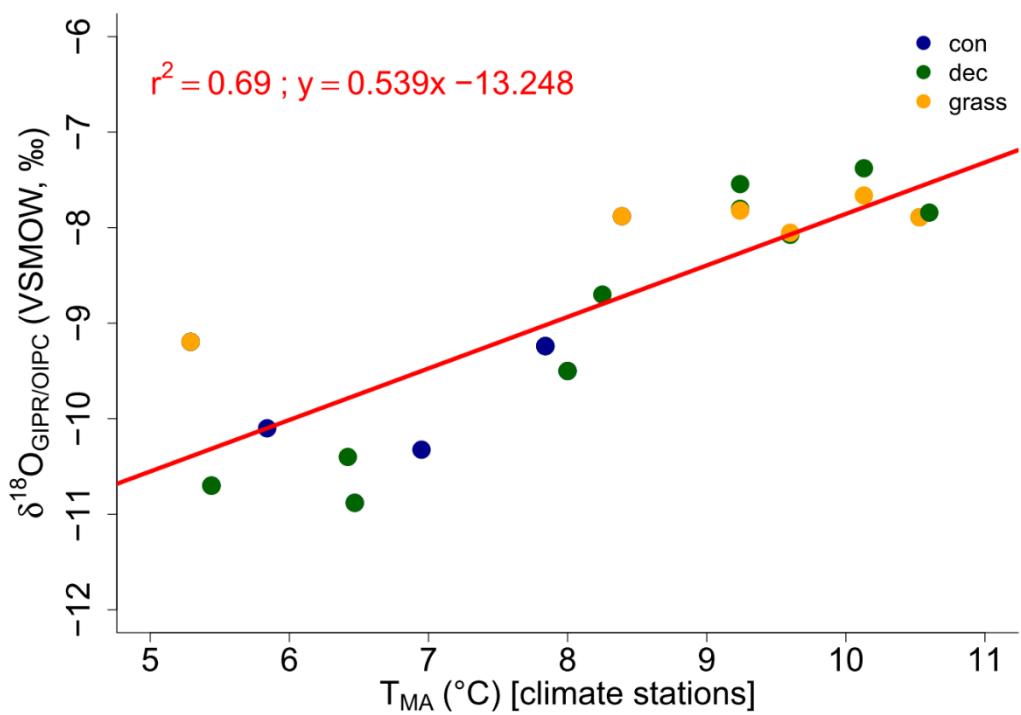
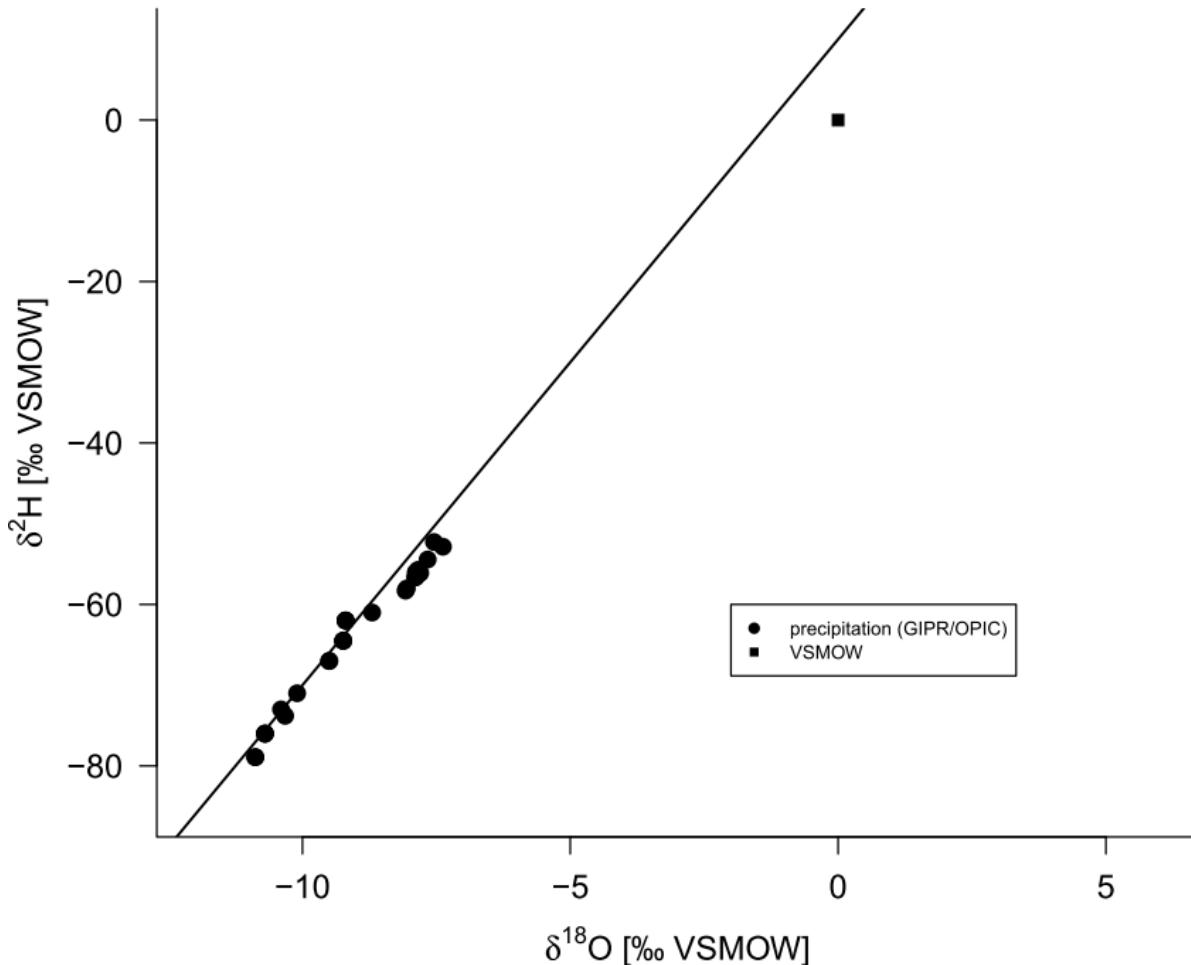


