 0.0001, $n = 176$, black
 354 line). Abbreviations: con = coniferous forest sites ($n=9$); dec = deciduous forest sites ($n=14$);
 355 grass = grassland sites ($n=6$).

356
 357 As the CBT and pH are similarly correlated in our dataset and the global dataset of Peterse et
 358 al. (2012), the CBT-derived pH correlated well with the actual pH (Fig. 5A; $R^2 = 0.3$).
 359 Expressed as ΔpH (CBT-derived pH - measured pH), there is a tendency that the GDGTs result
 360 in an overestimation of the real pH for the forest sites (Fig. B). Yet a Kruskal-Wallis test shows
 361 no statistically significant difference between the vegetation types, with a p -value of 0.13. The
 362 overall ΔpH of 0.6 ± 0.6 shows that the reconstruction of soil pH using brGDGTs works well
 363 along this transect.

364

365 **Fig. 5.** (A) Correlation between measured pH and reconstructed soil pH (pH_{CBT}) from our
 366 transect data in comparison to the global calibration dataset from Peterse et al. (2012) ($R^2 = 0.7$,
 367 RMSE = 0.75, $n = 176$). Black line indicates the 1:1 relationship. (B) Boxplots of ΔpH (refers
 368 to $\text{pH}_{\text{CBT}}-\text{pH}$). Box plots show median (red line), interquartile range (IQR) with upper (75%)
 369 and lower (25%) quartiles, lowest whisker still within 1.5IQR of lower quartile, and highest
 370 whisker still within 1.5IQR of upper quartile, dots mark outliers. Abbreviations: con =
 371 coniferous forest sites ($n=9$); dec = deciduous forest sites ($n=14$); grass = grassland sites ($n=6$).

372

373 **3.4 MBT'-CBT-derived T_{MA} reconstructions**

374 The MBT' shows high variability with values ranging from 0.17 to 0.67 no statistical
 375 differences between vegetation types ($p\text{-value} = 0.54$; Fig. 3D, Tab. S3). When comparing
 376 reconstructed (MBT'-CBT-derived) T_{MA} with climate station T_{MA} , the data plot close to the 1:1
 377 line, and fit well into the global dataset of Peterse et al. (2012) (Fig. 6A). The ΔT_{MA} reveal an
 378 overall offset of $0.5^{\circ}\text{C} \pm 2.4$ and there is no statistically difference between vegetation types
 379 (Fig. 6B). The standard deviation in ΔT_{MA} of ± 2.4 is well in line with the RMSE of 5.0 for the
 380 global calibration dataset (Peterse et al., 2012).

381

382 **Fig. 6.** (A) Correlation between climate station T_{MA} and reconstructed (MBT'-CBT-derived)
 383 T_{MA} . For comparison, the global calibration dataset from Peterse et al. (2012) is shown. The
 384 black line indicates the 1:1 relationship. (B) Boxplots of ΔT_{MA} (refers to reconstructed T_{MA} -
 385 T_{MA} from climate stations) in the different vegetation types from our transect study. Box plots
 386 show median (red line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles,
 387 lowest whisker still within 1.5IQR of lower quartile, and highest whisker still within 1.5IQR of
 388 upper quartile, dots mark outliers. Abbreviations: con = coniferous forest sites ($n=9$); dec =
 389 deciduous forest sites ($n=14$); grass = grassland sites ($n=6$).

390

391 **3.5 Potential impact of the used liquid chromatography method on pH and T_{MA} 392 reconstructions**

393 The GDGT data presented in this study are not acquired on the up-to-date method (e.g. compare
 394 De Jonge et al., 2014 vs. Zech et al., 2012c). De Jonge et al. (2014) presented a new liquid
 395 chromatography method which enables the separation for the brGDGTs with m/z 1036, 1034

396 and 1032, 1050, 1048 and 1046 into 6-methyl and 5-methyl stereoisomers. The old method did
397 not allow such a separation (Zech et al., 2012c), thus in the calibration often the sum of 6 and
398 5-methylated brGDGTs was used (see and compare De Jonge et al., 2014 vs. Peterse et al., 2012).
399 This introduce scatter to the MBT'-CBT-based T_{MA} reconstructions and can cause a correlation
400 between pH and MBT' (for more details see De Jonge et al., 2014). De Jonge et al. (2014)
401 moreover show that the 6-methyl brGDGTs are ubiquitous abundant in soils from all over the
402 world, based on reanalysing the dataset of Peterse et al. (2012). However, they also compare
403 reconstructed T_{MA} values based MBT'-CBT calibration (Peterse et al., 2012) and their new
404 developed T_{MA} calibration and state that they plot around a 1:1 line. They furthermore state,
405 that especially for arid areas larger deviations can be expected. Finally, they conclude that the
406 use of the new developed calibrations will improve the T_{MA} and pH reconstructions for areas
407 with arid climate conditions. Because our study transect spans from southern Germany to
408 southern Sweden, representing temperate and humid climate conditions, we argue that the usage
409 of the older liquid chromatography method do not introduce a systematic error in our T_{MA} and
410 pH reconstructions. Still, a higher variability/scatter could be associated with the calibration of
411 Peterse et al. (2012) and therefore also present in our T_{MA} and pH reconstructions.

412

413 **3.6 Apparent fractionation of δ^2H and $\delta^{18}O$ in the different vegetation types**

414 δ^2H values could be obtained for the *n*-alkanes C₂₇, C₂₉ and C₃₁ in all samples and additionally
415 at two locations for *n*-C₂₅ and *n*-C₃₃ at six other locations. The $\delta^2H_{n\text{-alkane}}$ values, calculated as
416 mean of *n*-C₂₅ to *n*-C₃₁ δ^2H , range from -156 to -216‰. Pooled standard deviations show an
417 overall average of 3.6‰. The $\delta^{18}O_{\text{sugar}}$ values, calculated as the area weighted means for
418 arabinose and xylose, range from +27.7 to +39.4‰. The average weighted mean standard
419 deviation is 1.4‰. The compound-specific isotope data are summarized along with the
420 calculations in Tab. S4.

421 Apparent fractionation ($\epsilon_{n\text{-alkane/precipitation}}$) is on the order of -120 to -150‰, i.e. a bit less than
422 the biosynthetic fraction of -160‰. This implies that evapotranspirative enrichment is ~ 10 to
423 40‰ (Fig. 7A). $\epsilon_{n\text{-alkane/precipitation}}$ is lower for grass sites compared to the forest sites. Differences
424 are significant between deciduous and grass sites (p-value = 0.005). This finding supports the
425 results of other studies (Kahmen et al., 2013; Liu and Yang, 2008; McInerney et al., 2011), and
426 can be named “signal damping”. Grasses do not only incorporate the evaporatively-enriched
427 leaf water but also unenriched xylem water in the growth and differentiation zone of grasses
428 (Gamarra et al., 2016; Liu et al., 2017).

429 The grass-derived hemicellulose sugar biomarkers do not fully record the evapotranspirative
430 enrichment of the leaf water, either, as indicated by lower apparent fractionation ($\epsilon_{\text{sugar/precipitation}}$)
431 in Fig. 7B. The differences are significant between forest and grass sites (p-value < 0.005). This
432 is in agreement with a study on cellulose extracted from grass blades (Helliker and Ehleringer,
433 2002), and again, the “signal damping” can be explained with incorporation of enriched leaf
434 water and non-enriched stem water.

