
1 
 

Trees don’t always act their age: size-deterministic tree-ring 1 

standardization for long-term trend estimation in shade-tolerant 2 

trees 3 

Rachel Dietrich1, Madhur Anand1 4 

1School of Environmental Sciences, University of Guelph, Guelph, N1G 2W1, Canada 5 

Correspondence to: Madhur Anand (manand@uoguelph.ca) 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 7 

With increasing awareness of the consequences of climate change for global ecosystems, the 8 

focus and application of tree-ring research has shifted to reconstruction of long-term climate-9 

related trends in tree growth. Contemporary methods for removing the biological growth-trend 10 

from tree-ring series (standardization) are ill-adapted to shade-tolerant species, leading to biases 11 

in the resultant chronology. Further, many methods, including regional curve standardization 12 

(RCS), encounter significant limitations for species in which accurate age estimation is difficult. 13 

In this study we present and test two tree-ring standardization models that integrate tree size in 14 

the year of ring formation into the estimation of the biological growth-trend. The first method, 15 

dubbed size-deterministic standardization (SDS), uses tree diameter as the sole predictor of the 16 

growth-trend. The second method includes the combined (COMB) effects of age and diameter. 17 

We show that both the SDS and COMB methods reproduce long-term trends in simulated tree-18 

ring data better than conventional methods – this result is consistent across multiple species. 19 

Further, when applied to real tree-ring data, the SDS and COMB models reproduce long-term, 20 

time-related trends as reliably as traditional RCS and more so than common standardization 21 

methods (i.e. C-method, BAI, conservative detrending). We recommend the inclusion of tree size 22 

in the year of ring formation in future tree-ring standardization models, particularly when dealing 23 

with shade-tolerant species, as it does not compromise model accuracy and allows for the 24 

inclusion of unaged trees.25 

1 Introduction 26 

Tree-rings have long-served as a record of environmental change in forest ecosystems. Early 27 

dendrochronological studies used tree-ring chronologies from climate sensitive species to 28 

elucidate the dynamics of growth-climate relationships and reconstruct climate anomalies from 29 
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periods before the existence of instrumental records. However, with increasing awareness of the 30 

consequences of climate change for global ecosystems, the focus and application of tree-ring 31 

research has shifted to reconstruction of low-frequency climate related trends in tree growth 32 

(Gedalof and Berg 2010, Boisvenue and Running 2006, Jacoby and D’Arrigo 1997). As it stands, 33 

previous optimism regarding the benefits of carbon fertilization for forest growth (Battipaglia et 34 

al. 2012, Norby et al. 2005) has been quelled by a lack of consistent evidence in real forests. 35 

While many studies have noted increases in long-term growth rates over time in temperate 36 

forests (Gedalof and Berg 2010, Huang et al. 2007, Martinelli 2004) others suggest no change 37 

(Giguère-Croteau et al. 2019, Camarero et al. 2015, Granda et al. 2014, Silva et al. 2010, 38 

Peñuelas et al. 2011). Further, in boreal and drought prone species, growth decline (Chen et al. 39 

2017, Dietrich et al. 2016, Girardin et al. 2012, Silva and Anand 2013) and increased mortality 40 

(Herguido et al. 2016, Liang et al. 2016) in response to climate stress have been prevalent. 41 

Central to all these studies is the assumption that long-term growth-trends can be accurately and 42 

unbiasedly estimated from tree-ring data.  43 

As it stands, accurate estimation of long-term growth-trends in forests may be limited by poorly 44 

adapted tree-ring standardization (age-trend removal) methods (Briffa et al. 1996) and 45 

inappropriate sampling methods (Nehrbass-Ahles et al. 2014, Brienen et al. 2012). Early 46 

standardization methods (i.e. conservative detrending) were designed to maintain high-frequency 47 

variation in tree-ring series and discard long-term, low-frequency variation. It is accepted that 48 

these methods are inappropriate for estimating long-term climate related growth-trends (Briffa 49 

1992); however, they are still used in situations where contemporary standardization methods are 50 

not applicable due to restrictive data requirements (e.g. Villalba et al. 2012, Gedalof and Berg 51 

2010, Geoff Wang et al. 2006).  52 
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Modern standardization methods are designed to estimate biological age/ size-related effects on 53 

tree growth independent of time-related variance, thus theoretically, maintaining long-term 54 

trends in the final chronologies. Among these, the conversion of tree ring widths to basal area 55 

increments (BAI), and the closely related C-method (Biondi and Qeadan 2008), as well as the 56 

use of regional curve standardization (RCS), (Briffa et al. 1992), and its many variants (See 57 