1 **Supplementary figures**

2


3


10

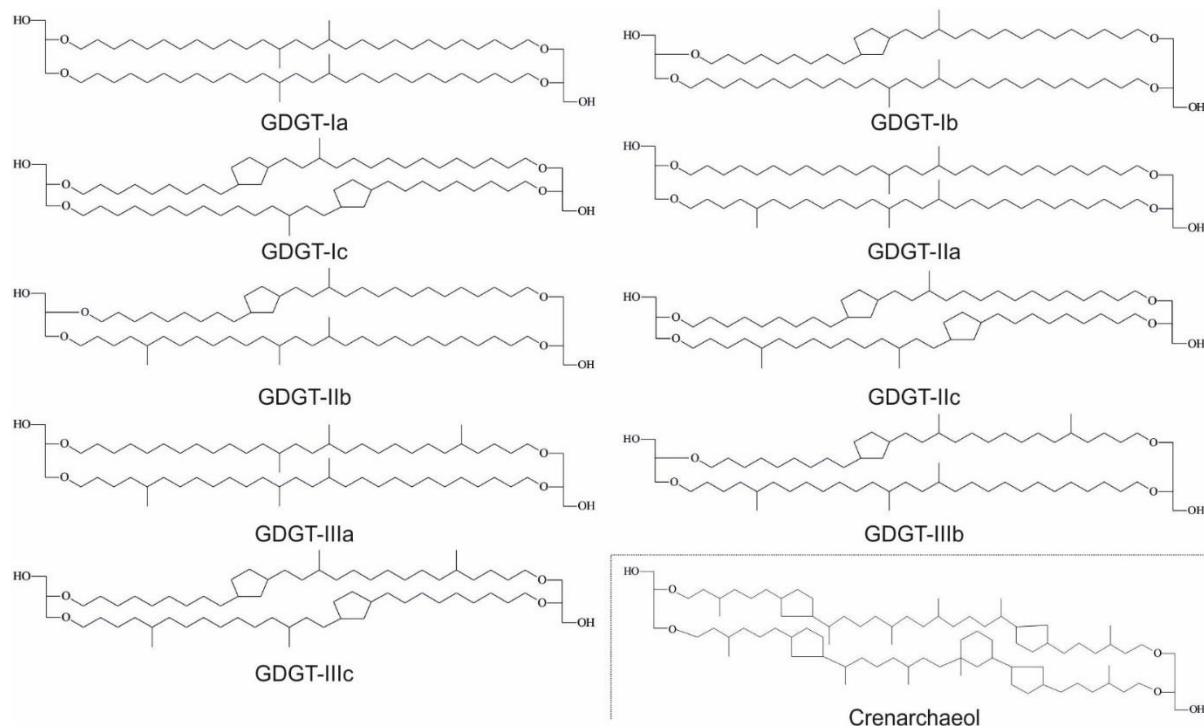
11 **Fig. S2.** Comparison between $\delta^{18}\text{O}_{\text{GIPR/OIPC}}$ values vs. location altitudes for the three different
12 vegetation types along the transect. The red line represents the regression line throughout all
13 German sites. All data points are marked with the location names. Swedish and Danish sites are
14 boarded in black. Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest
15 sites (n=11); grass = grassland sites (n=4).

16

17 **Fig. S3.** Comparison between $\delta^{18}\text{O}_{\text{GIPR/OIPC}}$ values vs. T_{MA} for the three different vegetation
18 types along the transect. The red line represents the regression line throughout all sites.
19 Abbreviations: con = coniferous forest sites (n=9); dec = deciduous forest sites (n=11); grass =
grassland sites (n=4).