435 Based on the comparison of evapotranspirative enrichment between forest and grass sites, the
436 “signal damping” can be quantified to be ~ 31% for the hemicellulose sugars, and ~ 49% for
437 the *n*-alkanes. This is in agreement with other studies that reported a loss of 22% of the leaf

438 water enrichment for hemicellulose sugars (Helliker and Ehleringer, 2002) and 39 to 62% loss
 439 of the leaf water enrichment for *n*-alkanes (Gamarra et al., 2016).

440

441 **Fig. 7.** Apparent fractionation (A) $\varepsilon_{n\text{-alkane/precipitation}}$ and (B) $\varepsilon_{\text{sugar/precipitation}}$. Biosynthetic
 442 fractionation factors according to section 2.4.2. Box plots show median (red line), interquartile
 443 range (IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5IQR
 444 of lower quartile, and highest whisker still within 1.5IQR of upper quartile, dots mark outliers.
 445 Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11 and 14
 446 for *n*-alkanes and sugars, respectively); grass = grassland sites (n=4 and 6 for *n*-alkanes and
 447 sugars, respectively). The figure conceptually illustrates the effect of biosynthetic fractionation
 448 and evapotranspirative enrichment as well as “signal damping”.

449

450 3.7 $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ reconstructions

451 The $\delta^2\text{H}$ versus $\delta^{18}\text{O}$ diagram shown in Fig. 8 graphically illustrates the reconstruction of $\delta^2\text{H}_{\text{leaf-}}$
 452 water and $\delta^{18}\text{O}_{\text{leaf-water}}$ (colored dots) from $\delta^2\text{H}_{n\text{-alkane}}$ and $\delta^{18}\text{O}_{\text{sugar}}$ (crosses), as well as the
 453 reconstruction of $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ (black dots). For reconstructing $\delta^2\text{H}_{\text{source-water}}$
 454 and $\delta^{18}\text{O}_{\text{source-water}}$, LELs with an average slope of 2.8 ± 0.1 (Eq. 10) can be generated through
 455 every leaf water point and the intercepts of these LELs with the GMWL.

456
 457 **Fig. 8.** $\delta^2\text{H}$ vs. $\delta^{18}\text{O}$ diagram illustrating the coupled $\delta^2\text{H}_{n\text{-alkane}}$ - $\delta^{18}\text{O}_{\text{sugar}}$ approach: measured
 458 $\delta^2\text{H}_{n\text{-alkane}}$ and $\delta^{18}\text{O}_{\text{sugar}}$ values, reconstructed $\delta^2\text{H}_{\text{leaf-water}}$ and $\delta^{18}\text{O}_{\text{leaf-water}}$ (according Eqs. 8 and
 459 9) and reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ in comparison to GIPR and OIPC-based
 460 $\delta^2\text{H}_{\text{precipitation}}$ and $\delta^{18}\text{O}_{\text{precipitation}}$. Abbreviations: con = coniferous forest sites (n=9); dec =
 461 deciduous forest sites (n=11); grass = grassland sites (n=4).

462
 463 The reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ results can be compared with the $\delta^2\text{H}_{\text{GIPR,OIPC}}$
 464 and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ data (Fig. 9). This comparison reveals that the coupled $\delta^2\text{H}_{n\text{-alkane}}$ - $\delta^{18}\text{O}_{\text{sugar}}$
 465 approach yields more accurate $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ compared to single $\delta^2\text{H}_{n\text{-alkane}}$
 466 approaches. However, the range of the reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ values is
 467 clearly larger than in $\delta^2\text{H}_{\text{GIPR,OIPC}}$ and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ values. $\delta^2\text{H}$ is systematically underestimated
 468 by $\sim 21\text{‰} \pm 22$ (Fig. 9B) and $\delta^{18}\text{O}$ by $\sim 2.9\text{‰} \pm 2.8$ (Fig. 9D). The type of vegetation seems to
 469 be not particularly relevant (p-value = 0.18 for $\Delta\delta^2\text{H}$ and p-value = 0.34 for $\Delta\delta^{18}\text{O}$).
 470 Nevertheless, the systematic offsets tend to be lowest for the deciduous sites ($\Delta\delta^2\text{H}$ and $\Delta\delta^{18}\text{O}$ is
 471 closer to zero with $\sim -5\text{‰} \pm 15$ and $\sim -1.1\text{‰} \pm 2.1$), followed by grass sites ($\sim -14\text{‰} \pm 20$ and \sim
 472 $2.1\text{‰} \pm 2.6$). In comparison, the coniferous sites show the largest offsets ($\sim -23\text{‰} \pm 26$ for $\Delta\delta^2\text{H}$
 473 $\sim -3.0\text{‰} \pm 3.3$ for $\Delta\delta^{18}\text{O}$). Differences are, however, not statistically significant. The systematic
 474 offset and the large variability might have more specific reasons, and we suggest that this is
 475 related to the type of vegetation. Deciduous trees produce lots of leaf waxes and sugars (e.g.
 476 Prietzel et al., 2013; Zech et al., 2012a), and all biomarkers reflect and record the

477 evapotranspirative enrichment of the leaf water (e.g. Kahmen et al., 2013; Tuthorn et al., 2014).
478 By contrast, coniferous trees produce quite low amounts of *n*-alkanes (Diefendorf and Freimuth,
479 2016; Zech et al., 2012a), while sugar concentrations are as high as in other vascular plants (e.g.
480 Hepp et al., 2016; Prietzel et al., 2013). For the coniferous soil samples this means that the *n*-
481 alkanes stem most likely from the understory whereas the sugars originate from grasses and
482 coniferous needles. When the understory is dominated by grass species then the *n*-alkane
483 biomarkers do not record the full leaf water enrichment signal, whereas the sugars from the
484 needles do. The reconstructed leaf water for the coniferous sites is therefore too negative
485 concerning $\delta^2\text{H}$, and reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ values thus also become too
486 negative (Fig. 8). Concerning the grass sites, the following explanation can be found. Correcting
487 for “signal damping” makes the reconstructed leaf water points more positive and shifts them
488 in Fig. 8 up and right. As the “signal damping” is stronger for $\delta^2\text{H}$ than for $\delta^{18}\text{O}$ the corrected
489 leaf water points would now plot above the uncorrected ones. The corrected leaf water points
490 lead to more positive reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ values for the grass sites.
491 However, Gao et al. (2014) and Liu et al. (2016) showed that the ε_{bio} (regarding ^2H between *n*-
492 alkanes and leaf water) of monocotyledon plants could be larger than those of dicotyledonous
493 ones. This would therefore also cause a more negative $\varepsilon_{n\text{-alkane/precipitation}}$ for grasses compared to
494 trees. We observe that the $\varepsilon_{n\text{-alkane/precipitation}}$ is indeed more negative for the grass sites compared
495 to the forest sites (Fig 7 and section 3.6). Therefore, effects of “signal damping” vs. variable
496 ε_{bio} along with vegetation types are indistinguishable here. As an outlook for a future study, we
497 therefore strongly recommend a comparison between the here measured $\delta^2\text{H}_{n\text{-alkane}}$ values with
498 modelled ones using e.g. the new available model approach from Konecky et al. (2019), which
499 could provide insights if such vegetation effects on ε_{bio} of ^2H in *n*-alkanes are describable.

