

1 **Rapid environmental responses to climate-induced hydrographic changes in**
2 **the Baltic Sea entrance**

3 LAURIE M. CHARRIEAU¹, KARL LJUNG¹, FREDERIK SCHENK², UTE DAEWEL³, EMMA
4 KRITZBERG⁴ and HELENA L. FILIPSSON^{*1}

5 ¹Department of Geology, Lund University, Sweden

6 ²Bolin Centre for Climate Research and Department of Geological Sciences, Stockholm University, Sweden

7 ³Department of System Analysis and Modelling, Centre for Materials and Coastal Research, Geesthacht,
8 Germany

9 ⁴Department of Biology, Lund University, Sweden

10 *Corresponding author (address: Sölvegatan 12, SE-223 62; e-mail: helena.filipsson@geol.lu.se)

11 Key-words: benthic foraminifera; NAO index; environmental reconstruction; Anthropocene;
12 Öresund

13 Abstract

14 The Öresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea
15 and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large
16 gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen
17 concentration. In addition to the highly variable environmental conditions, the area is responding
18 to anthropogenic disturbances in e.g. nutrient loading, temperature, and pH. We have
19 reconstructed environmental changes in the Öresund during the last c. 200 years, and especially
20 dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using
21 benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal
22 assemblages were identified, each reflecting the environmental conditions for respective period.

23 The largest changes occurred around 1950, when the foraminiferal assemblage shifted from a
24 low diversity fauna, dominated by the species *Stainforthia fusiformis* to higher diversity and
25 abundance, and dominance of the *Elphidium* species. Concurrently, the grain-size distribution
26 shifted from clayey — to sandier sediment. To explore the causes for the environmental changes,
27 we used time-series of reconstructed wind conditions coupled with large-scale climate variations
28 as recorded by the North Atlantic Oscillation (NAO) index, as well as the ECOSMO II model of
29 currents in the Öresund area. The results indicate increased changes in the water circulation
30 towards stronger currents in the area after the 1950's. The foraminiferal fauna responded quickly
31 (< 10 years) to the environmental changes. Notably, when the wind conditions, and thereby the
32 current system, returned in the 1980's to the previous pattern, the foraminiferal assemblage did
33 not rebound. Instead, the foraminiferal faunas displayed a new equilibrium state.

34 1 – Introduction

35 The Öresund (the Sound) is one part of the Danish straits between Sweden and Denmark.
36 Together with the Great — and Little Belt, they link the open-ocean waters of the North Sea and
37 the brackish waters of the Baltic Sea. The confluence of the water masses creates a north-south
38 gradient as well as a strong vertical stratification of the water in terms of salinity, carbonate
39 chemistry and dissolved oxygen concentration ($[O_2]$) (Leppäranta and Myrberg 2009). The depth
40 of the halocline mainly depends of the outflows from the Baltic Sea; a strong thermocline
41 develops during spring and summer, which further strengthens the vertical stratification. Thus,
42 the ecosystems in the Öresund are exposed — and adapted — to a unique transitional
43 environment. The region is also characterized by intense human activities, with 4 million people
44 living in the vicinity of the Öresund and 85 million people living in the catchment area of the
45 Baltic Sea (HELCOM, 2009). Discharge from agriculture, industry, and urban areas on both the

46 Swedish and Danish sides of the strait, and the considerable impact of marine traffic – the strait
47 is one of the busiest waterways in the world – generate pollution and eutrophication of the water
48 (HELCOM 2009; ICES 2010). Since the 1980's, the implementation of efficient wastewater
49 treatment and measures in agriculture contributed to markedly reduce the amount of nutrients
50 coming from river run-off (Nausch et al. 1999; Carstensen et al. 2006; Rydberg et al. 2006).
51 However, these efforts in decreasing nutrient loads have not resulted in improved water quality,
52 due to the long time scales of biogeochemical cycles to reach equilibrium in the Baltic Sea
53 region (Gustafsson et al. 2012). The Öresund, like most of the Baltic Sea, is still assessed to be
54 eutrophic, and hypoxic events are frequent (Rosenberg et al. 1996; Conley et al. 2007, 2011;
55 HELCOM 2009; Wesslander et al. 2016). Moreover, increasing temperatures and declining pH,
56 linked to global climate change and ocean acidification, have been reported for surface and
57 bottom waters in the area (Andersson et al. 2008; Göransson 2017). As a result, ecosystems in
58 the Öresund are currently under the combined impact of natural and anthropogenic stressors
59 (Henriksson 1969; Göransson et al. 2002; HELCOM 2009; ICES 2010). The multiple stressors
60 currently affecting the environment make this region particularly interesting to study, and also
61 highlight the need to obtain records of decadal and centennial environmental changes. As noted
62 above, both recent human-induced impacts and climate variability have been substantial in the
63 region. Therefore the question arises whether these factors have affected the benthic environment.
64 Furthermore, sediment records of past environmental changes can provide crucial context for
65 ongoing and future predicted changes in the Öresund and Baltic Sea regions.

66 We used the marine sediment record and its contents of foraminifera as well as sediment
67 geochemistry to obtain records of decadal environmental changes. Benthic foraminifera are
68 widely used for environmental reconstructions, based on their rapid response to environmental

69 changes, broad distribution, high densities, and often well-preserved tests (shells) in the sediment
70 (e.g. Sen Gupta 1999b; Murray 2006). For instance, distribution of benthic foraminifera have
71 been used for historical environmental reconstructions of fjords on decadal to centennial
72 timescales on the Swedish west coast (Nordberg et al. 2000; Filipsson and Nordberg 2004a,
73 2004b; Polovodova Asteman and Nordberg 2013; Polovodova Asteman et al. 2015), and in the
74 Kattegat (Seidenkrantz 1993; Christiansen et al. 1996). In the Öresund, living foraminiferal
75 assemblages have been studied (Hansen 1965; Charrieau et al. 2018), but to the best of our
76 knowledge, no studies of past foraminiferal assemblages have been performed. The objective of
77 this study was to reconstruct the environmental conditions of benthic systems during the last two
78 centuries in the Öresund, by using foraminiferal fauna analysis in combination with sediment
79 geochemistry and grain-size. Furthermore, we analyzed long time series of wind conditions in
80 the area to evaluate the coupling between local changes in ecosystem variables and variations in
81 atmospheric and subsequent hydrographic conditions, and a possible link with large-scale
82 variations expressed through the North Atlantic Oscillation (NAO) index. Finally, we compared
83 our data with the model ECOSMO II (Daewel and Schrum 2013; 2017) of currents and water
84 circulation changes in the Öresund area during the period 1948–2013.

85 2 – Study site

86 The Öresund is a 118 km long narrow strait (Figure 1). The water depth in the northern part is on
87 average 24 m but it reaches 53 m south of the Island of Ven. The Öresund is an important link
88 between the North Sea, Skagerrak, Kattegat and the Baltic Sea (Figure 1), and up to 30 % of the
89 water exchange in the region goes through the Öresund (Sayin and Krauß 1996; Leppäranta and
90 Myrberg 2009). The remaining part goes through the Great and Little Belt. The width of the
91 Öresund varies between 4 and 28 km, and the water has overall high current velocities, up to 1.5

92 m.s⁻¹ at the upper water layer in the northern part (Nielsen 2001). The fully marine Skagerrak
93 consists of water masses from the North Sea and the North Atlantic and in general a thin surface
94 layer with water originating from the Baltic Sea and rivers draining into the sea; the water
95 circulation forms a cyclonic gyre (cf. Erbs-Hansen et al. 2012). Part of the Skagerrak waters
96 reach the Kattegat and the Baltic Sea, where they are successively diluted with the large amounts
97 of freshwater (around 15,000 m³/s, Bergström and Carlsson 1994) draining into the Baltic Sea
98 from numerous large rivers. The low-saline Baltic Sea surface water is transported by the Baltic
99 Current, which is typically confined along the Swedish west coast in the Kattegat but may cover
100 a larger surface area towards the west, depending on wind direction. The Baltic Current later
101 joins the Norwegian Coastal Current in the Skagerrak (Figure 1). The large fresh water input and
102 the subsequent large salinity difference between the Kattegat and Baltic Sea result in a two-layer
103 structure in the Öresund (Figure 2) (She et al. 2007; Leppäranta and Myrberg 2009). The water
104 stratification is influenced by the surface water from Arkona Basin (salinity 7.5—8.5), the
105 surface water from the Kattegat upper layer (salinity 18—26) and the lower layer of the Kattegat
106 (salinity 32—34).

107 Salinity, temperature, pH, [O₂] and nutrient content, here represented by dissolved inorganic
108 nitrogen concentration [DIN] (nitrate + nitrite + ammonium), in the surface and bottom waters of
109 the Öresund vary seasonally (Figure 3, Appendix A). At the surface and bottom water, salinity
110 ranges between ~8 and ~18 and between ~29 and ~34, respectively, and it is more stable between
111 April and July, when the stratification is the strongest (Figure 3). Temperature ranges between
112 ~1 °C in February and ~19 °C in July in the surface water, while in the bottom water, the lowest
113 temperature is found in March—April with ~5° C, and the highest temperature in October—
114 November with ~13 °C. The pH varies between ~8.1 and ~8.6 in the surface water, and between

115 ~7.8 and ~8.6 in the bottom water, without a clear seasonal pattern (Figure 3). $[O_2]$ in the bottom
116 water reaches $\sim 7 \text{ mL.L}^{-1}$ in January, and it is typically below 2 mL.L^{-1} in October, approaching
117 hypoxic values. In the surface water, $[\text{DIN}]$ can reach $\sim 7 \text{ } \mu\text{mol.L}^{-1}$ in January, and it is ~ 0
118 $\mu\text{mol.L}^{-1}$ between April and August (Figure 3).

119 3 – Materials and Methods

120 3.1 Sampling

121 A suite of sediment cores, as well as water samples from the water column, were collected in
122 November 2013 during a cruise with r/v *Skagerak*. Here we present the data from two sediment
123 cores sampled at the Öresund station DV-1 ($55^{\circ}55.59' \text{ N}$, $12^{\circ}42.66' \text{ E}$) (Figure 1), north of the
124 Island of Ven. The water depth was 45 m, and CTD (Conductivity, Temperature, Depth) casts
125 were taken to measure salinity, temperature and $[O_2]$ in the water column. Water samples were
126 collected at 10, 15, 20, 30 and 43 m from the Niskin bottles for carbonate chemistry analyses.
127 The CTD and carbonate chemistry data are presented in Charrieau et al. (2018). In general, it is
128 challenging to obtain sediment cores in the Öresund, due to the high current velocities up to 1.5
129 m.s^{-1} (Nielsen 2001), human-induced disturbances, and limited areas of recent sediment
130 deposition (Lumborg 2005), but our site north of Ven represents an accumulation area. The cores
131 (9-cm-inner-diameter) were collected using a GEMAX twin barrel corer. The corer allowed
132 sampling of 30 and 36 cm long sediment cores (referred in this study as core DV1-G and DV1-I,
133 respectively), which were sliced into one centimeter sections. The samples from the DV1-G core
134 were analyzed for carbon and nitrogen content, grain size distribution, and dated using Gamma
135 spectroscopy. The samples from the DV1-I core were analyzed with respect to foraminiferal
136 fauna and carbon and nitrogen content. The distinct carbon content profiles, measured on both

137 cores, were used to correlate the ^{210}Pb dated DV1-G core to the DV1-I core used for
138 foraminiferal analyses.

139 3.2 Chronology

140 The age-depth model was established using ^{210}Pb and ^{137}Cs techniques on samples from the
141 DV1-G core. The samples were measured with an ORTEC HPGe (High-Purity Germanium)
142 Gamma Detector at the Department of Geology at Lund University, Sweden. Corrections for
143 self-absorption were made for ^{210}Pb following Cutshall et al. (1983). The instruments were
144 calibrated against in-house standards and the maximum error was 0.5 year in the measurements.
145 Excess (unsupported) ^{210}Pb was measured down to 23 cm and the age model was calculated
146 based on the Constant Rate of ^{210}Pb Supply (CRS) model (Appleby 2001).

147 3.3 Foraminifera analyses

148 Approximately 10 g of freeze-dried sediment per sample were wet sieved thought a 63- μm mesh
149 screen and dried on filter paper at room temperature. Subsequently, the samples were dried
150 sieved through 100- and 500- μm mesh screens and separated into the fractions 100-500 μm and
151 $>500\text{ }\mu\text{m}$. The foraminifera from every second centimeter of the core - plus from additional
152 centimeters around key zones - were picked and sorted under a Nikon microscope (22 samples in
153 total). A minimum of 300 specimens per sample were picked and identified, as recommended by
154 Patterson and Fishbein (1989). If necessary the samples were split with an Otto splitter (Otto
155 1933). For taxonomy at the genus level, we mainly followed Loeblich and Tappan (1964) with
156 some updates from more recent literature, e.g. Tappan and Loeblich (1988). For taxonomy at the
157 species level, we mainly used Feyling-Hanssen (1964), Feyling-Hanssen et al. (1971) and

158 Murray and Alve (2011). For original descriptions of the species, see Ellis and Messina (1940
159 and supplements up to 2013).