20 **Fig. S4.** $\delta^2\text{H}_{\text{GIPR/OIPC}}$ vs. $\delta^{18}\text{O}_{\text{GIPR/OIPC}}$ diagram along the transect. The black line represents the
 21 global meteoric water line (GMWL; $\delta^2\text{H} = 8 \times \delta^{18}\text{O} + 10$; Dansgaard, 1964).

22
 23 Based on the values quoted in the Tabs. S1 and S2, $\delta^{18}\text{O}$ is plotted as functions of the reported
 24 environmental parameters (climate station P_{MA} , location altitude and T_{MA} ; Figs. S1 to S3).


25 It is worth to note that the five points representing Danish and Swedish sites (L12 to L16) form
 26 a separate group in Figs. S2 and S3, with clear more negative $\delta^{18}\text{O}$ values. All other
 27 (continental) sites show a regular altitude effect (decreasing $\delta^{18}\text{O}$ values with increasing
 28 altitude; red trend in Fig. S3). All Danish and Swedish isotope signatures of precipitation are
 29 shifted from the trend line by ca 2 to 2.5‰ towards more negative $\delta^{18}\text{O}$ values. One would
 30 rather expect more enriched values due to relative proximity to the sea. It should be noted that
 31 those values were derived from OIPC, while the $\delta^{18}\text{O}$ data for the German sites is derived from
 32 GNIP/ANIP data (see section 2.2 for more details).

33 The precipitation $\delta^{18}\text{O}$ shows the expected relationship with T_{MA} (Fig. S4). The slope of this
 34 relationship (ca. 0.54‰/°C) is in the range of the slope of δ -T spatial relationship observed at
 35 mid latitudes of the northern hemisphere (e.g. Rozanski et al., 1993).

36 It is apparent from the above Fig. S5 that the data points plot along the GMWL. Only more
 37 positive $\delta^{18}\text{O}$ values cluster below the line, indicating most probably some evaporation

38 enrichment effects (partial evaporation of raindrops and/or evaporation effects in the rain
39 gauges).

40

41 **Fig. S5.** Structures of brGDGTs and Crenarchaeol mentioned.

42

43 **Literature**

44 Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16(4), 436–468, doi:10.1111/j.2153-
45 3490.1964.tb00181.x, 1964.

46 Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R.: Isotopic patterns in modern global
47 precipitation, Climate change in continental isotopic records, 1–36, 1993.

48 **Supplementary data**

49 **Tab. S1.** Location characterization, GIPR and OIPC data.

Location	Vegetation	Characterization	Precipitation $\delta^{2\text{H}}$		Precipitation $\delta^{18\text{O}}$ source
			(‰)	(‰)	(‰)
L01	con	spruce forest, steep hillside	-78.9	-10.9	GIPR A,B,C,D
L01	dec	beech forest, close to fir stand	-78.9	-10.9	GIPR A,B,C,D
L02	con	fir forest	-73.8	-10.3	GIPR A,B,C,D
L03	dec	beeches, oaks, limes, sparse pines	-56.6	-7.9	GIPR A,B,C,D
L03	grass	glade, next to farmland and fruit trees (apple, plum)	-56.6	-7.9	GIPR A,B,C,D
L04	dec	beech forest, sparse firs and oaks	-58.3	-8.1	GIPR A,B,C,D
L04	grass	grassland in the valley, next to beech forest	-58.0	-8.1	GIPR A,B,C,D
L05	dec	oak forest, sparse beeches, elms and pines	-55.7	-7.8	GIPR A,B,C,D
L06	dec	beech forest, steep hillside	-64.5	-9.2	GIPR A,B,C,D
L06-1	con1	sparse pine forest with grass layer	-64.5	-9.2	GIPR A,B,C,D
L06-2	con2	sparse larch forest with grass layer	-64.5	-9.2	GIPR A,B,C,D
L07	dec	beeches, acers, elms, oaks	-52.8	-7.4	GIPR A,B,C,D
L07	grass	heath	-54.4	-7.7	GIPR A,B,C,D
L08	con	luxuriant spruce forest	-62.0	-9.2	GIPR A,B,C,D
L08	dec	young beech forest at hillside, close to spruce stand	-62.0	-9.2	GIPR A,B,C,D
L08	grass	heath, small shrubs, close to spruce stand, initially cleared	-62.0	-9.2	GIPR A,B,C,D
L09	dec	birch forest with small oaks, sparse poplars, surrounded by farmland	-56.1	-7.8	GIPR A,B,C,D
L09	grass	next to farm track	-56.2	-7.8	GIPR A,B,C,D
L10	dec	beech-oak-forest	-52.3	-7.5	GIPR A,B,C,D
L11	con	spruce forest with larches	-56.0	-7.9	GIPR A,B,C,D
L11	grass	cow pasture, sparse oaks	-56.0	-7.9	GIPR A,B,C,D
L12	dec	acer forest with poplars, ashes and elder	-61.0	-8.7	OIPC E,F,G
L13	con	fir forest with swampy underground	-67.0	-9.5	OIPC E,F,G
L13	dec	beech forest with sparse acers, birches, loamy underground	-67.0	-9.5	OIPC E,F,G
L14	con	spruce-pine forest with moss layer	-71.0	-10.1	OIPC E,F,G
L15	con	spruce forest, sparse birches, used as cattle run	-76.0	-10.7	OIPC E,F,G
L15-1	dec1	acers, oaks, beeches, sparse firs, on partly pebbly, partly humus-rich floor	-76.0	-10.7	OIPC E,F,G
L15-2	dec2	birch- and oak-belt at spruce forest edge, grass layer, also used as cattle run	-76.0	-10.7	OIPC E,F,G
L16	dec	oak forest, sparse birches and larches	-73.0	-10.4	OIPC E,F,G

