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Abstract：High-precision prediction of large-scale forest aboveground biomass (AGB) is important 19 

but challenging on account of the uncertainty involved in the prediction process from various sources, 20 

especially the uncertainty due to non-representative sample units. Usually caused by inadequate 21 

sampling, non-representative sample units are common and can lead to geographic clusters of 22 

localities. But they cannot fully capture complex and spatially heterogeneous patterns, in which 23 

multiple environmental covariates (such as longitude, latitude, and forest structures) affect the spatial 24 

distribution of AGB. To address this challenge, we propose herein a low-cost approach that combines 25 

machine learning with spatial statistics to construct a regional AGB map from non-representative 26 

sample units. The experimental results demonstrate that the combined methods can improve the 27 

accuracy of AGB mapping in regions where only non-representative sample units are available. This 28 

work provides a useful reference for AGB remote-sensing mapping and ecological modelling in 29 

various regions of the world. 30 

31 

Keywords: Aboveground biomass map, Non-representative sample units, Machine learning, Spatial 32 
statistical model, small-size samples 33 
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1 Introduction 35 

Accurate mapping of aboveground biomass (AGB) can provide a precise scientific basis for decision-36 

making in sustainable forest management, involving reducing deforestation, forest degradation, and 37 

greenhouse-gas emissions (Bustamante et al., 2016;Houghton et al., 2009;Mendoza-Ponce and Galicia, 38 

2010). AGB maps are usually constructed based on biomass data obtained from small-size samples or 39 

geographically limited locations. The uncertainty in such maps can be attributed to two primary sources: 40 

(1) inadequate sampling designs used to obtain the data for constructing prediction models, especially 41 

geographically limited designs that do not capture the entire range of conditions; and (2) model-42 

dependent uncertainty, including unreasonable model parameter assumptions as well as improper model 43 

structure(Chen et al., 2015;Gao et al., 2016;McRoberts et al., 2016). 44 

An estimated 20%–50% of the uncertainty in AGB mapping can be attributed to the inadequate sampling 45 

design (Pelletier et al., 2011). To alleviate the uncertainty derived from inadequate sampling and its 46 

consequences (i.e., non-representative samples), one type of approaches focuses on processing model 47 

input samples (front-end processing), in the form of spatial filtering of existing sample units, 48 

quantification of sampling uncertainty, and acquisition of representative sample units (Boria et al., 49 

2014;Galante et al., 2017;Marvin et al., 2014). Although the front-end processing approaches are widely 50 

used to reveal the distribution of biological populations, they are rarely used in AGB mapping because 51 

they make it difficult to quantify sampling uncertainty and produce large samples for spatial filtering 52 

methods. Another type of approaches, in the case of non-representative samples, increase the prediction 53 

accuracy by screening or building an optimal adaptive model (back-end processing) (Boria et al., 2014). 54 

These approaches may substantially increase the accuracy of AGB maps. 55 

A sizable group of prediction models has been applied to constructing accurate AGB maps, including 56 

linear models (Andersen et al., 2014;Morel et al., 2012), machine learning models(Chen, 2015;Gleason 57 

and Im, 2012), and spatial statistical models (Benitez et al., 2016;Propastin, 2012;Van der Laan et al., 58 

2014). With the development of computer-science techniques and advances in nonlinear biomass 59 

modeling, machine learning methods have become prevalent. Compared to traditional parametric 60 

methods (these methods summarize data with a fixed number of parameters with respect to the sample 61 

size, such as logistic regression and perceptron)(Gao and Hailu, 2012), which have difficulty in 62 

characterizing nonlinear relationships between AGB and multiple environmental covariates, 63 
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nonparametric machine learning algorithms (the number of parameters in a nonparametric method is 64 

dependent of the number of training examples, e.g., K-nearest neighbor, support vector machine, and 65 

random forest) are advantageous because they are more elastic and have neither restrictions on variable 66 

types nor strict requirements regarding the distributions of predictor variables as well as the relationship 67 

between response and predictor variables (Lu et al., 2007). In addition, nonparametric machine learning 68 

algorithms may offer higher prediction accuracy (Frey et al., 2019;Gleason and Im, 2012). 69 

Another frequently-used group of models for estimating relationships between forest AGB and multiple 70 

environmental covariates is based on spatial statistical approaches, such as geographically weighted 71 

regression and Kriging (Du et al., 2010;Van der Laan et al., 2014;Viana et al., 2012). Spatial statistical 72 

methods are based on the analysis of attribute information that includes spatial locations (Schabenberger 73 

and Gotway, 2005). Compared with traditional statistical methods, spatial methods integrate spatial 74 

factors affecting model responses, thus remove the constraint of traditional statistical methods that 75 

assume sample independence (Rangel and Bini, 2010) and improve the understanding of spatial 76 

autocorrelation and heterogeneity (He et al., 2011;Rosenberg and Anderson, 2011). 77 

Although many studies have integrated plot data, multi-source remote-sensing data (e.g., lidar and 78 

Landsat), and machine learning or spatial statistical methods, the prediction accuracy of current AGB 79 

spatial mapping still suffers from uncertainty (Asner et al., 2012;Chen et al., 2016;Gregoire et al., 80 

2016;McRoberts et al., 2018;Paul et al., 2016;Saatchi et al., 2011;Zheng et al., 2004) for two reasons. 81 

