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Abstract Dissolved iron (dFe) is essential for multiple biogeochemical reactions in oceans, such as 

photosynthesis, respiration and nitrogen fixation. Currently, large uncertainties remain on the riverine 

input of dFe to coastal oceans, especially in tropical rivers in Southeast Asia. In the present study, dFe 20 

concentrations and the distribution along the salinity gradient in the Rajang River and Estuary in 

Malaysia, and three blackwater rivers draining from peatlands, including the Maludam River, the 

Sebuyau River, and the Simunjan River, were determined. In the Rajang River, the concentration of 

dFe in fresh water (salinity<1) in the wet season (March, 2017) was higher than that in the dry season 

(Auguest, 2016), which might be related to the resuspension of sediment particles and soil erosions 25 

from cropland in the watershed. In the Rajang Estuary, an intensive removal of dFe in low salinity 

waters (salinity<15) was observed, likely due to the salt-induced flocculation and the absorption onto 

suspended particulate matters (SPM). However, dFe concentration enhancements in the wet season 

were found in several sampling sites, which may be related to the desorption from SPM and agriculture 

activities. limited records on the dFe concentrations w In the blackwater rivers, concentrations of dFe 30 

reached 44.2 μmol L-1, indicating a great contribution to dFe budgets from peatland leaching. The dFe 

flux derived from the Rajang Estuary to the South China Sea was estimated to be (6.4±2.3)×105 kg yr-

1. For the blackwater river, the dFe flux was approximately (1.1±0.5)×105 kg yr-1 in the Maludam River. 

The anthropogenic activities may play an important role in the dFe yield, such as the Serendeng 

tributary of the Rajang River, and Simunjan River, where intensive oil palm plantations were observed.  35 
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1. Introduction 

Iron (Fe) is an essential element for enzymes and deemed to be responsible for photosynthesis, 

respiration, and nitrogen fixation (Moore et al., 2009; Raven, 2010; Williams, 1981). In the past four 40 

decades, Fe has been identified as a micronutrient, significantly supporting primary productivity in oce 

ans (Brand and Sunda, 1983; Moore et al., 2009; Tagliabue et al., 2017). In particular, after a series of 

in-situ fertilization experiments, researchers verified the Fe limitation on the growth of phytoplankton 

and the critical role in the CO2 fixation (Boyd et al., 2007; de Baar et al., 2005; Martin, 1990).  

On a global scale, the riverine dissolved iron (dFe) flux transported to coastal oceans is estimated to 45 

be 1.5×109 mol yr-1 (Boyd and Ellwood, 2010; de Baar and de Jong, 2001; Jickells et al., 2005; 

Milliman and Farnsworth, 2011; Saitoh et al., 2008). Tropical rivers might contribute a significant 

amount of dFe based on studies in the Amazon River (Bergquist and Boyle, 2006; Gaillardet et al., 

1997), and the Congo River (Coynel et al., 2005; Dupré et al., 1996). However, few studies have 

assessed dFe concentrations and transport in tropical rivers in Southeast Asia, even though those rivers 50 

can account for about 30% of fluvial discharge to oceans (Milliman and Farnsworth, 2011). 

Estuaries, as the interaction zone between land source water and coastal oceans, can modulate dFe 

concentrations during the mixing, and hence change the magnitude of riverine dFe flux. There is a 

large volume of published studies on the behaviors of dFe in a wide range of estuaries (Boyle et al., 

1977; Herzog et al., 2017; Oldham et al., 2017; Zhu et al., 2018). In particular, some estuarine 55 

environments are enriched with organic matter resulting from high primary productivity and abundant 

terrestrial loading, as well as the great contributions from salt marshes and peatlands. These organic 

matters may deeply affect the distribution of riverine solutes (Hedges et al., 1997; Müller et al., 2015). 

Generally, estuaries act as a sink for dFe due to the flocculation between the cations and the high 

molecular colloids (Bergquist and Boyle, 2006; Boyle et al., 1977; Stolpe and Hassellov, 2007). The 60 

magnitude of dFe removal in the estuary can be quantified by removal factors (RF). However, in some 

rivers with high concentrations of dissolved organic matter (DOM), conservative distribution of dFe 

was found, because of the chemical connection of Fe to DOM (Oldham et al., 2017; Sanders et al., 

2015; Stolpe et al., 2010). More importantly, large populations in estuaries are frequently observed. 

Anthropogenic activities, such as coal mining, ore industry, and agriculture activities, could 65 

significantly impact concentrations and distributions of dFe in estuaries (Braungardt et al., 2003; 
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Morillo et al., 2005; Xue et al., 2016). 

Currently, only limited records on the dFe concentrations were provided in peatland-draining rivers 

(Batchelli et al., 2010; Krachler et al., 2010; Oldham et al., 2017). The dFe distribution in the peatland 

-draining estuaries is also largely unknown. Southeast Asia hosts a large area of peatlands along with 70 

the coastal belts, with a coverage of approximately 9% of the global peatlands area (Dommain et al., 

2011; Joosten, 2012). For dFe research in Malaysia, to the authors’ best knowledge, the dFe 

concentration was only determined (1) in the fresh water at Pelagus, where the high concentration of 

dFe was observed, resulting from the sediments (Siong, 2015); (2) in Bebar, a blackwater river in 

Pahang, Malaysia, the concentration of dFe was up to 30 μmol L-1. But the information about the 75 

distribution and biogeochemistry of dFe was missing (Shuhaimiothman et al., 2009). Such knowledge 

limitation may markedly influence the regional dFe budget estimation.  

