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Abstract

Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTSs), and
the stable isotopic composition of biomarkers, such as §?H of leaf wax-derived n-alkanes (8*Hn-
alkane) or &80 of hemicellulose-derived sugars (5%Osgar) are increasingly used for the
reconstruction of past climate and environmental conditions. Plant-derived §?Hn-aikane and
5'80sugar Values record the isotopic composition of plant source water (8*Hsource-water and
5'80source-water), Which usually reflects mean annual precipitation  (8?Hprecipiation and
3*80precipiation), Modulated by evapotranspirative leaf water enrichment and biosynthetic
fractionation (epio). Accuracy and precision of respective proxies should be ideally evaluated at
a regional scale. For this study, we analysed topsoils below coniferous and deciduous forests,
as well as grassland soils along a Central European transect in order to investigate the variability
and robustness of various proxies, and to identify effects related to vegetation. Soil pH-values
derived from brGDGTs correlate reasonably well with measured soil pH-values, but
systematically overestimate them (ApH = 0.6 £0.6). The branched vs. isoprenoid tetraether
index (BIT) can give some indication whether the pH reconstruction is reliable. Temperatures
derived from brGDGTs overestimate mean annual air temperatures slightly (ATma = 0.5°C
+2.4). Apparent isotopic fractionation (en-akane/precipitation and Esugariprecipitation) 1S lower for
grassland sites than for forest sites due to “signal damping”, i.e. grass biomarkers do not record
the full evapotranspirative leaf water enrichment. Coupling 8?Hp-alkane With 5®QOsygar allows to
reconstruct the stable isotopic composition of the source water more accurately than without
the coupled approach (A8?H = ~-21%o +22 and AS80 = ~-2.9%0 +2.8). Similarly, relative
humidity during daytime and vegetation period (RHmpv) can be reconstructed using the coupled
isotope approach (ARHmpv = ~-17 +£12). Especially for coniferous sites, reconstructed RHmpv
values as well as source water isotope composition underestimate the measured values. This
can be likely explained by understory grass vegetation at the coniferous sites contributing
significantly to the n-alkane pool but only marginally to the sugar pool in the topsoils.
Vegetation-dependent variable “signal damping” and enio (regarding 2H between n-alkanes and
leaf water) along our European transect are difficult to quantify but likely contribute to the
observed underestimation in the source water isotope composition and RH reconstructions.
Microclimate variability could cause the rather large uncertainties. Vegetation-related effects
do, by contrast, not affect the brGDGT-derived reconstructions. Overall, GDGTs and the
coupled 3%Hn-aikane-5'8Osugar approach have great potential for more quantitative paleoclimate
reconstructions.
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1 Introduction

Information about the variability and consequences of past climate changes is a prerequisite for
precise predictions regarding the present climate change. Molecular fossils, so called
biomarkers, have great potential to enhance our understanding about variations of past climate
and environmental changes. Lipid biomarkers in particular are increasingly used for
paleoclimate and environmental reconstructions (e.g. Brincat et al., 2000; Eglinton and
Eglinton, 2008; Rach et al., 2014; Romero-Viana et al., 2012; Schreuder et al., 2016). However
strengths and limitations of respective proxies need to be known (Dang et al., 2016). For this,
calibrations using modern reference samples are essential.

One famous and widely applied lipid biomarker group are terrestrial branched glycerol dialkyl
glycerol tetraethers (brGDGTSs). They are synthesized in the cell membranes of anaerobe
heterotrophic soil bacteria (Oppermann et al., 2010; Weijers et al., 2010) have great potential
for the reconstruction of past environmental conditions (e.g. Coffinet et al., 2017; Schreuder et
al., 2016; Zech et al., 2012), although some uncertainties exist. Calibration studies suggest that
the relative abundance of the individual brGDGTs varies with mean annual air temperature
(Twma) and soil pH (Peterse et al., 2012; Weijers et al., 2007), at least across large, global climate
gradients or along pronounced altitudinal gradients (Wang et al., 2017). However, in arid
regions the production of brGDGT is limited, while isoprenoidal GDGTs (iGDGTs) produced
by archaea provide the dominant part of the overall soil GDGT pool (Anderson et al., 2014;
Dang et al., 2016; Dirghangi et al., 2013; Wang et al., 2013; Xie et al., 2012). The ratio of
brGDGTSs vs. isoprenoid GDGTs (BIT) can be used as indication whether a reconstruction of
Twma and pH will be reliable. Moreover, Mueller-Niggemann et al. (2016) revealed an influence
of the vegetation cover on the brGDGT producing soil microbes. From field experiments, it is
known that vegetation type and mulching practice strongly effect soil temperature and moisture
(Awe et al., 2015; Liu et al., 2014). Thus, multiple factors can be expected to influence soil
microbial communities and GDGT production. So far, little is known about the variability of
GDGT proxies on a regional scale, and a calibration study with small climate gradient but with
different vegetation types might be useful.

Concerning paleohydrology proxies, compound-specific stable hydrogen isotopes of leaf wax
biomarkers, such as long chain n-alkanes (8?Hn-aianes) record the isotopic signal of precipitation
and therefore past climate and environmental conditions (Sachse et al., 2004, 2006). However,
various influencing factors are known e.g. the moisture source to leaf waxes (Pedentchouk and
Zhou, 2018 and Sachse et al., 2012 for review). Next is the evapotranspiration of leaf water
(Feakins and Sessions, 2010; Kahmen et al., 2013; Zech et al., 2015), which is strongly driven
by relative air humidity (RH; e.g. Cernusak et al., 2016 for review). In addition, a strong
precipitation signal is known to be incorporated into long chain leaf waxes (Hou et al., 2008;
Rao et al., 2009; Sachse et al., 2004). In paleoclimate studies, it is often not feasible to
disentangle between the evapotranspirative enrichment from the precipitation signal. Zech et
al. (2013) proposed to couple §%Hn-aikane results with oxygen stable isotopes of hemicellulose-
derived sugars (5'%O0sugar). Assuming constant biosynthetic fractionation (enio) for the different
compound classes (n-alkanes and hemicellulose sugars), this coupling enables the
reconstruction of the isotopic composition of leaf water, RH, ?H and §*80 of plant source water
(= 8°H and &0 of precipitation; Tuthorn et al., 2015). So far, a detailed evaluation of this
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approach on the European scale, as well as related effects concerning vegetation changes is
missing.