First, the existing studies with machine learning methods do not consider the spatial heterogeneity of 82 

multiple environmental covariates (such as longitude, latitude, and forest structures) that affect the spatial 83 

distribution of AGB (Babcock et al., 2015;Fassnacht et al., 2014). Uncertainty can be further magnified 84 

by applying regional area models to small-size samples or geographically limited samples. The second 85 

reason lies in the assumptions of the spatial statistical method (e.g., spatial autocorrelation and stability 86 

of the second steps), which may not always be valid in forest AGB.  87 

The objective of this study is to develop and evaluate a method for improving the prediction accuracy of 88 

large-scale AGB spatial mapping given small-size, non-representative, and local geographically 89 

clustered samples. The method integrates the nonlinear mapping capabilities of machine learning 90 

algorithms (artificial neural network, support vector machine, and random forest) with the spatial 91 

autocorrelation and stratified heterogeneous advantages of a spatial statistical model ( the Point 92 

Estimation Model of Biased Sentinel Hospitals-based Area Disease Estimation, P-BSHADE model)(Xu 93 
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et al., 2013). Our aim is tantamount to answer two specific questions: (1) What are the differences in 94 

prediction accuracy of AGB maps for different machine learning methods and between machine learning 95 

and spatial statistical methods? (2) Can the integration of spatial statistical and machine learning methods 96 

improve the accuracy of AGB maps based on small-size, non-representative samples in the form of local 97 

geographic clusters of forest inventory data? We explore these two questions by considering an empirical 98 

case of predicting an AGB map for Eucalyptus plantation in Nanjing County, China. 99 

2 Materials and Methods 100 

2.1 Site description 101 

Nanjing County (117°00'–117°36'E, 24°26'–25°00'N, Figure 1b) is located in the upper upstream area of 102 

the Jiulong River, Fujian Province, China. Seventy-four percent (146,130 ha) of the county is covered 103 

with forests, where 79,346 ha are plantations. The region is affected by the South Asian tropical monsoon 104 

climate. In 2014, the average annual temperature in Nanjing County was 21.1°C, with an annual 105 

precipitation of 1,700 mm and 340 frost-free days. Red soil is its major soil type. 106 

The elevation in the study area varies significantly (0–1,566 m), with complex topography. There is also 107 

major spatiotemporal heterogeneity in forest composition, structure, and biomass. The main types of 108 

trees are Eucalyptus, Pinus massoniana, and Cunninghamia lanceolata. Recently the plantation area of 109 

Eucalyptus has increased rapidly, reaching 13,305 ha and increasing by 10,862 ha in one decade. 110 
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 111 

Figure 1. The study area is a typical example of a non-representative-sample problem. (a) Geographical 112 

location of the study area. (b) Spatial distributions of Eucalyptus plantations (red) and other major forests. 113 

(c) Spatial distributions of 30 sample plots (blue). 114 

2.2 Datasets 115 

The datasets included Forest Management and Planning Inventory (FMPI) data, sample plot data, and 116 

analytic-tree (destructive measurement) data. 117 

2.2.1 Forest Management and Planning Inventory (FMPI) data 118 

The FMPI data for the whole study area were provided by the Forestry Department of Fujian Province, 119 

China. By using large-scale sampling methods, this forest resource inventory collected detailed 120 

information about the characteristics and conditions of each type of forest. We selected the FMPI data of 121 

Eucalyptus plantation forest in this study. 122 

The FMPI data were stored by patch and all trees with a diameter at breast height (DBH) greater than 8 123 

cm were measured. The data contained (1) stand data (patch area, tree age which is the same for all trees 124 

in a given patch because they were planted at the same time, plantation density, mean DBH, mean tree 125 
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height, and total volume of each patch), (2) soil data (soil depth, humus depth, and site index of each 126 

patch), and (3) topographical data (elevation, slope degree, slope direction, and slope position of each 127 

patch). All variables were measured within each forest patch, with the average value being used as the 128 

factor value for each patch. The accuracy of forest patch attributes was tested based on differences in 129 

volume using a combined method of systematic and stratified samplings. A 95% sampling precision was 130 

required. Table B.1 lists the statistical description of the forest patch data. 131 

2.2.2 Sample plot data 132 

A total of 30 fixed sample plots were selected in the Yongfeng forest farm. The plots were located in the 133 

eastern part of the study area (Figure 1). The sample area accounted for 0.007% of the total area and 134 

featured local geographic plot clusters. Thus, the sample size was small and the sample units were not 135 

representative of the entire area. The 30 sampling plots with 10 age groups were built for Eucalyptus 136 

plantation patches. In each plot, tree height (H) and DBH of each tree were measured. In addition, mean 137 

plot-level variables were measured, including stand age, density, soil variables, and topographical 138 

variables. 139 

2.2.3 Analytic-tree data 140 

The analytic-tree data were derived from standard wood in 30 fixed sample plots. Three trees were cut 141 

in each of the plots, totaling 90 trees for 30 plots. We then calculated the biomass of each organ (foliage, 142 

stems, and roots) for each tree. In addition, DBH and H were measured. Table B.2 presents the data of 143 

90 parse trees. Details of the selection of standard wood and the cutting process are provided in S1 of 144 

Supplementary Material. 145 

2.3 Construction of tree-level allometric models  146 

All analyses were based on the underlying assumption that the relationship between the response and 147 

predictor variables in the sample data used to construct models was the same as the relationship in the 148 

entire population. Using 90 analytic-tree data, three age groups (age 1-2, age 3-5, age 6-10) of allometric 149 

models were constructed. Allometric models were then applied to each tree in each sample plot according 150 

to their ages, hence producing a reference AGB of sample plots. 151 
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2.4 Construct plot-level models to alleviate non-representative sample uncertainty 152 