Helama et al. 2017), have become commonplace (Peters et al. 2015). Traditional RCS relies on 58 

the assumption that the species-specific biological growth trend of local trees can be estimated, 59 

and thus removed, from a sufficiently large sample of trees using tree age alone. Alternatively, 60 

the BAI method assumes that the biological growth trend is sufficiently related to basal area 61 

accrued in a given year and, as such, chronologies presented as BAI (instead of raw ring width) 62 

contain minimal biological effects. In practice, it is unlikely that this strict relationship accounts 63 

for all the variation in ring width that is related to biological size/ age effects. As such, some 64 

studies have proposed explicit models of BAI that attempt to include variables related to tree 65 

age/ size or environmental conditions (i.e. tree density, soil fertility etc.), (e.g. Linares et al. 66 

2008, Nock et al. 2011). Similarly, the C-method (CM) assumes that tree-wise basal area 67 

increment (tree ring area) distributed over a growing surface in time is constant and as such, 68 

annual deviations from this trend can represent the standardized chronology (free from biological 69 

trend), (Biondi and Quadan 2008). Both BAI and CM are best suited to open-growth, shade-70 

intolerant trees where the strict relationship between annual growth and expected BAI is not 71 

impeded by early competition for light.  72 

However, due to the difficulties in separating climate-related trends that vary on long time scales 73 

from those related to biological tree growth and/or succession-related environmental change, 74 

none of these methods are likely to produce accurate estimates of external forcing when trees 75 
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from only a single age or size class are sampled (Brienen et al. 2012, Briffa and Melvin 2011). It 76 

follows that studies which only sample even-aged stands or dominant trees are likely to produce 77 

biased estimates of long-term growth. While increased awareness of sample biases has led to 78 

better prescriptions for study design (see Nehrbass-Ahles et al. 2014, Brienen et al. 2012), 79 

systematic tests of the ability of these models to accurately reproduce long-term trends are still 80 

limited (e.g. Sullivan et al. 2016, Peters et al. 2015, Esper 2010).  81 

Despite these limitations, RCS remains the standard method for estimating long-term growth-82 

trends in tree-ring data (Helama et al. 2017). However, the standard RCS approach encounters 83 

large limitations for many species in which accurate age estimation is difficult. Additionally, we 84 

suggest the inherent assumption of RCS that biological growth-trends are sufficiently determined 85 

by tree age may not be appropriate in all species. More specifically, this assumption is 86 

problematic for shade-tolerant trees. Shade-tolerant species exhibit relatively low low-light 87 

mortality and thus can persist in forest understories for variable amounts of time before release 88 

from overstory light suppression. In these cases, traditional age-deterministic models exhibit 89 

high variance, and thus low precision, in the period following tree establishment and leading up 90 

to the age when most trees have been released from suppression (Fig. 1). This period of ill-fit 91 

means that trees which are released relatively early (or late) from light suppression will exhibit 92 

inflated (or deflated) growth relative to the chronology. As a result, the final chronology will 93 

show less agreement than would be expected in a shade-intolerant species. Even more 94 

problematic, if trees are sampled according to minimum size thresholds, the youngest trees in the 95 

chronology are likely to be early-release trees leading to an artificial inflation of modern growth 96 

rates in the final chronology. While modifications to traditional RCS that address variance in 97 

contemporaneous growth rates and regional environmental conditions have been prevalent in 98 
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shade-intolerant species (see Helama et al. 2017) there has been little to no focus on the 99 

improvement of standardization techniques specific to shade-tolerant tree species.  100 

Figure 1: (a) In shade-tolerant species young trees are stochastically released from low-light 101 
suppression in the understory. (b) Since release from suppression is not strictly related to tree 102 

age, widely used communal age-trend models (RCS) poorly model tree growth in the period 103 
following establishment and leading up to the age when most trees have been released from 104 
suppression. (c) Poor model-fit in this period implies that the biological growth-trend is not 105 

entirely removed from individual series and leads to high residual variance when standardized 106 
tree-ring series are aligned according to calendar year. 107 

Alternatively, in the field of forest growth and yield modelling size-, rather than age-, 108 

deterministic predictive growth models are ubiquitous. It is well understood that tree size 109 

regulates the capacity for resource acquisition, namely, light (Canham et al. 2004), water and 110 

nutrients (Homann et al. 2000), resource allocation (Lehnebach et al. 2018) and metabolic costs 111 