160 Recently, the eastern Pacific morphospecies *Nonionella stella* has been presented as an invasive
161 species in the Skagerrak-Kattegat region (Polovodova Asteman and Schönfeld 2015). However,
162 a comparison of *N. stella* DNA sequences from the Santa Barbara Basin (USA) (Bernhard et al.
163 1997) with the Swedish west coast specimens demonstrates that they represent two closely
164 related species but are not conspecific (Deldicq et al. in press). Therefore, we have referred to the
165 species found here as *Nonionella* sp. T1, following Deldicq et al. (2019). The species
166 *Verneuilina media* (here referred to the genus *Eggerelloides*), which has often been reported in
167 previous studies from the Skagerrak-Kattegat area (e.g. Conradsen et al. 1994), was
168 morphologically close to *Eggerelloides scabrus* in the present material, and these two species
169 have been grouped as *E. medius/scabrus*. The taxon *Elphidium excavatum* forma *clavata* (cf.
170 Feyling-Hanssen 1972), was referred to as *Elphidium clavatum* following Darling et al. (2016).
171 *Elphidium clavatum* and *Elphidium selseyense* (Heron-Allen and Earland) were morphologically
172 difficult to separate in this region, as transitional forms occur. The dominant species was *E.*
173 *clavatum*, but we acknowledge that a few individuals of *E. selseyense* could have been included
174 in the counts. The taxon *Ammonia beccarii* was referred to as *Ammonia batava*, following recent
175 molecular work done on the taxon *Ammonia* in the Kattegat region (Groeneveld et al. 2018; Bird
176 et al. 2019)

177 Foraminiferal density was calculated and normalized to the number of specimens per 50 cm³.
178 Data of densities for the first two centimeters of the core are from Charrieau et al. (2018). Some
179 specimens displayed decalcified tests, however the inner organic linings were preserved. These

180 inner organic linings were reported separately and not included in the total foraminiferal counts.

181 Benthic foraminiferal accumulation rates were calculated as follows:

182 $\text{BFAR} (\text{number of specimens.cm}^{-2}.\text{yr}^{-1}) = \text{BF} \times \text{SAR}$,

183 where BF is the number of benthic foraminifera per cm^3 and SAR is the sediment accumulation

184 rate ($\text{cm}.\text{yr}^{-1}$). Foraminiferal species that accounted for >5 % of the total fauna in at least one of

185 the samples were considered as major species, and their density was used in statistical analysis.

186 The Shannon index was calculated to describe the foraminiferal diversity. To determine

187 foraminiferal zones, stratigraphically constrained cluster analysis was performed, using the size-

188 independent Morisita's index to account for the large differences in the densities between

189 samples (e.g. Krebs 1998). A dendrogram was then constructed based on arithmetic averages

190 with the UPGMA method (Unweighted Pair Group Method with Arithmetic Mean).

191 Correspondence analysis was also performed, to determine significant foraminiferal species in

192 each zone. Statistical analyses were performed using the PAST software (Hammer et al. 2001).

193 3.4 Organic matter analyses

194 Total Organic Carbon (TOC) and Total Nitrogen (TN) content were measured for both DV1-G

195 and DV1-I. Approximately 8 mg of freeze-dried sediment was homogenized for each centimeter

196 and placed in silver capsules. Removal of inorganic carbon was carried out by in-situ

197 acidification (2M HCl) method based on Brodie et al. (2011). TOC and TN content were

198 analyzed on a Costech ECS 4010 Elemental Analyzer at the Department of Geology, Lund

199 University. The instrument was calibrated against in-house standards. The analytical precisions

200 showed a reproducibility of 0.2 % and 0.03 % for TOC and TN contents, respectively. The molar

201 C/N ratio was calculated.

202 3.5 Grain-size analyses

203 Grain-size analyses were performed on core DV1-G using 3.5 to 5 g of freeze-dried sediment for
204 each centimeter. Organic matter was removed by adding 15 mL of 30 % H₂O₂ and heating
205 during 3 to 4 minutes until the reaction ceased. After the samples had cooled down, 10 mL of
206 10 % HCl was added to remove carbonates; thereafter the sediment was washed with milli-Q
207 until its pH was neutral. In the last step, biogenic silica was removed by boiling the sediment in
208 100 mL 8 % NaOH, and then washed until neutral pH was reached. The sand fraction (>63 µm)
209 was separated by sieving and the mass fraction of sand of each sample was calculated. Grain
210 sizes <63 µm were analyzed by laser diffraction using a Sedigraph III Particle Size Analyzer at
211 the Department of Geology, Lund University. The data were categorized into three size groups,
212 <4 µm (clay), 4–63 µm (silt) and 63–2000 µm (sand).

213 3.6 Climate data and numerical modeling

214 Data from the dataset High Resolution Atmospheric Forcing Fields (HiResAFF) covering the
215 time period 1850–2008 (Schenk and Zorita 2012; Schenk 2015) were used to study the variations
216 of near-surface (10 m) wind conditions during the winter half of the year (October to March).
217 The daily dataset can be downloaded from WDC Climate (Schenk 2017). Wind conditions over
218 the Öresund are represented by the closest grid point of HiResAFF at 55° N and 12.5° E. The
219 North Atlantic Oscillation (NAO) index as defined by Jones et al. (1997) for boreal winter
220 (December to March) was used, with updates taken from the Climate Research Unit (CRU,
221 <https://crudata.uea.ac.uk/cru/data/nao/>). To allow comparison, the NAO and wind data were
222 normalized relative to the period 1850–2008. Changes in the currents through the Öresund and
223 the Kattegat were taken from the fully coupled physical biogeochemical model ECOSMO II

224 (Daewel and Schrum 2013, 2017), which was forced by NCEP/NCAR reanalysis data and covers
225 the period 1950–2013. On model ECOSMO II, the simulated South-North currents are
226 represented as VAV (vertically averaged V- component) and the simulated West-East currents as
227 UAV (vertically averaged U - component).

228 4 – Results

229 4.1 Age model

230 The unsupported ^{210}Pb showed a decreasing trend with depth in the DV1-G core (Figures 4A,
231 4B). The peak observed in the ^{137}Cs around 9 cm corresponds to the Chernobyl accident in 1986
232 (Figure 4C). The unsupported ^{210}Pb allowed direct dating of the core between 2013 and 1913.
233 The sedimentation rate ranged between 1 and 5.6 mm.y^{-1} , with an average of 2.2 mm.y^{-1} , and
234 was decreased with depth. The ages of the lower part of the sediment record were deduced by
235 linear extrapolation based on a sedimentation rate of 1.4 mm.y^{-1} , corresponding to the linear
236 mean sedimentation rate between the years 1913 and 1946 (Figure 4D).

237 4.2 Foraminiferal assemblages and sediment features

238 The foraminiferal assemblages were composed of 76 species from the porcelaneous, hyalines
239 and agglutinated forms (0.3, 54.5 and 45.2 %, respectively) (Appendix B). Eleven foraminiferal
240 species had relative abundance higher than 5 % in at least one sample and were considered as
241 major species (Plate 1, Figure 5).

242 The cluster analysis revealed three main foraminiferal zones (FOR-A, FOR-B, and FOR-C)
243 (Figures 5, 6). The correspondence analysis resulted in three factors explaining 92 % of the
244 variance, and in assemblages consisting in seven significant species, presented in order of

245 contribution: *Nonionella* sp. T1, *Nonionoides turgida*, *Ammonia batava*, *Stainforthia fusiformis*,
246 *Elphidium albiumbilicatum*, *E. clavatum* and *Elphidium magellanicum* (Table 1). Based both on
247 the cluster and the correspondence analyses, five subzones could be separated to which we
248 assigned dates according to the age model: FOR-A1 (1807–1870), FOR-A2 (1870–1953), FOR-
249 B1 (1953–1998), FOR-B2 (1998–2009), and FOR-C (2009–2013) (Figures 5, 6).

250 4.2.1 Zone FOR-A1 (1807–1870)

251 The foraminiferal accumulation rate (BFAR) was on average 5 ± 3 specimens.cm $^{-2}$.y $^{-1}$ in zone
252 FOR-A1 (Figure 5). The Shannon index was stable and low, around 1.77 ± 0.1 (Figure 5). The
253 agglutinated species *Eggerelloides medius/scabrus* and the hyaline species *Stainforthia*
254 *fusiformis* made major contributions to the assemblages (relative abundances up to 53 % and
255 34 %, respectively; Figure 5A). *Ammonia batava*, the three *Elphidium* species (*E.*
256 *albiumbilicatum*, *E. clavatum*, and *E. magellanicum*), *Nonionellina labradorica* and the
257 agglutinated species *Reophax subfusiformis* were also major species with abundances up to 7 %.
258 The TOC and C/N values on this period were stable and were on average 3.36 % and 8.8 %,
259 respectively (Figure 7). The clay size fraction dominated the sediment at the end of this period
260 with a mean value of 63 %, and the sand content was around 7 % (Figure 7).

261 4.2.2 Zone FOR-A2 (1870–1953)

262 The BFAR was on average 9 ± 5 specimens.cm $^{-2}$.y $^{-1}$ in zone FOR-A2 (Figure 5). The Shannon
263 index was stable and low, around 1.94 ± 0.15 (Figure 5). *Stainforthia fusiformis* dominated the
264 assemblage with relative abundances up to 56 % and BFAR up to 608 specimens.cm $^{-2}$.y $^{-1}$
265 (Figures 5A, 5B), which is the highest BFAR observed for this species along the core.
266 *Eggerelloides medius/scabrus* was still very abundant, up to 48 % (Figure 5A). *Ammonia batava*,

267 the three *Elphidium* species and *N. labradorica* were present but with lower abundances than in
268 the zone FOR-A1 (maximum 5 %). *Bulimina marginata* started to be more abundant with an
269 average relative abundance of 2 % in the zone. *Reophax subfusiformis* was still a part of the
270 assemblage and ranged between 1 and 8 %. The TOC and C/N values were stable and were on
271 average 3.5 % and 8.74 %, respectively (Figure 7). The clay size fraction dominated the
272 sediment during this period with a mean value of 63 %, and the sand content was around 6 %
273 (Figure 7).

274 4.2.3 Zone FOR-B1 (1953–1998)

275 The BFAR increased massively during the zone FOR-B1 with on average 54 ± 31 specimens.cm $^{-2} \cdot y^{-1}$
276 and with a peak at 93 specimens.cm $^{-2} \cdot y^{-1}$ around 1965 (Figure 5). It is lower during the
277 second part of the zone. The Shannon index was higher than in previous zones and it
278 progressively increased towards the top of the zone (Shannon index average 2.34 ± 0.3) (Figure
279 5). The highest BFAR along the core were observed for all the dominant species of the previous
280 zone FOR-A2, except for *S. fusiformis* (Figure 5B). The zone was then also characterized by a
281 drastic drop in the relative abundance of *S. fusiformis* from 31 to 2 % (Figure 5A).
282 *Eggerelloides medius/scabrus* gradually decreased in the zone, with relative abundances from
283 49 to 24 %. The highest relative abundance of *A. batava* for the entire record was in this zone but
284 it was slowly decreasing as well, from 10 to 3 %. The *Elphidium* species were more abundant
285 than in the FOR-A zones and their relative abundance was increasing, especially for *E. clavatum*
286 (increasing up to 23 %). *Bulimina marginata*, *N. labradorica* and *R. subfusiformis* had a relative
287 abundance between 2 and 6 %. A period of lower TOC values was observed during zone FOR-
288 B1 between 1953 and 1981, with an average of 2.38 % (Figure 7). On the same period, the sand
289 content showed a pronounced increase, with an average of 24 % (Figure 7).

290 4.2.4 Zone FOR-B2 (1998–2009)

291 In zone FOR-B2 the BFAR was still high, on average 55 ± 6 specimens.cm $^{-2} \cdot y^{-1}$ (Figure 5). The
292 Shannon index was high with an average of 2.8 ± 0.2 (Figure 5). The dominant species in the
293 zone were *E. clavatum* (up to 25 %) and *Eggerelloides medius/scabrus* (up to 15 %; Figure 5A).
294 The other two *Elphidium* species reached their highest relative abundances over the core (up to
295 6 %). *Nonionella* sp. T1, which had not occurred in the record until now, appeared in this zone
296 with a relative abundance of 1 %. *Nonionoides turgida*, which was present in very low
297 abundances along the core, had a mean abundance of 1 % in the zone (Figure 6A). *Stainforthia*
298 *fusiformis* was present with up to 9 % in relative abundance and a BFAR higher than in zone
299 FOR-B1 (up to 570 specimens.cm $^{-2} \cdot y^{-1}$). *Ammonia batava*, *B. marginata*, *N. labradorica*, and *R.*
300 *subfusiformis* were present and ranged between 2 and 8 %. The TOC values were increasing,
301 with on average 3.05 % (Figure 7). The sediment was dominated by the clay fraction that was
302 increasing (mean value of 58 %), and the sand content was around 17 % (Figure 7).

303 4.2.5 Zone FOR-C (2009–2013)

304 The BFAR was lower than in previous zones FOR-B1 and FOR-B2, with on average 21 ± 5
305 specimens.cm $^{-2} \cdot y^{-1}$ (Figure 5). The Shannon index was the highest during FOR-C (Shannon
306 index average 2.93 ± 0.07) (Figure 5). *Nonionella* sp. T1 was a dominant specie in the zone with
307 a strong increase in relative abundance (from 1 to 14 %) and in BFAR (from 61 to 137
308 specimens.cm $^{-2} \cdot y^{-1}$) (Figures 5A, 5B). *Elphidium clavatum* and *R. subfusiformis* were also
309 dominant species with abundances up to 13%. *Nonionoides turgida* had its highest relative
310 abundance and BFAR over the core during the zone, with up to 9 % and 342 specimens.cm $^{-2} \cdot y^{-1}$,
311 respectively (Figures 5A, 5B). *Eggerelloides medius/scabrus* had its lowest relative abundance

312 over the core (up to 9 %). *Bulimina marginata*, the other two *Elphidium* species, *N. labradorica*
313 and *S. fusiformis* were still present (between 1 and 6 %), while *Ammonia batava* was absent
314 during the zone. The TOC and C/N values were on average 3.71 % and 8.17 %, respectively
315 (Figure 7). The clay size fraction dominated the sediment with a mean value of 66 % and the
316 sand fraction was 7 % (Figure 7).

317 4.2.6 Inner organic linings

318 Decalcified specimens were few and ranged between 0 and 4 specimens.cm⁻².y⁻¹ with an average
319 of 1 specimen.cm⁻².y⁻¹ (Fig. 5). They were observed throughout the core and especially during
320 zone FOR-B2, and the morphology of the remaining inner organic linings allowed the
321 identification of the taxon *Ammonia* (Plate 1).