The sample plots in this study were located in the east of the case study area and presented as non-153 

representative samples (Figure 1). Processing based on model screening was applied to alleviate the 154 

uncertainty caused by non-representative samples and consisted of the following four steps (Figure 2). 155 

156 

Figure 2. Structure of the optimal model screening scheme. 157 

2.4.1 Exploratory data analysis 158 

We first identified predictor variables used for creating the plot-level model. Based on our previous work 159 

(Ren et al., 2017), we selected plot-level environmental covariates including longitude and altitude, and 160 

forest attribute variables including forest distribution density, DBH, H, tree stem volume, timber volume, 161 

and forest age. The Pearson’s correlation coefficient was used to investigate the correlation between 162 

these variables and the reference AGB of sample plots. 163 

We then analyzed the spatial autocorrelation and spatial heterogeneity of AGB data from the selected 164 

non-representative sample plots. We used Moran’s I (Cliff and Ord, 1981), a commonly used global 165 

spatial autocorrelation index, to evaluate spatial autocorrelation among the reference AGB of sample 166 

plots. The spatial stratified heterogeneity of the reference AGB of sample plots was evaluated using a 167 

geographic detector, as proposed by Wang et al. (2010). 168 
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2.4.2 Split data sets 169 

We used the leave-one-out cross-validation method to split the 30 sample plots into 30 sets with each set 170 

including two groups of data: validation data (one plot AGB) and training data (AGB and predictor 171 

variables of another 29 plots), see Table B.3. The leave-one-out cross-validation method supposes that, 172 

in an N-sample dataset, each sample is taken as a test sample, and the other N-1 samples are taken as 173 

training samples. Thus, there are N iterations and we can obtain N datasets and N cross-validation results. 174 

2.4.3 Model training 175 

Seven models including three machine learning models (a, b, and c in Figure 3), one spatial statistical 176 

model (d+e in Figure 3), and three combined machine learning and spatial statistical models (a+e, b+e, 177 

and c+e in Figure 3) were developed and trained to simulate the reference AGB of sample plots (Figure 178 

3). As shown in Figure 3, the three machine learning models are support vector machine (SVM, a), radial 179 

basis function-artificial neural network (RBF-ANN, b), and random forest (RF, c) models. The spatial 180 

statistical model, named P-BSHADE, required reference plot AGB data, which was obtained from the 181 

localization biomass model (d). Thus, the single spatial statistical model (P-BSHADE, d+e) was 182 

comprised of “d” combined with “e” in Figure 3. For the combined machine learning and spatial 183 

statistical models, the reference plot AGB data in P-BSHADE was obtained from “a”, “b” or “c”. The 184 

three combined models are represented as RBF-ANN&P-BSHADE (a+e), RF&P-BSHADE (b+e), and 185 

SVM&P-BSHADE (c+e). Every model was trained based on each of 30 datasets, yielding a total of 30 186 

simulated AGB datasets for 30 sample plots (see Table B.3). 187 
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 188 

Figure 3. Framework for three machine learning (a, b, c), the PBSHADE (d+e), and three combined 189 

machine learning and PBSHADE (a+e, b+e, c+e) models for AGB estimation. 190 

 191 

(1) Machine learning 192 

The SVM is a type of categorized algorithms that improves the generalized machine learning ability by 193 

minimizing structural risks (so as to minimize the empirical risk and confidence intervals). In this way, 194 

the SVM can achieve adequate statistical trends from a sample set of limited size(Drucker et al., 1996). 195 

The basic components of the RBF-ANN include an input layer, a hidden layer, and an output layer, which 196 

are able to provide the best approximation for nonlinear functions and optimal global performance 197 

(Elanayar and Shin, 1994). The change from the input layer space to the hidden layer space is nonlinear, 198 

whereas the spatial transformation from the hidden layer to output layer space is linear. The RBF network 199 

not only has good generalizability, but also requires less calculation. In general, its learning speed is 200 

faster than that of other machine learning algorithms, therefore, the lengthy process of iterative 201 
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calculations found in the learning algorithm of back propagation neural networks and the possibility of 202 

falling into a local extremum can be avoided. 203 

The RF is a relatively new machine learning technique. As one of modern classification and regression 204 

methods, it is a combination of self-learning technologies (Breiman, 2001). The idea of combinatorial 205 

learning is to integrate several individual classifiers when classifying new instances and to determine the 206 

final classification of the instances by combining the classification results of multiple classifiers, so as to 207 

achieve better performance than that achieved by each individual classifier. 208 

The schematic function of machine learning is as follows 209 

y = ,,ଵݔ)݂ ,,ଶݔ ,,ଷݔ  ,ସ)  (1) 210ݔ

where y is AGB of the ݆-th sample plot simulated by a machine learning model, ݂(… )  is a machine 211 

learning model represented by a function of ݔ,   (݇ = 1, ,ସݔ ,ଷ , andݔ , ,ଶݔ , ,ଵݔ , (4…  are the 212 

longitude, the DBH, the tree height, and the forest age of the ݆-th sample plot, respectively. A specific 213 

description of the three machine learning models is given in S1 of Supplementary Material. 214 

(2) Spatial statistical model: P-BSHADE215 

A spatial statistic model, P-BSHADE, was also used to estimate sample plot AGB. In essence, the P-216 