(West et al. 2001). As such, the notion of radial growth being deterministic according to size 112 

rather than age is logical from both a physiological and ecological perspective. Tree size in a 113 

given year is dependent on its previous size and annual growth, so shade-tolerant trees that have 114 

yet to be released from overstory light suppression remain small as they grow older. This relaxes 115 

the period of ‘ill-fit’ that would be observed in an age-based model. Accordingly, we propose 116 

that a size-deterministic model for tree-ring standardization may be more appropriate than 117 
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traditional RCS for shade-tolerant tree species. The application of size-deterministic models has 118 

been limited, with few examples of tree size in a given year being incorporated into BAI models 119 

(e.g. Marqués et al. 2016, Camarero et al. 2015, Nock et al. 2011, Martínez-Vilalta et al. 2008) 120 

and even fewer of uniquely size-based tree-ring models (e.g. Bontemps and Esper 2011). 121 

Further, there have been no systematic evaluations of the ability of size-based models to 122 

accurately estimate long-term trends in tree-ring series.  123 

We present two tree-ring standardization models that integrate tree size in the year of ring 124 

formation into estimation of the biological growth-trend. The first model uses tree diameter as 125 

the sole predictor of the communal growth-trend while the second includes the combined effects 126 

of both age and diameter. It follows that the objective of this study is to determine the efficacy of 127 

both models in estimating long-term growth-trends in their resultant tree-ring chronologies. First, 128 

we use modelled tree-ring data from shade-tolerant and intolerant species to make explicit the 129 

inappropriateness of age-based models for shade-tolerant trees. Further, we investigate the 130 

performance of size-based models relative to contemporary standardization methods in the 131 

presence of size thresholds in tree sampling. Last, we apply the developed models to tree-ring 132 

data from shade-tolerant temperate species to evaluate model performance relative to 133 

contemporary methods on the basis of accurate reconstruction of known long-term, time-related 134 

trends in the series. 135 

2 Methods 136 

2.1 Model formulation 137 

Traditional RCS makes two assumptions about tree growth. First that trees of the same species in 138 

a given region exhibit a common growth-trend as they age, and second, that growth of an 139 

individual tree in a given year is thus a product of its age and common climatic or environmental 140 
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forcing in that year (Esper et al. 2003, Briffa et al. 1992). We present a variant of the RCS 141 

method that uses tree size, measured by diameter at breast height (DBH), in the year of ring 142 

formation as the primary determinant of the common biological growth-trend. As with RCS we 143 

assume that the relationship between expected growth and tree size is non-linear and can be 144 

approximated for a region from a sufficiently large sample of trees from the species in question. 145 

Further, we assume that using a sample of trees from a range of size/age classes ensures 146 

estimation of the common trend is not confounded by underlying low-frequency climate or 147 

environmental forcing in the chronology (Brienen et al. 2012). The size-based regional curve 148 

model, hereafter referred to as the size deterministic standardization (SDS) model, takes the 149 

following form: 150 

(1) E(RWy,i)= Bo+f1(DBHy,i) + eyi 151 

Where E(RWyi) represents the expected ring width of a given tree (i) in year (y), and f1 152 

represents a non-linear function relating DBH of a given tree (i) in year (y) to E(RWyi). As in 153 

RCS, the communal non-linear relationship is estimated communally for all local trees of 154 

interest. In our study we estimate f1 with a penalized thin plate regression spline in a generalized 155 

additive model (GAM), however this relationship could be estimated by a number of different 156 

spline fitting or non-linear regression techniques (i.e. ffcsaps function in dplR (Bunn et al. 2018), 157 

time-varying splines (Melvin et al. 2007)). Under this paradigm the model residuals (eyi) 158 

represent individual standardized ring width indices and, by extension, individual tree response 159 

to climatic or environmental forcing. Annual model residuals subject to a robust mean, thus, 160 

represent the final standardized chronology. This approach differs slightly from traditional RCS, 161 

whereby standardized ring width indices are occasionally produced by division of raw 162 

measurements by the expected value. Calculation of standardized ring width indices by 163 
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subtraction from the expected value, as in the case of residuals, is now commonly used as it 164 

tends to reduce bias in the resultant chronology (Helama et al. 2004) and eases in the formulation 165 

of more complex tree-ring standardization models. However, unlike division methods, the 166 

subtraction method does not provide any stabilization of variance in the resulting residuals; as 167 

such, it may be necessary to use a stabilization procedure (i.e. log transformation, power 168 

transformation) on raw ring width data beforehand.  169 

Tree size in a given year can be estimated by outside-in or inside-out techniques. If the pith of a 170 

tree is present in the core (or reasonably close to) DBHy is a simple summation of all previous 171 

ring widths since the year of origin, multiplied by two. Alternatively, if the pith is missed, DBHy 172 

can be calculated via subtraction of more modern ring widths (multiplied by two) from the 173 

inside-bark diameter. In this case inside-bark diameter is calculated as measured DBH minus 174 

bark thickness (multiplied by two), where bark thickness can be directly measured or estimated 175 

using species-specific allometric equations (e.g. Stayton and Hoffman 1970).  176 