322 4.3 Simulated data from model ECOSMO II

323 The VAV (vertically averaged South-North current velocity) through the Öresund from the
324 model ECOSMO II showed a reversed pattern compared to the UAV (vertically averaged West-
325 East current velocity) through the Kattegat (Figure 8). Thus, higher VAV through the Öresund
326 translates to an increase in the East to West flow in the Kattegat (lower UAV), suggesting a
327 stronger outflow from the Baltic Sea. The VAV through the Öresund had the lowest values
328 around 1955 (Figure 8), followed by a shift to very high values, which dominated throughout
329 1960–70. A comparable period with increased outflow from the Baltic into the Kattegat re-
330 occurred during the period 1993–2000.

331 5 – Discussion

332 Our environmental interpretations of the foraminiferal assemblages were based on the ecological
333 characteristics of each major species (Table 2). Based on our environmental reconstructions, we
334 could infer environmental changes regarding [O₂], salinity, organic matter content, and pollution
335 levels. Furthermore, we linked local environmental changes to larger atmospheric and
336 hydrographic conditions.

337 5.1 1807 – 1870

338 All the major species found in this period are tolerant to low oxygen conditions, especially the
339 two main species: *S. fusiformis* and *E. medius/scabrus* (Table 2). *Stainforthia fusiformis* is an
340 opportunistic species used to hypoxic and potentially anoxic conditions (Alve 1994), and *E.*
341 *medius/scabrus* specimens have been found alive down to 10 cm in the sediment, where no
342 oxygen was available (Cesbron et al. 2016). *Stainforthia fusiformis* and *N. labradorica* are also
343 able to denitrify (Piña-Ochoa et al. 2010). The fact that species tolerant to low oxygen conditions
344 dominated, and the presence of species that have the capacity to denitrify, suggest that low
345 oxygen conditions were prevailing during this period. Furthermore, *S. fusiformis* prefers organic
346 rich substrate and clayey sediment, which was measured in our core during this time period
347 (Figure 7). The low species diversity, as indicated by the low Shannon index in this section of
348 the core, can sometimes be linked with low salinity (Sen Gupta 1999a). Most of the major
349 species found during this period, such as the *Elphidium* species, *R. subfusiformis* and *A. batava*
350 tolerate lower salinities, and are typical of brackish environments (Table 2). The low occurrence
351 of *B. marginata*, a typical marine species, also suggests a salinity lower than in the open ocean.
352 However, the salinity was probably not below ~30, which is the lower limit for *N. labradorica*
353 and *S. fusiformis*, which were present throughout the period (Figure 5, Table 2). In summary, this

354 period appears to have been characterized by low [O₂], high organic matter content, and salinity
355 around 30.

356 5.2 1870 – 1953

357 *Stainforthia fusiformis* was largely dominating the assemblage during this period, which may
358 suggest even lower oxygen conditions than during the previous period. This would also go along
359 with the low species diversity, which is sometimes linked to low salinity. In the Öresund, low
360 salinity can be caused by less influence of more saline marine waters from the Kattegat, and
361 changes in the water transport through the strait is a possible explanation for both lower salinity
362 and oxygen levels. However, the occurrence of the marine species *B. marginata* suggests that the
363 salinity was at least ~30 (Table 2). Low oxygen can also be associated with high organic matter
364 contents, since oxygen is consumed during remineralization of organic matter. However, the
365 TOC levels observed in our core in this zone were high, but not higher than in the previous zone
366 (Figure 7). At the time of the industrial revolution, the Öresund, as the Baltic Sea in general, was
367 used as a sewage recipient for a mixture of domestic and industrial wastes, industrial cooling
368 water and drainage water (Henriksson 1968), and the amount of marine traffic increased
369 considerably during this time period. Across the Baltic Sea, this notably caused increased
370 deposition of heavy metals (Borg and Jonsson 1996). This diverse type of pollution could have
371 modified the water properties, for example regarding the carbonate chemistry and pH. Indeed,
372 this zone is characterized by the presence of organic linings in the core (see also section 5.6).
373 Moreover, heavy metals, fuel ash (black carbon) and pesticides have been demonstrated to
374 generally have a negative effect on foraminiferal abundance and diversity (Yanko et al 1999;
375 Geslin et al. 2002). Pollution and low oxygen concentration could explain the low species BFAR
376 and diversity as well as the dissolution of tests during this period. Some species that were present,

377 i.e. the agglutinated species *E. medius/scabrus* and *R. subfusiformis*, are known to be tolerant to
378 various kind of pollution (Table 2).

379 5.3 1953 – 1998

380 The large increase in general BFAR from 1953 suggests either more favorable growth conditions
381 or significant deposition of transported specimens into the area. The coarser grain size observed
382 during this period indicates possible changes in the current system, which could affect both
383 growing conditions and transport of specimens (Figure 7). However, the dating of our core
384 showed continuous sediment accumulation without any interruption during this period (Figure 4).
385 Moreover, all the new dominating species were already present in the core, even if in lower
386 relative abundances (Figure 5A). This indicates that the BFAR increase is most likely not due to
387 specimens transport, but rather as a result of a change in substrate and environmental conditions
388 that became favorable for a different foraminiferal assemblage. The higher foraminiferal
389 diversity compared to previous periods and the decrease in the relative abundance of *S.*
390 *fusiformis* may indicate more oxic conditions. *Elphidium clavatum* has been found in coarse
391 sediment in the area (Bergsten et al. 1996), and other species that tolerate sandy environments
392 and varying TOC dominated the assemblage, such as *A. batava*, the other species in the
393 *Elphidium* species, *B. marginata*, and *E. medius/scabrus*. Furthermore, anthropogenic activities
394 such as agricultural practices were intensified during this period until the 1980s, which resulted
395 in increased nutrient loads and resulting eutrophication (i.e. Rydberg et al. 2006). The increase in
396 organic matter may have been beneficial for foraminifera as food source. Food webs and species
397 interaction like intra and inter competition might also have been modified, giving the advantage
398 to some species such as the *Elphidium* species to develop in these new environmental conditions.

399 The temporal coincidence with the shifts seen in the sediment record and the anomalous wind
400 conditions suggests a notable change of the currents through the Öresund (Figures 8, 9). The
401 simulated currents through the Öresund confirm such an abrupt change characterized by a shift
402 from very limited outflow from the Baltic to the Kattegat before ~1960 to more than a decade of
403 high relative outflow (high VAV) from the Öresund to the Kattegat and high current velocities
404 (Figure 8). While the simulation only covers the period after 1950, the analysis of wind
405 conditions and the NAO index suggest that the anomalies in the current and sediment pattern
406 from ~mid 1950's might have been unprecedented since at least the middle of the 19th century
407 (Figure 9). The shift in local sediment properties and the shift to higher BFAR and species
408 diversity suggest a combination of anomalous currents during a period of unusually negative
409 NAO index and the abrupt first advection of anthropogenic eutrophication from the Baltic Sea
410 towards the Kattegat. Consistent with our findings, long-term variations in Large Volume
411 Changes in the Baltic Sea (LVC, Lehmann and Post 2015; Lehmann et al. 2017), which are
412 calculated from >29 cm (~100 km³) daily sea-level changes at Landsort (58.74° N; 17.87° E) for
413 1887–2015, show an unusual cluster of both, more frequent and also larger LVCs during the
414 1970's to 1980's relative to the entire time period. Notably, this period coincides with the most
415 dramatic shift in foraminiferal BFAR and species diversity as well as an increase in sand content.
416 The period before the “regime shift” of the 1950's to 1960's is dominated by very infrequent and
417 few large LVC events. After the shift, the 1990's show also very few or partly no LVC events
418 with generally record-low Major Baltic Inflow events.

419 Thus, during this period, the ecosystems were affected both by climatic effects through
420 sedimentation changes, and human impact. At the end of the period, after ~1980, the general
421 BFAR was lower during a short time (Figures 5, 9). This could be linked to the measures that

422 were taken in agriculture and water treatments in order to reduce the nutrients discharge
423 (Carstensen et al. 2006; Conley et al. 2007), which could have reduced the food input.
424 Interestingly, when the sedimentation pattern changes again and the sand content decreases
425 markedly (Figure 7), the new species in the foraminiferal fauna do not return to previous relative
426 abundances as one could have expected (Figure 5A). This suggests that once the foraminiferal
427 fauna was established in the Öresund area after the ~1953 shift, it created a new state of
428 equilibrium.

429 5.4 1998 – 2009

430 The foraminiferal assemblage in this zone was similar to the previous one, with high BFAR, high
431 diversity, and the *Elphidium* species as dominating species. This period is, however,
432 characterized by the appearance of two new major species: *N. turgida* and *Nonionella* sp. T1.
433 *Nonionella* sp. T1 is suggested to be an invasive species in the region which arrived by ship
434 ballast tanks around 1985, and rapidly expanded to the Kattegat and Öresund (Polovodova
435 Asteman and Schönfeld 2015). According to our dated core, the species arrived in the Öresund
436 ~2000 CE (Figure 5). The species is also present on the south coast of Norway since ~2009
437 (Deldicq et al. 2019), but additional genetic analyses are necessary to have a better overview of
438 the species' origin and expansion. *Nonionoides turgida* is an opportunistic species that prefers
439 high levels of organic matter in the sediment, as observed in our core during this period (Figure
440 7). The increase in the *S. fusiformis* BFAR suggest lower [O₂] than in the previous zone, which
441 was indeed a general trend in the Danish waters during this time period (Conley et al. 2007). The
442 salinity was probably marine during this period, as suggested by the high occurrence of the
443 marine species *B. marginata* (Figure 5). This period was then characterized by low [O₂], high
444 organic matter content, and open ocean salinity.

445 5.5 2009 – 2013

446 The ability of *Nonionella* sp. T1 to denitrify and its tolerance to varying environment may
447 explain its rapid increase during this period. The increase of *N. turgida* also suggests higher
448 levels of organic matter in the sediment. The dominance of these two species and the lower
449 BFAR compared to previous periods suggest low oxygen levels. This period is thus characterized
450 by low [O₂], high organic matter content, and open ocean salinity.

451 5.6 Dissolution

452 The inner organic linings of the taxon *Ammonia* were observed (in low numbers, < 5 units) along
453 the whole core, except in the top two centimeters (Figure 5). Inner organic linings of the taxa
454 *Ammonia* and/or *Elphidium* were noticed in previous studies among dead fauna in the region
455 (Jarke 1961; Hermelin 1987: Baltic Sea; Christiansen et al. 1996; Murray and Alve 1999;
456 Kattegat and Skagerrak; Filipsson and Nordberg 2004b: Koljö Fjord). Dissolution of calcareous
457 foraminiferal tests has been considered as a taphonomic process, affecting the test of the
458 specimens after their death (Martin 1999; Berkeley et al. 2007). However, living decalcified
459 foraminifera have been observed in their natural environment in the south Baltic Sea (Charrieau
460 et al. 2018) and the Arcachon Bay, France (Cesbron et al. 2016) and, proving that test dissolution
461 can also occur while the specimens live. In any case, low pH and low calcium carbonate
462 saturation are suggested as involved in the observed dissolution (Jarke 1961; Christiansen et al.
463 1996; Murray and Alve 1999; Cesbron et al. 2016; Charrieau et al. 2018). Test dissolution may
464 occur in all calcitic species, but only the organic linings of *Ammonia* were found in our study,
465 probably because these were more robust to physical stress such as abrasion.

466 6 – Conclusion

467 In this study, we described an environmental record from the Öresund, based on benthic
468 foraminifera – and geochemical data and we link the results with reconstructed wind data, NAO
469 index and currents from a hydrodynamic model. Five foraminiferal zones were differentiated and
470 associated with environmental changes in terms of salinity, $[O_2]$, and organic matter content. The
471 main event is a major shift in the foraminiferal assemblage ~1950, when the BFAR massively
472 increased and *S. fusiformis* stopped dominating the assemblage. This period also corresponds to
473 an increase in grain-size, resulting in a higher sand content. The grain-size distribution suggests
474 changes in the current velocities which are confirmed by simulated current velocity through the
475 Öresund. Human activities through increased eutrophication also influenced the foraminiferal
476 fauna changes during this period. Organic linings of *Ammonia* were observed throughout the
477 core, probably linked to low pH and calcium carbonate saturation, affecting test preservation.

478 The long-term reconstruction of sediment – and ecosystem parameters since ~1807 suggests that
479 the onset of increased anthropogenic eutrophication of the eastern Kattegat started with an abrupt
480 shift ~1960 during a period of strongly negative NAO index. With unusually calm wind
481 conditions during the winter half and increased easterly winds, the conditions were ideal for
482 larger Baltic outflow events which is a prerequisite for more frequent and stronger major Baltic
483 inflow events (Lehmann et al. 2017), as calculated from LVC events during this period. Our
484 high-resolution sediment record points towards the importance of considering also large Baltic
485 outflow events for the Kattegat environment. Since the Baltic Sea is much more eutrophic, less
486 oxygenated and less saline, large outflow events may have a significant impact also on the
487 Kattegat ecosystem. Periods with a negative NAO or conditions with intense atmospheric
488 blocking over Scandinavia like in 2018 may also increase the influence of Baltic Sea's
489 environmental problems into the Kattegat region.

490 Acknowledgments

491 We would like to thank the captain and the crew of the r/v *Skagerak*. We acknowledge Git
492 Klintvik Ahlberg for the assistance in the laboratory, Yasmin Bokhari Friberg and Åsa Wallin
493 for the help with the grain-size analysis, and Guillaume Fontorbe for help with the age model.
494 The hydrographic data used in the projected is collected from SMHI's data base SHARK. The
495 SHARK data collection is organized by the environmental monitoring program and funded by
496 the Swedish Environmental Protection Agency. The study was financially supported by the
497 Swedish Research Council FORMAS (grants 2012-2140 and 217-2010-126), the Royal
498 Physiographic Society in Lund and Oscar and Lili Lamm's Foundation.