BSHADE uses the reference AGB of sample plots and the weights of target sample plots AGB against 217 

reference AGB of each sample plot to obtain the AGB of the target sample plot. The P-BSHADE 218 

assumption requires knowledge of the spatial autocorrelation and spatial stratified heterogeneity of the 219 

reference AGB of sample plots. The specific mathematical expression of a P-BSHADE is as follows (Hu 220 

et al., 2013;Xu et al., 2013): 221 

ොݕ = ୀଵߑ        (2) 222ݕݓ

where ݕො is the estimated AGB of the ݆-th sample plot by the P-BSHADE (݆ = 1~30, ݊ =   is 223ݕ ,(30

the reference AGB of the ith sample plot (݅ = 1~30, ݊ =    is the weight (contribution) of 224ݓ , (30

reference AGB of i-th sample plot to the AGB to be interpolated of ݆-th sample plot (when ݆ = 1, ݅ =225 

2~30 ; when ݆ = 1, ݅ = 1, 3~30 ). A specific description of the P-BSHADE and the corresponding 226 

algorithm formulas are presented in S1 of Supplementary Material. 227 

(3) Combination of machine learning and spatial statistical models228 

P-BSHADE was separately integrated with three machine learning methods (SVM, RBF-ANN, and RF)229 

to form three combined models (SVM&P-BSHADE, RBF-ANN&P-BSHADE, and RF&P-BSHADE). 230 

The reference AGB of 30 sample plots were replaced by the estimates produced from machine learning 231 
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models. A combined model can be represented as follows 232 

ොݕ = ୀଵߑ                                  (3) 233ݕݓ

where ݕො is the estimated AGB of the ݆-th sample plot using the combined model (݆ = 1~30, ݊ = 30), 234 

݅)  is AGB estimated by machine learning based on the i-th sample plotݕ = 1~30, ݊ =   is 235ݓ ,(30

the weight (contribution) of ith machine learning estimation AGB of the sample plot to ݆-th sample plot 236 

AGB to be interpolated (when ݆ = 1, ݅ = 2~30; when ݆ = 1, ݅ = 1, 3~30). A specific description of 237 

the combined models and the algorithm formulas are presented in S1 of Supplementary Material. 238 

2.4.4 Model evaluation and comparison 239 

To evaluate the prediction performance of the seven models (SVM, RBF-ANN, RF, P-BSHADE, 240 

SVM&P-BSHADE, RBF-ANN&P-BSHADE, and RF&P-BSHADE), the AGB results simulated by the 241 

seven models were compared to the reference AGB of sample plot groups (AGB group M in Table B.3) 242 

in terms of three performance indicators: mean absolute error (MAE), mean relative error (MRE), and 243 

root mean square error (RMSE), as shown in Eq. (4)-(6). 244 

MAE = ൫∑ หݕ
 − หݕ

ୀଵ ൯/݊                             (4) 245 

MRE = (∑ ݕ| − |ݕ
ୀଵ ݕ)/( × ݊)                     (5) 246 

RMSE = ටቀ∑ ൫ݕ
 − ൯ݕ

ଶ
ୀଵ ቁ ݊⁄                           (6) 247 

where ݕ௧
 is the predictive value of the different models, ݕ is the AGB of the ݅th sample plot, and ݊ 248 

is the number of training datasets. 249 

Then, in terms of the calculated MAE, MRE, and RMSE, we identified the optimal model. 250 

2.5 Model application 251 

We applied the optimal model to each Eucalyptus forest patch and estimated the total AGB over all 252 

patches in the study area. In short, the relationship between the non-representative AGB data from the 253 

sample plots and their covariates were applied to each Eucalyptus forest patch in regional forests to 254 

estimate the AGB of the area. 255 

To validate the estimated AGB map, we compared it with the AGB map obtained by an allometric model, 256 

and 95% credible interval width (CIW) was calculated and mapped for AGB. The allometric model was 257 

expressed as the formula ܤܩܣ =  , where D is the breast height (m), H is the tree height (m), 258(ܪଶܦ)ܽ
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and a and b are constants. This model is acknowledged as a fast, simple, and basic method to calculate 259 

regional AGB. In our study, we used the AGB, mean H, and mean D of 30 sample plots to constitute the 260 

allometric model. 261 

3 Results 262 

3.1 Reference AGB of sample plots 263 

The range of reference AGB of these 30 sample plots was calculated as 1.02~135.79 Mg·ha−1·plot−1, 264 

with an average value of 47.34 Mg·ha−1·plot−1 and a standard deviation of 34.46 Mg·ha−1 plot−1. The 265 

coefficients of variation of the AGB for all the sample plots and for the 10 age categories were calculated 266 

as 0.73 and 0.07~0.37, respectively. 267 

3.2 Exploratory data analysis 268 

3.2.1 Selection of variables 269 

Figure 4 shows the correlation-coefficient matrix of variables. The following variables are strongly 270 

correlated with AGB: longitude (r = −0.56) , diameter at breast height (r = 0.79) , tree height 271 

(r = 0.84), trunk volume (r = 0.86), timber volume (r = 0.98), and forest age (r = 0.82). The AGB 272 

map for the Eucalyptus forest in Nanjing is based on the data from the forest resource inventory; therefore, 273 

the selected covariates should be accessible from the forest resource inventory dataset. Because the 274 

timber volume and stem volume were both estimated based on tree height and diameter at breast height, 275 

they were excluded as covariates for the AGB mapping. To summarize, four variables (longitude, 276 

diameter at breast height, tree height, and forest age) were selected as covariates for the AGB mapping 277 

of the Eucalyptus forest in the Nanjing region. Table B.4 lists the statistical descriptions of these 278 

covariates and the AGB statistics for the 30 sample plots. 279 
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 280 