We analysed topsoil samples under coniferous, deciduous and grassland vegetation along a
Central European transect in order to estimate the variability of the biomarker proxies. More
specifically, we aim to test whether:

(i) the vegetation type has an influence on the brGDGT proxies, the §?Hn-alkane and the §*80sugar
stable isotopic composition, as well as on reconstructed 5?Hsource-water, &-Osource-water aNd RH.

(ii) the published brGDGT proxies used for reconstructing mean annual temperature and soil
pH are sensitive enough to reflect the medium changes in temperature and soil pH along our
transect.

(iii) the coupled %Hn-aikane-82Osugar approach enables a §?H and 580 of precipitation and RH
reconstruction along the transect.

2 Material and methods

2.1 Geographical setting and sampling

In November 2012, we collected 29 topsoil samples (0-5 cm depth) from 16 locations along a
transect from Southern Germany to Southern Sweden (Fig. 1A). We distinguished between sites
with coniferous forest (con, n = 9), deciduous forest (dec, n = 14) and grassland (grass, n = 6)
vegetation cover (for more details see Schafer et al. (2016) and Tab. S1).

2.2 Database of instrumental climate variables and isotope composition of precipitation
Climate data was derived from close-by weather observation stations operating by the regional
institutions (Deutscher Wetterdienst (DWD) for Germany, Danmarks Meteorologiske Institut
(DMI) for Denmark and the Sveriges Meteorologiska och Hydrologiska Institute (SMHI) for
Sweden). The DWD provides hourly data for each station (DWD Climate Data Center, 2018b),
enabling not only the calculation of Tma, but also of the mean annual relative air humidity
(RHwma), mean temperature and relative air humidity during the vegetation period (T and
RHwmv), and of daytime temperature and relative humidity averages over the vegetation period
(T and RHwmpv). In addition, annual precipitation observations were used to derive the mean
annual precipitation amount (Pva; DWD Climate Data Center, 2018b). From the DMI, the
respective climate variables were derived from published technical reports (Cappelen, 2002;
Frich et al., 1997; Laursen et al., 1999). The SMHI provides open data from which we derived
the climate variables for the Swedish sites (Swedish Meteorological and Hydrological Institute,
2018). For more details about the climate database used for calculations and comparisons, the
reader is referred to Tab. S2.

For comprising German precipitation (5°H and 5!%0) along the transect, we realized a
regionalisation (called 8?Hgipr and 8'20gpr) using online available data from 34 German GNIP
stations, 4 Austrian ANIP stations and the Groningen GNIP station (van Geldern et al., 2014;
IAEA/WMO, 2018; Stumpp et al., 2014; Umweltbundesamt GmbH, 2018), following the
approach of Schlotter (2007). However, instead of the multivariate regression procedure applied
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by Schlotter (2007), we used a random forest approach (Hothorn et al., 2006; Strobl et al., 2007,
2008) to describe the relationship of squared latitude, latitude, longitude and altitude vs. long
term weighted means of precipitation 6°H and &80, and realized the prediction for each site
(see supplementary method description for more information). For the Danish and Swedish
sites, such a procedure was not possible. Hence, the annual precipitation §?H and 580 values
were derived from the Online Isotopes in Precipitation Calculator (OIPC, version 3.1), therefore
called 8?Horc and 5'80oirc (Bowen, 2018; Bowen and Revenaugh, 2003; IAEA/WMO, 2015).
The finally used 8Hairr,oirc and 5'80cipr,0ipc data are given in Tab. S1.

The Twma along the transect ranges from 5.3 to 10.6°C, and Pma ranges from 554 to 1769 mm
(Fig. 1B). Precipitation 52H and 880 shows moderate changes along the transect, §°Hairr,oipc
varies between -52 and -79%o, and §*®Ogipr 01rc ranges from -7.4 to -10.9%. (Fig. 1C).

Correlations between §'®Q0gipr.oirc and Pwa, altitude of the locations, Twa are given in the
supplementary material (Fig. S1 to S3), along with a 8*Hairr0irc VS. 5'80cipr oipc Scatter plot
(Fig. S4).
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Fig. 1. (A) Sample locations (red dots, map source: US National Park Service), (B) variations
of mean annual air temperature (Twma, red dots and line) and mean annual precipitation (Pma,
blue bars) derived from close-by climate station data, and (C) hydrogen and oxygen stable
isotope composition of precipitation (5°Heirr oirc and §*¥0cier,0ipc, respectively) as derived for
the sampled transect locations (see section 2.2 GIPR §%H and 580 generation procedure). The
reader is referred to section 2.2 (and Tab. S1 and S2) for database and reference information of
data plotted in (B) and (C).
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2.3 Soil extractions and analysis

2.3.1 GDGTs and pH

A detailed description of sample preparation for lipid analysis can be found in Schéfer et al.
(2016). Briefly, 1-6 g freeze-dried and grounded soil sample was microwave extracted with 15
ml dichloromethane (DCM)/methanol (MeOH) 9:1 (v:v) at 100°C for 1 h. Extracts were
separated over aminopropyl silica gel (Supelco, 45 um) pipette columns. The nonpolar fraction
(including n-alkanes) was eluted with hexane and further purified over AgNOs3 coated silica
pipette columns (Supelco, 60-200 mesh) and zeolite (Geokleen Ltd.). The GDGT-containing
fraction was eluted with DCM:MeOH 1:1 (v:v), re-dissolved in hexane/isopropanol (IPA) 99:1
(v:v) and transferred over 0.45 um PTFE filters into 300 pl inserts. For quantification, a known
amount of a Cus diol standard was added after transfer. The samples were analysed at ETH
Zurich using an Agilent 1260 Infinity series HPLC—atmospheric chemical pressure ionization
mass spectrometer (HPLC-APCI-MS) equipped with a Grace Prevail Cyano column (150 mm
x 2.1 mm; 3 um). The GDGTs were eluted isocratically with 90% A and 10% B for 5 min and
then with a linear gradient to 18% B for 34 min at 0.2 ml min™t, where A=hexane and
B=hexane/isopropanol (9:1, v:v). Injection volume was 10 pl and single ion monitoring of
[M+H]* was used to detect GDGTSs.