To fill this gap, two cruises were conducted in Sarawak state, Borneo, Malaysia, including the largest 

river in Sarawak State (the Rajang River and Estuary) and three blackwater rivers. This study aims to 

determine (1) the concentration and distribution of dFe in the peatland-draining rivers and their 80 

estuaries, (2) the seasonal variation in the concentration and distribution of dFe in the Rajang River 

and Estuary, (3) dFe yield and the magnitude of riverine flux to the coastal areas. 

2. Materials and methods 

2.1 Study area 

Malaysia has the second largest peatland areas (about 2.6×104 km2) in Southeast Asia (Mutalib et al., 85 

1992). Sarawak State accounts for the largest peatland area of Malaysia and has a widespread of 

blackwater rivers (Joosten, 2012; Wetlands International, 2010). Approximately 23% of the peatland 

is defined as relatively undisturbed in Malaysia, in which 17% are in Sarawak (Wetlands International, 

2010). Since the mid-1980s, rubber, textiles, metals, food processing, petroleum, and electronics have 

been developed, and have become the major economic support in Malaysia (Trade Chakra, 2009). As 90 

a response, the deforestation rate in Sarawak increased to 2% yr-1 from 1990 to 2010 (Miettinen et al., 

2012), and this rate is attributed to oil palms and rubber tree plantations (Joosten, 2012).  

The Rajang River, i.e. the largest river in Malaysia, flows from the Iran Mountain to the South China 

Sea (Fig. 1a, 1b), with a length of 530 km. The drainage basin is 51×103 km2 (Milliman and Farnsworth, 
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2011; Staub and Esterle, 1993). The drainage area of the Rajang Estuary is 6,500 km2, and 50% is 95 

covered with extensive peat in a depth of greater than 3 m (Staub and Gastaldo, 2003). The Rajang 

River were around 5-10 m and 8-20 m deep in the dry season and the wet season respectively, whereas 

the tributaries <5 m deep in the Rajang Estuary. The flow velocity ranged from 0.2-0.6 m s-1 and 0.8-

1.2 m s-1 at mainstream in the dry season and the wet season respectively (Tawan et al., 2019). The 

climate in the Rajang watershed is classified as the tropical ever-wet type (Morley and Flenley, 1987), 100 

while the precipitation varies between the dry and the wet seasons. The discharge rate for the Rajang 

River reached 6000 m3 s-1 in the wet season (December to March), with an average discharge of about 

3600 m3 s-1 (Jeeps, 1963; Staub et al., 2000; Staub and Gastaldo, 2003). Sibu city is assumed to be the 

boundary line of the Rajang drainage basin and the Rajang Estuary according to the physiographic 

condition (Staub et al., 2000; Staub and Esterle, 1993), and the saltwater intrusion could reach the 105 

downstream of the city (Jiang et al., 2019). Apart from mineral soils from the upper stream, the Rajang 

Estuary also receives materials from the adjacent hill regions and the Retus River (Staub and Gastaldo, 

2003). There are several tributaries for the Rajang River in the estuary, including Igan, Hulu Serendeng 

(further separated into two tributaries: Paloh and Lassa), Belawai and Rajang. The Igan tributary is the 

major outlet for freshwater (Jiang et al., 2019). Mangroves distribute in the brackish-water area in 110 

southwestern of the estuary near the Rajang and Serendeng tributary, and some freshwater trees like 

Casuarina are observed in the northeastern and coastal area (Scott, 1985). The thick coverage of 

vegetation, especially mangroves, in the Rajang Estuary produces the high-ash, high-sulfur, degraded 

sapric peats (Lampela et al., 2014). Tide is diurnal to semidiurnal type in the Rajang Estuary and could 

extend to Sibu city (Staub et al., 2000; Staub and Gastaldo, 2003). The range increases from the 115 

northeast (1.5 m) to the southwest (2.5 m).  

The substantial fraction of the surface sediment was peat deposits with a maximum depth of 15 m in 

the Rajang Estuary (Staub and Gastaldo, 2003). The Rajang riverine freshwater drains the mineral soil, 

so the mean grain sizes of the sediment were much coarser than the Rajang Estuary, where peatland is 

dominant in the delta region (Wu et al., 2019). Sediments in the Rajang Estuary are composed of gley 120 

soils, podzols soils, and alluvia soils (Staub and Gastaldo 2003). Gley consists of mixed-layered illite-

smectite, illite, and kaolinite miner amount of chlorite. Gley is frequently observed in the central and 

southwestern parts of the estuary (Staub and Gastaldo, 2003). Podzols is dominant of gray-white to 
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white clay, which is composed of kaolinite and illite. Podzols is found in some low-lying areas and the 

landward part of the Rajang Estuary (Staub and Gastaldo, 2003). Alluvial soils, which is made up of 125 

illite, smectite, and kaolinite, alluvial soils as found in the landward part in the coastal area of the 

estuary (Staub and Gastaldo, 2003). The input of total suspended solids from the Rajang River was up 

to 30 Mt yr-1 (Staub and Gastaldo, 2003). 