^aStumpf, C., Klaus, J., Stichler, W., 2014. Analysis of long-term stable isotope composition in German precipitation. *Journal of Hydrology* 517, 351–361.

^bIAEA/WMO, 2018. Global Network of Isotopes in Precipitation. The GNIP Database, <https://nucleus.iaea.org/wiser>.

^cvan Geldern, R., Bäuerl, A., Subert, H.L., Kowol, S., Balk, L., Barth, J.A.C., 2014. (Table S1) Stable isotope composition of precipitation sampled at Erlangen, Germany between 2010 and 2013 for station GeoZentrum located at Erlangen city center, in: In Supplement to: Van Geldern, R et Al (2014): Pleistocene Paleo-Groundwater as a Pristine Fresh Water Resource in Southern Germany – Evidence from Stable and Radiogenic Isotopes. *Science of the Total Environment*, 496, 107-115, <https://doi.org/10.1016/j.pangaea>.

^dUmweltbundesamt GmbH, 2018. Erhebung der Wassergeräte in Österreich gemäß Wasserrechtsgesetz, BGBl. I Nr. 123/06, i.d.g. F.; BMELVW, Sektion IV / Abteilung 3 N. Öffentliche Qualitätsdaten-Abfrage.

^eBowen, G.J., 2018. The Online Isotopes in Precipitation Calculator, version 3.1. <http://www.waterisotopes.org>.

^fIAEA/WMO, 2015. Global Network of Isotopes in Precipitation. The GNIP Database, <https://nucleus.iaea.org/wiser>.

^gBowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. *Water Resources Research* 39, 1–13.

50 **Tab. S2.** Climate station data.