Figure 4. Pearson’s correlation coefficients between AGB and other variables represented by numbers 281 

and squares. Negative numbers are negatively correlated and are colored in red, while positive blue 282 

numbers represent positive correlations. Larger absolute numbers, darker colors, and larger squares all 283 

indicate stronger correlation, while × indicates the variables were uncorrelated.  284 

3.2.2 Spatial autocorrelation test 285 

The spatial distribution of the reference AGB of the 30 sample plots shows a pattern of aggregation (see 286 

red part in Figure C.1 in the supplementary material and Table 1). In addition, because less than 1% of 287 

the AGB data is randomly distributed (see blue part in Figure C.1 and Table 1), the possibility of 288 

aggregation distribution is greater than that of random distribution. Furthermore, the null hypothesis is 289 

significantly rejected (p < 0.01). These results show that the spatial distribution of the AGB data displays 290 

aggregation and a pattern of strong spatial autocorrelation. 291 

 292 

 293 
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 294 

Table 1. Spatial autocorrelation and heterogeneity test 295 

Spatial autocorrelation  Spatial heterogeneity 

Items Values  Factors q-value p-value 

Moran I 0.36 
 AGB 0.87 <0.01 

 Longitude, long 0.38 <0.01 

z-score 4.78  Diameter at breast height, dbh 0.54 <0.01 

p-value 0.00 
 Tree height, h 0.63 <0.01 

 Age 0.92 <0.01 

3.2.3 Spatial heterogeneity test 296 

As shown in Table 1, the reference AGB of sample plots can be divided into three strata using ܭ means 297 

clustering with a ݍ value of 0.87 and a  value less than 0.01. These results indicate that the within-298 

layer variance is far less than the sum of variances among different strata. The results also show that the 299 

reference AGB of 30 sample plots is associated with obvious spatial differentiation. 300 

3.3 Performance of models 301 

We developed seven models for AGB estimation: three machine learning models (SVM, RBF-ANN, and 302 

RF), one spatial statistical model (P-BSHADE), and three combined models that integrated each machine 303 

learning method with the spatial statistical method (SVM & P-BSHADE, RBF-ANN & P-BSHADE, and 304 

RF & P-BSHADE). Furthermore, we used the leave-one-out cross-validation method to split the datasets 305 

and evaluated the prediction performance of these seven methods in terms of the indicators of MAE 306 

(Figure 5a), MRE (Figure 5b) and RMSE (Figure 5c). 307 
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 308 

Figure 5. Results of prediction performance of the seven different models. The MAE (a) and MRE (b) 309 

presented by boxplots for each prediction method (S1=SVM, S2=RBF-ANN , S3=RF, S4=P-BSHDE , 310 

S5=SVM & P-BSHDE, S6=RBF-ANN & P-BSHDE, S7=RF & P-BSHDE, ML=machine learning, Sp 311 

Stats=Spatial statistic), with the median (black line in the box), inter-quartile range (25%-75% in the 312 

box), the range 5%-95% (whiskers), and outliers (asteroids) labeled. The histogram distributions of 313 

RMSE for each prediction method are presented in Figure 5 (c). 314 

 315 

Compared with the calculated indicators by the P-BSHADE (MAE=18.37 Mg·ha−1, MRE=39.13%, and 316 

RMSE=14.08 Mg·ha−1), the forest AGB estimate obtained by the three machine learning methods has a 317 

MAE of 10.16~12.15 Mg·ha−1, a MRE of 24.79~26.69%, and a RMSE of 9.43~10.39 Mg·ha−1, which 318 

are substantially smaller than those obtained by the spatial statistical method. 319 

Among the three machine learning methods, the accuracy of RF is the highest and its three evaluation 320 

indexes are MAE=10.16 Mg·ha−1, MRE=25.93%, and RMSE=9.43 Mg·ha−1, which are not only 321 

substantially smaller than those for P-BSHADE, with MAE=18.37 Mg·ha−1, MRE=39.13%, and 322 

RMSE=14.08 Mg·ha−1, but are also smaller than most of those obtained by the other two machine 323 

learning methods with MAE=11.17~12.15 Mg·ha−1, MRE=24.79~26.69%, and RMSE=10.39~10.39 324 
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Mg·ha−1. 325 

Finally, compared with single machine learning methods, the combination of machine learning and 326 

spatial statistical models produced smaller MAE (5.68~10.14 Mg·ha−1), MRE (12.47~20.49%), and 327 

RMSE (5.30~9.63 Mg·ha−1). In addition, among the three combined methods, the combination of random 328 

forest and the spatial statistical model (RF&P-BSHADE) produced a higher accuracy with the smallest 329 

MAE (5.68 Mg·ha−1), modest MRE (12.97%), and smallest RMSE (5.30 Mg·ha−1). In contrast, the MAE 330 

(10.14 Mg·ha−1), MRE (20.49%), and RMSE (9.63 Mg·ha−1) of RBF-ANN&P-BSHADE were the 331 

highest among the three combined methods. Furthermore, compared with the RBF-ANN&P-BSHADE 332 

model, the RF&P-BSHADE model achieved a reduction of the cross-validated prediction error of 36.73–333 