500

501 Vegetation type specific rooting depths could partly cause the overall high variability in
502 reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$. Deep rooting species most likely use the water
503 from deeper soil horizons and/or shallow ground water, which is equal to the (weighted) mean
504 annual precipitation (e.g. Herrmann et al., 1987). Shallow rooting plants take up water from
505 upper soil horizons, which is influenced by seasonal variations in $\delta^2\text{H}_{\text{precipitation}}$ and $\delta^{18}\text{O}_{\text{precipitation}}$
506 and by soil water enrichment (Dubbert et al., 2013). Thus, the overall assumption that the source
507 water of the plants reflects the local (weighted) mean precipitation might be not fully valid for
508 all sites. Moreover, a partly contribution of root-derived rather than leaf-derived sugar
509 biomarkers in our topsoil samples is very likely. This does, by contrast, not apply for *n*-alkanes,
510 which are hardly produced in roots (Zech et al., 2012b and the discussion therein).

511
 512 **Fig. 9.** Correlation of reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ vs. precipitation $\delta^2\text{H}_{\text{GIPR,OIPC}}$
 513 and $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ (A and C). Black lines indicate 1:1 relationship. Differences between
 514 reconstructed source water and precipitation ($\Delta\delta^2\text{H}$, $\delta^{18}\text{O} = \delta^2\text{H}_{\text{source-water}} - \delta^2\text{H}_{\text{GIPR,OIPC}}$,
 515 $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$) for the three different vegetation types (B and D). Box plots show
 516 median (red line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles, lowest
 517 whisker still within 1.5IQR of lower quartile, and highest whisker still within 1.5IQR of upper
 518 quartile. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11);
 519 grass = grassland sites (n=4).

520 Moreover, the high variability within the vegetation types could be caused by variability in ε_{bio}
 521 of ^2H in n -alkanes, as well as ^{18}O in sugars. There is an ongoing discussion about the correct
 522 ε_{bio} for ^{18}O in hemicellulose sugars (Sternberg, 2014 vs. Zech et al., 2014), and ε_{bio} is probably
 523 not constant over all vegetation types. This translates into errors concerning leaf water
 524 reconstruction and thus for reconstructing $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ values (Eq. 9 and Fig.
 525 8). Likewise, the ε_{bio} values reported in the literature for ^2H of n -alkanes can be off from -160‰
 526 by tens of permille (Feakins and Sessions, 2010; Tipple et al., 2015; Feakins et al., 2016;
 527 Freimuth et al., 2017). The degree to which hydrogen originates from NADPH rather than leaf
 528 water is important, because NADPH is more negative (Schmidt et al., 2003). The wide range
 529 in biosynthetic ^2H fractionation factors, which can be even larger, is therefore also related to
 530 the carbon and energy metabolism state of plants (Cormier et al., 2018).

531 **3.8 RH reconstruction**

532 Reconstructed RH_{MDV} ranges from 34 to 74%, while RH_{MDV} from climate station data range
 533 from 61 to 78% (Fig. 10A). Biomarker-based values thus systematically underestimate the
 534 station data ($\Delta\text{RH}_{\text{MDV}} = -17\% \pm 12$). Yet the offsets are much less for deciduous tree and grass
 535 sites ($\Delta\text{RH}_{\text{MDV}} = -10\% \pm 12$ and $-7\% \pm 9$, respectively; Fig. 10B). The offsets for the coniferous
 536 sites are $-30\% \pm 11$, and significantly larger than for the deciduous and grass sites (p-values <
 537 0.05).

538 Too low reconstructed RH_{MDV} values for the coniferous sites make sense in view of the
 539 previously discussed option that soils contain *n*-alkanes from the understory (which is
 540 dominated by grass species), while sugars stem from needles and grasses. As explained earlier
 541 already, the “signal damping” leads to too negative reconstructed $\delta^2\text{H}_{\text{leaf-water}}$ (whereas $\delta^{18}\text{O}$ is
 542 affected less by the “signal damping”), and too negative $\delta^2\text{H}_{\text{leaf-water}}$ translates into
 543 overestimated d-excess and underestimated RH values. In Fig. 8, a correction for this requires
 544 moving the coniferous leaf water data points upwards towards more positive $\delta^2\text{H}$ values, thus
 545 the distance between the leaf water and the source water is reduced. It should be noted that also
 546 here variable ϵ_{bio} (regarding ^2H between *n*-alkanes and leaf water) along with vegetation types
 547 could not be distinguished from “signal damping” effects.

548 The underestimation of RH for the deciduous and grass sites could be partly associated with the
 549 use of the GMWL as baseline for the coupled $\delta^2\text{H}_{n\text{-alkane}}-\delta^{18}\text{O}_{\text{sugar}}$ approach. The deuterium-
 550 excess of the LMWLs is generally lower than the $+10\text{\textperthousand}$ of the GMWL, while the slopes of the
 551 LMWLs are well comparable to the GMWL (Stumpp et al., 2014). In addition, if soil water
 552 evaporation occurred before water uptake by the plants, this would lead to an underestimation
 553 of biomarker-based RH_{MDV} values, too. It can be furthermore assumed that plant metabolism is
 554 highest during times with direct sunshine and high irradiation, i.e. during noon at sunny days.
 555 The relevant RH could therefore be lower than the climate station-derived RH_{MDV}. Indeed,
 556 already climate station RH_{MDV} is considerably lower than RH_{MA} and RH_{MV} (Tab. S1).

557 **Fig. 10.** (A) Comparison of reconstructed (biomarker-based) RH_{MDV} values and climate station
 558 RH_{MDV} data. The black line indicates the 1:1 relationship. (B) Differences between
 559 reconstructed and climate station RH_{MDV} values ($\Delta\text{RH}_{\text{MDV}} = \text{reconstructed} - \text{climate station}$
 560 RH_{MDV}) for the three different vegetation types along the transect. Abbreviations: con =
 561 coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4).

563 The uncertainty of reconstructed RH_{MDV} values are large for all three investigated vegetation
564 types, and again these uncertainties are probably also related to ε_{bio} , which is most likely not
565 constant as assumed for our calculations. Moreover, microclimate variability is underestimated
566 in our approach. As mentioned in the sections 2.4.2 and 3.7, in the coupled approach not only
567 the source water of the plants is equated with (weighted) mean annual precipitation, but also an
568 isotopic equilibrium between the source water and the (local) atmospheric water vapour is
569 assumed. However, in areas with distinct seasonality this might be not fully valid. To account
570 for this lack of equilibrium between precipitation and local atmospheric water vapour, apparent
571 ε values can be calculated with data from Jacob and Sonntag (1991). As shown by Hepp et al.
572 (2018) those values can be used to achieve alternative RH reconstructions based on the coupled
573 $\delta^2\text{H}_{n\text{-alkane}}-\delta^{18}\text{O}_{\text{sugar}}$ approach. Such calculated RH_{MDV} values are on average 1.5% more
574 negative than the original values. However, this difference in RH is far below the analytical
575 uncertainties of the compound-specific biomarker isotope analysis.

576 Finally, the integration time of the investigated topsoils has to be discussed. Unfortunately, no
577 ^{14}C dates are available for the soil samples. However, most likely the organic matter has been
578 built up over a longer timescale than the available climate data, which is used for comparison.
579 In combination with vegetation changes/management changes throughout that period, this
580 could surely lead to a less tight relationship of the reconstructions compared to the climate
581 station data. Root input of arabinose and xylose seems to be of minor relevance in our topsoil
582 samples. Otherwise, the reconstructed $\delta^{18}\text{O}_{\text{sugar}}$ values would be too negative resulting in
583 RH_{MDV} overestimations, which is not observed.