The pH of the samples was measured in the laboratory of the Soil Biogeochemistry group,
Institute of Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg,
using a pH meter in a 1:3 soil:water (w/v) mixture.

2.3.2 8%Hn-alkane

The hydrogen isotopic composition of the highest concentrated n-alkanes (n-Czs, n-Cz7, n-Ca,
n-Csi, and n-Cas3) was determined using a TRACE GC Ultra Gas Chromatography connected to
a Delta V Plus Isotope Ratio Mass Spectrometer via a °H pyrolysis reactor kept at 1420 °C (GC-
2H-Py-IRMS; Thermo Scientific, Bremen, Germany) at ETH Zurich (Christoph et al., 2019).
For more details about n-alkane quantification the reader is refereed to Schéfer et al. (2016).
The compound-specific 2H/*H ratios were calibrated against an external standard with C15— Css
homologues. External standard mixtures (A4 mix from A. Schimmelmann, University of
Indiana) were run between the samples for multipoint linear normalization. The H*3 factor was
determined on each measurement day and was constant throughout the periods of the sample
batches. Samples were analysed in duplicates, and results typically agreed within 4% (average
difference = 1.4%). All 5°H values are expressed relative to the Vienna Standard Mean Ocean
Water (V-SMOW).

2.3.3 5*80sugar

Hemicellulose sugars were extracted and purified using a slightly modified standard procedure
(Amelung et al., 1996; Guggenberger et al., 1994; Zech and Glaser, 2009). Briefly, myoinositol
was added to the samples prior to extraction as first internal standard. The sugars were released
hydrolytically using 4M trifluoroacetic acid for 4 h at 105°C, cleaned over glass fibre filters and
further purified using XAD and Dowex columns. Before derivatization with methylboronic acid
(Knapp, 1979), the samples were frozen, freeze-dried, and 3-O-methylglucose in dry pyridine

6
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was added as second internal standard. Compound-specific hemicellulose sugar 20O
measurements were performed in the laboratory of the Soil Biogeochemistry group, Institute of
Agronomy and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, using GC-
180-Py-IRMS (all devices from Thermo Fisher Scientific, Bremen, Germany). Standard
deviations of the triplicate measurements were 1.4%o0 (over 29 investigated samples) for
arabinose and xylose, respectively. We focus on these two hemicellulose-derived neutral sugars
arabinose and xylose as they strongly predominate over fucose in terrestrial plants, soils and
sediments (Hepp et al., 2016 and references therein). Rhamnose concentrations were too low to
obtain reliable 5180 results. All §*30 values are expressed relative to the Vienna Standard Mean
Ocean Water (V-SMOW).

2.4 Theory and Calculations

2.4.1 Calculations used for the GDGT-based reconstructions

The branched and isoprenoid tetraether (BIT) index is calculated according to Hopmans et al.
(2004), for structures see Fig. S5:

Ta+Ila+II1a

IT= 1)

Ia+ITa+IIla+crenarchaeol”

The cyclopentane moiety number of brGDGTSs correlates negatively with soil pH (Weijers et
al., 2007), which led to the development of the cyclization of branched tetraethers (CBT) ratio.
CBT and the CBT based pH (pHcaT) were calculated according to Peterse et al. (2012):

Ib+Ib
la+Ila’ (2)

pHeer = 7.9 -1.97 x CBT. 3)

CBT =-log

The number of methyl groups in brGDGTSs correlates negatively with Tma and soil pH (Peterse
et al., 2012; Weijers et al., 2007). Thus, the ratio of the methylation of branched tetraethers
(MBT) ratio and the CBT ratio can be used to reconstruct Tma. We use the equation given by
Peterse et al. (2012):

Ia+Ib+Ic
MBT’ = : 4)
Ta+Ib+Ic+HIa+1Ib+1Ic+I1Ia

Tya = 0.81 - 5.67 x CBT + 31.0 x MBT". (5)

2.4.2 Calculations and concepts used for the coupled §2H-5'80 approach
The apparent fractionation is calculated according to Cernusak et al. (2016):

8?Hy-alkane-0° HGIPR,OIPC) ( 6)
1+8°Hapr,0rc/1000 /'

En-alkane/precipitation™— (

8"80sugar-0' 8OGIPR,OIPC)
1+3'%0aipr,01pc/1000/

(7)

The isotopic composition of leaf water (§°Hicat-water and 5'8Oleat-water) can be calculated using eio
for 82Hn-alkane (-160%o, Sachse et al., 2012; Sessions et al., 1999) and 5'8O0sugar (+27%o, Cernusak
et al., 2003; Schmidt et al., 2001):

Esugar/precipitation = (

1 000+62Hn-alkane

?Hicar = (—
leaf-water 1000+¢vio (n-alkane)

) x 103 -1000, (8)

7
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8% Oeatrwater= (oo
leaf-water™ \ § 000 g0 (sugar)

) x 103-1000. 9)