Similar to the model formulation for SDS, RCS models were estimated with GAMs of the 177 

following form: 178 

(2) E(RWyi) = Bo+f1(Ageyi) + eyi 179 

Where Ageyi is the age of an individual tree in a given year and the resultant standardized tree-180 

ring indices are derived from model residuals (eyi).  181 

In addition, a more complex model that integrated independent size and age effects was also 182 

evaluated for comparison. This model, hereafter referred to as the combined model (COMB), 183 

took the following form:  184 

(3) E(RWyi) = Bo +f1(Ageyia) + f2(DBHyi) + eiy 185 
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In a large variety of long-lived tree species, accurate age estimation (pith sampling) is difficult or 186 

impossible; rendering traditional RCS or combined models inappropriate for all trees sampled. 187 

To address this issue, the above model can incorporate unaged trees. Here f1 represents the non-188 

linear function relating age to expected ring width for the subset of all trees that are aged (ia). In 189 

this model, ring widths from unaged trees are assigned arbitrary ages which do not contribute to 190 

the linear approximation of the smooth term for Age (i.e. f1(Ageyia) but these trees still contribute 191 

to the smooth term for size f2 (DBHyi). Syntax for missing data in GAMs follows the protocol 192 

provided in mgcv (Wood 2011). In this study all GAMs were fit using the mgcv package (Wood 193 

2011) in the R statistical program (v.3.5.0).  194 

In addition to the models presented above we investigated three additional standardization 195 

methods; conservative detrending (CD), CM and BAI. Conservative detrending describes 196 

functions (i.e. negative exponentials, straight lines) or flexible splines fit to individual tree ring 197 

series (see Cook and Kairiukstis 1990). In this study we use spline-fitting techniques rather than 198 

modified negative exponentials as they are more appropriate for shade-tolerant tree species. As 199 

above, the individual standardized tree ring width indices are derived from model residuals. The 200 

C-method estimates tree-specific expected ring widths by assuming constant annual basal area 201 

increment (tree ring area) over the life span of the tree (See Biondi and Qeadan 2008). Annual 202 

deviations from expected values thus represent standardized ring width indices. For consistency 203 

the standard CM approach in dplR (Bunn et al. 2018) was modified in order to calculate indices 204 

via subtraction (residuals) instead of division (R code available in Suppl. Materials (S1). Tree 205 

ring widths were converted to BAI using the dplR package in R (Bunn et al. 2018). 206 

2.2 Simulated tree-ring data 207 
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We simulated tree-ring data using a well-established gap-phase model. The SORTIE-ND model 208 

was chosen over other similar gap-phase models as it better emulates understory light conditions 209 

and low-light mortality, both of which are central to the notion of age being an inappropriate 210 

determinant of growth in shade-tolerant species. In SORTIE annual radial tree growth is 211 

calculated as an asymptotic function of light availability and previous tree diameter. As such, the 212 

underlying growth-trend in SORTIE simulated data should be well-approximated by a flexible 213 

curve estimated on the basis of tree size (SDS). As such, we use this analysis solely to elucidate 214 

the problematic nature of age-based standardization methods for shade-tolerant species not to 215 

confirm the efficacy of size-based standardization methods. 216 

For simplicity, a 100% sugar maple (Acer saccharum) dominated stand was simulated as sugar 217 

maple is a model shade-tolerant species that grows in self-replacing stands. All living trees (>5 218 

cm dbh), (n=3657) in the final year of the model run were used for further analysis. Additionally, 219 

to elucidate our claim that age-deterministic growth estimation is more problematic in shade-220 

tolerant species, we completed a similar SORTIE simulation for the shade-intolerant species 221 

white pine (Pinus strobus). Again, the stand was 100% white pine, standard model parameters 222 

were used, and the simulation was run for 1000 years. All living trees (>5 cm dbh), (n=7362) in 223 

the final year of the model run were used for further analysis. Additional details regarding model 224 

parameters for the SORTIE simulations are provided in the supplementary materials (S2).  225 