44.99% (43.97% for MAE, 36.73% for MRE, and 44.99% for RMSE). 334 

3.4 Model application and mapping of AGB 335 

Figure 6(a) shows the spatial distribution of the AGB predicted by the RF&P-BSHADE. The AGB 336 

simulated by RF&P-BSHADE is 7.54~89.93 Mg·ha−1, with an average of 41.21 Mg·ha−1, a median of 337 

43.53 Mg·ha−1, a standard deviation of 18.83 Mg·ha−1, and a coefficient of variation of 45.69%. The 95% 338 

predictive distribution credible interval width (CIW) was calculated and is mapped for AGB in Figure 339 

6(b). Wide CIWs are distributed not only in the high-altitude areas, but also in the low-altitude areas 340 

which are easier to access. 341 

 342 

 343 

Figure 6. Map of AGB (a) and associated 95% credible interval width (CIW) (b) using RF&P-344 

BSHADE. This map shows two main areas: (1) red, study area of Eucalyptus plantations, and (2) 345 

green, outside of study area. 346 
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347 

The total AGB of the Nanjing area (2,980 forest patches) estimated by RF&P-BSHADE is 122,812.1 348 

Mg, and that estimated by the allometric model is 123,021.5 Mg. The relative percent difference in total 349 

AGB between the two methods is 0.17%. 350 

4 Discussion 351 

4.1 The significance of the AGB map at the regional scale 352 

In the past, ecologists would often assume that a limited number of sample plots could be used to 353 

represent a large range of landscapes, and such sample plots have long served as the main source of 354 

information for understanding the spatial distribution of AGB from the sample-plot scale to the regional 355 

scale. However, the research by Marvin et al. (2014) confirmed that the distribution of most AGB is non-356 

Gaussian, skewed, or multi-modal, especially in tropical and subtropical regions. Marvin et al. (2014) 357 

asserted that the most influential source of uncertainty is the non-representativeness in the sample design 358 

in the form of local geographic clusters of sample units. Therefore, AGB maps based on non-359 

representative samples introduce greater uncertainty. For example, in the Amazon basin, fewer than 360 

500 geographically concentrated sample plots were used to represent more than 109 hectares of forest, 361 

thus undoubtedly contributing to relatively large uncertainty (Mitchard et al., 2014). However, 362 

reducing the uncertainty in AGB maps to levels corresponding to high precision would require unrealistic 363 

sample sizes; for example, 44 low-lying 1 ha sample plots or more than 85 mountain 1 ha plots are 364 

required for every 100 ha on an AGB map (Mitchard et al., 2014). Inevitably, the area represented by 365 

these geographically concentrated plots is much less than the total area of the tropical forest represented 366 

in the final map. Provided that the limited sample size cannot represent the spatial heterogeneity of the 367 

large-scale area, subsequently, the AGB map cannot lead to reliable quantitative conclusions (Duncanson 368 

et al., 2015). 369 

To overcome the small sample size and non-representative sample problems which lead to 370 

geographically concentrated local plot clusters, we integrated the advantages of machine learning and 371 

spatial statistics at a regional scale (the key region linking the sample plots to the landscape scale) to 372 

construct an AGB map for a subtropical region. The approach provides not only a low-cost, high-373 

precision map of AGB whose estimates can be compared with those obtained from remote sensing, 374 
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ground observation, and model simulation, but also a scientific basis to assist forest-management 375 

decisions (e.g., the quantitative evaluation of carbon emissions from deforestation). Combining the 376 

advantages of machine-learning-based quantification of AGB and the complex nonlinear relationship 377 

between multiple environmental covariates, in conjunction with the proposed P-BSHADE model, the 378 

spatial correlation and heterogeneity of multiple environmental covariates are incorporated into the 379 

model, and the sample points are subsequently rectified, thus leading to the best linear unbiased estimate 380 

(BLUE) of the target site. Given that current multi-source databases cannot provide high-precision 381 

accuracy of mapping affected by the variations of AGB in subtropical areas, especially in regions with 382 

large variability, current studies mainly use fusion maps composed of different and independent data sets 383 

(Avitabile et al., 2015). Therefore, we provide the most accurate AGB map by data fusion of single 384 

analytic trees and forest resource inventory data which may be used to extrapolate AGB from the tree 385 

scale to the field and regional scales. 386 

4.2 Benefits of random forest in predicting an AGB map 387 

This study shows that among the three machine learning methods, the prediction accuracy of random 388 

forest in AGB mapping is the highest. This is consistent with the results from Gleason and Im (2012) 389 

and Fassnacht et al. (2014). For example, Fassnacht et al. (2014) combined lidar with multiple remote-390 

sensing data, such as airborne hyperspectral data from Karlsruhe, Germany, to compare the AGB 391 

prediction accuracy of five machine learning methods: stepwise regression, support vector machine, 392 

random forest, Gaussian processes, and K-nearest neighbor. The evaluation indexes for leave-one-out 393 

cross validation (i.e., R2 and RMSE) showed that the random forest method was associated with the 394 

highest prediction accuracy due to self-learning techniques of the random forest method. The random 395 

forest method clearly differs from the other machine learning methods in the flexibility of its conceptual 396 

design and method. In detail, the following advantages of random forest method may help improve the 397 

precision of predicting an AGB map (Breiman, 2001): (1) The random forest method can generate highly 398 

accurate classifiers, detect the interaction between variables, and also detect outliers and monitor data; 399 