Zech et al. (2013) introduced the conceptual model for the coupled §?Hn-alkane-82Osugar approach
in detail. Briefly, the coupled approach is based on the following assumptions (illustrated in
Fig. 8): (i) The isotopic composition of precipitation, which is set to be equal to the plant source
water, typically plots along the global meteoric water line (GMWL; §°H = 8 x §'0 + 10) in a
5180 vs. &%H space (Craig, 1961); (ii) Source water uptake by plants does not lead to any
fractionation (e.g. Dawson et al., 2002), and significant evaporation of soil water can be
excluded; (iii) Evapotranspiration leads to enrichment of the remaining leaf water along the
local evaporation line (LEL; Allison et al., 1985; Bariac et al., 1994; Walker and Brunel, 1990),
compared to the source water taken up by the plant; (iv) The biosynthetic fractionation is
assumed to be constant. In addition, isotopic equilibrium between plant source water (~
weighted mean annual precipitation) and the local atmospheric water vapour is assumed.
Further assumption concerns the isotope steady-state in the evaporating leaf water reservoir.
The coupled approach allows for reconstructing the isotopic composition of plant source water
(8?Hsource-water and 88 Osource-water) from the reconstructed leaf water, by calculating the intercepts
of the LELs with the GMWL (Zech et al., 2013). The slope of the LEL (SceL) can be assessed
by the following equation (Gat, 1971):

2
SLeL= =1 (10)
where €* are equilibrium isotope fractionation factors and Ck are Kinetic fractionation factors.
The latter equals to 25.1%o and 28.5%o, for C; and C.°, respectively (Merlivat, 1978). The
equilibrium fractionation factors can be derived from empirical equations (Horita and

Wesolowski, 1994) by using Twmpv values. For two Danish sites Tmpv are not available, instead
Twmv is used here (section 2.2 and Tab. S2).

In a 5'80-6%H diagram, the distance of the leaf water from the GMWL define the deuterium-
excess of leaf water (diear-water = 8*Hieat-water - 8 X 8*8Oleat.water, according Dansgaard, (1964); Fig.
8). To convert dieat-water iNto mean RH during daytime and vegetation period (RHmpv), a
simplified Craig-Gordon model can be applied (Zech et al., 2013):
Ad
TS) (11)

£5-8%€, g Cp-8% Cif

RH=1

where Ad is the difference in dieaf-water and the deuterium-excess of source water (dsource-water)-

2.5 Statistics

In the statistical analysis we checked sample distributions for normality (Shapiro and Wilk,
1965) and for equal variance (Levene, 1960). If normality and equal variances are given, we
perform an Analysis of Variance (ANOVA). If that is not the case, we conduct the non-
parametric Kruskal-Wallis Test. ANOVA or Kruskal-Wallis are used to find significant
differences (a=0.05) between the vegetation types (deciduous, conifer and grass).

In order to describe the relation along a 1:1 line, the coefficient of correlation (R?) was
calculated as R? = 1 - ¥ (modeled - measured)? / ¥ (measured - measured mean)?. The small
r? is taken as coefficient of correlation of a linear regression between a dependent (y) and

8
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explanatory variable(s). The root mean square error (RMSE) of the relationships was calculated

as RMSE = \/ (i-Z(modeled-measured)z). All data plotting and statistical analysis was
realized in R (version 3.2.2; R Core Team, 2015).

3 Results and Discussion

3.1 GDGT concentrations

GDGT la has the highest concentration under all vegetation types, followed by GDGT lla and
GDGT Illa (Fig. 2). GDGT Ib, Ilb and Ic occur in minor, GDGT lic and Illb only in trace
amounts. GDGT Ilic was below the detection limit in most of the samples (Tab. S3). Although
other studies document an influence of the vegetation cover on soil temperature and soil water
content, which control the microbial community composition in soils (Awe et al., 2015; Liu et
al., 2014; Mueller-Niggemann et al., 2016), we find no statistically different pattern of the
individual brGDGTs.

o _
©
Bl con
B 1 B dec
[ grass
29
o~ <
L
o
o
O ™7
o
o
8 &7
o J
=
o A i:l - mm .] —_—
la Ib Ic lla b llc llla b llc

Fig. 2. Mean concentrations of individual brGDGTSs as percentage of all brGDGTs for the three
investigated types. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest
sites (n=14); grass = grassland sites (n=6).

Total concentrations of brGDGTs range from 0.32 to 9.17 ug/g dry weight and tend to be
highest for the coniferous samples and lowest for the grasses (Fig. 3A, Tab. S3). Bulk brGDGT
concentrations lie within the range of other studies examining soils of mid latitude regions
(Huguet et al., 2010b, 2010a; Weijers et al., 2011). Similar concentrations in coniferous and
deciduous samples imply that brGDGT production does not strongly vary in soils below
different forest types. The grass samples show lower brGDGT concentrations compared to the
forest samples, but this is probably mainly due to ploughing of the grass sites in former times
and hence admixing of mineral subsoil material. The differences in brGDGT concentrations are
not significant (p-value = 0.06).

3.2 BIT index
Most of the samples have a BIT index higher than 0.9 (Fig 3B and Tab. S3). The BIT-values
are typical for soils in humid and temperate climate regions (Weijers et al., 2006). However,

9
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outliers exist. The most likely source of iGDGTSs in soils are Thaumarchaeota, i.e. aerobe
ammonia oxidizing archaea producing Crenarchaeol and its regioisomer (Schouten et al., 2013
and references therein), when precipitation amount drops below 700-800 mm (Dang et al.,
2016; Dirghangi et al., 2013). The Pma data of our sampling sites mostly show precipitation >
550 mm (Fig. 1B), but one has to be aware that this data is based on the climate station nearest
to the respective sampling locations and microclimate effects, such as sunlight exposure,
canopy cover or exposition might have a pronounced influence on the brGDGT vs. iGDGT
distribution. Mueller-Niggemann et al. (2016) found higher BIT indices in upland soils
compared to paddy soils and stated that the management type also influences BIT values in
soils. Along our transect, grass sites tend to have slightly lower BIT-values than forest sites,
probably due to the absence of a litter layer and hence, no isolation mechanism preventing
evaporation of soil water. Differences between vegetation types are not significant (p-value =
0.32).

o N | wnl o Hl nl o - conl -
dec-l-.----lo dec+ O |--—l dec |-------| dec10 |-----|

grass- U 1 grass-
0 2 4 6 8 06 07 08 09 10 00 05 10 15 20 02 03 04 05 06
brGDGTs (ug/g dry weight) BIT CBT MBT'