584

585 4 Conclusions

586 We were able to show that

- 587 (i) the vegetation type does not significantly influence the brGDGT concentrations and
588 proxies, yet the coniferous sites tend to have higher brGDGT concentrations, BIT
589 indices and CBT-MBT' ratios, while grass sites tend to be lowest.
- 590 (ii) CBT faithfully records soil pH with a median ΔpH of 0.6 ± 0.6 , The CBT
591 overestimates the real pH particularly at the forest sites.
- 592 (iii) CBT-MBT'-derived T_{MA} reflect the climate station-derived T_{MA} values with a
593 median ΔT_{MA} of $0.5^{\circ}\text{C} \pm 2.4$, but again slightly too high reconstructions for the forest
594 sites were observed.
- 595 (iv) differences in the apparent fractionation between the investigated vegetation types
596 can be explained with “signal damping”.
- 597 (v) the reconstructed $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ reflect the $\delta^2\text{H}_{\text{GIPR,OIPC}}$ and
598 $\delta^{18}\text{O}_{\text{GIPR,OIPC}}$ with a systematic offset for $\delta^2\text{H}$ of $\sim -21\% \pm 22$ and for $\delta^{18}\text{O}$ of $\sim -2.9\% \pm 2.8$ (based on overall medians of $\Delta\delta^2\text{H}$, $\Delta\delta^{18}\text{O}$). This is caused by too negative
600 reconstructions for coniferous and grass sites. For coniferous sites, this can be
601 explained with *n*-alkanes originating from understory grasses. As for the grass sites,
602 the “signal damping” or variable ε_{bio} along with vegetation types effect $\delta^2\text{H}$ more
603 than $\delta^{18}\text{O}$. This leads to too negative reconstructed $\delta^2\text{H}_{\text{leaf-water}}$ values and thus to too
604 negative $\delta^2\text{H}_{\text{source-water}}$ and $\delta^{18}\text{O}_{\text{source-water}}$ reconstructions.

605 (vi) reconstructed (biomarker-based) RH_{MDV} values tend to underestimate climate
606 station-derived RH_{MDV} values ($\Delta\text{RH}_{\text{MDV}} = \sim -17\% \pm 12$). For coniferous sites the
607 underestimations are strongest, which can be explained with understory grasses
608 being the main source of *n*-alkanes for the investigated soils under coniferous
609 forests.

610 Overall, our study highlights the great potential of brGDGTs and the coupled $\delta^2\text{H}_{n\text{-alkane}}$ -
611 $\delta^{18}\text{O}_{\text{sugar}}$ approach for more quantitative paleoclimate reconstructions. Taking into account
612 effects of different vegetation types improves correlations and reconstructions. This holds
613 particularly true for the coupled $\delta^2\text{H}_{n\text{-alkane}}\text{-}\delta^{18}\text{O}_{\text{sugar}}$ approach, which is affected by “signal
614 damping” of the grass vegetation or variable ε_{bio} (regarding ^2H between *n*-alkanes and leaf
615 water) along with vegetation types. By contrast, vegetation-related effects do not strongly
616 influence the brGDGT-derived reconstructions. Assuming constant ε_{bio} is likely a considerable
617 source of uncertainty and should be further addressed in future field and/or modelling studies.
618 Climate chamber experiments are most promising to further evaluate and refine the coupled
619 $\delta^2\text{H}_{n\text{-alkane}}\text{-}\delta^{18}\text{O}_{\text{sugar}}$ approach, because uncertainties related to microclimate variability can be
620 reduced. Field experiments like ours suffer from the fact that biomarker pools in the sampled
621 topsoils may have been affected by past vegetation and climate changes and by the rather small
622 range covered by the sampled transect. Both makes the comparison between reconstructions
623 and observations more difficult compared to large datasets und well defined conditions.

625 Acknowledgements

626 We thank L. Wüthrich, H. Veit, T. Sprafke, A. Groos (all University of Bern), A. Kühnel
627 (Technical University of Munich) for constructive discussions and statistical advices, and M.
628 Schaarschmidt (University of Bayreuth), C. Heinrich and M. Benesch (Martin-Luther-
629 University Halle-Wittenberg) for laboratory assistance during $\delta^{18}\text{O}_{\text{sugar}}$ analysis and pH
630 measurements, respectively. The Swiss National Science Foundation (PP00P2 150590) funded
631 this research. J. Hepp greatly acknowledges the support by the German Federal Environmental
632 Foundation (DBU) in form of his PhD-fellowship. This publication was funded by the German
633 Research Foundation (DFG) and the University of Bayreuth in the funding programme Open
634 Access Publishing.

636 References

637 Allison, G. B., Gat, J. R. and Leaney, F. W. J.: The relationship between deuterium and oxygen-
638 18 delta values in leaf water, *Chemical Geology*, 58, 145–156, 1985.

639 Amelung, W., Cheshire, M. V. and Guggenberger, G.: Determination of neutral and acidic
640 sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis,
641 *Soil Biology and Biochemistry*, 28(12), 1631–1639, 1996.

642 Anderson, V. J., Shanahan, T. M., Saylor, J. E., Horton, B. K. and Mora, A. R.: Sources of local
643 and regional variability in the MBT'/CBT paleotemperature proxy: Insights from a
644 modern elevation transect across the Eastern Cordillera of Colombia, *Organic*
645 *Geochemistry*, 69, 42–51, doi:10.1016/j.orggeochem.2014.01.022, 2014.

646 Awe, G. O., Reichert, J. M. and Wendroth, O. O.: Temporal variability and covariance
647 structures of soil temperature in a sugarcane field under different management practices
648 in southern Brazil, *Soil and Tillage Research*, 150, 93–106,
649 doi:10.1016/j.still.2015.01.013, 2015.

650 Bariac, T., Gonzalez-Dunia, J., Katerji, N., Béthenod, O., Bertolini, J. M. and Mariotti, A.:
651 Spatial variation of the isotopic composition of water (^{18}O , ^2H) in the soil-plant-
652 atmosphere system, 2. Assessment under field conditions, *Chemical Geology*, 115, 317–
653 333, 1994.

654 Bowen, G. J.: The Online Isotopes in Precipitation Calculator, version 3.1., 2018.

655 Bowen, G. J. and Revenaugh, J.: Interpolating the isotopic composition of modern meteoric
656 precipitation, *Water Resources Research*, 39(10), 1–13, doi:10.1029/2003WR002086,
657 2003.

658 Brincat, D., Yamada, K., Ishiwatari, R., Uemura, H. and Naraoka, H.: Molecular-isotopic
659 stratigraphy of long-chain *n*-alkanes in Lake Baikal Holocene and glacial age sediments,
660 *Organic Geochemistry*, 31(4), 287–294, doi:10.1016/S0146-6380(99)00164-3, 2000.

661 Cappelen, J.: Danish Climatological Normals 1971-2000 - for selected stations., 2002.

662 Cernusak, L. A., Wong, S. C. and Farquhar, G. D.: Oxygen isotope composition of phloem sap
663 in relation to leaf water in *Ricinus communis*, *Functional Plant Biology*, 30(10), 1059–
664 1070, 2003.

665 Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N. B., Feild, T. S.,
666 Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A. M., Kahmen, A., Mcinerney, F.
667 A., Munksgaard, N. C., Simonin, K. A., Song, X., Stuart-Williams, H., West, J. B. and
668 Farquhar, G. D.: Stable isotopes in leaf water of terrestrial plants, *Plant Cell and
669 Environment*, 39(5), 1087–1102, doi:10.1111/pce.12703, 2016.