(2) For unbalanced and categorized data sets, the random forest method can balance the deviations; (3) 400 

The random forest method can be extended to unlabeled data, which usually use unsupervised clustering; 401 

(4) In the construction of a forest, the random forest method can internally produce unbiased estimates 402 

for generalized deviations; (5) The random forest method contains a good way to estimate missing data. 403 
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In addition, if a large part of the data is missing, the random forest method can still maintain accuracy. 404 

4.3 Machine learning outperforms the spatial statistical model in prediction performance 405 

Regarding the AGB mapping of non-representative sample units, the machine learning methods 406 

outperformed the spatial statistical method (P-BSHADE) in the prediction accuracy. This may be because 407 

machine learning offers an array of supervised learning models capable of relating forest AGB to multi-408 

variables including forest variables and environmental variables via complex, potentially nonlinear 409 

functional relationships. Machine learning models appear to be good at tackling high-dimensional 410 

problems, particularly in areas where a lack of knowledge exists regarding the development of effective 411 

algorithms, and where programs must dynamically adapt to changing conditions (Görgens et al., 412 

2015;Latifi et al., 2010;Stojanova et al., 2010). In addition, the P-BSHADE model yielded negative 413 

weights between a small number of patches which might introduce slight uncertainty into the result (Xu 414 

et al., 2013). Our results were consistent with the study of Povak et al. (2014) and Li et al. (2011), who 415 

found that a machine learning method (RF) outperformed the spatial statistical method (e.g., 416 

Geographically Weighted Regression, Inverse Distance Weighting ) in terms of prediction accuracy. 417 

4.4 Why a combined model outperforms a single machine learning or spatial statistical model 418 

As expected, the prediction accuracy of the combined methods is higher than that of any single method 419 

(either a machine learning or a spatial statistical). In the previous sections, we described how the 420 

advantages of the P-BSHADE model can compensate for the inherent defects of machine learning. 421 

Virtually, the P-BSHADE model is also handicapped by the fact that the founding assumption does not 422 

conform to reality. The assumption is that the AGB is accurate in all other sampling plots except at this 423 

target sampling plot. In reality, each sampling plot has a varying degree of AGB uncertainty. In other 424 

words, the premise behind only using the P-BSHADE model is that the reference AGB data is accurate. 425 

Since the P-BSHADE model combined with machine learning uses the results optimized by machine-426 

learning as the reference values; therefore, it further improves the accuracy of AGB mapping. Machine 427 

learning methods or the P-BSHADE model have been adopted to model the uncertainty of temperature 428 

observation obtained by weather stations (Fassnacht et al., 2014;Paul et al., 2016;Xu et al., 2013). 429 

However, methods in these studies were adopted independently. Conversely, the combination of machine 430 

learning and spatial statistics can improve the prediction accuracy of AGB maps, which in turn can be 431 
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used as criteria for improving the accuracy of lidar remote-sensing technology and the results of 432 

ecological-process models. Eventually, these achievements can promote process-oriented projects of 433 

dynamic AGB predictions for large-scale forests in different forest-management scenarios. 434 

In addition, we compared the prediction accuracy of AGB mapping obtained by the combined spatial 435 

statistical and machine learning models with that reported by recent local and international research into 436 

AGB mapping. In the current literature on remote-sensing estimation of forest AGB, RMSE and R2 were 437 

commonly used as indexes for evaluating prediction performance when these studies looked at the 438 

importance of research sample size, data types, and forecasting methods (Fassnacht et al., 2014). In 439 

contrast, our study uses three conventional indexes for evaluating prediction performance: RMSE, MAE, 440 

and MRE. Because the main goal of this work is to predict regional forest AGB based on a small number 441 

of non-representative sample units, the criterion of model selection is to choose indexes summarized 442 

from sample prediction (such as RMSE), rather than choosing the goodness-of-fit R2 (Babcock et al., 443 

2015). Based on calculated RMSE indexes, the AGB prediction accuracy of the combined random forest 444 

and P-BSHADE method (5.30 Mg·ha−1) is higher than that obtained by Babcock et al. (2015)(34.21 445 

Mg·ha−1) in Colorado, USA, where the authors used a combination of airborne lidar, forest inventory 446 

database, and a Bayesian spatial hierarchical framework model and introduced spatial random effects to 447 

compensate for the residual spatial dependence and nonstationarity of model covariates. In addition, 448 

prediction accuracy of AGB in this work is also higher than that obtained by (Ene et al., 449 

2016)(RMSE=15.92 Mg·ha−1) in southeast Norway using a general linear regression model with airborne 450 

lidar and ground survey. Furthermore, the prediction accuracy of AGB in this work is also higher than 451 

those obtained by (Avitabile et al., 2015) in the tropics (Central America: 22.8±0.3 Mg·ha−1; Africa: 452 

83.7±2.5 Mg·ha−1) using fusion maps of multi-source databases combined with the random forest method. 453 

Our prediction performance is close to that obtained by Marvin et al. (2014) (6 Mg C·ha−1) who studied 454 

the Amazon tropical forests using a Monte Carlo method based on airborne lidar in conjunction with on-455 

site monitoring. Because RMSE is an absolute measure of the deviation between the predicted and the 456 

observed data, a large range of reference values may cause large deviations. With our combined methods, 457 

the calculated RMSE for the prediction accuracy of AGB is relatively small, which we attribute to the 458 

following reasons: (1) The reference AGB of 30 sample plots were calculated from each tree by the 459 

allometric model constructed with 90 most accurate analytic trees. There were no differences in the range 460 

of reference values. (2) Machine learning methods were used to quantify the complex nonlinear 461 
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relationship between AGB and multiple environmental covariates. (3) We applied a statistical method 462 

based on the hypothesis of spatial heterogeneity. Although the RMSE index was calculated by different 463 

studies using different datasets and prediction methods in different locations, most studies deemed that 464 