499 Supplementary data

500 Appendix A, with time series of salinity, temperature and dissolved oxygen concentration at the
501 bottom water of the Öresund, and Appendix B, with total foraminiferal faunas normalized to 50
502 cm³ along the DV core, are available in the online version of the article.

503 References

504 Alve, E. « Opportunistic Features of the Foraminifer *Stainforthia fusiformis* (Williamson): Evidence from
505 Frierfjord, Norway ». *Journal of Micropalaeontology* 13 (1): 24-24.
506 <https://doi.org/10.1144/jm.13.1.24>. 1994.

507 Andersson, P., B. Håkansson, J. Håkansson, and E. Sahlsten. « SMHI Report: Marine Acidification - On
508 Effects and Monitoring of Marine Acidification in the Seas Surrounding Sweden ». Report
509 Oceanography No 92. 2008.

510 Appleby, P. G. « Chronostratigraphic techniques in recent sediments ». In *Tracking Environmental
511 Change Using Lake Sediments*, Last W. M. and Smol J. P. Vol. 1. Springer Netherlands.
512 <http://www.springer.com/gp/book/9780792364825>. 2001.

513 Bergsten, H., K. Nordberg, and B. Malmgren. « Recent benthic foraminifera as tracers of water masses
514 along a transect in the Skagerrak, North-Eastern North Sea ». *Journal of Sea Research* 35 (1-3):
515 111-21. [https://doi.org/10.1016/S1385-1101\(96\)90740-6](https://doi.org/10.1016/S1385-1101(96)90740-6). 1996.

516 Bergström, S., and B. Carlsson. « River runoff to the Baltic Sea - 1950-1990 ». *Ambio* 23 (4-5): 280-87.
517 1994.

518 Berkeley, A., C. T. Perry, S. G. Smithers, B. P. Horton, and K. G. Taylor. « A review of the ecological
 519 and taphonomic controls on foraminiferal assemblage development in intertidal environments ». *Earth-Science Reviews* 83 (3): 205-30. <https://doi.org/10.1016/j.earscirev.2007.04.003>. 2007.

520 Bernhard, J. M., B. K. Sen Gupta, and P. F. Borne. « Benthic foraminiferal proxy to estimate dysoxic
 521 bottom-water oxygen concentrations; Santa Barbara Basin, U.S. Pacific continental margin ». *Journal of Foraminiferal Research* 27 (4): 301-10. <https://doi.org/10.2113/gsjfr.27.4.301>. 1997.

522 Bird, C., M. Schweizer, A. Roberts, W. E. N. Austin, K. L. Knudsen, K. M. Evans, H. L. Filipsson, M. D.
 523 J. Sayer, E. Geslin, and K. F. Darling. « The genetic diversity, morphology, biogeography, and
 524 taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic ». *Marine Micropaleontology*. <https://doi.org/10.1016/j.marmicro.2019.02.001>. 2019.

525 Borg, H., and P. Jonsson. « Large-scale metal distribution in Baltic Sea sediments ». *Marine Pollution
 526 Bulletin* 32 (1): 8-21. [https://doi.org/10.1016/0025-326X\(95\)00103-T](https://doi.org/10.1016/0025-326X(95)00103-T). 1996.

527 Brodie, C.R., M.J. Leng, J.S. L. Casford, C.P. Kendrick, J.M. Lloyd, Z. Yongqiang, and M.I. Bird.
 528 « Evidence for bias in C and N concentrations and $\delta^{13}\text{C}$ composition of terrestrial and aquatic
 529 organic materials due to pre-analysis acid preparation methods ». *Chemical Geology* 282 (3-4):
 530 67-83. <https://doi.org/10.1016/j.chemgeo.2011.01.007>. 2011.

531 Carstensen, J., D. J. Conley, J. H. Andersen, and G. Ærtebjerg. « Coastal eutrophication and trend
 532 reversal: A Danish case study ». *Limnology and Oceanography* 51 (1, part 2): 398-408. 2006.

533 Cesbron, F., E. Geslin, F. J. Jorissen, M. L. Delgard, L. Charrieau, B. Deflandre, D. Jézéquel, P. Anschutz,
 534 and E. Metzger. « Vertical distribution and respiration rates of benthic foraminifera: Contribution
 535 to aerobic remineralization in intertidal mudflats covered by *Zostera noltei* meadows ». *Estuarine,
 536 Coastal and Shelf Science* 179: 23-38. 2016.

537 Charrieau, L. M., H. L. Filipsson, K. Ljung, M. Chierici, K. L. Knudsen, and E. Kritzberg. « The effects
 538 of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the
 539 Skagerrak-Baltic Sea region ». *Marine Micropaleontology* 139. <https://doi.org/10.1016/j.marmicro.2017.11.004>. 2017.

540 Christiansen, C., H. Kunzendorf, M. J. C. Laima, L. C. Lund-Hansen, and A. M. Pedersen. « Recent
 541 changes in environmental conditions in the southwestern Kattegat, Scandinavia ». *NGU Bull.*, n°
 542 430: 137-44. 1996.

543 Conley, D., J. Cartensen, G. Ærtebjerg, P. B. Christensen, T. Dalsgaard, J. L. S. Hansen, and A. B.
 544 Josefson. « Long-term changes and impacts of hypoxia in Danish coastal waters ». *Ecological
 545 Applications* 17 (5): S165-84. <https://doi.org/10.1890/05-0766.1>. 2007.

546 Conley, D. J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B.-M. Haahti, et al. « Hypoxia
 547 is increasing in the coastal zone of the Baltic Sea ». *Environmental Science & Technology* 45
 548 (16): 6777-83. <https://doi.org/10.1021/es201212r>. 2011.

549 Conradsen, K., H. Bergsten, K.L. Knudsen, K. Nordberg, and M.-S. Seidenkrantz. « Recent benthic
 550 foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia ». *Cushman Foundation
 551 Special Publication No.32*, 53-68. 1994.

552 Cutshall, N. H., I. L. Larsen, and C. R. Olsen. « Direct analysis of ^{210}Pb in sediment samples: Self-
 553 absorption corrections ». *Nuclear Instruments and Methods in Physics Research* 206 (1): 309-12.
 554 [https://doi.org/10.1016/0167-5087\(83\)91273-5](https://doi.org/10.1016/0167-5087(83)91273-5). 1983.

555 Daewel, U., and C. Schrum. « Simulating long-term dynamics of the coupled North Sea and Baltic Sea
 556 ecosystem with ECOSMO II: Model description and validation ». *Journal of Marine Systems* 119
 557 -120: 30-49. <https://doi.org/10.1016/j.jmarsys.2013.03.008>. 2013.

558 ———. « Low-frequency variability in North Sea and Baltic Sea identified through simulations with the
 559 3-D coupled physical–biogeochemical model ECOSMO ». *Earth System Dynamics* 8: 801-15.
 560 <https://doi.org/10.5194/esd-8-801-2017>. 2017.

565 Darling, K.F., M. Schweizer, K.L. Knudsen, K.M. Evans, C. Bird, A. Roberts, H.L. Filipsson, et al. « The
 566 genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast
 567 Atlantic ». *Marine Micropaleontology*. <https://doi.org/10.1016/j.marmicro.2016.09.001>. 2016.

568 Deldicq, N., E. Alve, M. Schweizer, I. Polovodova Asteman, S. Hess, K. Darling, and V. Bouchet.
 569 « History of the introduction of a species resembling the benthic foraminifera *Nonionella stella* in
 570 the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences ». *Aquatic
 571 Invasions* 14. <https://doi.org/10.3391/ai.2019.14.2.03>. 2019.

572 Ellis, B. F., and A. R. Messina. *Catalogue of Foraminifera*. New York: Micropaleontology Press, The
 573 American Museum of Natural History. 1940.

574 Erbs-Hansen, D.R., K.L. Knudsen, A.C. Gary, R. Gyllencreutz, and E. Jansen. « Holocene climatic
 575 development in Skagerrak, Eastern North Atlantic: Foraminiferal and stable isotopic evidence ».
 576 *The Holocene* 22 (3): 301-12. <https://doi.org/10.1177/0959683611423689>. 2012.

577 Feyling-Hanssen, R. W. *Foraminifera in Late Quaternary Deposits from the Oslofjord Area*. Vol. Issue
 578 225 of Skrifter (Norges geologiske undersøkelse). Universitetsforlaget. 1964.

579 Feyling-Hanssen, R. W., J. A. Jørgensen, K. L. Knudsen, and A.-L. L. Andersen. *Late Quaternary
 580 Foraminifera from Vendsyssel, Denmark and Sandnes, Norway*. Vol. 21, 67-317. Issues 2-3 of
 581 Bulletin of the Geological Society of Denmark. Dansk geologisk forening. 1971.

582 Feyling-Hanssen, R.W. « The Foraminifer *Elphidium excavatum* (Terquem) and its variant forms ».
 583 *Micropaleontology* 18 (3): 337-54. <https://doi.org/10.2307/1485012>. 1972.

584 Filipsson, H.L., and K. Nordberg. « Climate variations, an overlooked factor influencing the recent
 585 marine environment. An example from Gullmar Fjord, Sweden, illustrated by benthic
 586 foraminifera and hydrographic data ». *Estuaries* 27 (5): 867-81. 2004a.

587 ———. « A 200-year environmental record of a low-oxygen fjord, Sweden, elucidated by benthic
 588 foraminifera, sediment characteristics and hydrographic data ». *The Journal of Foraminiferal
 589 Research* 34 (4): 277-93. <https://doi.org/10.2113/34.4.277>. 2004b.

590 Geslin, E., J.-P. Debenay, W. Duleba, and C. Bonetti. « Morphological abnormalities of foraminiferal
 591 tests in Brazilian environments: comparison between polluted and non-polluted areas ». *Marine
 592 Micropaleontology* 45 (2): 151-68. [https://doi.org/10.1016/S0377-8398\(01\)00042-1](https://doi.org/10.1016/S0377-8398(01)00042-1). 2002.

593 Göransson, P. « Changes of benthic fauna in the Kattegat – An indication of climate change at mid-
 594 latitudes? » *Estuarine, Coastal and Shelf Science* 194. <https://doi.org/10.1016/j.ecss.2017.06.034>.
 595 2017.

596 Göransson, P., L. A. Angantyr, J. B. Hansen, G. Larsen, and F. Bjerre. « Öresunds bottenfauna ».
 597 Öresundsvattensamarbets. 2002.

598 Groeneveld, J., H. L. Filipsson, W.E.N. Austin, K. Darling, D. McCarthy, N.B.Q. Krupinski, C. Bird, and
 599 M. Schweizer. « Assessing proxy signatures of temperature, salinity and hypoxia in the Baltic Sea
 600 through foraminifera-based geochemistry and faunal assemblages ». *Journal of
 601 Micropalaeontology* 37: 403-29. <https://doi.org/10.5194/jm-37-403-2018>. 2018.

602 Gustafsson, B. G., F. Schenk, T. Blenckner, K. Eilola, H. E. M. Meier, B. Müller-Karulis, T. Neumann, T.
 603 Ruoho-Airola, O. P. Savchuk, and E. Zorita. « Reconstructing the development of Baltic Sea
 604 eutrophication 1850–2006 ». *Ambio* 41 (6): 534-48. <https://doi.org/10.1007/s13280-012-0318-x>.
 605 2012.

606 Hammer, Ø., D.A.T. Harper, and P.D. Ryan. « PAST: Paleontological statistics software package for
 607 education and data analysis. » *Palaeontologia Electronica* 4 ((1)): 9pp. 2001.

608 Hansen, H. J. « On the sedimentology and the quantitative distribution of living foraminifera in the
 609 northern part of the Øresund ». *Ophelia* 2 (2): 323-31.
 610 <https://doi.org/10.1080/00785326.1965.10409608>. 1965.

611 HELCOM. « Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of
 612 nutrient enrichment and eutrophication in the Baltic Sea region. » *Balt. Sea Environ. Proc.*, n°
 613 115B. 2009.

614 Henriksson, R. « The bottom fauna in polluted areas of the Sound ». *Oikos* 19 (1): 111-25.
615 <https://doi.org/10.2307/3564736>. 1968.

616 ———. « Influence of pollution on the bottom fauna of the Sound (Öresund) ». *Oikos* 20 (2): 507-23.
617 <https://doi.org/10.2307/3543212>. 1969.

618 Hermelin, J.O.R. « Distribution of Holocene benthic foraminifera in the Baltic Sea ». *The Journal of*
619 *Foraminiferal Research* 17 (1): 62-73. <https://doi.org/10.2113/gsjfr.17.1.62>. 1987.

620 ICES. *Integrated Ecosystem Assessments of Seven Baltic Sea Areas Covering the Last Three Decades*.
621 International council for the exploration of the sea, cooperative research report No. 302. 2010.

622 Jarke, J. « Beobachtungen über Kalkauflösung an Schalen von Mikrofossilien in Sedimenten der
623 westlichen Ostsee ». *Deutsche Hydrografische Zeitschrift* 14 (1): 6-11.
624 <https://doi.org/10.1007/BF02226819>. 1961.

625 Jones, P. D., T. Jonsson, and D. Wheeler. « Extension to the North Atlantic oscillation using early
626 instrumental pressure observations from Gibraltar and South-West Iceland ». *International*
627 *Journal of Climatology* 17: 1433-50. [https://doi.org/10.1002/\(SICI\)1097-0088\(19971115\)17:13<1433::AID-JOC203>3.0.CO;2-P](https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P). 1997.

628 Krebs, C. J. *Ecological Methodology*. 2nd ed. University of British Columbia: Pearson. 1998.

629 Lehmann, A., K. Höflich, P. Post, and K. Myrberg. « Pathways of deep cyclones associated with large
630 volume changes (LVCs) and major Baltic inflows (MBIs) ». *Journal of Marine Systems* 167: 11-
631 18. <https://doi.org/10.1016/j.jmarsys.2016.10.014>. 2017.