To simulate a low-frequency climate-related growth-trend, a logistic trend was added to raw tree-226 

ring width of individual trees produced by both SORTIE simulations. The logistic trend 227 

simulated an initial rapid increase in growth and subsequent levelling off that aimed to represent 228 

a period of carbon fertilization and eventual acclimation. The logistic model was applied to the 229 
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last 100 years of growth and took the following form, where RWtyi represents ring widths with 230 

the simulated long-term trend and RWryi are raw ring widths: 231 

(4) 𝑅𝑊𝑡𝑦𝑖 = 𝑅𝑊𝑟𝑦𝑖 (
𝑘

1+𝑎𝑒−𝑟𝑦
+ 1) 232 

The logistic trend parameters (r=0.12, k=0.629, a=20) were chosen such that increases in 233 

individual tree growth averaged approximately 5% per decade. Additionally, we tested the 234 

standardization models in their ability to detect simulated negative trends in tree growth as 235 

previous studies have noted a failure of contemporary methods to accurately reproduce declining 236 

growth trends (Peters et al. 2015). The simulated negative logistic trend took the form of eq (4) 237 

with parameters (r=0.12, k=-0.421, a=20) chosen such that decreases in growth averaged 5% 238 

per decade. For completeness, we also simulated positive and negative linear trends. Results of 239 

those analyses are provided in the supplementary materials (S3).  240 

Sixty trees were randomly selected, without replacement, from the simulated tree populations 241 

and subject to each of the six standardization methods (SDS, RCS, COMB, CD, BAI, CM). 242 

Model residuals (in the case of RCS, SDS, COMB, CD and CM) or transformed (BAI) tree ring 243 

widths were compiled into an annual mean chronology using Tukey’s biweight robust mean. The 244 

resultant chronologies were then tested for significant correlation with the imposed trends using 245 

Spearman’s rank correlation coefficient. This process was bootstrap resampled (with 246 

replacement) 100 times, in order to produce confidence intervals for the resultant mean 247 

chronologies and their respective correlation coefficients.  248 

To examine the effect of minimum size sampling thresholds on the accuracy of long-term trend 249 

reconstruction by each of the standardization methods, we completed the same analysis on trees 250 

from the simulated populations that exceeded certain size thresholds. The thresholds employed 251 

were 10 cm DBH, which represented a practical minimum size threshold for sampling, and 30 252 
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and 50 cm DBH which represented thresholds for mature and dominant trees, respectively. The 253 

CD method was only applied when size thresholds exceeded 10cm DBH due to the troublesome 254 

nature of fitting splines to excessively short timeseries. The mean Spearman’s rho for all 255 

detrending methods and sampling thresholds were compared using two-way ANOVA and post-256 

hoc tests.  257 

2.3 Real tree-ring data 258 

Additionally, we evaluated the performance of the six standardization methods in real tree-ring 259 

data from shade-tolerant species. We collected tree-ring data from seven mature sugar maple 260 

dominated stands in Ontario, Canada (Table 1). Further, tree-ring data sets from the shade-261 

tolerant species red spruce (Picea rubens) were obtained from the DendroEcological Network 262 

database (https://www.uvm.edu/femc/dendro), (Table 1). Red spruce was chosen as it had 263 

sufficient replication across studies in the database. Descriptions of the sampling strategies and 264 

data processing methods for all sites considered are provided in either the supplementary 265 

materials (S4) or in their respective references (i.e. Kosiba 2013, Kosiba 2017). Data was 266 

considered suitable for this study if age and DBH estimates were provided and if a minimum 10 267 

trees per site and species were sampled and accurately aged. All cores in which pith offset was 268 

estimated to be greater than 10 years were considered unaged. To simplify comparisons of the 269 

resultant chronologies unaged tree were not included in the models.  270 

Prior to model application a time-deterministic thin plate regression spline was applied to all raw 271 

ring widths from each site. This ensured there was no underlying time-trend present in the data. 272 

Since trees of multiple ages/sizes were sampling in each study we assume the removed time-273 

trend is therefore independent of biological trends in the series. For each site residuals from the 274 

regression spline were centred according to the site-wise mean and standard deviation of raw 275 

https://www.uvm.edu/femc/dendro
https://www.uvm.edu/femc/dendro
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ring widths prior to analysis. 276 

 277 

Again, increasing and decreasing logistic trends (Eq 4) as well as linear trends (Suppl. S3) were 278 

added to the (re-centered) tree ring residuals. Trend parameters were chosen such that the 279 

increase (or decrease) in tree growth averaged 5% per decade over the last 50 years of growth 280 

(r=0.12, k=0.276, a=20 (positive trend)), (r=0.12, k=-0.226, a=20 (negative trend)). For each 281 

site all trees were subject to each of the six standardization methods (SDS, RCS, COMB, CD, 282 