Three small rivers, Maludam, Simunjan, and Sebuyau are black water rivers, characterized by tea-

color, acidic, and oxygen deficit as described by Kselik and Liong (2004). The Maludam River, the 130 

majority of which located in the Maludam National Park (the second-largest park in Sarawak), is a 

pristine river with minor human influences. The peat thickness in the river bed reaches 10 m (Forest 

Department, 2014). The catchment of Maludam River is 91.4 km2 and the average discharge is 4.4±0.6 

m3 s-1 (Müller et al., 2015). However, the other two blackwater rivers have been undergoing severe 

human activities disturbance, mostly from the plantations of commercial crops like oil palm and sago, 135 

as shown in Fig. 1d (Wetlands International, 2010). The grain size of sediments in blackwater rivers 

was much lower and received more woody material than that of the Rajang River (Wu et al., 2019). 

2.2 Sample collection and process 

The sampling stations are outlined in Fig. 1. The surveys in the Rajang River and its Estuary were 

conducted in August 2016 (the dry season) and March 2017 (the wet season). Each survey lasted 4 to 140 

5 days, covering both flooding tides and ebbing tides. The samples included river, brackish water in 

different river tributaries and coastal saline water. In the Rajang watershed, the selection of sampling 

stations depended on salinity gradient, anthropogenic activities, and water depth. In March 2017, we 

failed to collect samples in the upstream of the Rajang River and the saline samples in Igan tributary 

mainly due to the shallow water depth and strong current. However, three blackwater rivers, as 145 

aforementioned, were included in the cruise. During two cruises, surface water samples were collected, 

using a pole sampler. The front of the sampler was attached to a 1 L high-density polyethylene bottle 

(Nalgene). The length of the pole was 3-4 m to avoid the contamination from the ship. The bottom 

samples were collected using a pre-cleaned 5 L Teflon-coated Niskin-X bottle hung on a nylon rope. 

Due to the limited sampling time and condition, only 3 bottom samples in August 2016 and 1 bottom 150 

sample in March 2017 were collected. Water samples were filtered through acid-cleaned 0.4 μm pore 

size polycarbonate membrane filters (Whatman) into a polyethylene bottle (Nalgene), then frozen at -
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20℃ and packed in triple bags. The samples then thawed at room temperature in the clean laboratory 

and acidified with ultrapure HCl to pH 1.7 in an ultra-clean lab to transform and preserve metal Fe in 

soluble inorganic form (Lee et al., 2011). All bottles used in the sample collection and storage were 155 

prepared in the clean laboratory, following the procedure of rinsing with Milli-Q water, immersing in 

2% Citranox detergent for 24 h, rewashing with Milli-Q water for 5-7 times, leaching for 7 days in 10% 

HCl, rinsing with Milli-Q water 5-7 times again, filling 0.06 mol L-1 ultrapure HCl for 2 days at 60°C, 

and sealing in plastic bags.  

2.3 Sample analyses 160 

The concentration of dFe was preprocessed using the single batch resin extraction and the isotope 

dilution method. The acidified samples were preprocessed by the single batch nitrilotriacetate (NTA)-

type chelating resin (Qiagen Inc., Valencia, CA). The dissolved Fe can be recovered quantitatively 

after the oxidization of Fe2+ to Fe3+ by the addition of H2O2 (Lee et al., 2011). It was quantified on a 

multi-collector inductively coupled plasma mass spectrometer in high-resolution mode (Neptune, 165 

Thermo). The inlet system contained an Apex IR desolvator (AEI) with a perfluoroalkoxy 

microconcentric nebulizer (ESI) at a solution uptake rate of 50 μL min-1. All of the tubes used for the 

analyses were acid leached for two days with 10% HCl at 60℃, rinsed 5 times with Milli-Q water, 

later filled with 0.06 mol L-1 ultrapure HCl in a class 100 flow bench, and leached for another 2 days 

at 60℃. The analytical procedural blank and detection limit (three times the standard deviation of the 170 

procedural blank) were both 0.06 nmol L-1. The accuracy of the method was tested by analyzing 

intercalibration samples including one open ocean SAFe D1 and one estuary water SLEW-3. Measured 

dFe concentrations for SAFe D1 and SLEW-3 were 0.66±0.05 nmol L-1 and 10.0±0.4 nmol L-1 

compared to consensus values of 0.70±0.03 nmol L-1 and 10.2±1.2 nmol L-1 (Zhang et al., 2015).  

During the field investigation, salinity, temperature, pH, and dissolved oxygen (DO) concentrations 175 

were detected in-situ with a probe (AP2000, Aquared, U.K.). In the Rajang River, suspended 

particulate matters (SPM) samples were collected with pre-combusted 0.7 μm pore size Whatman 

GF/F filters, and SPM concentration was calculated by the weight difference of filters before and after 

filtration. Dissolved organic carbon (DOC) samples were collected by filtering through 0.2 μm pore 

size nylon filters. For the samples collected in August 2016, DOC concentrations were determined via 180 

an Aurora 1030W total organic carbon analyzer at the Centre for Coastal Biogeochemistry at Southern 
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Cross University (Lismore, Australia). Reproducibility for concentrations was ±0.2 mg L-1. For the 

samples collected in March 2017, DOC concentrations were determined by the high-temperature 

catalytic oxidation method with Total Organic Carbon Analyzer (Shimadzu) at the State Key 

Laboratory of Estuarine and Coastal Research in East China Normal University (Shanghai, China), 185 

and the coefficient of variation was 2% (Wu et al., 2013). 