632 Lehmann, A., and P. Post. « Variability of atmospheric circulation patterns associated with large volume
633 changes of the Baltic Sea ». *Advances in Science & Research* 12 (1): 219-25.
634 <https://doi.org/10.5194/asr-12-219-2015>. 2015.

635 Leppäranta, M., and K. Myrberg. *Physical Oceanography of the Baltic Sea*. Berlin, Heidelberg: Springer
636 Berlin Heidelberg. 2009.

637 Loeblich, A. R., and H. Tappan. « Part C, Protista 2, Sarcodina, Chiefly "Thecamoebians" and
638 Foraminiferida ». In *Treatise on Invertebrate Paleontology*, Moore, R.C., 900 pp. The
639 Geological Society of America and the University of Kansas. 1964.

640 Lumborg, U. « Modelling the deposition, erosion, and flux of cohesive sediment through Øresund ».
641 *Journal of Marine Systems* 56 (1): 179-93. <https://doi.org/10.1016/j.jmarsys.2004.11.003>. 2005.

642 Martin, R.E. « Taphonomy and temporal resolution of foraminiferal assemblages ». In *Modern*
643 *Foraminifera*, 281-98. Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_16. 1999.

644 Murray, J. W. *Ecology and Applications of Benthic Foraminifera*. Cambridge University Press. 2006.

645 Murray, J. W., and E. Alve. « The distribution of agglutinated foraminifera in NW European seas:
646 Baseline data for the interpretation of fossil assemblages ». *Palaeontologia Electronica* 14 (2):
647 14A: 41p. 2011.

648 Murray, J. W., and E. Alve. « Taphonomic experiments on marginal marine foraminiferal assemblages:
649 how much ecological information is preserved? » *Palaeogeography, Palaeoclimatology,*
650 *Palaeoecology* 149 (1-4): 183-97. [https://doi.org/10.1016/S0031-0182\(98\)00200-4](https://doi.org/10.1016/S0031-0182(98)00200-4). 1999.

651 Nausch, G., D. Nehring, and G. Aertebjerg. « Anthropogenic nutrient load of the Baltic Sea ».
652 *Limnologica - Ecology and Management of Inland Waters* 29 (3): 233-41.
653 [https://doi.org/10.1016/S0075-9511\(99\)80007-3](https://doi.org/10.1016/S0075-9511(99)80007-3). 1999.

654 Nielsen, M. H. « Evidence for internal hydraulic control in the northern Øresund ». *Journal of*
655 *Geophysical Research* 106 (C7): 14,055-14,068. <https://doi.org/10.1029/2000JC900162>. 2001.

656 Nordberg, K., M. Gustafsson, and A.-L. Krantz. « Decreasing oxygen concentrations in the Gullmar Fjord,
657 Sweden, as confirmed by benthic foraminifera, and the possible association with NAO ». *Journal*
658 *of Marine Systems* 23 (4): 303-16. [https://doi.org/10.1016/S0924-7963\(99\)00067-6](https://doi.org/10.1016/S0924-7963(99)00067-6). 2000.

659 Otto, G.H. « Comparative tests of several methods of sampling heavy mineral concentrates ». *Journal of*
660 *Sedimentary Research* 3 (1): 30-39. 1933.

661

662 Patterson, R. T., and E. Fishbein. « Re-examination of the statistical methods used to determine the
 663 number of point counts needed for micropaleontological quantitative research ». *Journal of*
 664 *Paleontology* 63 (02): 245–248. 1989.

665 Piña-Ochoa, E., S. Høgslund, E. Geslin, T. Cedhagen, N.P. Revsbech, L.P. Nielsen, M. Schweizer, F.
 666 Jorissen, S. Rysgaard, and N. Risgaard-Petersen. « Widespread occurrence of nitrate storage and
 667 denitrification among Foraminifera and Gromiida ». *Proceedings of the National Academy of*
 668 *Science* 107 (janvier): 1148–53. <https://doi.org/10.1073/pnas.0908440107>. 2010.

669 Polovodova Asteman, I., D. Hanslik, and K. Nordberg. « An almost completed pollution-recovery cycle
 670 reflected by sediment geochemistry and benthic foraminiferal assemblages in a Swedish-
 671 Norwegian Skagerrak fjord ». *Marine Pollution Bulletin* 95 (1): 126–40.
 672 <https://doi.org/10.1016/j.marpolbul.2015.04.031>. 2015.

673 Polovodova Asteman, I., and K. Nordberg. « Foraminiferal fauna from a deep basin in Gullmar Fjord:
 674 The influence of seasonal hypoxia and North Atlantic Oscillation ». *Journal of Sea Research* 79:
 675 40–49. <https://doi.org/10.1016/j.seares.2013.02.001>. 2013.

676 Polovodova Asteman, I., and J. Schönfeld. « Recent invasion of the foraminifer *Nonionella stella*
 677 Cushman & Moyer, 1930 in northern European waters: Evidence from the Skagerrak and its
 678 fjords ». *Journal of Micropalaeontology* 35 (1). <https://doi.org/10.1144/jmpaleo2015-007>. 2015.

679 Rosenberg, R., I. Cato, L. Förlin, K. Grip, and J. Rodhe. « Marine environment quality assessment of the
 680 Skagerrak - Kattegat ». *Journal of Sea Research* 35 (1): 1–8. [https://doi.org/10.1016/S1385-1101\(96\)90730-3](https://doi.org/10.1016/S1385-1101(96)90730-3). 1996.

681 Rydberg, L., G. Årtebjerg, and L. Edler. « Fifty years of primary production measurements in the Baltic
 682 entrance region, trends and variability in relation to land-based input of nutrients ». *Journal of*
 683 *Sea Research* 56 (1): 1–16. <https://doi.org/10.1016/j.seares.2006.03.009>. 2006.

684 Sayin, E., and W. Krauß. « A numerical study of the water exchange through the Danish Straits ». *Tellus*,
 685 n° 48(2): 324–41. <https://doi.org/10.1034/j.1600-0870.1996.t01-1-00009.x>. 1996.

686 Schenk, F. « The analog-method as statistical upscaling tool for meteorological field reconstructions over
 687 Northern Europe since 1850 ». Dissertation, University of Hamburg. <http://ediss.sub.uni-hamburg.de/volltexte/2015/7156/>. 2015.

688 ———. « The long-term dataset of high resolution atmospheric forcing fields (HiResAFF) for Northern
 689 Europe since 1850 ». *World Data Center for Climate (WDCC) at DKRZ*.
 690 <https://doi.org/10.1594/WDCC/HiResAFF>. 2017.

691 Schenk, F., and E. Zorita. « Reconstruction of high resolution atmospheric fields for Northern Europe
 692 using analog-upscaling ». *Climate of the Past* 8: 1681–1703. <https://doi.org/10.5194/cp-8-1681-2012>. 2012.

693 Seidenkrantz, M.-S. « Subrecent changes in the foraminiferal distribution in the Kattegat and the
 694 Skagerrak, Scandinavia: Anthropogenic influence and natural causes ». *Boreas* 22 (4): 383–95.
 695 <https://doi.org/10.1111/j.1502-3885.1993.tb00201.x>. 1993.

696 Sen Gupta, B. K. « Foraminifera in marginal marine environments ». In *Modern Foraminifera*, 141–59.
 697 Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_9. 1999a.

698 ———. *Modern Foraminifera*. Springer Science & Business Media. 1999b.

699 She, J., P. Berg, and J. Berg. « Bathymetry impacts on water exchange modelling through the Danish
 700 Straits ». *Journal of Marine Systems*, Marine Environmental Monitoring and Prediction, 65 (1):
 701 450–59. <https://doi.org/10.1016/j.jmarsys.2006.01.017>. 2007.

702 Tappan, H., and A. R. Loeblich. « Foraminiferal evolution, diversification, and extinction ». *Journal of*
 703 *Paleontology* 62 (5): 695–714. 1988.

704 Wesslander, K., L. Andersson, P. Axe, J. Johansson, J. Linders, N. Nixelius, and A.-T. Skjervik. « SMHI
 705 Report: Swedish national report on eutrophication status in the Skagerrak, Kattegat and the
 706 Sound ». Report Oceanography No 54. 2016.

710 Yanko, V., A. J. Arnold, and W. C. Parker. « Effects of marine pollution on benthic foraminifera ». In
711 *Modern Foraminifera*, 217-35. Springer Netherlands. https://doi.org/10.1007/0-306-48104-9_13.
712 1999.
713

714 Figures

715 Figure 1. Map of the studied area. The star shows the focused station of this study. General water
716 circulation: main surface currents (black arrows) and main deep currents (grey arrows). GB:
717 Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW; Jutland
718 Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: [© BSHC](#).

719 Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the
720 water column for the DV-1 station (modified from Charrieau et al. 2018).

721 Figure 3. Seasonal variability of salinity, temperature, pH and dissolved inorganic nitrogen
722 (DIN) concentration at the surface water (light grey), and seasonal variability of salinity,
723 temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey)
724 of the Öresund. The data were measured between 1965 and 2016 by the SMHI (Swedish
725 Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of
726 measurements is indicated for each month.

727 Figure 4. Age-depth calibration for the sediment sequence from the Öresund (DV-1). A) Total
728 and supported ^{210}Pb activity. B) Unsupported ^{210}Pb activity and the associated age-model. C)
729 ^{137}Cs activity. The peak corresponds to the Chernobyl reactor accident in 1986. D) Age-depth
730 model for the whole sediment sequence based on ^{210}Pb dates and calculated sediment
731 accumulation rates (SAR).

732 Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic
733 foraminiferal accumulation rate (BFAR, specimens.cm⁻².yr⁻¹), Shannon index, organic linings
734 (specimens.cm⁻².yr⁻¹) and factors from the correspondence analysis. B) Benthic foraminiferal
735 accumulation rates (specimens.cm⁻².yr⁻¹) of the major species (>5%), BFAR (specimens.cm⁻².yr⁻¹),
736 Shannon index, organic linings (specimens.cm⁻².yr⁻¹) and factors from the correspondence
737 analyses. Foraminiferal zones based on cluster and correspondence analysis. Note the different
738 scale on the x axes.

739 Figure 6. Dendrogram produced by the cluster analysis based on the Morisita index and the
740 UPGMA clustering method.

741 Figure 7. Sediment parameters of the cores DV-1I and DV-1G (²¹⁰Pb dated): total organic carbon
742 content (C_{org}) (%), C/N ratio, and grain size (%). Foraminiferal zones indicated.

743 Figure 8. South-North flow (VAV) in the Öresund (dark line) and West-East flow (UAV) in the
744 Kattegat (light line) between 1950 and 2013. Foraminiferal zones indicated.

745 Figure 9. A) NAO index for boreal winter (December to March), data from Jones et al. (1997).
746 B) Variations of near-surface (10 m) wind conditions (October to March), data from Schenk and
747 Zorita (2012). Both NAO index and wind speed data are normalized on the period 1850-2008
748 and show running decadal means. C) BFAR, percentage of sand fraction and West-East flow
749 (UAV) in the Kattegat. Foraminiferal zones indicated.

750 Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. *Stainforthia fusiformis*; 2.
751 *Nonionellina labradorica*; 3. *Nonionella* sp. T1; 4. *Nonionoides turgida*; 5. *Eggerelloides*
752 *medius/scabrus*; 6. *Bulimina marginata*; 7. *Ammonia batava*; 8. *Reophax subfusiformis*; 9.
753 *Elphidium magellanicum*; 10. *Elphidium clavatum*; 11-12. *Ammonia* sp.

754 Tables

755 Table 1. Significant foraminiferal species and scores according to the correspondence analysis.

756 Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).

757

758

759

760

761

762

763

764

765

766

767

768

769

770

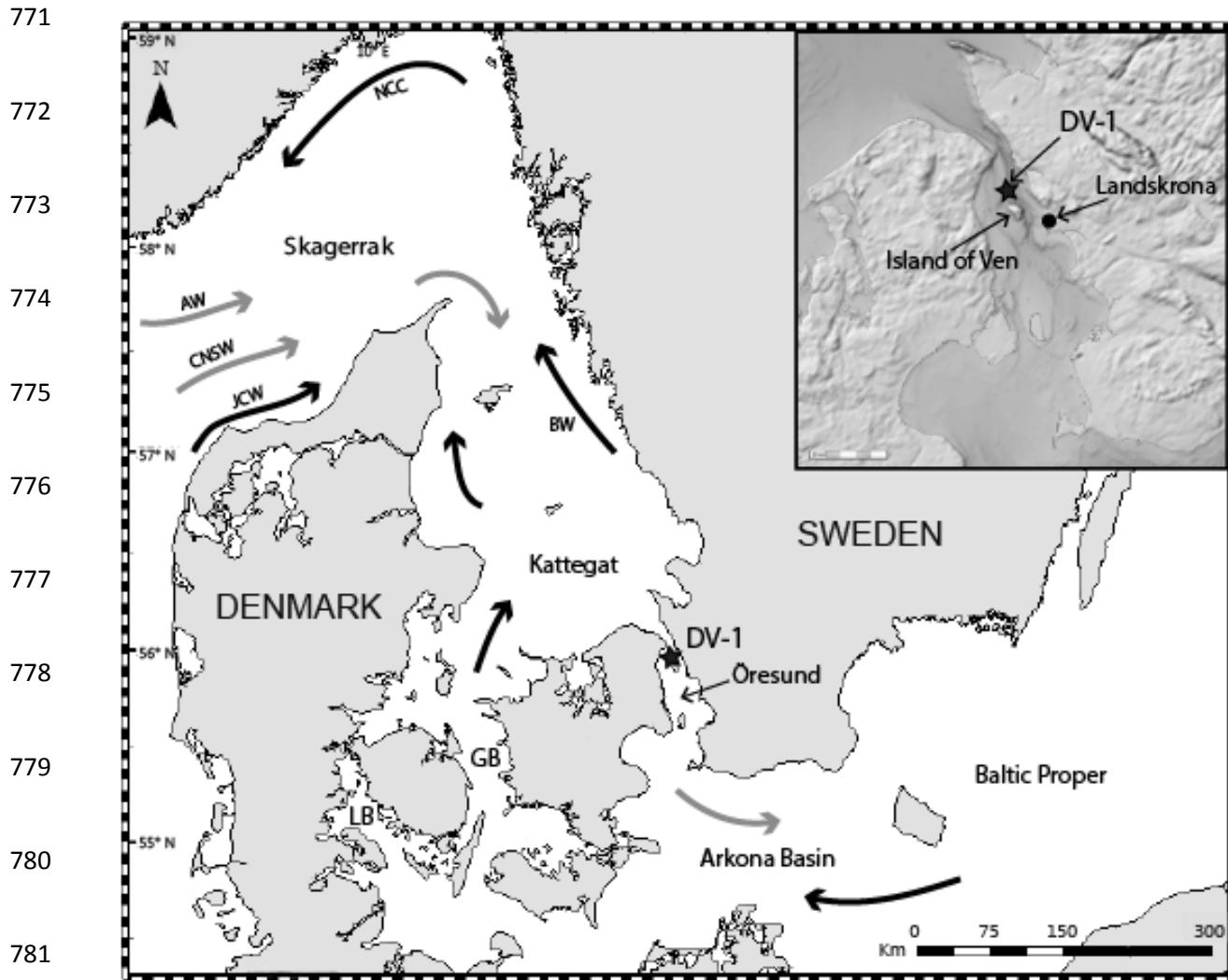


Figure 1. Map of the studied area. The star shows the focused station of this study. General water circulation: main surface currents (black arrows) and main deep currents (grey arrows). GB: Great Belt; LB: Little Belt; AW: Atlantic Water; CNSW: Central North Sea Water; JCW: Jutland Coastal Water; NCC: Norwegian Coastal Current; BW: Baltic Water. Insert source: [© BSHC](#).