Location	Vegetation	Station ID	Name	Latitude (decimal °)	Longitude (decimal °)	Altitude (m)	Observation begin (YYYYMMDD)	Observation end (YYYYMMDD)	T _{MA} (°C)	T _{AV} (°C)	Observation begin (YYYYMMDD)	Observation end (YYYYMMDD)	T _{NOV} (°C)	Station ID	Name	Latitude (decimal °)
L01	con	3730	Oberstdorf	47.40	10.28	806	19480101	20171231	6.5 ^a	11.5 ^a	n.n.	n.n.	14.2 ^a n.n.	n.n.	n.n.	n.n.
L01	dec	3730	Oberstdorf	47.40	10.28	806	19480101	20171231	6.5 ^a	11.5 ^a	n.n.	n.n.	14.2 ^a n.n.	n.n.	n.n.	n.n.
L02	con	2290	Hoherpeissenberg	47.80	11.01	977	19470101	20171231	7.0 ^a	11.4 ^a	n.n.	n.n.	12.7 ^a n.n.	n.n.	n.n.	n.n.
L03	dec	2522	Karlsruhe	49.04	8.36	112	19480101	20081102	10.5 ^a	15.3 ^a	n.n.	n.n.	17.8 ^a n.n.	n.n.	n.n.	n.n.
L03	grass	2522	Karlsruhe	49.04	8.36	112	19480101	20081102	10.5 ^a	15.3 ^a	n.n.	n.n.	17.8 ^a n.n.	n.n.	n.n.	n.n.
L04	dec	3761	Öhringen	49.21	9.52	276	1950101	20171231	9.6 ^a	14.4 ^a	n.n.	n.n.	16.8 ^a n.n.	n.n.	n.n.	n.n.
L04	grass	3761	Öhringen	49.21	9.52	276	1950101	20171231	9.6 ^a	14.4 ^a	n.n.	n.n.	16.8 ^a n.n.	n.n.	n.n.	n.n.
L05	dec	5906	Mannheim	49.51	8.56	98	19480101	20171231	10.6 ^a	15.4 ^a	n.n.	n.n.	17.9 ^a n.n.	n.n.	n.n.	n.n.
L06	dec	3331	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^a	12.7 ^a	n.n.	n.n.	14.7 ^a n.n.	n.n.	n.n.	n.n.
L06-1	con1	3331	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^a	12.7 ^a	n.n.	n.n.	14.7 ^a n.n.	n.n.	n.n.	n.n.
L06-2	con2	3231	Meiningen	50.56	10.38	450	19790101	20171231	7.8 ^a	12.7 ^a	n.n.	n.n.	14.7 ^a n.n.	n.n.	n.n.	n.n.
L07	dec	2667	Köln-Bonn	50.86	7.16	92	19600101	20171231	10.1 ^a	14.4 ^a	n.n.	n.n.	16.7 ^a n.n.	n.n.	n.n.	n.n.
L07	grass	2667	Köln-Bonn	50.86	7.16	92	19600101	20171231	10.1 ^a	14.4 ^a	n.n.	n.n.	16.7 ^a n.n.	n.n.	n.n.	n.n.
L08	con	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^a	9.6 ^a	n.n.	n.n.	10.9 ^a n.n.	n.n.	n.n.	n.n.
L08	dec	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^a	9.6 ^a	n.n.	n.n.	10.9 ^a n.n.	n.n.	n.n.	n.n.
L08	grass	2483	Kahler Asten	51.18	8.49	839	19510101	20171231	5.3 ^a	9.6 ^a	n.n.	n.n.	10.9 ^a n.n.	n.n.	n.n.	n.n.
L09	dec	2014	Hannover	52.46	9.68	55	19490101	20171231	9.2 ^a	13.7 ^a	n.n.	n.n.	15.9 ^a n.n.	n.n.	n.n.	n.n.
L09	grass	2014	Hannover	52.46	9.68	55	19490101	20171231	9.2 ^a	13.7 ^a	n.n.	n.n.	15.9 ^a n.n.	n.n.	n.n.	n.n.
L10	dec	691	Bremen	53.05	8.80	4	19490101	20171231	9.2 ^a	13.6 ^a	n.n.	n.n.	15.7 ^a n.n.	n.n.	n.n.	n.n.
L11	con	4466	Schleswig	54.53	9.55	43	19510101	20171231	8.4 ^a	12.6 ^a	n.n.	n.n.	14.4 ^a n.n.	n.n.	n.n.	n.n.
L11	grass	4466	Schleswig	54.53	9.55	43	19510101	20171231	8.4 ^a	12.6 ^a	n.n.	n.n.	14.4 ^a n.n.	n.n.	n.n.	n.n.
L12	dec	06120	Odense Lufthavn	55.48	10.33	15	19610101	20001231	8.3 ^c	12.5 ^c	n.n.	n.n.	n.a. n.n.	n.n.	n.n.	n.n.
L13	con	30110	Spodsbjerg	55.98	11.85	34	19610101	19601231	8.0 ^c	12.5 ^c	n.n.	n.n.	n.a. n.n.	n.n.	n.n.	n.n.
L13	dec	30110	Spodsbjerg	55.98	11.85	34	19610101	19601231	8.0 ^c	12.5 ^c	n.n.	n.n.	n.a. n.n.	n.n.	n.n.	n.n.
L14	con	74180	Hagstøll Mø	57.29	14.13	169	19430101	20180601	5.8 ^f	10.8 ^f	19490101	20180601	14.5 ^f n.n.	n.n.	n.n.	n.n.
L15	con	84580	Snævindlund	58.97	14.90	144/140	19440101	19303091	5.4 ^f	10.8 ^f	19941014	19830831	13.9 ^f 85460	Kettstaka A	58.72	
L15-1	dec1	84580	Snævindlund	58.97	14.90	144/140	19440101	19303091	5.4 ^f	10.8 ^f	19941014	19830831	13.9 ^f 85460	Kettstaka A	58.72	
L15-2	dec2	84580	Snævindlund	58.97	14.90	144/140	19440101	19303091	5.4 ^f	10.8 ^f	19941014	19830831	13.9 ^f 85460	Kettstaka A	58.72	
L16	dec	85330	Motala Kraftverk	58.55	15.08	94	19340101	19901228	6.4 ^f	11.6 ^f	19610101	19851024	14.9 ^f 84330	Karlshborg Mo	58.51	

n.n. = not needed/see information further left

n.a. = not available

^a DWD Climate Data Center, 2018a. Historical hourly station observations of 2m air temperature and humidity for Germany, version v006.

^b DWD Climate Data Center, 2018b. Historical annual precipitation observations for Germany, version v007.

^c Laursen, E.V., Thomsen, R.S., Cappelen, J., 1999. Observed Air Temperature, Humidity, Pressure, Cloud Cover and Weather in Denmark - with Climatological Standard Normals, 1961-90.