670 Christoph, H., Eglinton, T. I., Zech, W., Sosin, P. and Zech, R.: A 250 ka leaf-wax δD record
671 from a loess section in Darai Kalon , Southern Tajikistan, *Quaternary Science Reviews*,
672 208, 118–128, doi:10.1016/j.quascirev.2019.01.019, 2019.

673 Coffinet, S., Huguet, A., Anquetil, C., Derenne, S., Pedentchouk, N., Bergonzini, L.,
674 Omumbo, C., Williamson, D., Jones, M., Majule, A. and Wagner, T.: Evaluation of
675 branched GDGTs and leaf wax *n*-alkane $\delta^2\text{H}$ as (paleo) environmental proxies in East
676 Africa, *Geochimica et Cosmochimica Acta*, 198, 182–193,
677 doi:10.1016/j.gca.2016.11.020, 2017.

678 Cormier, M.-A., Werner, R. A., Sauer, P. E., Gröcke, D. R., M.C., L., Wieloch, T., Schleucher,
679 J. and Kahmen, A.: ^2H fractiontions during the biosynthesis of carbohydrates and lipids
680 imprint a metabolic signal on the $\delta^2\text{H}$ values of plant organic compounds, *New
681 Phytologist*, 218(2), 479–491, doi:10.1111/nph.15016, 2018.

682 Craig, H.: Isotopic Variations in Meteoric Waters, *Science*, 133, 1702–1703, 1961.

683 Dang, X., Yang, H., Naafs, B. D. A., Pancost, R. D. and Xie, S.: Evidence of moisture control
684 on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid
685 soils, *Geochimica et Cosmochimica Acta*, 189, 24–36, doi:10.1016/j.gca.2016.06.004,
686 2016.

687 Dansgaard, W.: Stable isotopes in precipitation, *Tellus*, 16(4), 436–468, doi:10.1111/j.2153-
688 3490.1964.tb00181.x, 1964.

689 Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H. and Tu, K. P.: Stable Isotopes
690 in Plant Ecology, *Annual Review of Ecology and Systematics*, 33(1), 507–559,
691 doi:10.1146/annurev.ecolsys.33.020602.095451, 2002.

692 Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial plant-derived *n*-alkyl
693 lipids and their carbon isotopes from the sedimentary record: A review, *Organic*
694 *Geochemistry*, 103(January), 1–21, doi:10.1016/j.orggeochem.2016.10.016, 2016.

695 Dirghangi, S. S., Pagani, M., Hren, M. T. and Tipple, B. J.: Distribution of glycerol dialkyl
696 glycerol tetraethers in soils from two environmental transects in the USA, *Organic*
697 *Geochemistry*, 59, 49–60, doi:10.1016/j.orggeochem.2013.03.009, 2013.

698 Dubbert, M., Cuntz, M., Piayda, A., Maguás, C. and Werner, C.: Partitioning evapotranspiration
699 - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios
700 of evaporative fluxes, *Journal of Hydrology*, 496, 142–153,
701 doi:10.1016/j.jhydrol.2013.05.033, 2013.

702 DWD Climate Data Center: Historical annual precipitation observations for Germany. [online]
703 Available from: [ftp://ftp-](ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/historical/)
704 [cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/historical/](ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/precipitation/historical/)
705 (Accessed 20 September 2018a), 2018.

706 DWD Climate Data Center: Historical hourly station observations of 2m air temperature and
707 humidity for Germany. [online] Available from: [ftp://ftp-](ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/historical/)
708 [cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/historical/](ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/air_temperature/historical/)
709 (Accessed 19 September 2018b), 2018.

710 Eglinton, T. I. and Eglinton, G.: Molecular proxies for paleoclimatology, *Earth and Planetary*
711 *Science Letters*, 275(1), 1–16, 2008.

712 Feakins, S. J. and Sessions, A. L.: Controls on the D/H ratios of plant leaf waxes in an arid
713 ecosystem, *Geochimica et Cosmochimica Acta*, 74(7), 2128–2141,
714 doi:<http://dx.doi.org/10.1016/j.gca.2010.01.016>, 2010.

715 Feakins, S. J., Bentley, L. P., Salinas, N., Shenkin, A., Blonder, B., Goldsmith, G. R., Ponton,
716 C., Arvin, L. J., Wu, M. S., Peters, T., West, A. J., Martin, R. E., Enquist, B. J., Asner, G.
717 P. and Malhi, Y.: Plant leaf wax biomarkers capture gradients in hydrogen isotopes of
718 precipitation from the Andes and Amazon, *Geochimica et Cosmochimica Acta*, 182, 155–
719 172, doi:10.1016/j.gca.2016.03.018, 2016.

720 Freimuth, E. J., Diefendorf, A. F. and Lowell, T. V.: Hydrogen isotopes of *n*-alkanes and *n*-
721 alkanoic acids as tracers of precipitation in a temperate forest and implications for
722 paleorecords, *Geochimica et Cosmochimica Acta*, 206, 166–183,
723 doi:10.1016/j.gca.2017.02.027, 2017.

724 Frich, P., Rosenørn, S., Madsen, H. and Jensen, J. J.: Observed Precipitation in Denmark, 1961–
725 90., 1997.

726 Gamarra, B., Sachse, D. and Kahmen, A.: Effects of leaf water evaporative ^2H -enrichment and
727 biosynthetic fractionation on leaf wax *n*-alkane $\delta^2\text{H}$ values in C3 and C4 grasses, *Plant,*
728 *Cell and Environment Environment*, 39, 2390–2403, doi:10.1111/pce.12789, 2016.

729 Gao, L., Edwards, E. J., Zeng, Y. and Huang, Y.: Major evolutionary trends in hydrogen isotope
730 fractionation of vascular plant leaf waxes, *PLoS ONE*, 9(11),
731 doi:10.1371/journal.pone.0112610, 2014.

732 Gat, J. R.: Comments on the Stable Isotope Method in Regional Groundwater Investigations,
733 Water Resources Research, 7(4), 980–993, doi:10.1029/WR007i004p00980, 1971.

734 van Geldern, R., Baier, A., Subert, H. L., Kowol, S., Balk, L. and Barth, J. A. C.: (Table S1)
735 Stable isotope composition of precipitation sampled at Erlangen, Germany between 2010
736 and 2013 for station GeoZentrum located at Erlangen city center, in In supplement to: van
737 Geldern, R et al. (2014): Pleistocene paleo-groundwater as a pristine fresh water resource
738 in southern Germany – evidence from stable and radiogenic isotopes. *Science of the Total
739 Environment*, 496, 107–115, <https://doi.org/10.1016/j.scitotenv.2014.07.044>, PANGAEA., 2014.

740 Guggenberger, G., Christensen, B. T. and Zech, W.: Land-use effects on the composition of
741 organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature,
742 European Journal of Soil Science, 45(December), 449–458, 1994.

743 Helliker, B. R. and Ehleringer, J. R.: Grass blades as tree rings: environmentally induced
744 changes in the oxygen isotope ratio of cellulose along the length of grass blades, *New
745 Phytologist*, 155, 417–424, 2002.

746 Hepp, J., Rabus, M., Anhäuser, T., Bromm, T., Laforsch, C., Sirocko, F., Glaser, B. and Zech,
747 M.: A sugar biomarker proxy for assessing terrestrial versus aquatic sedimentary input,
748 *Organic Geochemistry*, 98, 98–104, doi:10.1016/j.orggeochem.2016.05.012, 2016.