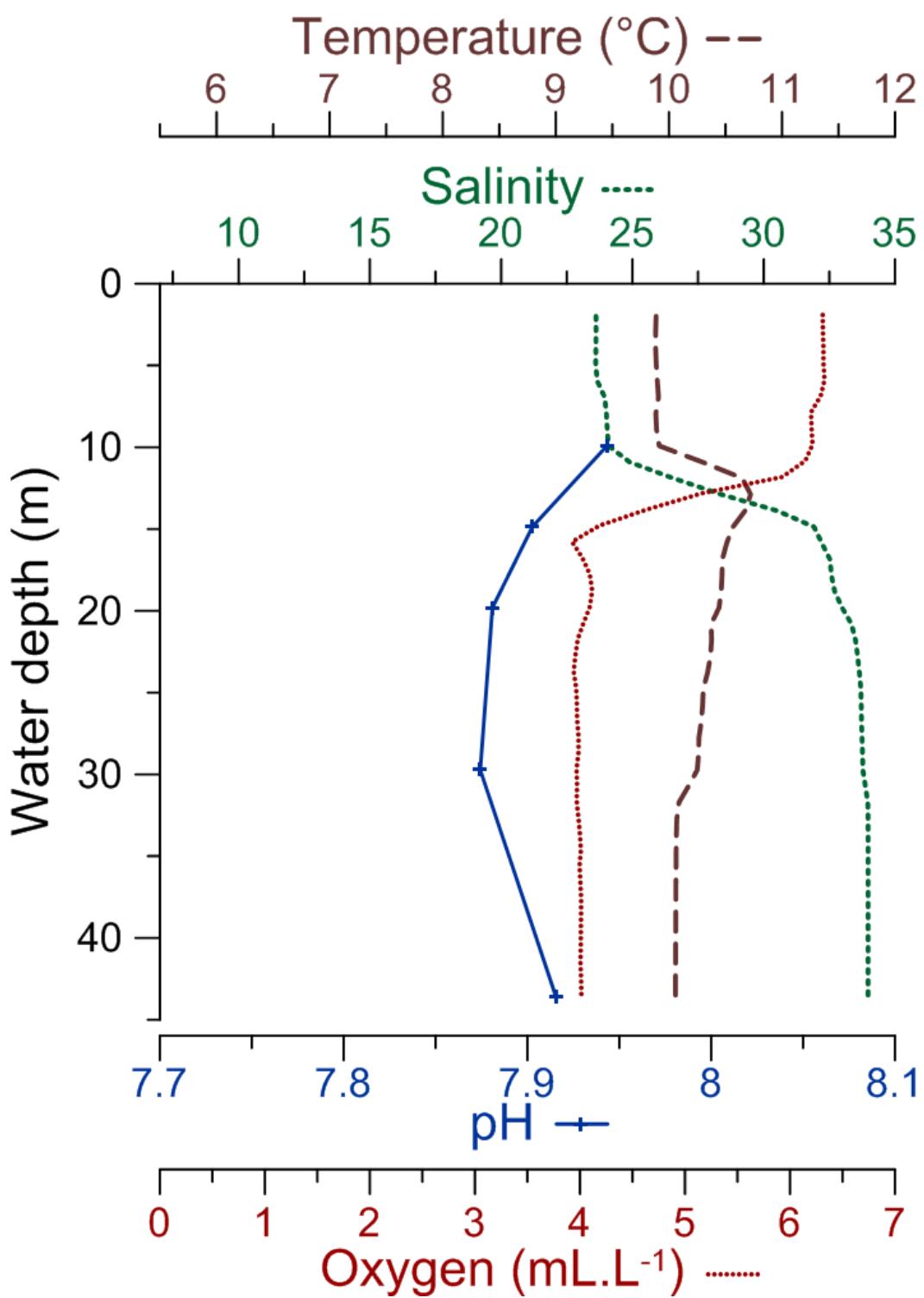
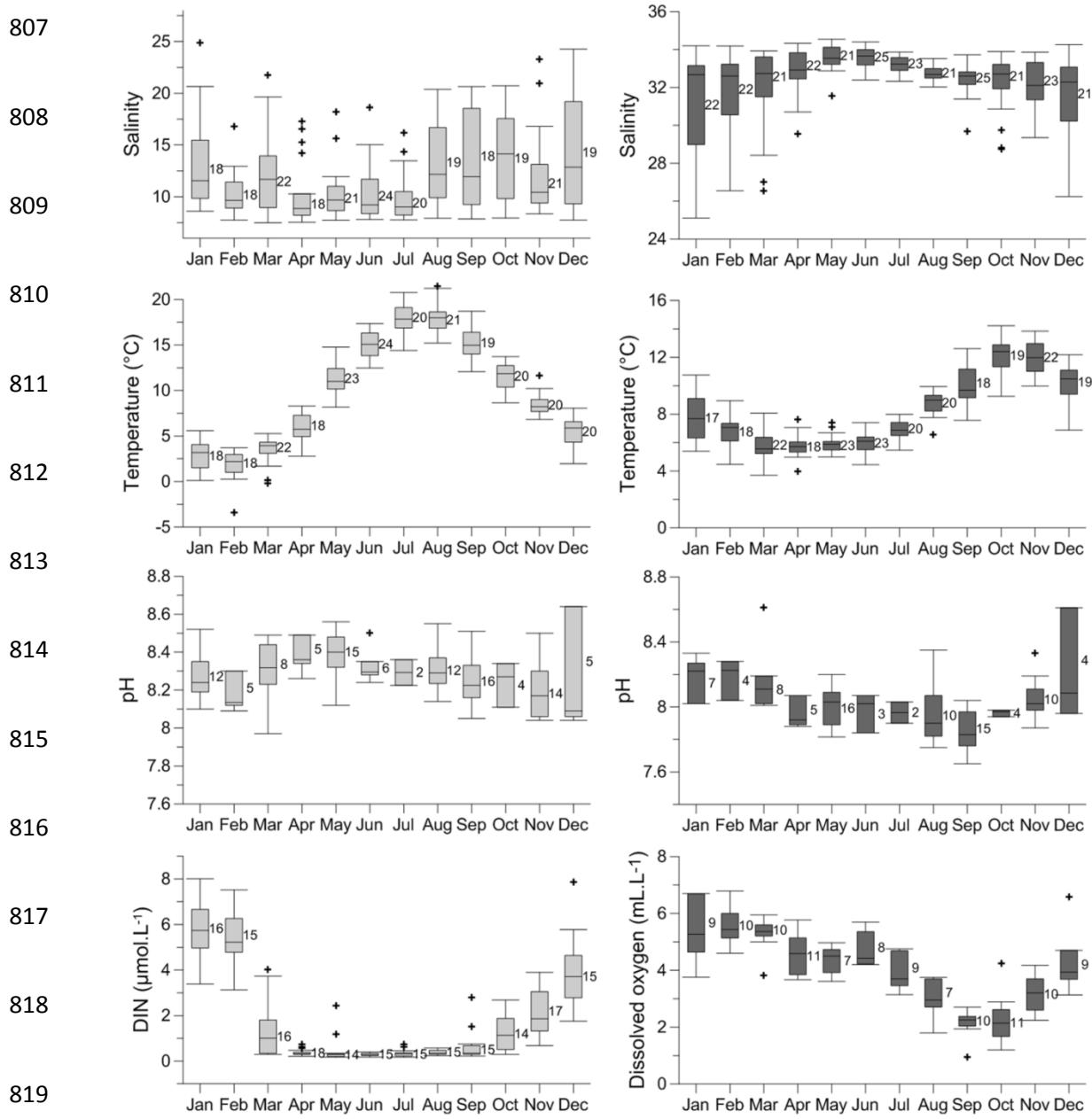
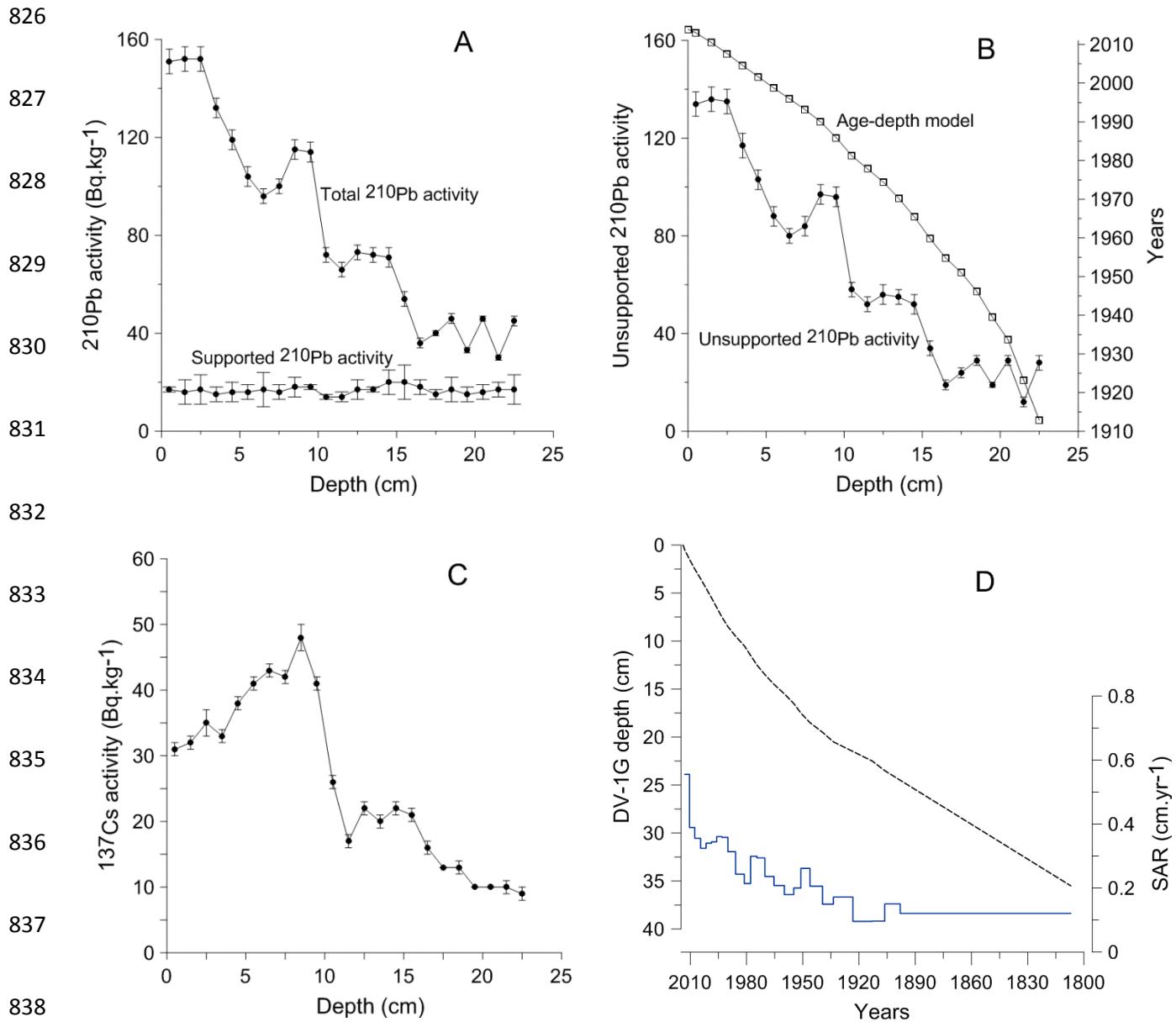
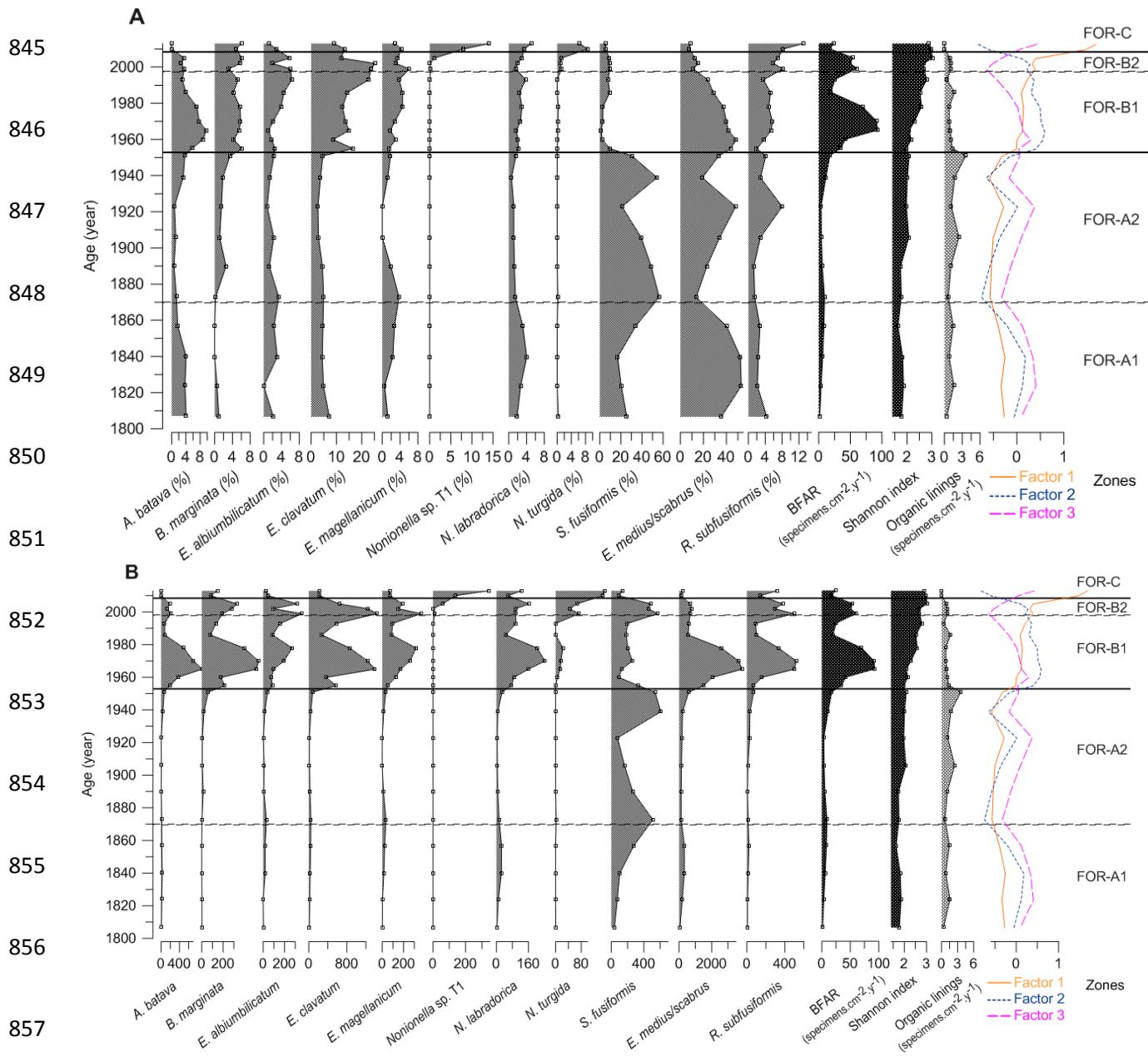