^d Cappelen, J., 2002. Danish Climatological Normals 1971-2000 - for selected stations.

^e Frich, P., Rosenvøn, S., Madsen, H., Jensen, J.J., 1997. Observed Precipitation in Denmark, 1961-90.

^f Swedish Meteorological and Hydrological Institute, 2018. SMHI Open Data Meteorological Observations, <https://opendata-download-metobs.smhi.se/explore/>.

51 **Tab. S2.** continuation...

Longitude (decimal °)	Altitude (m)	Observation begin (YYYYMMDD)	Observation end (YYYYMMDD)	RH _{MA} (%)	RH _{AV} (%)	Name	Latitude (decimal °)	Longitude (decimal °)	Altitude (m)	Observation begin (YYYYMMDD)	Observation end (YYYYMMDD)	P _{MA} (mm)	Source	
n.n.	n.n.	n.n.	n.n.	82 A	80 A	70 A	n.n.	n.n.	n.n.	n.n.	n.n.	1769 B	DWD	
n.n.	n.n.	n.n.	n.n.	82 A	80 A	70 A	n.n.	n.n.	n.n.	n.n.	n.n.	1769 B	DWD	
n.n.	n.n.	n.n.	n.n.	78 A	77 A	73 A	n.n.	n.n.	n.n.	n.n.	n.n.	1173 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	73 A	63 A	n.n.	n.n.	n.n.	n.n.	n.n.	758 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	73 A	63 A	n.n.	n.n.	n.n.	n.n.	n.n.	758 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	74 A	65 A	n.n.	n.n.	n.n.	n.n.	n.n.	816 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	74 A	65 A	n.n.	n.n.	n.n.	n.n.	n.n.	816 B	DWD	
n.n.	n.n.	n.n.	n.n.	75 A	71 A	61 A	n.n.	n.n.	n.n.	n.n.	n.n.	658 B	DWD	
n.n.	n.n.	n.n.	n.n.	79 A	75 A	67 A	n.n.	n.n.	n.n.	n.n.	n.n.	660 B	DWD	
n.n.	n.n.	n.n.	n.n.	79 A	75 A	67 A	n.n.	n.n.	n.n.	n.n.	n.n.	660 B	DWD	
n.n.	n.n.	n.n.	n.n.	79 A	75 A	67 A	n.n.	n.n.	n.n.	n.n.	n.n.	660 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	74 A	65 A	n.n.	n.n.	n.n.	n.n.	n.n.	809 B	DWD	
n.n.	n.n.	n.n.	n.n.	77 A	74 A	65 A	n.n.	n.n.	n.n.	n.n.	n.n.	809 B	DWD	
n.n.	n.n.	n.n.	n.n.	87 A	84 A	78 A	n.n.	n.n.	n.n.	n.n.	n.n.	1417 B	DWD	
n.n.	n.n.	n.n.	n.n.	87 A	84 A	78 A	n.n.	n.n.	n.n.	n.n.	n.n.	1417 B	DWD	
n.n.	n.n.	n.n.	n.n.	87 A	84 A	78 A	n.n.	n.n.	n.n.	n.n.	n.n.	1417 B	DWD	
n.n.	n.n.	n.n.	n.n.	80 A	76 A	68 A	n.n.	n.n.	n.n.	n.n.	n.n.	650 B	DWD	
n.n.	n.n.	n.n.	n.n.	80 A	76 A	68 A	n.n.	n.n.	n.n.	n.n.	n.n.	650 B	DWD	
n.n.	n.n.	n.n.	n.n.	80 A	77 A	69 A	n.n.	n.n.	n.n.	n.n.	n.n.	699 B	DWD	
n.n.	n.n.	n.n.	n.n.	83 A	80 A	72 A	n.n.	n.n.	n.n.	n.n.	n.n.	900 B	DWD	
n.n.	n.n.	n.n.	n.n.	83 A	80 A	72 A	n.n.	n.n.	n.n.	n.n.	n.n.	900 B	DWD	
n.n.	n.n.	19971231	19971231	81 C	76 C	63 C	n.n.	n.n.	n.n.	n.n.	n.n.	572 E	DMI	
n.n.	n.n.	199921231	199921231	84 C	80 C	74 C	n.n.	n.n.	n.n.	n.n.	n.n.	554 E	DMI	
n.n.	n.n.	199921231	199921231	84 C	80 C	74 C	n.n.	n.n.	n.n.	n.n.	n.n.	554 E	DMI	
n.n.	n.n.	20180601	20180601	86 F	79 F	68 F	n.n.	n.n.	n.n.	19430101	20180601	717 F	SMHI	
15.03	225	19950801	20180601	82 F	75 F	68 F	Snaylunda D	58.95/58.97/58.97	14.91/14.90/14.90	135/144/140	19440101	20150101	693 F	SMHI
15.03	225	19950801	20180601	82 F	75 F	68 F	Snaylunda D	58.95/58.97/58.97	14.91/14.90/14.90	135/144/140	19440101	20150101	693 F	SMHI
15.03	225	19950801	20180601	82 F	75 F	68 F	Snaylunda D	58.95/58.97/58.97	14.91/14.90/14.90	135/144/140	19440101	20150101	693 F	SMHI
14.51	95	20130101	20180601	83 F	78 F	71 F	Motala	58.56/58.55/58.55	15.02/15.01/15.08	95/95/94	19310101	20180501	557 F	SMHI