BAI, CM). Model residuals (in the case of RCS, SDS, COMB, CD and CM) or transformed 283 

(BAI) tree ring widths were compiled into an annual mean chronology using Tukey’s biweight 284 

robust mean. The resultant chronologies were then tested for significant correlation with the 285 

imposed trends using Spearman’s rank correlation coefficient. In both species (sugar maple and 286 

red spruce) one-way ANOVA and Tukey post-hoc comparisons were used to test for significant 287 

differences in model performance- as estimated by chronology correlation with the imposed 288 

trend.  289 

Table 1:

Location, sample size, chronology length and source of tree ring data sets used in this study. 

Species Site (code) Longitude (°)
Latitude 

(°)

N. trees 

total

N. trees 

aged

Length of 

chronology
Source

Toobee Lake (TB) 46.7459 -82.8668 79 67 1750-2015 This study

Wolf Mtn. (WM) 46.7390 -82.8467 22 18 1827-2015 …

Roosevelt Road (RS) 47.2852 -79.7063 20 11 1792-2016 …

Raven Lake (RL) 45.3309 -78.6339 31 19 1864-2015 …

Freezy Lake (FR) 45.2998 -78.4329 20 11 1887-2015 …

Mt. Zion Road (MT) 46.4000 -83.7004 29 15 1777-2015 …

Mt. Mansfield (MTM) 44.3750 -73.8750 111 109 1769-2011 Kosiba et al. (2016)

Burnt Mtn. (BNT) 44.2068 -72.3515 40 40 1891-2010 Kosiba et al. (2013)

Mt. Carmel (CAR) 43.7709 -72.9205 41 41 1795-2010 …

Mt. Ellen (ELL) 44.1656 -72.9221 42 42 1824-2010 …

Mt. Equinox (EQU) 43.1487 -73.1273 89 89 1857-2010 …

Mt. Greylock (GRY) 42.6738 -73.1575 44 44 1911-2010 …

Mt. Ascutney (ASC) 43.4337 -72.4440 20 20 1929-2010 …

Bristol Cliffs (BRI) 44.1084 -73.0720 19 19 1713-2010

Middlebury Gap (MID) 43.9424 -72.9410 14 14 1922-2010 …

Wolcott Forest (WLC) 44.5965 -72.4215 18 18 1912-2010 …

Mt. Moosilauke (MOO) 44.0056 -71.8215 54 54 1760-2010 …

Mad River Glen (MRG) 44.1932 -72.9232 36 36 1927-2010 …

Sugar maple    

(A. saccharum )

Red spruce    

(P. rubens )
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3 Results 290 

3.1 Comparisons of methods in simulated data 291 

In order to evaluate the efficacy of each standardization method we calculated correlations 292 

between chronologies produced by each method and a variety of imposed trends in simulated 293 

sugar maple and white pine tree ring data. Bootstrapped confidence intervals for chronologies 294 

from each of the standardization methods are provided in Figure 2a and 2b for sugar maple and 295 

red pine, respectively. Distributions of the respective spearman’s rank correlation coefficients 296 

between the chronologies and the imposed trends are provided in Figure 3a for sugar maple and 297 

3b for white pine.  298 

3.11 Simulated sugar maple tree ring data 299 

In the simulated sugar maple data, two-way ANOVA suggested a significant effect of both 300 

standardization model (p<0.001) and minimum size sampling threshold (p<0.001) on average 301 

correlation with the positive logistic trend. Alternatively, for the negative logistic trend there was 302 

a significant effect of standardization model (p<0.001) but not of size sampling threshold. For 303 

both positive and negative logistic trends SDS (𝑟𝑠̅=0.974±0.037, 𝑟𝑠̅=0.954±0.068, respectively) 304 

and COMB (𝑟𝑠̅=0.965±0.039, 𝑟𝑠̅=0.894±0.123, respectively) models produced chronologies with 305 

significantly higher correlations than all other models (p<0.001 for all) but not significantly 306 

different from each other (p=0.998, p=1.000, respectively). For the positive imposed trend BAI 307 