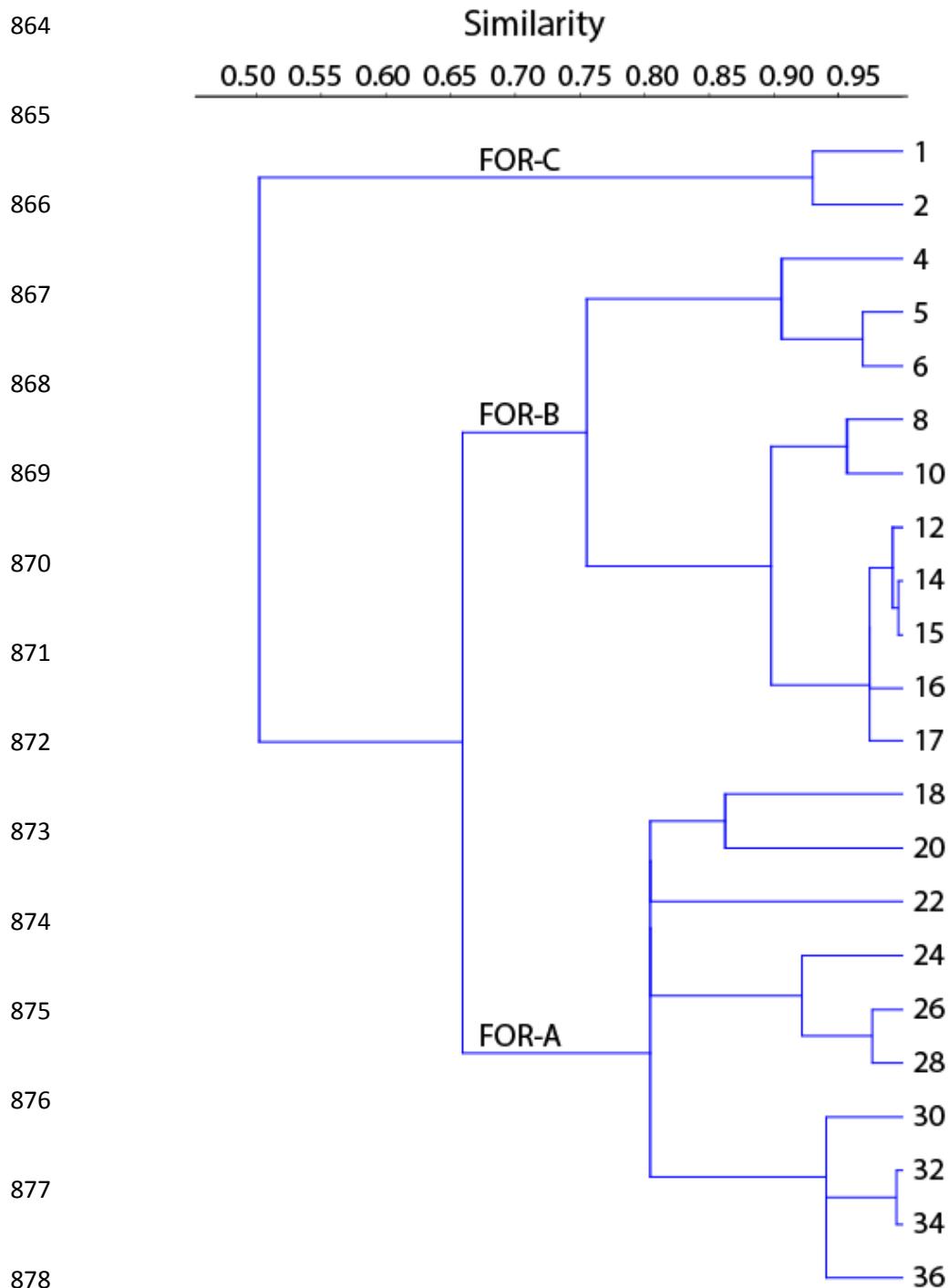
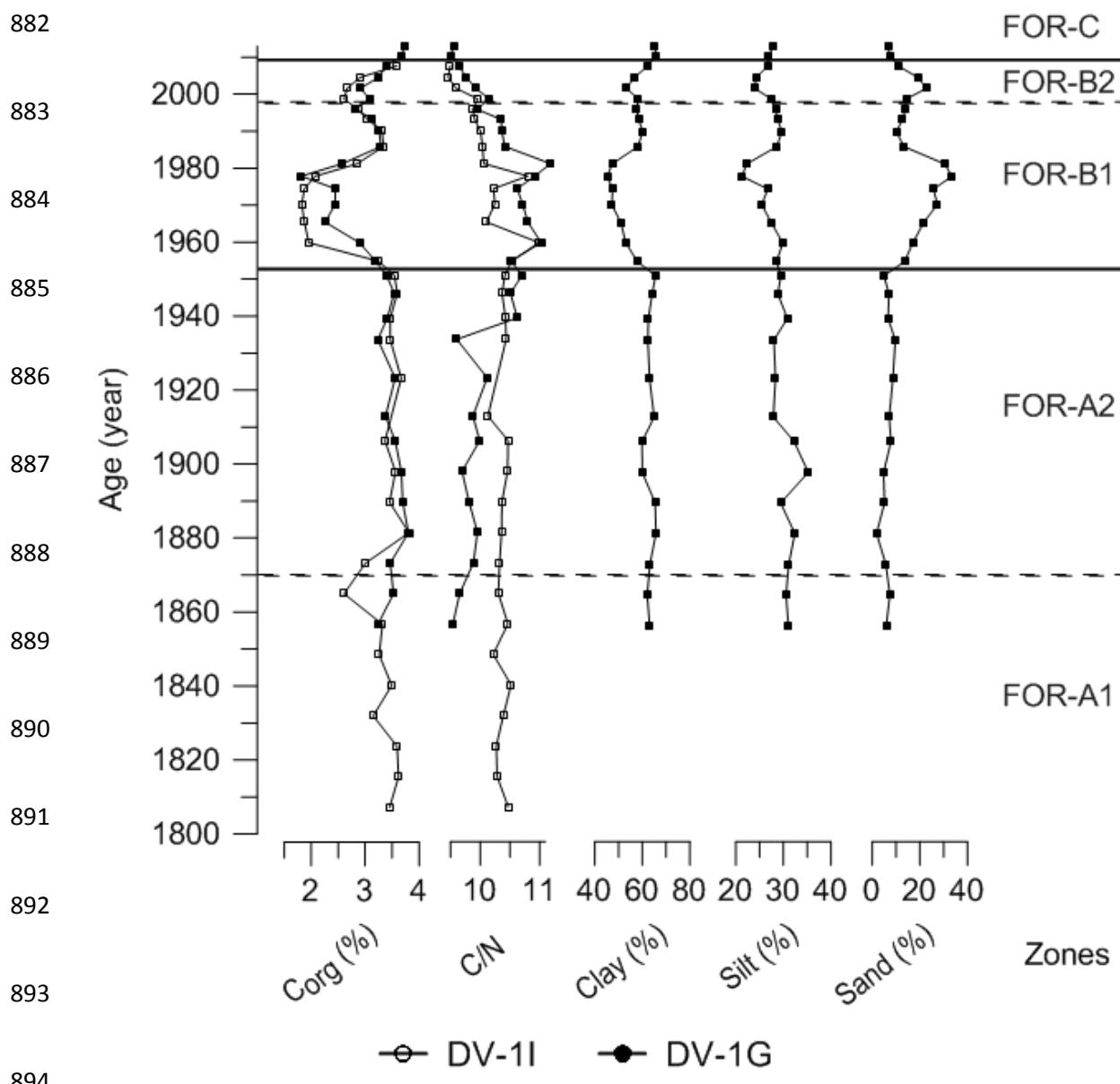
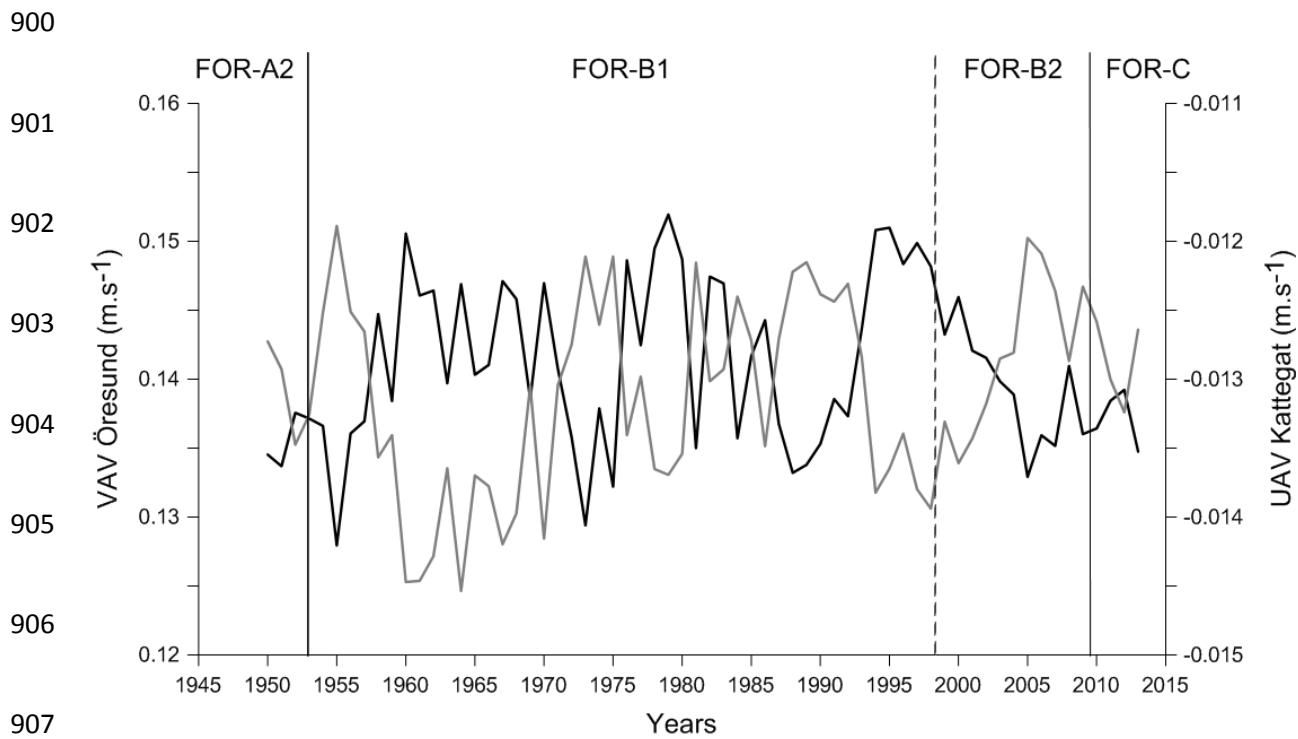