2.4 The calculation of dFe flux and yield 

To estimate the magnitude of dFe flux from tropical rivers to coastal water, the following equation was 

adopted: 

Q = C × V × (1 − 𝑅𝐹)    (1) 190 

where Q is dFe flux, C is the mean dFe concentration at freshwater endmember (S<1), V is the river 

discharge, RF is the removal factor, based on the ratio of the integration area of dFe concentration 

versus salinity to that of the theoretical dilution line intercepts (Hopwood et al., 2014). Riverine dFe 

yield is the ratio of dFe flux to the drainage area. 

3. Results  195 

3.1 Hydrographic properties in the Rajang and blackwater rivers 

In August 2016 (the dry season), the salinity in the Rajang water samples ranged from 0.0 to 32.0, 

which increased from Sibu city to the coastal zone (Table 1). In March 2017 (the wet season), the 

salinity varied from 0.0 to 30.1 (Table 1). The salinity also increased along the water flow pathway  

in the Rajang Estuary with an exception in the Rajang tributary. The concentration of SPM ranged 200 

from 24.2 mg L-1 to 327.2 mg L-1 and decreased from freshwater to seawater, but the highest turbidity 

water varied among channels and seasons. In August 2016, the SPM peak was observed near the river 

mouth in Serendeng tributary but moved landward in other tributaries (Fig. 2b). In March 2017, the 

peak of SPM was located in freshwater in the Rajang tributary. DO in March 2017 (mean: 6.1±0.7 mg 

L-1) was higher than August 2016 (mean: 3.8±0.6 mg L-1), and decreased along the transportation in 205 

the Rajang drainage basin as shown in Fig. 2c. The DO distribution in the Rajang varied between two 

seasons. The high value was found in the west estuary in March 2017 (Fig. 2c, 2h). Water pH in the 

Rajang increased along the salinity gradient with a mean value of 7.1±0.5 (August 2016) and 7.1±0.6 

(March 2017). As outlined in Fig. 2d and 2i, the seasonal variation of pH was not significant. 
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In blackwater rivers, salinity ranged from 0 to 23.5 in the Maludam River and 0 to 13.6 in the Sebuyau 210 

River. The samples in the Simunjan River were only fresh water. All three blackwater rivers were 

anoxic in freshwater endmember, with DO<2 mg/L. The mixing between river water and ocean water 

markedly increased DO. Moreover, pH in these blackwater rivers was relatively low, especially in the 

Maludam River (minimum 3.7). The distributions of these properties in blackwater rivers are shown 

in Supplement 1. 215 

3.2 dFe in the Rajang River and Estuary 

The contour of dFe in the Rajang surface water is shown in Fig. 2. We adopted Sibu as the separation 

of the Rajang River and the Rajang Estuary. The dFe concentrations in the Rajang River ranged from 

3.3 to 7.3 μmol L-1 (mean: 5.5±1.7 μmol L-1) in August 2016, and ranged from 4.2 to 8.3 μmol L-1 

(mean: 6.4±2.9 μmol L-1) in March 2017. In the Rajang Estuary, the dFe concentration ranged from 220 

1.7 nmol L-1 to 7.0 μmol L-1 (mean: 1.1±2.2 μmol L-1) and 4.2 nmol L-1 to 11.3 μmol L-1 (mean: 4.2±4.0 

μmol L-1) in the dry season and the wet season, respectively. The concentration of dFe in the wet season 

was higher than that in the dry season both in the Rajang River and the Rajang Estuary. 

The relationships between dFe concentrations and other factors, such as salinity, SPM, DOC, DO and 

pH in the Rajang Estuary can be found in Fig. 3. The sites in tributary Paloh and Lassa were combined 225 

as Serendeng tributary, and the tributary Belawai and Rajang were combined as the Rajang tributary. 

In the dry season, dFe concentration decreased exponentially in low salinity water (salinity<15) though 

we did not include the tidal influence. A linear relationship was found between dFe and SPM in the 

low salinity area (R2=0.29, p<0.05). In the high salinity area (S>15), dFe tended to be conservative 

(Fig. 3a), and displayed a linear relationship with DOC (R2=0.45, p<0.05), DO (R2=0.50, p<0.05), and 230 

pH (R2=0.39, p<0.05). In the wet season, dFe concentration was higher in Igan tributary compared to 

other two branches. There was an intensive dFe addition between salinity 5-15, mainly in the 

Serendeng tributary (Fig. 3a). Specifically, the linear correlation between dFe and SPM was found in 

the water samples when salinity was <15 in the wet season (R2=0.11, p<0.05) (Fig. 3b), especially in 

the Serendeng distributary. Moreover, a significant positive relationship between dFe and DOC was 235 

also identified in the wet season in low salinity waters (R2=0.61, p<0.001) (Fig. 3c). DO was negatively 

correlated with dFe in high salinity area (R2=0.97, p<0.001), with a similar pattern in the dry season. 