Fig. 3. (A) Total concentrations of brGDGTs in pg g dry weight, as well as (B) BIT, (C) CBT
and (D) MBT’. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites
(n=14); grass = grassland sites (n=6). Box plots show median (red line), interquartile range
(IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.51QR of lower
quartile, and highest whisker still within 1.5I1QR of upper quartile, dots mark outliers.
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3.3 CBT-derived pH

The CBT ratio shows a pronounced variation independent of vegetation type with values
between 0.03 and 2.16 (Fig 3C). The coniferous samples tend to be highest, but the differences
between vegetation types are not significant (p-value = 0.48). The CBT index can be related to
pH in acidic and/or humid soils (e.g. Dirghangi et al., 2013; Mueller-Niggemann et al., 2016;
Peterse et al., 2012; Weijers et al., 2007) but might be an indicator of soil water content and
hence, precipitation in more arid and alkaline soils (e.g. Dang et al., 2016). There is a
pronounced correlation between CBT and soil pH (Fig. 4), which is in good agreement with
other studies from mid latitude regions where precipitation is relatively high (Anderson et al.,
2014 and references therein). Moreover, the CBT to pH relationship in terms of slope and
intersect in our dataset (CBT = -0.47 x pH + 3.5, r> = 0.7, p-value < 0.0001, n = 29) is well
comparable to the correlation described for the global calibration dataset of Peterse et al. (2012)
(CBT =-0.36 x pH + 3.1, r> = 0.7, p-value < 0.0001, n = 176).

However, there are some outliers in the CBT-pH correlation, which need a further examination
(see locations grass L04, dec L10 and dec L12 as marked in Figs. 4 and 5). The outliers show
lower BIT indices (< 0.85, Tab. S3). Even though the data from the nearest climate station
suggest no abnormal Puma. Local effects such as differences in the amount of sunlight exposure,

nutrient availability for brGDGT producing organisms or, most likely soil water content might
10



347  influence the brGDGT production at these locations (Anderson et al., 2014; Dang et al., 2016).
348 A lower BIT index as well as a lower CBT occur when soil water content decreases (Dang et
349 al., 2016; Sun et al., 2016) or when aeration is high and less anoxic microhabitats for GDGT
350  producing microbes exist (e.g. Dirghangi et al., 2013).
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352  Fig. 4. CBT to pH relationship in our dataset in comparison to the global calibration dataset
353  from Peterse et al. (2012) (CBT =-0.36 x pH + 3.1, r> = 0.7, p-value < 0.0001, n = 176, black
354  line). Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=14);
355  grass = grassland sites (n=6).

356

357  Asthe CBT and pH are similarly correlated in our dataset and the global dataset of Peterse et
358 al. (2012), the CBT-derived pH correlated well with the actual pH (Fig. 5A; R? = 0.3).
359  Expressed as ApH (CBT-derived pH - measured pH), there is a tendency that the GDGTSs result
360 inan overestimation of the real pH for the forest sites (Fig. B). Yet a Kruskal-Wallis test shows
361 no statistically significant difference between the vegetation types, with a p-value of 0.13. The
362  overall ApH of 0.6 £0.6 shows that the reconstruction of soil pH using brGDGTs works well
363  along this transect.
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Fig. 5. (A) Correlation between measured pH and reconstructed soil pH (pHcet) from our
transect data in comparison to the global calibration dataset from Peterse et al. (2012) (R?=10.7,
RMSE = 0.75, n = 176). Black line indicates the 1:1 relationship. (B) Boxplots of ApH (refers
to pHceT-pH). Box plots show median (red line), interquartile range (IQR) with upper (75%)
and lower (25%) quartiles, lowest whisker still within 1.51QR of lower quartile, and highest
whisker still within 1.51QR of upper quartile, dots mark outliers. Abbreviations: con =
coniferous forest sites (n=9); dec = deciduous forest sites (n=14); grass = grassland sites (n=6).

3.4 MBT’-CBT-derived Twma reconstructions

The MBT’ shows high variability with values ranging from 0.17 to 0.67 no statistical
differences between vegetation types (p-value = 0.54; Fig. 3D, Tab. S3). When comparing
reconstructed (MBT’-CBT-derived) Tma with climate station Tma, the data plot close to the 1:1
line, and fit well into the global dataset of Peterse et al. (2012) (Fig. 6A). The ATwma reveal an
overall offset of 0.5°C +2.4 and there is no statistically difference between vegetation types
(Fig. 6B). The standard deviation in ATma of £2.4 is well in line with the RMSE of 5.0 for the
global calibration dataset (Peterse et al., 2012).
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Fig. 6. (A) Correlation between climate station Tma and reconstructed (MBT’-CBT-derived)
Twma. For comparison, the global calibration dataset from Peterse et al. (2012) is shown. The
black line indicates the 1:1 relationship. (B) Boxplots of ATwma (refers to reconstructed Tma-
Twma from climate stations) in the different vegetation types from our transect study. Box plots
show median (red line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles,
lowest whisker still within 1.51QR of lower quartile, and highest whisker still within 1.51QR of
upper quartile, dots mark outliers. Abbreviations: con = coniferous forest sites (n=9); dec =
deciduous forest sites (n=14); grass = grassland sites (n=6).