749 Hepp, J., Wüthrich, L., Bromm, T., Bliedtner, M., Schäfer, I. K., Glaser, B., Rozanski, K.,
750 Sirocko, F., Zech, R. and Zech, M.: How dry was the Younger Dryas? Evidence from a
751 coupled $\delta^2\text{H}$ - $\delta^{18}\text{O}$ biomarker paleohygrometer, applied to the Lake Gemündener Maar
752 sediments, Western Eifel, Germany, *Climate of the Past Discussions*, (September), 1–44,
753 doi:10.5194/cp-2018-114, 2018.

754 Herrmann, A., Maloszewski, P. and Stichler, W.: Changes of ^{18}O contents of precipitation water
755 during seepage in the unsaturated zone, in *Proceedings of International Symposium on
756 Groundwater Monitoring and Management*, 23 - 28 March, p. 22, Institut of Water
757 Management Berlin (GDR) with support of UNESCO, Dresden., 1987.

758 Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S. and
759 Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched
760 and isoprenoid tetraether lipids, *Earth and Planetary Science Letters*, 224(1–2), 107–116,
761 doi:10.1016/j.epsl.2004.05.012, 2004.

762 Horita, J. and Wesolowski, D. J.: Liquid-vapor fractionation of oxygen and hydrogen isotopes
763 of water from the freezing to the critical temperature, *Geochimica et Cosmochimica Acta*,
764 58(16), 3425–3437, doi:[http://dx.doi.org/10.1016/0016-7037\(94\)90096-5](http://dx.doi.org/10.1016/0016-7037(94)90096-5), 1994.

765 Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. and Van Der Laan, M. J.: Survival
766 ensembles, *Biostatistics*, 7(3), 355–373, doi:10.1093/biostatistics/kxj011, 2006.

767 Hou, J., D'Andrea, W. J. and Huang, Y.: Can sedimentary leaf waxes record D/H ratios of
768 continental precipitation? Field, model, and experimental assessments, *Geochimica et
769 Cosmochimica Acta*, 72, 3503–3517, doi:10.1016/j.gca.2008.04.030, 2008.

770 Huguet, A., Fosse, C., Metzger, P., Fritsch, E. and Derenne, S.: Occurrence and distribution of
771 extractable glycerol dialkyl glycerol tetraethers in podzols, *Organic Geochemistry*, 41(3),
772 291–301, doi:10.1016/j.orggeochem.2009.10.007, 2010a.

773 Huguet, A., Fosse, C., Laggoun-Défarge, F., Toussaint, M. L. and Derenne, S.: Occurrence and
774 distribution of glycerol dialkyl glycerol tetraethers in a French peat bog, *Organic
775 Geochemistry*, 41(6), 559–572, doi:10.1016/j.orggeochem.2010.02.015, 2010b.

776 IAEA/WMO: Global Network of Isotopes in Precipitation. The GNIP Database., 2015.

777 IAEA/WMO: Global Network of Isotopes in Precipitation. The GNIP Database., 2018.

778 Jacob, H. and Sonntag, C.: An 8-year record of the seasonal- variation of ^2H and ^{18}O in
779 atmospheric water vapor and precipitation at Heidelberg, *Tellus*, 43B(3), 291–300, 1991.

780 De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J. H., Schouten, S. and Sinninghe Damsté, J.
781 S.: Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers
782 in soils: Implications for palaeoclimate reconstruction, *Geochimica et Cosmochimica
783 Acta*, 141, 97–112, doi:10.1016/j.gca.2016.03.038, 2014.

784 Kahmen, A., Schefuß, E. and Sachse, D.: Leaf water deuterium enrichment shapes leaf wax *n*-
785 alkane δD values of angiosperm plants I: Experimental evidence and mechanistic
786 insights, *Geochimica et Cosmochimica Acta*, 111, 39–49, doi:10.1016/j.gca.2012.09.004,
787 2013.

788 Knapp, D. R.: *Handbook of Analytical Derivatization Reactions*, John Wiley & Sons, New
789 York, Chichester, Brisbane, Toronto, Singapore., 1979.

790 Konecky, B., Dee, S. G. and Noone, D. C.: WaxPSM: A Forward Model of Leaf Wax Hydrogen
791 Isotope Ratios to Bridge Proxy and Model Estimates of Past Climate, *Journal of
792 Geophysical Research: Biogeosciences*, 124, 2107–2125, doi:10.1029/2018JG004708,
793 2019.

794 Laursen, E. V., Thomsen, R. S. and Cappelen, J.: Observed Air Temperature, Humidity,
795 Pressure, Cloud Cover and Weather in Denmark - with Climatological Standard Normals,
796 1961-90., 1999.

797 Levene, H.: Robust Tests for Equality of Variances, in *Contributions to Probability and
798 Statistics: Essays in Honor of Harold Hotelling*, vol. 69, edited by I. Olkin, pp. 78–92,
799 Standford University Press, Palo Alto, California., 1960.

800 Liu, J., Liu, W., An, Z. and Yang, H.: Different hydrogen isotope fractionations during lipid
801 formation in higher plants: Implications for paleohydrology reconstruction at a global
802 scale, *Scientific Reports*, 6, 19711, doi:10.1038/srep19711, 2016.

803 Liu, W. and Yang, H.: Multiple controls for the variability of hydrogen isotopic compositions
804 in higher plant *n*-alkanes from modern ecosystems, *Global Change Biology*, 14(9), 2166–
805 2177, doi:10.1111/j.1365-2486.2008.01608.x, 2008.

806 Liu, Y., Wang, J., Liu, D., Li, Z., Zhang, G., Tao, Y., Xie, J., Pan, J. and Chen, F.: Straw
807 mulching reduces the harmful effects of extreme hydrological and temperature conditions
808 in citrus orchards, *PLoS ONE*, 9(1), 1–9, doi:10.1371/journal.pone.0087094, 2014.

809 McInerney, F. A., Helliker, B. R. and Freeman, K. H.: Hydrogen isotope ratios of leaf wax *n*-
810 alkanes in grasses are insensitive to transpiration, *Geochimica et Cosmochimica Acta*,
811 75(2), 541–554, doi:10.1016/j.gca.2010.10.022, 2011.

812 Merlivat, L.: Molecular diffusivities of H_2^{16}O , HD^{16}O , and H_2^{18}O in gases, *The Journal of
813 Chemical Physics*, 69(6), 2864–2871, doi:<http://dx.doi.org/10.1063/1.436884>, 1978.

814 Mueller-Niggemann, C., Utami, S. R., Marxen, A., Mangelsdorf, K., Bauersachs, T. and
815 Schwark, L.: Distribution of tetraether lipids in agricultural soils - Differentiation
816 between paddy and upland management, *Biogeosciences*, 13(5), 1647–1666,
817 doi:10.5194/bg-13-1647-2016, 2016.

818 Oppermann, B. I., Michaelis, W., Blumberg, M., Frerichs, J., Schulz, H. M., Schippers, A.,
819 Beaubien, S. E. and Krüger, M.: Soil microbial community changes as a result of long-
820 term exposure to a natural CO₂ vent, *Geochimica et Cosmochimica Acta*, 74(9), 2697–
821 2716, doi:10.1016/j.gca.2010.02.006, 2010.

822 Pedentchouk, N. and Zhou, Y.: Factors Controlling Carbon and Hydrogen Isotope Fractionation
823 During Biosynthesis of Lipids by Phototrophic Organisms, in *Hydrocarbons, Oils and*
824 *Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid*
825 *Microbiology*, edited by H. Wilkes, pp. 1–24, Springer, Cham., 2018.