Figure 2. CTD profiles of temperature, salinity, pH and dissolved oxygen concentration in the water column for the DV-1 station (modified from Charrieau et al. 2018).


Figure 3. Seasonal variability of salinity, temperature, pH and dissolved inorganic nitrogen (DIN) concentration at the surface water (light grey), and seasonal variability of salinity, temperature, pH and dissolved oxygen concentration at the bottom water (40-50 m) (dark grey) of the Öresund. The data were measured between 1965 and 2016 by the SMHI (Swedish Meteorological and Hydrological Institute) at the station W LANDSKRONA. The number of measurements is indicated for each month.


839 Figure 4. Age-depth calibration for the sediment sequence from the Öresund (DV-1). A) Total
840 and supported ^{210}Pb activity. B) Unsupported ^{210}Pb activity and the associated age-model. C)
841 ^{137}Cs activity. The peak corresponds to the Chernobyl reactor accident in 1986. D) Age-depth
842 model for the whole sediment sequence based on ^{210}Pb dates and calculated sediment
843 accumulation rates (SAR).


858 Figure 5. A) Relative abundances (%) of the foraminiferal major species (>5 %), benthic
859 foraminiferal accumulation rate (BFAR, specimens.cm⁻².yr⁻¹), Shannon index, organic linings
860 (specimens.cm⁻².yr⁻¹) and factors from the correspondence analysis. B) Benthic foraminiferal
861 accumulation rates (specimens.cm⁻².yr⁻¹) of the major species (>5%), BFAR (specimens.cm⁻².yr⁻¹),
862 Shannon index, organic linings (specimens.cm⁻².yr⁻¹) and factors from the correspondence
863 analysis. Foraminiferal zones based on cluster analysis. Note the different scale on the x axes.

879 Figure 6. Dendrogram produced by the cluster analysis based on the Morisita index and the
880 UPGMA clustering method.

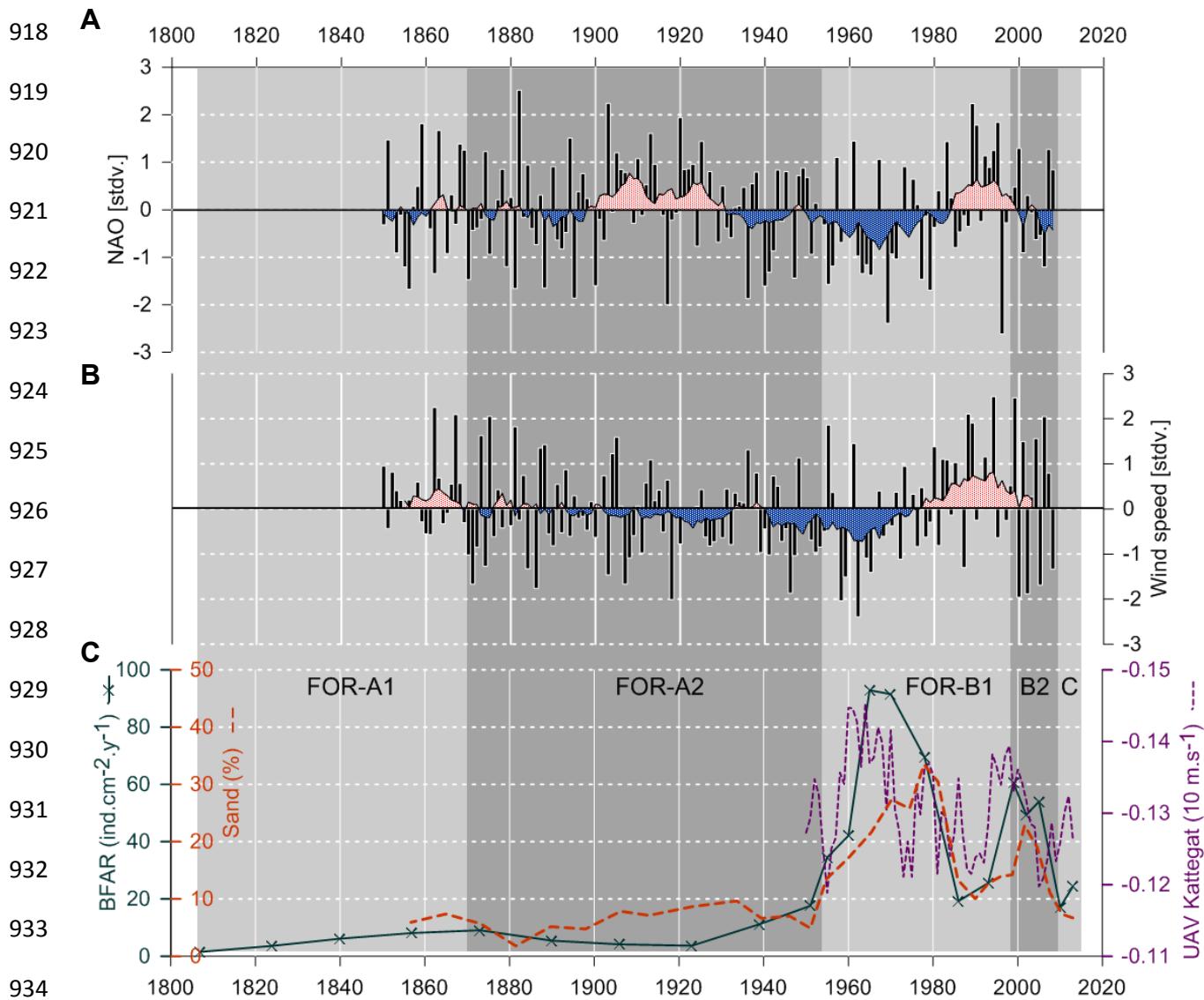
895 Figure 7. Sediment parameters of the cores DV-1I and DV-1G (^{210}Pb dated): total organic carbon
 896 content (C_{org}) (%), C/N ratio, and grain size (%). Foraminiferal zones indicated.

908 Figure 8. South-North flow (VAV) in the Öresund (dark line) and West-East flow (UAV) in the
909 Kattegat (light line) between 1950 and 2013. Foraminiferal zones indicated.

910

911

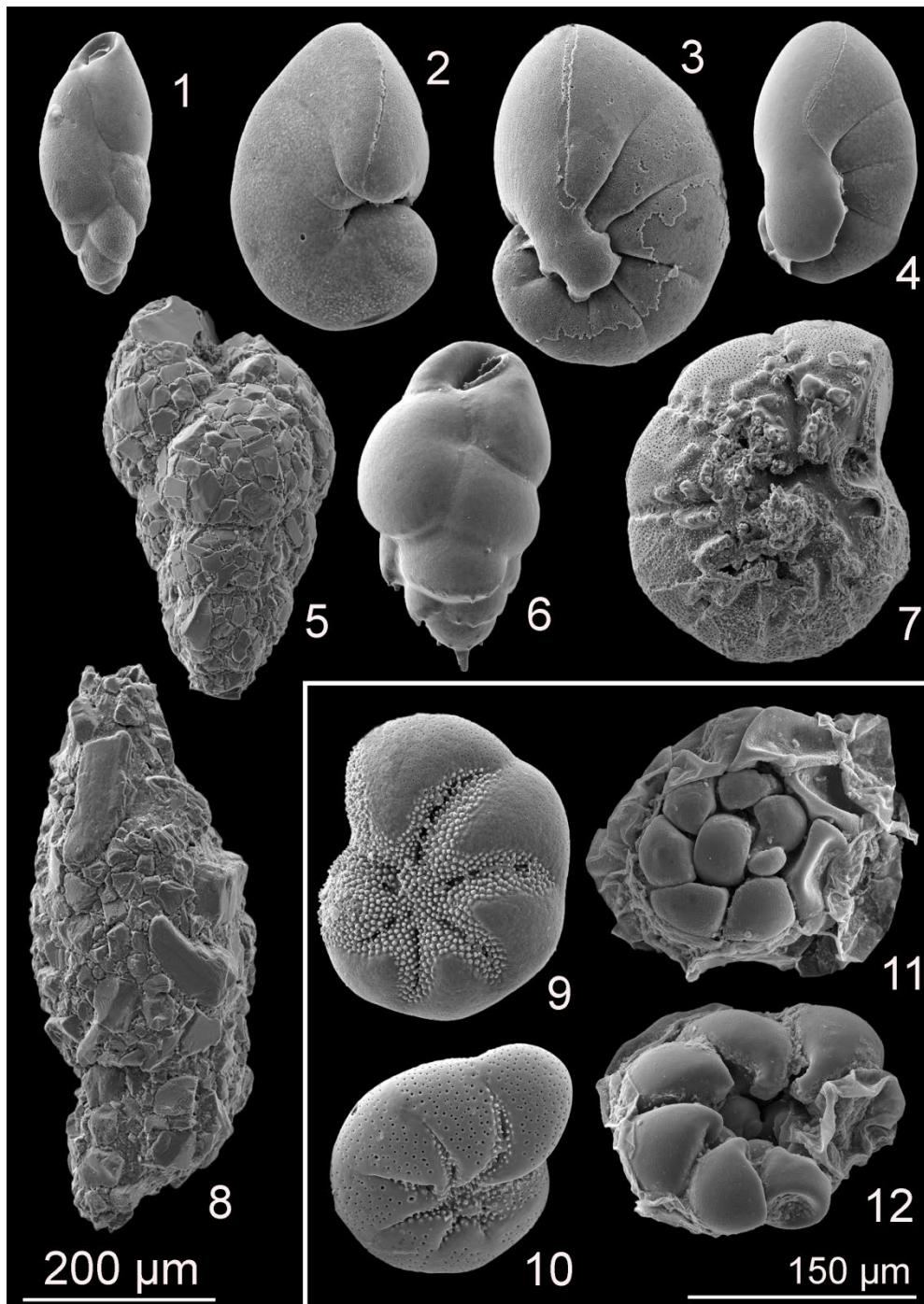
912


913

914

915

916


917

935 Figure 9. A) NAO index for boreal winter (December to March), data from Jones et al. (1997).
 936 B) Variations of near-surface (10 m) wind conditions (October to March), data from Schenk and
 937 Zorita (2012). Both NAO index and wind speed data are normalized on the period 1850-2008
 938 and show running decadal means. C) BFAR, percentage of sand fraction and West-East flow
 939 (UAV) in the Kattegat. Foraminiferal zones indicated.

940

941

956 Plate 1. SEM pictures of the major foraminiferal species (>5%). 1. *Stainforthia fusiformis*; 2.
 957 *Nonionellina labradorica*; 3. *Nonionella* sp. T1; 4. *Nonionoides turgida*; 5. *Eggerelloides*
 958 *medius/scabrus*; 6. *Bulimina marginata*; 7. *Ammonia batava*; 8. *Reophax subfusiformis*; 9.
 959 *Elphidium magellanicum*; 10. *Elphidium clavatum*; 11-12. *Ammonia* sp.

960 Table 1. Significant foraminiferal species and scores according to the correspondence analysis.

Factor	Total variance (%)	Significant species	Score
1	48.18	<i>Nonionella</i> sp. T1	5.10
		<i>Nonionoides turgida</i>	4.14
2	30.88	<i>Ammonia batava</i>	1.34
		<i>Stainforthia fusiformis</i>	-1.41
3	13.36	<i>Elphidium albiumbilicatum</i>	-1.65
		<i>Elphidium clavatum</i>	-1.57
		<i>Elphidium magellanicum</i>	-1.32

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975 Table 2. Ecological significance of the benthic foraminiferal assemblages (major species).

Species	Ecological significance	Reference
<i>Ammonia batava</i>	Salinity 15-35, T 0-29°C, high tolerance to varying substrate and TOC	Alve and Murray (1999); Murray (2006)
<i>Bulimina marginata</i>	Tolerates low oxygen conditions, salinity 30-35, T 5-13°C, muddy sand, prefers organic rich substrates	Conradsen (1993); Murray (2006)
<i>Elphidium albiumbilicatum</i>	Salinity 16-26, typical brackish species	Alve and Murray (1999)
<i>Elphidium clavatum</i>	Tolerates low oxygen conditions, salinity 10-35, T 0-7°C, high tolerance to varying substrate and TOC, subtidal	Conradsen {Citation}(1993); Alve and Murray (1999); Murray (2006)
<i>Elphidium magellanicum</i>	Coastal species	Sen Gupta (1999)
<i>Nonionella stella/aff. stella</i>	Tolerates low oxygen conditions, kleptoplastid, able of denitrification, invasive in the Skagerrak-Kattegat	Piña-Ochoa et al. (2010); Bernhard et al. (2012); Charrieau et al. (2018)
<i>Nonionellina labradorica</i>	Salinity >30, T 4-14°C, high latitudes, kleptoplastid, able of denitrification	Cedhagen (1991)
<i>Nonionoides turgida</i>	Opportunistic species, tolerates low oxygen conditions, prefers high food availability	Van der Zwaan and Jorissen (1991)
<i>Stainforthia fusiformis</i>	Opportunistic species, tolerates very low oxygen conditions, salinity >30, able of denitrification, prefers organic rich substrates, fast reproduction cycle	Alve (1994); Filipsson and Nordberg (2004); Piña-Ochoa et al. (2010)
<i>Eggerelloides medius/scabrus</i>	High tolerance to hypoxia, salinity 20-35, T 8-14°C, sandy-muddy sand, tolerance to various kind of pollution	Alve and Murray (1999); Alve (1990); Murray (2006); Cesbron et al. (2016)
<i>Reophax subfusiformis</i>	Tolerance to environmental variations and fuel ash	Sen Gupta (1999)

976