Tab. S3. GDGT data. Crenarcheol and brGDGTs in $\mu\text{g/g}$ dry weight.

Location	Vegetation	pH (H_2O)	Crenarcheol ^a (ng/g dry weight)	IIIa ^a (ng/g dry weight)	IIIb ^a (ng/g dry weight)	IIIc ^a (ng/g dry weight)	IIa ^a (ng/g dry weight)	IIb ^a (ng/g dry weight)	IIc ^a (ng/g dry weight)	IIa ^a (ng/g dry weight)	IIb ^a (ng/g dry weight)	IIc ^a (ng/g dry weight)	Ia ^a (ng/g dry weight)	Ib ^a (ng/g dry weight)	Ic ^a (ng/g dry weight)
L01	con	4.5	2	194	3	0	845	34	1	536	7	3	531	38	7
L01	dec	4.0	1	109	1	0	536	7	3	687	37	37	687	37	10
L02	con	6.5	38	128	9	1	329	81	4	160	86	30	1289	30	79
L03	dec	4.3	16	55	0	0	617	17	5	124	12	2	124	12	9
L03	grass	5.2	12	28	0	0	142	8	1	124	12	2	124	12	2
L04	dec	5.9	13	60	4	1	185	37	3	137	33	6	137	33	6
L04	grass	6.0	208	54	7	3	131	105	8	79	92	27	79	92	27
L05	dec	4.1	15	25	0	0	204	2	1	380	5	1	380	5	1
L06	dec	7.3	16	226	26	1	304	184	6	78	66	5	78	66	5
L06-1	con1	4.5	2	116	0	0	585	18	2	549	21	1	549	21	1
L06-2	con2	6.0	19	332	24	2	695	197	7	295	97	12	295	97	12
L07	dec	3.6	149	67	1	1	506	10	4	677	16	5	677	16	5
L07	grass	4.2	18	19	0	0	141	1	1	183	2	1	183	2	1
L08	con	3.3	29	213	0	0	2265	26	19	3287	32	13	3287	32	13
L08	dec	3.6	11	84	0	0	821	12	5	1450	21	8	1450	21	8
L08	grass	4.3	0	232	0	0	996	11	2	884	21	6	884	21	6
L09	dec	3.6	64	101	1	0	943	13	5	1513	19	8	1513	19	8
L09	grass	4.3	16	26	1	0	169	1	1	275	5	1	275	5	1
L10	dec	3.0	1084	157	33	4	463	68	17	816	23	8	816	23	8
L11	con	3.5	512	76	0	1	353	6	0	406	8	2	406	8	2
L11	grass	5.9	19	89	0	0	579	26	2	714	44	5	714	44	5
L12	dec	4.9	735	450	16	2	2219	418	36	1642	476	142	1642	476	142
L13	con	3.2	0	56	0	3	619	0	6	993	13	5	993	13	5
L13	dec	3.7	0	150	0	0	1422	28	16	3165	46	19	3165	46	19
L14	con	3.6	0	103	2	0	1180	5	9	2077	17	4	2077	17	4
L15	con	3.6	0	207	3	1	2866	48	26	5695	98	35	5695	98	35
L15-1	dec1	5.0	7	192	2	0	933	41	4	658	58	22	658	58	22
L15-2	dec2	4.1	5	210	1	0	1896	24	14	2541	41	13	2541	41	13
L16	dec	4.3	0	54	0	0	349	5	1	424	9	2	424	9	2

^a structures can be found in Fig. S5^b BIT index was calculated according to Hopmans, E.C., Weijers, I.W.H., Schefuß, E., Herfort, L., Simminger Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched^c MBT', CBT, reconstructed T_{MA} and pHCBT according to Peterse, F., van der Meer, J., Schouten, S., Weijers, I.W.H., Fierer, N., Jackson, R.B., Kim, J.H., Simminger Damsté, J.S., 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. *Geochimica et Cosmochimica Acta* 96, 215–229.