826 Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N., Jackson, R. B., Kim,
827 J. H. and Sinninghe Damsté, J. S.: Revised calibration of the MBT-CBT paleotemperature
828 proxy based on branched tetraether membrane lipids in surface soils, *Geochimica et*
829 *Cosmochimica Acta*, 96, 215–229, doi:10.1016/j.gca.2012.08.011, 2012.

830 Prietzel, J., Dechamps, N. and Spielvogel, S.: Analysis of non-cellulosic polysaccharides helps
831 to reveal the history of thick organic surface layers on calcareous Alpine soils, *Plant and*
832 *Soil*, 365(1–2), 93–114, doi:10.1007/s11104-012-1340-2, 2013.

833 R Core Team: R: A Language and Environment for Statistical Computing, [online] Available
834 from: <https://www.r-project.org/>, 2015.

835 Rach, O., Brauer, A., Wilkes, H. and Sachse, D.: Delayed hydrological response to Greenland
836 cooling at the onset of the Younger Dryas in western Europe, *Nature Geoscience*, 7(1),
837 109–112, doi:10.1038/ngeo2053, 2014.

838 Rao, Z., Zhu, Z., Jia, G., Henderson, A. C. G., Xue, Q. and Wang, S.: Compound specific δD
839 values of long chain *n*-alkanes derived from terrestrial higher plants are indicative of the
840 δD of meteoric waters: Evidence from surface soils in eastern China, *Organic*
841 *Geochemistry*, 40(8), 922–930, doi:<http://dx.doi.org/10.1016/j.orggeochem.2009.04.011>,
842 2009.

843 Romero-Viana, L., Kienel, U. and Sachse, D.: Lipid biomarker signatures in a hypersaline lake
844 on Isabel Island (Eastern Pacific) as a proxy for past rainfall anomaly (1942–2006AD),
845 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 350–352, 49–61,
846 doi:10.1016/j.palaeo.2012.06.011, 2012.

847 Sachse, D., Radke, J. and Gleixner, G.: Hydrogen isotope ratios of recent lacustrine sedimentary
848 *n*-alkanes record modern climate variability, *Geochimica et Cosmochimica Acta*, 68(23),
849 4877–4889, doi:<http://dx.doi.org/10.1016/j.gca.2004.06.004>, 2004.

850 Sachse, D., Radke, J. and Gleixner, G.: δD values of individual *n*-alkanes from terrestrial plants
851 along a climatic gradient – Implications for the sedimentary biomarker record, *Organic*
852 *Geochemistry*, 37, 469–483, doi:10.1016/j.orggeochem.2005.12.003, 2006.

853 Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman,
854 K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J.,
855 Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C. and West, J. B.: Molecular
856 Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers
857 from Photosynthesizing Organisms, *Annual Reviews*, 40, 221–249,
858 doi:10.1146/annurev-earth-042711-105535, 2012.

859 Schäfer, I. K., Lanny, V., Franke, J., Eglinton, T. I., Zech, M., Vysloužilová, B. and Zech, R.:
860 Leaf waxes in litter and topsoils along a European transect, *SOIL*, 2, 551–564,
861 doi:10.5194/soil-2-551-2016, 2016.

862 Schlotter, D.: The spatio-temporal distribution of $\delta^{18}\text{O}$ and $\delta^2\text{H}$ of precipitation in Germany -
863 an evaluation of regionalization methods, Albert-Ludwigs-Universität Freiburg im
864 Breisgau. [online] Available from: http://www.hydrology.uni-freiburg.de/abschluss/Schlotter_D_2007_DA.pdf, 2007.

865

866 Schmidt, H.-L., Werner, R. A. and Roßmann, A.: ^{18}O Pattern and biosynthesis of natural plant
867 products, *Phytochemistry*, 58(1), 9–32, doi:[http://dx.doi.org/10.1016/S0031-9422\(01\)00017-6](http://dx.doi.org/10.1016/S0031-9422(01)00017-6), 2001.

868

869 Schmidt, H.-L., Werner, R. A. and Eisenreich, W.: Systematics of ^2H patterns in natural
870 compounds and its importance for the elucidation of biosynthetic pathways,
871 *Phytochemistry Reviews*, 2(1–2), 61–85, doi:[10.1023/B:PHYT.0000004185.92648.ae](https://doi.org/10.1023/B:PHYT.0000004185.92648.ae),
872 2003.

873 Schouten, S., Hopmans, E. C. and Sinninghe Damsté, J. S.: The organic geochemistry of
874 glycerol dialkyl glycerol tetraether lipids: A review, *Organic Geochemistry*, 54, 19–61,
875 doi:[10.1016/j.orggeochem.2012.09.006](https://doi.org/10.1016/j.orggeochem.2012.09.006), 2013.

876 Schreuder, L. T., Beets, C. J., Prins, M. A., Hatté, C. and Peterse, F.: Late Pleistocene climate
877 evolution in Southeastern Europe recorded by soil bacterial membrane lipids in Serbian
878 loess, *Palaeogeography, Palaeoclimatology, Palaeoecology*, 449, 141–148,
879 doi:[10.1016/j.palaeo.2016.02.013](https://doi.org/10.1016/j.palaeo.2016.02.013), 2016.

880 Sessions, A. L., Burgoyne, T. W., Schimmelmann, A. and Hayes, J. M.: Fractionation of
881 hydrogen isotopes in lipid biosynthesis, *Organic Geochemistry*, 30, 1193–1200, 1999.

882 Shapiro, S. S. and Wilk, M. B.: An Analysis of Variance Test for Normality, *Biometrika*,
883 52(3/4), 591–611, doi:[/biomet/52.3-4.591](https://doi.org/10.1093/biomet/52.3-4.591), 1965.

884 Sternberg, L. S. L.: Comment on “Oxygen isotope ratios ($^{18}\text{O}/^{16}\text{O}$) of hemicellulose-derived
885 sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a
886 climate chamber experiment” by Zech et al. (2014), *Geochimica et Cosmochimica Acta*,
887 141, 677–679, doi:[10.1016/j.gca.2014.04.051](https://doi.org/10.1016/j.gca.2014.04.051), 2014.

888 Strobl, C., Boulesteix, A. L., Zeileis, A. and Hothorn, T.: Bias in random forest variable
889 importance measures: Illustrations, sources and a solution, *BMC Bioinformatics*, 8,
890 doi:[10.1186/1471-2105-8-25](https://doi.org/10.1186/1471-2105-8-25), 2007.

891 Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. and Zeileis, A.: Conditional variable
892 importance for random forests, *BMC Bioinformatics*, 9, 1–11, doi:[10.1186/1471-2105-9-307](https://doi.org/10.1186/1471-2105-9-307), 2008.

893

894 Stumpp, C., Klaus, J. and Stichler, W.: Analysis of long-term stable isotopic composition in
895 German precipitation, *Journal of Hydrology*, 517, 351–361,
896 doi:[10.1016/j.jhydrol.2014.05.034](https://doi.org/10.1016/j.jhydrol.2014.05.034), 2014.

897 Sun, C. J., Zhang, C. L., Li, F. Y., Wang, H. Y. and Liu, W. G.: Distribution of branched
898 glycerol dialkyl glycerol tetraethers in soils on the Northeastern Qinghai-Tibetan Plateau
899 and possible production by nitrite-reducing bacteria, *Science China Earth Sciences*, 59(9),
900 1834–1846, doi:[10.1007/s11430-015-0230-2](https://doi.org/10.1007/s11430-015-0230-2), 2016.