The relationship between pH and dFe was not significant in the wet season.  
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3.3 dFe in blackwater rivers 

The average dFe concentrations in three blackwater rivers were 14.6±6.7 μmol L-1 (the Maludam 240 

River), 44.2±11.8 μmol L-1 (the Simunjan River), and 17.6±12.0 μmol L-1 (the Sebuyau River). The 

dFe concentration increased along the river flow (Fig, 4a), but decreased during the mixing. The 

distribution of dFe in blackwater rivers tended to be conservative in the estuary of Maludam and 

Sebuyau (Fig. 4b), which was different from the Rajang Estuary. Moreover, there were significantly 

positive correlations between dFe and DOC in the Sebuyau River and the Simunjan River (Fig. 4c), 245 

while the correlation between dFe and DOC in the Maludam River was weak due to an outlier in the 

high salinity region (S=20.0).  

4. Discussion 

4.1 Seasonal and spatial variation of dFe in the Rajang River 

In the dry season, dFe concentrations in the Rajang water (near the Sibu city) ranged from 2.8 to 7.3 250 

μmol L-1. In the wet season, dFe concentrations increased (Fig. 2). As the precipitation enhanced in 

the wet season, the strong water flow from the upper stream scoured the watershed, carrying the Fe-

enriched terrestrial particles to the drainage basin in the wet season (Meade et al., 1985; Taillefert et 

al., 2000). A great amount of dFe may result from the dissolution of these particle iron originating from 

mechanical and chemical weathering, which leads to a significant addition of dFe in the wet season 255 

(Bhatia et al., 2013). Moreover, the agriculture activities in the watershed, such as tillage, can result in 

rapid leaching in the wet season (Lehmann and Schroth, 2003; Tabachow et al., 2001). The changes 

in the soil structure were considered to enhance soil erosion in the cropping land, especially in 2017 

(the occurrence of La Niná events) (Jiang et al. 2019). Additionally, metal elements were transported 

from the catchment to the Rajang River (Johnes and Hodgkinson, 1998; Withers et al., 2001). In 260 

addition, the changes in soil structure during agriculture activities can influence the exchange route of 

dissolved matters in vertical profiles; hence the large proportion of dFe is likely to be transported 

during the rainfall via water exchanges (Haygarth et al., 1998; Johnes and Hodgkinson, 1998). Such 

dFe addition from the cropland was also observed in many other study areas, like the Krishna river 

drainage area (Kannan, 1984), the Palar and Cheyyar river basin (Rajmohan and Elango, 2005), and 265 

the Guadalquivir River (Lorite-Herrera and Jiménez-Espinosa, 2008). Eventually, the stream-borne 
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dFe injected into the Rajang River via hydrological connections in the riparian ditches, and hence 

contributed a quantity of dFe to rivers from terrestrial runoff and flood discharges (Yan et al., 2016).  

4.2 Seasonal and spatial variation of dFe in the Rajang Estuary 

In the Rajang Estuary, there was an intensive removal of dFe when the salinity<15, especially in the 270 

dry season (Fig. 3a). This may be mainly related to the flocculation of the negatively charged colloids 

with cations in the fresh-saline water mixing. This has been observed in many rivers and simulation 

experiments (Boyle et al., 1977; Oldham et al., 2017; Zhu et al., 2018). In addition, dFe was negatively 

correlated with SPM in low salinity waters (Fig. 3b), indicating that the dFe removal may also be 

linked to the absorption of SPM as described in other researches (Beusekom and Jonge, 1994; Homoky 275 

et al., 2012; Zhang et al., 1995). However, there was an exceptionally high dFe concentration in the 

samples of salinity 5-15 in the Serendeng tributary in the wet season. On the one hand, it may result 

from peatland soils in the adjacent area, because peatland soils host abundant dFe and organic ligand, 

and these organic compounds could enhance the solubility of Fe during the transport (Krachler et al., 

2010; Oldham et al., 2017; Shuhaimiothman, 2009). On the other hand, there could be other processes 280 

for dFe addition in the Rajang Estuary, such as the desorption of SPM-bounded Fe to the river water.  

The balance between adsorption and desorption of trace metal ions onto/from SPM is complicated. 

These two processes could occur simultaneously and be influenced by different environmental 

conditions, like SPM content, pH, salinity, and adsorption strength between ions and SPM (Hatje et 

al., 2003; Jiann et al., 2013; Zhang et al., 2008). It has been confirmed that the partition coefficient of 285 

dFe decreased with increasing SPM concentration and became inversely proportional to the log of the 

SPM concentration, termed as particle concentration effect (Benoit, 1995; Jiann et al., 2013; Turner 

and Millward, 2002). Furthermore, Zhu et al. (2018) suggested that desorption from particles was the 

main reason for dFe enhancement in the river mouth area of the Changjiang Estuary. In the wet season, 

the samples in the Serendeng tributary were collected during a spring tide. Besides, the intensive 290 

plantation and agricultural activities in Serendeng tributary modified the soil structure and leached a 

considerable amount of SPM at flood tide. In Fig. 3a, there was a great dFe and SPM increase at 

salinity 5-15. Given a similar level in SPM content among the Rajang, Texas River (Jiann et al., 2013) 

and the Changjiang Estuary (Zhu et al., 2018), we assumed that the dFe enrichment in this special 

condition may be related to the desorption from the riverine SPM, though we lacked solid supports 295 
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like the mixing experiment. In addition, the limited bottom samples in the Rajang Estuary also revealed 

that the dFe addition within salinity 5-15 in the wet season might also result from the resuspension of 

bottom sediments, for the bottom dFe concentration was much higher than the surface dFe 

concentration.  