(𝑟𝑠̅=0.864±0.236) and RCS (𝑟𝑠̅=0.900±0.162) produced chronologies with correlations 308 

significantly higher than CD (𝑟𝑠̅=-0.503±0.329) and CM (𝑟𝑠̅=0.746±0.306), (p<0.001 for all) but 309 

not significantly different then each other (p=0.996). Notably, correlations exhibited by BAI 310 

chronologies were dependent on size sampling thresholds with BAI chronologies performing 311 

best when size thresholds exceeded 50 cm DBH (Fig 3a). At this threshold BAI chronologies 312 
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produced significantly higher correlations than when all trees were sampled (p=0.003) and when 313 

trees >10 cm DBH were sampled (p<0.001). The CD method produced chronologies that 314 

exhibited the lowest average correlation with the imposed positive trend of all models (p<0.001 315 

for all).  316 

Figure 2: 95% confidence intervals for standardized chronologies produced by each 

standardization method (legend right side) applied SORTIE simulated sugar maple and white 

pine tree ring data. Confidence intervals obtained via bootstrap resampling (rep=100) of 60 

trees (>10 cm DBH) from the SORTIE simulated populations. Dotted lines indicate the 

standardized positive (left side) or negative (right side) logistic trend that was added to the raw 

tree ring data.  
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Alternatively when considering negative imposed trends, BAI (𝑟𝑠̅=0.745±0.426) chronologies 317 

performed significantly worse than RCS (𝑟𝑠̅=0.706±0.281, p<0.001) but still better than CD (𝑟𝑠̅=-318 

0.609±0.291) and CM (𝑟𝑠̅=0.666±0.364), (p<0.001 for both). Again, CD chronologies exhibited 319 

significantly lower correlations than all other models (p<0.001 for all). Notably, RCS 320 

chronologies produced at the 50 cm DBH sampling threshold exhibited significantly lower 321 
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Figure 3: Spearman’s correlation between chronologies produced by each of the five standardization methods and 

the imposed positive (left column) or negative (right column) logistic trend in SORTIE simulated (a) sugar maple 

and (b) white pine tree-ring data. Correlation distribution created by bootstrap resampling 60 trees (rep=100) from 

SORTIE simulated tree populations.  Horizontal axis denotes minimum tree size (DBH) thresholds for sampling 

from the population. Horizontal lines indicate threshold for significant Spearman’s rho (a=0.05) for correlation 

between chronologies and the imposed trend. 
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correlations than all other sampling thresholds (p<0.001), (Fig 3a). All other models exhibited 322 

similar correlation distributions across the various size thresholds for sampling.  323 

3.12 Simulated white pine tree ring data 324 

In simulated white pine data, two-way ANOVA suggested a significant effect of both 325 

standardization model (p<0.001) and minimum size sampling threshold (p<0.001) on average 326 

correlations for both the positive and negative logistic trend analyses. For the positive trend, 327 

chronologies produced by SDS (𝑟𝑠̅=0.977±0.026), RCS (𝑟𝑠̅=0.932±0.091), COMB 328 

(𝑟𝑠̅=0.956±0.052) and CM (𝑟𝑠̅=0.953±0.045) produced high correlations across all sampling 329 

thresholds with SDS performing significantly better than CM (p=0.006) and RCS (p=0.001). All 330 

four models produced significantly higher correlations than those produced by BAI 331 

(𝑟𝑠̅=0.899±0.222) or CD (𝑟𝑠̅=0.767±0.126) chronologies, with CD producing the lowest 332 

correlations of all models. Contrasts suggested that the significant effect of minimum size 333 

threshold was driven by significant differences in correlations from BAI chronologies across 334 

sample thresholds, whereby BAI chronologies exhibited significantly lower correlations when no 335 

minimum size thresholds (i.e. all trees sampled) were employed (p<0.001 in all cases), (Fig. 3b). 336 

When examining negative imposed trends, SDS (𝑟𝑠̅=0.942±0.090) and COMB (𝑟𝑠̅=0.904±0.0.97) 337 

models produced chronologies with significantly higher correlations than all the other models, 338 

but not significantly different from each other (p=0.594). BAI (𝑟𝑠̅=0.750±0.390) and RCS 339 

(𝑟𝑠̅=0.772±0.245) produced chronologies with correlations significantly higher than CD (𝑟𝑠̅=-340 

0.505±0.316) and CM (𝑟𝑠̅=0.623±0.362), (p<0.001 for all) but not significantly different then 341 

each other (p=1.00). CD chronologies exhibited significantly lower correlations than all other 342 

models (p<0.001 for all). Contrasts suggested that the significant effect of minimum size 343 

threshold was driven by significant difference in correlations of chronologies produced by BAI 344 
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and CM among sampling thresholds. As evident in Figure 3b, BAI chronologies performed 345 

significantly better when sampling thresholds exceeded 50 cm DBH and CM chronologies 346 

performed best when sampling thresholds exceeded 30 cm DBH.  347 

3.2 Comparisons of methods in real tree-ring data 348 

Standardization methods were evaluated on the basis of correlations between their resultant 349 

chronologies and known time-related trends in tree ring series from shade-tolerant species.  350 