901 Swedish Meteorological and Hydrological Institute: SMHI Open Data Meteorological
902 Observations., 2018.

903 Tippie, B. J., Berke, M. A., Hambach, B., Roden, J. S. and Ehleringer, J. R.: Predicting leaf
904 wax *n*-alkane $^2\text{H}/^1\text{H}$ ratios: Controlled water source and humidity experiments with

905 hydroponically grown trees confirm predictions of Craig-Gordon model, *Plant, Cell and*
 906 *Environment*, 38(6), 1035–1047, doi:10.1111/pce.12457, 2015.

907 Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Wilcke,
 908 W. and Glaser, B.: Oxygen isotope ratios ($^{18}\text{O}/^{16}\text{O}$) of hemicellulose-derived sugar
 909 biomarkers in plants, soils and sediments as paleoclimate proxy II: Insight from a climate
 910 transect study, *Geochimica et Cosmochimica Acta*, 126, 624–634,
 911 doi:<http://dx.doi.org/10.1016/j.gca.2013.11.002>, 2014.

912 Tuthorn, M., Zech, R., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H. F., Eglinton,
 913 T., Rozanski, K. and Zech, M.: Coupling $\delta^2\text{H}$ and $\delta^{18}\text{O}$ biomarker results yields
 914 information on relative humidity and isotopic composition of precipitation - a climate
 915 transect validation study, *Biogeosciences*, 12, 3913–3924, doi:10.5194/bg-12-3913-
 916 2015, 2015.

917 Umweltbundesamt GmbH: Erhebung der Wassergüte in Österreich gemäß Hydrographiegesetz
 918 i.d.F. des BGBI. Nr. 252/90 (gültig bis Dezember 2006) bzw.
 919 Gewässerzustandsüberwachung in Österreich gemäß Wasserrechtsgesetz, BGBI. I Nr.
 920 123/06, i.d.g.F.; BMLFUW, Sektion IV / Abteilung 3 N. [online] Available from:
 921 <https://wasser.umweltbundesamt.at/h2odbfivestep/abfrageQdPublic.xhtml> (Accessed 20
 922 September 2018), 2018.

923 Walker, C. D. and Brunel, J.-P.: Examining Evapotranspiration in a Semi-Arid Region using
 924 Stable Isotopes of Hydrogen and Oxygen, *Journal of Hydrology*, 118, 55–75, 1990.

925 Wang, C., Hren, M. T., Hoke, G. D., Liu-Zeng, J. and Garzio, C. N.: Soil *n*-alkane δD and
 926 glycerol dialkyl glycerol tetraether (GDGT) distributions along an altitudinal transect
 927 from southwest China: Evaluating organic molecular proxies for paleoclimate and
 928 paleoelevation, *Organic Geochemistry*, 107, 21–32,
 929 doi:10.1016/j.orggeochem.2017.01.006, 2017.

930 Wang, H., Liu, W., Zhang, C. L., Liu, Z. and He, Y.: Branched and isoprenoid tetraether (BIT)
 931 index traces water content along two marsh-soil transects surrounding Lake Qinghai:
 932 Implications for paleo-humidity variation, *Organic Geochemistry*, 59, 75–81,
 933 doi:10.1016/j.orggeochem.2013.03.011, 2013.

934 Weijers, J. W. H., Schouten, S., Spaargaren, O. C. and Sinninghe Damsté, J. S.: Occurrence
 935 and distribution of tetraether membrane lipids in soils: Implications for the use of the
 936 TEX₈₆ proxy and the BIT index, *Organic Geochemistry*, 37(12), 1680–1693,
 937 doi:10.1016/j.orggeochem.2006.07.018, 2006.

938 Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C. and Sinninghe Damsté,
 939 J. S.: Environmental controls on bacterial tetraether membrane lipid distribution in soils,
 940 *Geochimica et Cosmochimica Acta*, 71(3), 703–713, doi:10.1016/j.gca.2006.10.003,
 941 2007.

942 Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C. and Pancost, R. D.: Carbon
 943 isotopic composition of branched tetraether membrane lipids in soils suggest a rapid
 944 turnover and a heterotrophic life style of their source organism(s), *Biogeosciences*, 7(9),
 945 2959–2973, doi:10.5194/bg-7-2959-2010, 2010.

946 Weijers, J. W. H., Steinmann, P., Hopmans, E. C., Schouten, S. and Sinninghe Damsté, J. S.:
 947 Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature
 948 proxy for climate reconstruction, *Organic Geochemistry*, 42(5), 477–486,
 949 doi:10.1016/j.orggeochem.2011.03.013, 2011.

950 Xie, S., Pancost, R. D., Chen, L., Evershed, R. P., Yang, H., Zhang, K., Huang, J. and Xu, Y.:
951 Microbial lipid records of highly alkaline deposits and enhanced aridity associated with
952 significant uplift of the Tibetan Plateau in the Late Miocene, *Geology*, 40(4), 291–294,
953 doi:10.1130/G32570.1, 2012.

954 Zech, M. and Glaser, B.: Compound-specific $\delta^{18}\text{O}$ analyses of neutral sugars in soils using gas
955 chromatography-pyrolysis-isotope ratio mass spectrometry: problems, possible solutions
956 and a first application, *Rapid Communications in Mass Spectrometry*, 23, 3522–3532,
957 doi:10.1002/rcm, 2009.

958 Zech, M., Rass, S., Buggle, B., Löscher, M. and Zöller, L.: Reconstruction of the late
959 Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using
960 n-alkane biomarkers, *Quaternary Research*, 78(2), 226–235,
961 doi:10.1016/j.yqres.2012.05.006, 2012a.

962 Zech, M., Kreutzer, S., Goslar, T., Meszner, S., Krause, T., Faust, D. and Fuchs, M.: Technical
963 Note: *n*-Alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?,
964 *Discussions, Biogeosciences*, 9, 9875–9896, doi:10.5194/bgd-9-9875-2012, 2012b.

965 Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L., Zech, W. and Glaser, B.:
966 A 220 ka terrestrial $\delta^{18}\text{O}$ and deuterium excess biomarker record from an eolian
967 permafrost paleosol sequence, NE-Siberia, *Chemical Geology*,
968 doi:10.1016/j.chemgeo.2013.10.023, 2013.

969 Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K. and Glaser, B.: Reply to the comment of
970 Sternberg on “Zech et al. (2014) Oxygen isotope ratios ($^{18}\text{O}/^{16}\text{O}$) of hemicellulose-
971 derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight
972 from a climate chamber experiment. *GCA, Geochimica et Cosmochimica Acta*, 141(0),
973 680–682, doi:10.1016/j.gca.2014.04.051, 2014.

974 Zech, M., Zech, R., Rozanski, K., Gleixner, G. and Zech, W.: Do *n*-alkane biomarkers in
975 soils/sediments reflect the $\delta^2\text{H}$ isotopic composition of precipitation? A case study from
976 Mt. Kilimanjaro and implications for paleoaltimetry and paleoclimate research, *Isotopes in
977 Environmental and Health Studies*, 51(4), 508–524,
978 doi:10.1080/10256016.2015.1058790, 2015.

979 Zech, R., Gao, L., Tarozo, R. and Huang, Y.: Branched glycerol dialkyl glycerol tetraethers in
980 Pleistocene loess-paleosol sequences: Three case studies, *Organic Geochemistry*, 53, 38–
981 44, doi:10.1016/j.orggeochem.2012.09.005, 2012c.