RMSE was the most commonly used indicator for measuring the prediction errors of remote-sensing 465 

AGB models and calculating the real AGB of forest sample plots. In contrast to other studies, our work 466 

reflects not only our attention to subtropical forests, but also the methodological differences in 467 

uncertainty mitigation, especially in comprehensively addressing the sources of uncertainty caused by 468 

multiple spatial and environmental covariates. 469 

4.5 Comparison of RF&P-BSHADE with the allometric growth model 470 

Because the allometric growth model can offer a fast and simple calculation method, it has been used as 471 

the basis for determining the benchmark map in quite a few studies. Nevertheless, spatial heterogeneity 472 

caused by multiple environmental covariates is not considered in the allometric model, as there may be 473 

errors in the AGB estimate and the errors may be propagated to affect the accuracy of the regional AGB 474 

benchmark map. This study shows that the relative percent difference in total AGB between RF&P-475 

BSHADE and the allometric method is 0.17%. Meanwhile, the MRE of AGB between the two methods 476 

ranged from 0.04% to 99.8% with an average of 19.93%. These results confirm that the RF&P-BSHADE 477 

estimates can be used as the main reference for regional-scale forest AGB maps. Furthermore, it also 478 

shows that the two methods are roughly the same in terms of overall estimates of AGB, but the local 479 

spatial distribution of AGB is different. The differences in AGB spatial distribution have been reported 480 

in many studies of AGB maps. Babcock et al. (2015) asserted that the main reasons for the differences 481 

in the spatial distribution of AGB maps between different methods include the following: (1) The 482 

structural framework of different research methods and schemes cannot truly reflect the actual situation 483 

of the forest growth. (2) The model is usually a simplification of an ecological process and ignores the 484 

spatial heterogeneity at the regional scale. (3) The model does not consider the influence of multiple 485 

environmental covariates (vegetation, topography, etc.) on forest growth in the region. 486 

4.6 Implications for AGB mapping and future research directions 487 

Based on the results of this study, we have the following two implications. First, to enhance the prediction 488 

accuracy of large-scale AGB mapping, we should not only reduce the effect of sampling uncertainty by 489 

22

https://doi.org/10.5194/bg-2019-202
Preprint. Discussion started: 11 June 2019
c© Author(s) 2019. CC BY 4.0 License.



improving the sampling method (by data treatment such as quantification of sampling errors and spatial 490 

filtering of existing data sets), but also solve the problems of nonlinearity, complexity, and spatial 491 

heterogeneity from the perspective of both model and algorithm. Second, in all probability, the sampling 492 

plots for the real values on the ground are only accessible in small sampling areas within non-493 

representative locations. Therefore, the combined use of spatial-differentiation-based statistical analysis 494 

and machine learning with nonlinear fitting should improve the prediction accuracy of AGB mapping. 495 

Additionally, more machine learning methods (such as KNN algorithms) can be tried and combined with 496 

P-BSHADE in future research to explore the best AGB mapping methods for large-scale forests. The497 

case we present herein is only for a pure Eucalyptus forest, and further research can create separate 498 

databases for different forest types in a complex tropical forest system to create a hierarchical mapping. 499 

If the identification of plant species is also included in field plot-based AGB assessment and monitoring, 500 

such identification information can also provide important information about changes in species 501 

composition. Overall, forest AGB mapping should not be static. Instead, it should be generated based on 502 

time sequences using an ecological-process model, so as to capture the changes in the AGB map database 503 

over time(Bustamante et al., 2016). In addition, more environmental and socio-economic datasets (for 504 

example, the meteorological variables that are missing in the present study) should be included and the 505 

correlation between them should be taken into account in the future work. 506 

5 Conclusion 507 

Currently, extrapolations and predictions based on sparse and/or non-randomly distributed forest plots 508 

cannot solve the problem of regional carbon balance in tropical forests. With the continuous development 509 

of remote sensing, ground observation, and methods of ecological-process modeling, the number of 510 

global and regional AGB datasets is continuously increasing. As criteria to judge the differences between 511 

different estimates of biomass, an AGB map not only provides a decision-making basis for forest 512 

managers to mitigate the negative impact of climate change, but also helps different countries evaluate 513 

and implement the policies and programs that aim at reducing regional-scale deforestation and forest 514 

degradation, so as to avoid more carbon emissions. 515 

Given the conditions of insufficient sample size and non-representative sample units that lead to 516 

geographic clusters of localities, we propose a method to integrate the advantages of machine learning 517 
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and spatial statistics, different datasets, and multiple environmental covariates, to solve the problem of 518 

uncertainty in regional AGB maps. Based on the most accurate data for single analytic trees and forest 519 

resource inventory data, we extrapolate the study from the single-tree to the regional scale. In this study, 520 

although the forest resource inventory data and the data of analytic-trees are solely available for 521 

Eucalyptus forests located in the Nanjing area of China, the proposed method and the findings can 522 

provide references for AGB remote sensing and simulation of ecological processes in different countries 523 

and in different types of tropical forests. 524 
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