3.5 Potential impact of the used liquid chromatography method on pH and Twma
reconstructions

The GDGT data presented in this study are not acquired on the up-to-date method (e.g. compare
De Jonge et al., 2014 vs. Zech et al., 2012c). De Jonge et al. (2014) presented a new liquid
chromatography method which enables the separation for the brGDGTs with m/z 1036, 1034
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and 1032, 1050, 1048 and 1046 into 6-methyl and 5-methyl stereoisomers. The old method did
not allow such a separation (Zech et al., 2012c), thus in the calibration often the sum of 6 and
5-methlyted brGDGTs was used (see and compare De Jonge et al., 2014 vs. Peterse et al., 2012).
This introduce scatter to the MBT’-CBT-based Twma reconstructions and can cause a correlation
between pH and MBT’ (for more details see De Jonge et al., 2014). De Jonge et al. (2014)
moreover show that the 6-methyl brGDGTSs are ubiquitous abundant in soils from all over the
world, based on reanalysing the dataset of Peterse et al. (2012). However, they also compare
reconstructed Tma values based MBT’-CBT calibration (Peterse et al., 2012) and their new
developed Twma calibration and state that they plot around a 1:1 line. They furthermore state,
that especially for arid areas larger deviations can be expected. Finally, they conclude that the
use of the new developed calibrations will improve the Tma and pH reconstructions for areas
with arid climate conditions. Because our study transect spans form southern Germany to
southern Sweden, representing temperate and humid climate conditions, we argue that the usage
of the older liquid chromatorgraphy method do not introduce a systematic error in our Tma and
pH reconstructions. Still, a higher variability/scatter could be associated with the calibration of
Peterse et al. (2012) and therefore also present in our Tma and pH reconstructions.

3.6 Apparent fractionation of 3°H and 620 in the different vegetation types
82H values could be obtained for the n-alkanes Cz7, C29 and Cs1 in all samples and additionally

at two locations for n-Czs and n-Css at six other locations. The §2Hn-aane Values, calculated as
mean of n-Czs to n-Ca1 §2H, range from -156 to -216%.. Pooled standard deviations show an
overall average of 3.6%o. The §'®Osgar Values, calculated as the area weighted means for
arabinose and xylose, range from +27.7 to +39.4%.. The average weighted mean standard
deviation is 1.4%.. The compound-specific isotope data are summarized along with the
calculations in Tab. S4.

Apparent fractionation (&n-alkane/precipitation) 1S 0n the order of -120 to -150%o, i.e. a bit less than
the biosynthetic fraction of -160%o. This implies that evapotranspirative enrichment is ~ 10 to
40%o (Fig. 7A). en-alkane/precipitation 1S lower for grass sites compared to the forest sites. Differences
are significant between deciduous and grass sites (p-value = 0.005). This finding supports the
results of other studies (Kahmen et al., 2013; Liu and Yang, 2008; Mclnerney et al., 2011), and
can be named “signal damping”. Grasses do not only incorporate the evaporatively-enriched
leaf water but also unenriched xylem water in the growth and differentiation zone of grasses
(Gamarra et al., 2016; Liu et al., 2017).

The grass-derived hemicellulose sugar biomarkers do not fully record the evapotranspirative
enrichment of the leaf water, either, as indicated by lower apparent fractionation (esugar/precipitation)
in Fig. 7B. The differences are significant between forest and grass sites (p-value < 0.005). This
is in agreement with a study on cellulose extracted from grass blades (Helliker and Ehleringer,
2002), and again, the “signal damping” can be explained with incorporation of enriched leaf
water and non-enriched stem water.

Based on the comparison of evapotranspirative enrichment between forest and grass sites, the
“signal damping” can be quantified to be ~ 31% for the hemicellulose sugars, and ~ 49% for
the n-alkanes. This is in agreement with other studies that reported a loss of 22% of the leaf
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water enrichment for hemicellulose sugars (Helliker and Ehleringer, 2002) and 39 to 62% loss
of the leaf water enrichment for n-alkanes (Gamarra et al., 2016).
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Fig. 7. Apparent fractionation (A) en-aikane/precipitation and (B) esugarsprecipitation. Biosynthetic
fractionation factors according to section 2.4.2. Box plots show median (red line), interquartile
range (IQR) with upper (75%) and lower (25%) quartiles, lowest whisker still within 1.5I1QR
of lower quartile, and highest whisker still within 1.51QR of upper quartile, dots mark outliers.
Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11 and 14
for n-alkanes and sugars, respectively); grass = grassland sites (n=4 and 6 for n-alkanes and
sugars, respectively). The figure conceptually illustrates the effect of biosynthetic fractionation
and evapotranspirative enrichment as well as “signal damping”.

3.7 8?Hsource-water and 8*8Osource-water reconstructions
The 52H versus 580 diagram shown in Fig. 8 graphically illustrates the reconstruction of °Hiear-

water aNd 58Oeat.water (COlored dots) from &2Hn-akane and 8®0sugar (Crosses), as well as the
reconstruction of 8?Hsource-water aNd 8'80source-water (Dlack dots). For reconstructing 82Hsource-water
and 8*®0source-water, LELS with an average slope of 2.8 +0.1 (Eq. 10) can be generated through
every leaf water point and the intercepts of these LELs with the GMWL.
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Fig. 8. 8°H vs. 5180 diagram illustrating the coupled §?Hn-aikane-8*8Osugar approach: measured
82Hn-alkane and 8*80sugar Values, reconstructed 8?Hieat-water and 32Oleat-water (according Eqs. 8 and
9) and reconstructed 8Hsource-water and 8*®Osource-water iN comparison to GIPR and OIPC-based
8?Hprecipitation and 8*8Oprecipitation. Abbreviations: con = coniferous forest sites (n=9); dec =
deciduous forest sites (n=11); grass = grassland sites (n=4).

The reconstructed 8?Hsource-water and 8*8Osource-water results can be compared with the §?Hairr,oipc
and 3'®0ciproirc data (Fig. 9). This comparison reveals that the coupled 3?Hn-aikane-8"2Osugar
approach yields more accurate 3?Hsource-water and 8*8Osource-water cOMpared to single 52Hn-alkane
approaches. However, the range of the reconstructed 8?Hsource-water and 8*8Osource-water Values is
clearly larger than in *°Haipr oipc and 5'80cipr oipc Values. 3%H is systematically underestimated
by ~ 21%o +22 (Fig. 9B) and 580 by ~ 2.9%. +2.8 (Fig. 9D). The type of vegetation seems to
be not particularly relevant (p-value = 0.18 for AS°H and p-value = 0.34 for A3'20).
Nevertheless, the systematic offsets tend to be lowest for the decidous sites (A5?H and A&*20 is
closer to zero with ~-5%o £15 and ~-1.1%o £2.1), followed by grass sites (~-14%o0 £20 and ~-
2.1%o +2.6). In comparison, the coniferous sites show the largest offsets (~-23%o £26 for AS?H
~-3.0%0 3.3 for A3'80). Differences are, however, not statistically significant. The systematic
offset and the large variability might have more specific reasons, and we suggest that this is
related to the type of vegetation. Deciduous trees produce lots of leaf waxes and sugars (e.g.