In the high salinity zone (S>15), the dFe tended to be conservative. The positive relationship between 300 

dFe and DOC in the dry season (Fig.3c) may be a mirror of the chemical association between dFe and 

organic matter. Specifically, the combination between dFe and organic matter, especially the pelagic 

organic matter, can resist to salt-induced aggregation and lead to an input of bioavailable dFe to the 

coastal zone (Breitbarth et al., 2009; Krachler et al., 2005; Stolpe and Hassellov, 2007).  

The multiple linear regression analysis of dFe and environmental factors, including salinity, SPM, 305 

DOC, DO, and pH (the dry season: R2=0.52, p<0.05; the wet season: R2=0.73, p<0.05), revealed the 

observed pattern and explanations for more parameters. It shows that salinity and SPM were the main 

factors for the distribution of dFe in the Rajang Estuary (p<0.05). The correlation between dFe and pH 

was limited in the wet season, suggesting a little impact of pH on dFe. But in the dry season, the 

concentration of dFe was negatively correlated with pH (Fig. 3e), because Fe-enriched sediments can 310 

be acidized and mineralized by inorganic acids (H2CO3, HNO3, and H2SO3) and organic acids (oxalic 

acid, citric acid, and siderophore) generated from the chemical weathering and biological progress 

(Banfield et al., 1999; Lerman et al., 2007). The biogeochemical behavior of dFe in the Rajang River 

and Estuary that we discussed above is summarized and conceptualized in Fig. 5a. 

4.3 dFe in blackwater rivers 315 

In blackwater rivers, the dFe was accumulated from the upper stream to the downstream before mixing. 

In the mixing zone, high concentrations of dFe were rapidly diluted (Fig. 4b). As evidenced by the 

watercolor, these peatland-draining rivers are characterized by extremely high levels of terrigenous 

DOM (Martin et al., 2018; Zhou et al., 2018). Given such high concentrations of DOM and the positive 

correlation between dFe and DOC (Fig. 4c), peatland should be a strong source for dFe. Consequently, 320 

the gradual enrichment of dFe along the rivers was observed. Compared with the Maludam River, i.e. 

the drainage from an undisturbed peatland, dFe concentrations in the Sebuyau River and the Simunjan 

River were significantly higher (Table 1). The difference in the dFe concentration among three 

blackwater rivers may come from the variation of environmental parameters around the drainage basin, 
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especially the vegetation types and anthropogenic activities. The oil palm oil plantations covered a 325 

significant area in the watershed of the Sebuyau River and Simunjan River, as shown in Fig.1d. In 

order to stimulate seedings in plantations, the empty fruit bunches and the oil palm mill effluent were 

returned to the cropland after oil extraction (Carron et al., 2015; Nelson et al., 2015). The intensive 

agriculture activities, such as tillage, further enhanced their decomposition, and these activities might 

improve the mechanical and chemical weathering in the plantation areas, and increased dFe 330 

concentration in the Sebuyau River and the Simunjan River as discussed in chapter 4.1. 

During the cruise, the high salinity samples were not obtained in the Maludam River and the Sebuyau 

River. For the samples with the salinity range from 0 to 20.0, the dFe removal was not significant, 

which is markedly different from the trend obtained in the Rajang Estuary (Fig. 4b). The significant 

positive correlation between dFe and DOC concentration revealed the tight connection between dFe 335 

and organic ligands in blackwater rivers (Fig. 4b). Recent studies have also pointed out that organic 

ligands originating from peatland enhanced the iron-carrying capacity of the river water (Krachler et 

al., 2005; Oldham et al., 2017). Approximately 20% of dFe didn’t flocculate during a laboratory mixing 

experiment (Krachler et al., 2010). The biogeochemical behavior of dFe in blackwater rivers that we 

discussed above is summarized and conceptualized in Fig. 5b. Compared with the Rajang Estuary, less 340 

dFe was flocculated from the blackwater rivers estuary due to the complexing with organic matter, and 

the desorption of SPM was negligible during the mixing process. Remineralization of peatland soil is 

a great source of dFe in blackwater river, while the resuspension of sediment plays a critical role in the 

Rajang River system. 

4.4 dFe flux and yield in tropical rivers 345 

For the Rajang River, the mean concentration of the river endmember of two seasons was 5.5±2.0 

μmol L-1, and the mean removal factor was 98.0±0.6%. The removal factor of dFe varied on a global 

scale. The Rajang RF is predominant among the recent results (Table 2). Coupled with the discharge 

rate (about 3600 m3 s-1), the dFe flux from the Rajang River was estimated to be (6.4±2.3)×105 kg yr-

1. For the Maludam River, the concentration of the river endmember was 14.6±6.8 μmol L-1 and RF=0 350 

due to the conservative distribution. The dFe flux in the Maludam River was approximately 

(1.1±0.5)×105 kg yr-1, produced from 432 km2 peatland in the Maludam National Park. It is the same 

magnitude with the Rajang River dFe flux, suggesting that the dFe input was considerable in 
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blackwater rivers. Malaysia hosts peatland area about 25,889 km2, the dFe flux can be approximately 

(6.6±3.0)×106 kg yr-1 on the basis of the yield from the Maludam River. Consequently, the blackwater 355 

rivers contributed 10 times greater dFe than the Rajang River to the coastal zone in Malaysia, even 

though their discharges are small (Milliman and Farnsworth, 2011). This terrestrial dFe may play an 

important role in supporting primary productivity in the adjacent ocean (Breitbarth et al., 2009; Laglera 

and Berg, 2009). 