53 **Tab. S3.** continuation...

brGDGT concentration ($\mu\text{g/g}$ dry weight)	BIT	MBT	CBT	reconstructed T_{MA} ($^{\circ}\text{C}$)	pH_{CAT}
1.65	1.00	0.35	1.3	4.3	5.37
1.39	1.00	0.53	1.4	9.0	5.05
0.88	0.94	0.37	0.5	9.8	6.98
2.02	0.99	0.66	1.6	12.1	4.74
0.32	0.96	0.43	1.1	7.9	5.69
0.47	0.97	0.38	0.7	8.9	6.59
0.51	0.56	0.40	0.0	13.0	7.84
0.62	0.98	0.63	2.0	9.0	4.01
0.90	0.97	0.17	0.2	5.1	7.54
1.29	1.00	0.44	1.5	6.3	5.04
1.66	0.99	0.25	0.5	5.5	6.86
1.29	0.89	0.54	1.7	8.2	4.63
0.35	0.95	0.53	2.0	5.9	3.90
5.86	1.00	0.57	2.0	7.2	4.00
2.40	1.00	0.62	1.8	9.4	4.26
2.15	1.00	0.42	1.8	3.8	4.39
2.60	0.98	0.59	1.9	8.5	4.19
0.48	0.97	0.59	1.9	8.5	4.23
1.59	0.57	0.55	1.2	11.2	5.63
0.85	0.62	0.49	1.7	6.2	4.50
1.46	0.99	0.52	1.3	9.8	5.40
5.40	0.85	0.42	0.6	10.2	6.65
1.71	1.00	0.60	2.1	7.6	3.78
4.85	1.00	0.67	1.8	11.3	4.37
3.40	1.00	0.62	2.2	7.7	3.64
8.98	1.00	0.65	1.8	10.9	4.42
1.91	1.00	0.39	1.2	6.0	5.52
4.74	1.00	0.55	1.8	7.4	4.29
0.84	1.00	0.52	1.7	6.9	4.46

54 **Tab. S4.** Measured n -alkane $\delta^2\text{H}$ and sugar $\delta^{18}\text{O}$ data along with calculations and reconstruction
55 results.

Location	Vegetation	n -alkane $\delta^2\text{H}$ (‰)	sugar $\delta^{18}\text{O}$ (‰)	ϵ_n -alkane/precipitation (‰)	$\epsilon_{\text{sugar/precipitation}}$ (‰)	reconstructed $\delta^2\text{H}_{\text{source-water}}$ (‰)	reconstructed $\delta^{18}\text{O}_{\text{source-water}}$ (‰)	reconstructed RH_{MDV} (‰)
L01	con	-216.2	34.17	-149	45.5	-139	-18.7	34
L01	dec	-190.6	35.95	-121	47.3	-100	-13.8	42
L02	con	-169.4	32.95	-103	43.7	-49	-7.3	66
L02	dec	-176.8	34.54	-127	42.8	-67	-9.6	56
L03	grass	n.a.	29.96	n.a.	38.1	n.a.	n.a.	n.a.
L04	dec	n.a.	35.30	n.a.	43.7	n.a.	n.a.	n.a.
L04	grass	-208.6	30.80	-160	39.2	-110	-14.9	52
L05	dec	-169.6	32.95	-121	41.1	-47	-7.1	66
L06	dec	n.a.	34.30	n.a.	43.9	n.a.	n.a.	n.a.
L06-1	con1	-201.5	34.27	-146	43.9	-113	-15.3	42
L06-2	con2	-191.0	34.39	-135	44.0	-94	-13.0	48
L07	dec	-170.4	36.07	-124	43.8	-62	-9.0	54
L07	grass	n.a.	31.28	n.a.	39.2	n.a.	n.a.	n.a.
L08	con	-168.3	38.42	-113	48.1	-72	-10.2	45
L08	dec	-156.3	36.19	-101	45.8	-40	-6.2	61
L08	grass	-184.2	31.51	-130	41.1	-71	-10.1	63
L09	dec	-177.8	31.66	-129	39.8	-57	-8.4	66
L09	grass	-191.6	28.30	-144	36.4	-69	-9.8	71
L10	dec	-171.6	39.45	-126	47.3	-79	-11.1	40
L11	con	-183.6	33.56	-135	41.8	-77	-10.8	55
L11	grass	-194.1	27.67	-146	35.8	-71	-10.1	72
L11	dec	-177.4	37.30	-124	46.4	-83	-11.6	44
L12	con	-182.9	36.62	-124	46.6	-90	-12.5	44
L13	dec	-183.8	28.79	-125	38.7	-57	-8.4	74
L13	con	-190.3	36.85	-128	47.4	-103	-14.1	39
L14	con	-201.1	32.13	-135	43.3	-103	-14.1	51
L15	dec1	-201.6	33.41	-136	44.6	-110	-15.0	45
L15-1	dec2	-209.7	33.05	-145	44.2	-123	-16.6	42
L15-2	dec	-191.6	28.41	-128	39.2	-69	-9.9	71

n.a. = not available