Prietzel et al., 2013; Zech et al.,, 2012a), and all biomarkers reflect and record the
15
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evapotranspirative enrichment of the leaf water (e.g. Kahmen et al., 2013; Tuthorn et al., 2014).
By contrast, coniferous trees produce quite low amounts of n-alkanes (Diefendorf and Freimuth,
2016; Zech et al., 2012a), while sugar concentrations are as high as in other vascular plants (e.g.
Hepp et al., 2016; Prietzel et al., 2013). For the coniferous soil samples this means that the n-
alkanes stem most likely from the understory whereas the sugars originate from grasses and
coniferous needles. When the understory is dominated by grass species then the n-alkane
biomarkers do not record the full leaf water enrichment signal, whereas the sugars from the
needles do. The reconstructed leaf water for the coniferous sites is therefore too negative
concerning §2H, and reconstructed 8%Hsource-water and 8*8Osource-water Values thus also become too
negative (Fig. 8). Concerning the grass sites, the following explanation can be found. Correcting
for “signal damping” makes the reconstructed leaf water points more positive and shifts them
in Fig. 8 up and right. As the “signal damping” is stronger for §°H than for 580 the corrected
leaf water points would now plot above the uncorrected ones. The corrected leaf water points
lead to more positive reconstructed §?Hsource-water aNd 3*8O0source-water Values for the grass sites.
However, Gao et al. (2014) and Liu et al. (2016) showed that the ebio (regarding 2H between n-
alkanes and leaf water) of monocotyledon plants could be larger than those of dicotyledonous
ones. This would therefore also cause a more negative en-aiane/precipitation fOr grasses compared to
trees. We observe that the en-aiane/precipitation 1S indeed more negative for the grass sites compared
to the forest sites (Fig 7 and section 3.6). Therefore, effects of “signal damping” vs. variable
enio along with vegetation types are indistinguishable here. As an outlook for a future study, we
therefore strongly recommend a comparison between the here measured 82Hn-alkane Values with
modelled ones using e.g. the new available model approach from Konecky et al. (2019), which
could provide insights if such vegetation effects on epio 0f 2H in n-alkanes are describable.

Vegetation type specific rooting depths could partly cause the overall high variability in
reconstructed 5?Hsource-water aNd 8*8Osource-water. DeEEP rooting species most likely use the water
from deeper soil horizons and/or shallow ground water, which is equal to the (weighted) mean
annual precipitation (e.g. Herrmann et al., 1987). Shallow rooting plants take up water from
upper soil horizons, which is influenced by seasonal variations in §?Hprecipiation and 8Oprecipiation
and by soil water enrichment (Dubbert et al., 2013). Thus, the overall assumption that the source
water of the plants reflects the local (weighted) mean precipitation might be not fully valid for
all sites. Moreover, a partly contribution of root-derived rather than leaf-derived sugar
biomarkers in our topsoil samples is very likely. This does, by contrast, not apply for n-alkanes,
which are hardly produced in roots (Zech et al., 2012b and the discussion therein).
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Fig. 9. Correlation of reconstructed 8?Hsource-water aNd 88 Osource-water VS. precipitation 8°Heipr oipc
and 3'®0ciroirc (A and C). Black lines indicate 1:1 relationship. Differences between
reconstructed source water and precipitation (A8%H, 880 = §2Hsource-water, 0 8Osource-water -
8°Hairr0irc, 8'80cipr 0ipc) for the three different vegetation types (B and D). Box plots show
median (red line), interquartile range (IQR) with upper (75%) and lower (25%) quartiles, lowest
whisker still within 1.51QR of lower quartile, and highest whisker still within 1.51QR of upper
quartile. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11);
grass = grassland sites (n=4).

Moreover, the high variability within the vegetation types could be caused by variability in epio
of 2H in n-alkanes, as well as *20 in sugars. There is an ongoing discussion about the correct
ebio Tor 20 in hemicellulose sugars (Sternberg, 2014 vs. Zech et al., 2014), and epio is probably
not constant over all vegetation types. This translates into errors concerning leaf water
reconstruction and thus for reconstructing §?Hsource-water and 88Osource-water Values (Eq. 9 and Fig.
8). Likewise, the epio values reported in the literature for 2H of n-alkanes can be off from -160%.
by tens of permille (Feakins and Sessions, 2010; Tipple et al., 2015; Feakins et al., 2016;
Freimuth et al., 2017). The degree to which hydrogen originates from NADPH rather than leaf
water is important, because NADPH is more negative (Schmidt et al., 2003). The wide range
in biosynthetic 2H fractionation factors, which can be even larger, is therefore also related to
the carbon and energy metabolism state of plants (Cormier et al., 2018).
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3.8 RH reconstruction
Reconstructed RHmpv ranges from 34 to 74%, while RHwpv from climate station data range

from 61 to 78% (Fig. 10A). Biomarker-based values thus systematically underestimate the
station data (ARHwmpv = -17% 12). Yet the offsets are much less for deciduous tree and grass
sites (ARHwmpv = -10% =12 and -7% %9, respectively; Fig. 10B). The offsets for the coniferous
sites are -30% 11, and significantly larger than for the deciduous and grass sites (p-values <
0.05).