The concentration and yield of dFe varied among tropical rivers as shown in Fig. 6. Compared with 360 

subtropical rivers, like the Changjiang (Zhu et al., 2018) and the Mississippi River (Shiller, 1997; 

Stolpe et al., 2010), the tropical rivers contributed a greater amount of dFe to the coastal area with 

higher dFe yields, such as the Amazon River (Aucour et al., 2003; Bergquist and Boyle, 2006) and the 

Congo River (Coynel et al., 2005; Dupré et al., 1996). For rivers that hold a similar discharge rate and 

drainage area with the Rajang River, like the Fraser River, a temperate river in Canada, dFe yield were 365 

significantly lower than that derived from the Rajang River (Cameron et al., 1995). The high 

concentration and yield in tropical rivers likely results from intensive weathering and leaching of rocks 

and sediments, as well as the decomposition of abundant plantations under high temperatures and 

heavy precipitations (Bergquist and Boyle, 2006; Fantle and Depaolo, 2004). Compared with other 

tropical rivers, such as the Amazon River and the Congo River, the dFe yield was lower in the Rajang 370 

River. This may be related to the difference in plantation types (Aucour et al., 2003; Coynel et al., 

2005; Dupré et al., 1996). The peatland soils in the Rajang Estuary may contribute to the higher dFe 

yield, as the Niger River passing through a dry savanna (Picouet et al., 2002). Different from the Niger 

River, the Senaga River drain a savannah-rainforest area, and contain a considerable amounts of SPM, 

similar to the Rajang River. The dFe yield was comparable with the Rajang River. As for some small 375 

tropical rivers, like the Swarna River (Tripti et al., 2013), the Nyong River (Olivié-Lauquet et al., 

1999), the Periyar River (Maya et al., 2007) and the Chalakudy River (Maya et al., 2007), dFe yields 

and DOC concentrations are higher than the Rajang River. In these small tropical rivers, the drainage 

basins were covered with organic matter enriched sediments, which may be a great source for dFe flux.  

In blackwater rivers, the dFe yields were much higher than the records from the Rajang River. The 380 

thick peatland soils were likely to be the main reason of the high dFe concentration in blackwater rivers, 

as discussed in the Kiiminkijo River (Heikkinen, 1990), the Tannermoor River (Krachler et al., 2005), 
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the Halladale River (Krachler et al., 2010), the Bebar River (Gastaldo, 2010), and the Taieri River 

(Hunter, 1983) (Fig. 6b). The human impacts, such as agricultural activities and the plantations of oil 

palm, may also contribute to a bulk of dFe flux to blackwater rivers.  385 

 

5. Conclusions  

In this study, dFe was investigated in peatland-draining rivers and estuaries in Sarawak, Malaysia. The 

conclusions are as follow: 

1. There was a significant seasonal variation of dFe concentration in the Rajang River with a higher 390 

dFe concentration in the wet season, likely due to the dissolution from the particle iron from 

upstream weathering. The dFe removal was intensive in low salinity area (salinity<15) of the 

Rajang Estuary due to the salt-induced flocculation and absorption onto the SPM. On the contrary, 

dFe tended to be conservative in the high salinity area (salinity>15), which may be due to the 

binding between dFe and the organic matter. In addition, there were significant additions of dFe in 395 

some tributaries from the desorption of SPM and anthropogenic inputs. 

2. The concentration of dFe in the blackwater rivers was 3-10 times that of the Rajang River, which 

was related to the contribution of peatland soil. Anthropogenic activities in the watershed also 

influenced the dFe concentration in blackwater rivers. Different from the pattern observed in the 

Rajang Estuary, there wasn’t remarkable dFe removal in the blackwater river estuary.  400 

3. The dFe yield in blackwater rivers was much higher than that of the Rajang River. This result 

indicated that the dFe flux in blackwater rivers can be crucial for coastal zones in Malaysia.  

This study improved the understanding of dFe distribution in the Rajang and confirmed its regional 

influence. In addition, we provided direct evidence that blackwater rivers had an extremely high yield 

of dFe. Furthermore, anthropogenic activities may have a critical impact on the concentration and 405 

distribution of dFe in these tropical rivers in Malaysia. 
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Table 1. Range and average of Salinity (S), pH, suspended particulate matter (SPM), dissolved oxygen (DO), dissolved iron (dFe), and dissolved 681 

organic carbon (DOC). 682 

 683 

River-Time Station S pH SPM (mg L-1) DO (mg L-1) dFe (μmol L-1) 
DOC (μmol L-1) 

*in mmol L-1 

Rajang River-August, 

2016 
8 0 

6.7-6.8 

(6.7±0.05) 

31.4-95.2 

(51.5±22.1) 

3.4-4.8 

(4.4±0.4) 

3.3-7.3 

 (5.5±1.7) 

192-260 

 (219±24) 

Rajang Estuary-August, 

2016 
20 

0-32 

(16.3±11.8) 

6.5-8.1 

(7.3±0.5) 

24.2-130 

(68.4±31.7) 

2.7-4.6 

(3.6±0.5) 

0.002-7.0 

 (1.1±2.2) 

150-357 

 (245±53) 

Rajang River -March, 

2017 
2 0 

6.0-6.5 

(6.3±0.3) 

116-188 

(152±50.9) 