Too low reconstructed RHwvpv values for the coniferous sites make sense in view of the
previously discussed option that soils contain n-alkanes from the understory (which is
dominated by grass species), while sugars stem from needles and grasses. As explained earlier
already, the “signal damping” leads to too negative reconstructed 8?Hieat.water (Whereas 580 is
affected less by the “signal damping”), and too negative &?Hiear.water translates into
overestimated d-excess and underestimated RH values. In Fig. 8, a correction for this requires
moving the coniferous leaf water data points upwards towards more positive §°H values, thus
the distance between the leaf water and the source water is reduced. It should be noted that also
here variable epio (regarding 2H between n-alkanes and leaf water) along with vegetation types
could not be distinguished from “signal damping” effects.

The underestimation of RH for the deciduous and grass sites could be partly associated with the
use of the GMWL as baseline for the coupled §?Hn-alkane-62Osugar approach. The deuterium-
excess of the LMWLs is generally lower than the +10%o of the GMWL, while the slopes of the
LMWLs are well comparable to the GMWL (Stumpp et al., 2014). In addition, if soil water
evaporation occurred before water uptake by the plants, this would lead to an underestimation
of biomarker-based RHmpv values, too. It can be furthermore assumed that plant metabolism is
highest during times with direct sunshine and high irradiation, i.e. during noon at sunny days.
The relevant RH could therefore be lower than the climate station-derived RHwmpv. Indeed,
already climate station RHwmpv is considerably lower than RHuwa and RHwv (Tab. S1).
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Fig. 10. (A) Comparison of reconstructed (biomarker-based) RHvpv values and climate station

RHwvpv data. The black line indicates the 1:1 relationship. (B) Differences between

reconstructed and climate station RHvpv values (ARHmpv = reconstructed — climate station

RHwmpv) for the three different vegetation types along the transect. Abbreviations: con =

coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass = grassland sites (n=4).
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The uncertainty of reconstructed RHwvpv values are large for all three investigated vegetation
types, and again these uncertainties are probably also related to epio, Which is most likely not
constant as assumed for our calculations. Moreover, microclimate variability is underestimated
in our approach. As mentioned in the sections 2.4.2 and 3.7, in the coupled approach not only
the source water of the plants is equated with (weighted) mean annual precipitation, but also an
isotopic equilibrium between the source water and the (local) atmospheric water vapour is
assumed. However, in areas with distinct seasonality this might be not fully valid. To account
for this lack of equilibrium between precipitation and local atmospheric water vapour, apparent
¢ values can be calculated with data from Jacob and Sonntag (1991). As shown by Hepp et al.
(2018) those values can be used to achieve alternative RH reconstructions based on the coupled
8?Hn-alkane-0'80sugar approach. Such calculated RHwpv values are on average 1.5% more
negative than the original values. However, this difference in RH is far below the analytical
uncertainties of the compound-specific biomarker isotope analysis.

Finally, the integration time of the investigated topsoils has to be discussed. Unfortunately, no
14C dates are available for the soil samples. However, most likely the organic matter has been
built up over a longer timescale than the available climate data, which is used for comparison.
In combination with vegetation changes/management changes throughout that period, this
could surely lead to a less tight relationship of the reconstructions compared to the climate
station data. Root input of arabinose and xylose seems to be of minor relevance in our topsoil
samples. Otherwise, the reconstructed §'®Osugar Values would be too negative resulting in
RHwmpv overestimations, which is not observed.

4 Conclusions
We were able to show that

Q) the vegetation type does not significantly influence the brGDGT concentrations and
proxies, yet the coniferous sites tend to have higher brGDGT concentrations, BIT
indices and CBT-MBT” ratios, while grass sites tend to be lowest.

(i)  CBT faithfully records soil pH with a median ApH of 0.6 0.6, The CBT
overestimates the real pH particularly at the forest sites.

(i) CBT-MBT’-derived Twma reflect the climate station-derived Twma values with a
median ATwma 0f 0.5°C £2.4, but again slightly too high reconstructions for the forest
sites were observed.

(iv)  differences in the apparent fractionation between the investigated vegetation types
can be explained with “signal damping”.

(v)  the reconstructed 8?Hsource-water and 8*8Osource-water reflect the 82Hgiproipc and
5'80cipr,0pc With a systematic offset for 5?H of ~-21%o +22 and for 580 of ~-2.9%
+2.8 (based on overall medians of A8?H, A8*0). This is caused by too negative
reconstructions for coniferous and grass sites. For coniferous sites, this can be
explained with n-alkanes originating from understory grasses. As for the grass sites,
the “signal damping” or variable enic along with vegetation types effect 5°H more
than §'80. This leads to too negative reconstructed ?Hieat-water Values and thus to too
negative 5?Hsource-water aNd 5Osource-water reconstructions.
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(vi)  reconstructed (biomarker-based) RHwmpv values tend to underestimate climate
station-derived RHwpv values (ARHwmpv = ~ -17% £12). For coniferous sites the
underestimations are strongest, which can be explained with understory grasses
being the main source of n-alkanes for the investigated soils under coniferous
forests.

Overall, our study highlights the great potential of brGDGTs and the coupled 8?Hn-akane-
5'80sugar approach for more quantitative paleoclimate reconstructions. Taking into account
effects of different vegetation types improves correlations and reconstructions. This holds
particularly true for the coupled 8?Hn-aikane-6"8Osugar approach, which is affected by “signal
damping” of the grass vegetation or variable epio (regarding ?H between n-alkanes and leaf
water) along with vegetation types. By contrast, vegetation-related effects do not strongly
influence the brGDGT-derived reconstructions. Assuming constant epio is likely a considerable
source of uncertainty and should be further addressed in future field and/or modelling studies.
Climate chamber experiments are most promising to further evaluate and refine the coupled
82Hn-alkane-0'8Osugar approach, because uncertainties related to microclimate variability can be
reduced. Field experiments like ours suffer from the fact that biomarker pools in the sampled
topsoils may have been affected by past vegetation and climate changes and by the rather small
range covered by the sampled transect. Both makes the comparison between reconstructions
and observations more difficult compared to large datasets und well defined conditions.
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