6.3-6.7 

 (6.5±0.3) 

 4.2-8.3  

(6.4±2.9) 

126-128 

 (126 ± 1.5) 

Rajang Estuary- March, 

2017 
13 

0-30.1 

(13.7±12.2) 

6.5-8.2 

(7.3±0.6) 

47-327 

(151±75) 

4.6-7.6 

 (6.1±0.7) 

0.004-11.3  

(4.2±4.0) 

98-238 

 (171±42) 

Maludam-March, 2017 9 
0-20.0 

(5.4±6.1) 

3.7-7.6 

(4.6±1.4) 

0.4-388 

(53.1±121) 

1.1-6.8 

 (2.7±1.9) 

 6.3-23.8  

(14.6±6.8) 

 0.35*-4.6* 

(3.6*±1.3*) 

Sebuyau-March, 2017 8 
0-13.6 

(5.4±6.1) 

4.3-7.0 

(5.2±1.1) 

0.4-388 

(53.1±121) 

1.4-5.9 

 (3.2±1.9) 

 3.0-33.6  

 (17.6±12.0) 

0.36*-2.1* 

(1.4*±0.67*) 

Simunjan-March, 2017 6 0-0.4 
4.7-6.3 

(5.2±0.6) 

14-481 

(135±197) 

 1.0-2.6  

 (1.9±0.7) 

25.8-59.2 

  (44.2±11.8) 

0.82*-3.1* 

(2.2*±0.95*) 

 684 

  685 
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Table 2: Concentration of dFe and removal factor (RF) in some rivers. 686 

Rivers Estury location Climate dFe 

(μmol/L, ‘*’ in nmol/L) 

RF 

(%) 

Reference 

Lena Russia arctic 0.54 67.5 1, 2, 3 

Changjiang China subtropical 44.6* 79.1 1, 4 

Jiulongjiang China subtropical 17.9* 37.7 5 

Columbia United States subtropical 71.4* 72.5 6 

Garonne France temperate 0.1 59.7 7 

Merrimack United States temperate 3.7 44.6 1, 8 

Amazon Brazil tropical 1.9 77.8 1, 9, 10 

Congo Congo tropical 3.2 57.3 1, 11, 12 

Rajang Malaysia tropical 5.5 98 1, this study 

1. Milliman and Farnsworth, 2011; 2. Martin et al., 1993; 3. Guieu et al., 1996; 4. Zhu et al., 2018; 5. Zhang 1995; 6. Bruland et al., 2008; 7. Lemaire et al., 2006; 8. Boyle et al., 1974; 9. 687 

Aucour et al., 2003; 10. Moreira-Turcq et al., 2003; 11. Dupré et al., 1996; 12. Coynel et al., 2005. 688 

* RF is the ratio of the integration of dFe concentration versus salinity and the product of theoretical dilution line intercepts (Hopwood et al., 2014).  689 

* dFe yield is a ratio of dFe flux and drainage area. 690 
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 691 

 692 

Figure 1: The distribution of sample stations in Sarawak (b), Malaysia (a). Including Rajang in August 2016, and Rajang, Maludam, Sebuyau, and Simunjan in March 693 

2017. In figure (c) and (d), the green feature layer was redrawn by the dataset from Global Forest Watch (http://gfw2-694 

data.s3.amazonaws.com/country/mys/zip/mys_oil_palm.zip)695 
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 696 

 697 

Figure 2. Spatial distributions of salinity (a) (f), suspended particulate matter (SPM) (b) (g), dissolved oxygen (DO) (c) 698 

(h), pH (d) (i), dissolved iron (dFe) (e) (j) in the Rajang River in August 2016 and March 2017. The red solid line is the 699 

isosalinity line (S=15) linear interpolated from S in this region.  700 
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 701 

Figure 3: Dissolved iron (dFe) correlation with salinity (S) (a), suspended particulate matter (SPM) (b), dissolved organic 702 

carbon (DOC) (c), dissolved oxygen (DO) (d), and pH (e) in Rajang estuary. The solid lines were the linear regressions 703 

between dFe and other factors, and the colors of the lines were coincident with the data points in different salinity range. 704 

Serendeng is the stations in tributary Paloh and Lassa, and Rajang is the stations in tributary Belawai and Rajang. 705 
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 706 

Figure 4. the correlations between distance (a), salinity (S) (b), dissolved organic carbon (DOC) (c), and dissolved iron 707 

(dFe) in blackwater rivers: Maludam, Sebuyau and Simunjan. The solid lines were the linear regressions between dFe and 708 

other factors, and the colors of the regression lines were coincident with the data points.  709 

*We adopted the station at the upper stream as distance=0, and the downstream direction as positive. 710 

 711 
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 712 

Figure 5. A schematic representation of dFe biogeochemical behaviors in the Rajang River (a) and blackwater rivers (b). 713 

It highlights the anthropogenic influences on the dFe concentrations in the tropical rivers. Compared to the Rajang River, 714 

salt-induced flocculation in blackwater rivers was weak, leading to a more effective transport of riverine dFe to the 715 

coastal ocean. 716 

 717 

 718 
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 719 

 720 

Figure 6. The concentration and yield of dFe in large rivers (a) and blackwater rivers (b). The distribution of the rivers are 721 

figured in (c). 722 

*The concentration of dFe in the Rajang is the average of dFe in fresh water river section. 723 
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