Confidence intervals surrounding chronologies produced from each of the standardization 351 

methods applied to the tree ring series from six sugar maple stands are provided in Figure 4a for 352 

both positive and negative logistic trends. The corresponding distributions of Spearman’s rank 353 

correlation coefficients are provided in Figure 5a with significant differences (p<0.05) being 354 

denoted by letters. Chronologies and corresponding correlation coefficients for the identical 355 

analysis performed on 12 red spruce stands are provided in Figure 4b and 5b.  356 

Regardless of trend direction RCS, COMB and SDS chronologies exhibited comparable and 357 

consistent results across both species (Fig. 5). In general chronologies produced by all three 358 

methods exhibited conservative, but reliable, estimations of the imposed trends (Fig. 4). SDS 359 

produced chronologies with correlations as high or higher (Fig. 5b (negative trend)) than 360 

traditional RCS chronologies. Notably, the BAI and CM methods produced strong positive 361 

correlations between chronologies and the imposed trend only when the imposed trend was 362 

increasing (Fig. 4, 5) but both consistently failed to reproduce negative trends (Fig. 4). Finally, 363 

across both species, CD chronologies exhibited low correlations with the imposed trend 364 

regardless of direction (Fig. 4,5).  365 

4 Discussion 366 

4.1 Size-vs age-deterministic models for long-term trend reconstruction 367 
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Using simulated tree-ring data, from the shade-tolerant species sugar maple, we have shown that 368 

standardization models which include tree size in the year of ring formation (SDS, COMB) 369 

produced chronologies that retain long-term/low-frequency variation better than those produced 370 
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Figure 4: Standardized chronologies produced by each standardization method (legend right side) applied to 

tree ring series from a) sugar maple (n=6) and b) red spruce (n=12) stands. Solid lines represent the resultant 

model-wise mean chronologies across all stands considered while ribbons represent respective 95% confidence 

intervals. Dotted lines indicate the standardized positive (left side) or negative (right side) logistic trend that was 

added to the raw tree ring data.  
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by models that only include age as a 371 

predictor (RCS). Alternatively, in the shade-372 

intolerant species white pine, chronologies 373 

produced by the RCS and COMB models 374 

showed no significant difference in their 375 

estimation of long-term trends, though SDS 376 

chronologies slightly outperformed RCS 377 

chronologies. As discussed previously, the 378 

finding that size-based standardization 379 

models perform well in simulated tree-ring 380 

data is not surprising given that the SORTIE 381 

model calculates annual tree growth as 382 

function of tree size. Thus, the underlying 383 

growth-trend would be well-approximated by 384 

a flexible curve estimated on the basis of tree size. As such, we use these results solely to 385 

elucidate the problematic nature of age-based standardization methods for shade-tolerant species. 386 

SORTIE’s use of diameter, rather than age, as a determinant of tree growth is not arbitrary; it is 387 

well-established that tree metabolic processes are directly related to size (West et al. 2001). 388 

Additionally, there is little evidence for a unique effect of age on tree growth that is independent 389 

of size (Munné-Bosch 2007 (and within)). With the exception of dendrochronological models, 390 

the vast majority of individual tree growth and process models are indeed size-based. It follows 391 

that the ubiquitous use of age or calendar year in tree-ring standardization methods (RCS, signal-392 

free standardization, CD, Hugershoff curves) is a practice born out of convenience rather than 393 
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Figure 5: Spearman’s correlation between chronologies produced 

by each of the five standardization methods and the imposed 

positive (left column) or negative (right column) logistic trend in 

tree ring series from (a) sugar maple and (b) red spruce stands. 

Horizontal lines indicate threshold for significant Spearman’s rho 

(a=0.05) for correlation between chronologies and the imposed 

trend. Letters indicate significant differences among samples as 

estimated by Tukey honest significant differences (a=0.05). 
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physiological consideration. As such, we agree with previous accounts that this assumption may 394 

be especially problematic in shade-tolerant trees where age and size may not be perfectly 395 

correlated (Peters et al. 2015, Bontemps and Esper 2011).  396 

Unfortunately, all systematic comparisons of tree-ring standardization methods in real tree-ring 397 

data (e.g. Sullivan et al. 2016) are limited by their inability to validate long-term trends estimated 398 

by chronologies. In this study we evaluate standardization methods on their ability to reconstruct 399 

artificial trends in tree ring data. We show that SDS and COMB models are as reliable as the 400 

traditional RCS method in accurately detecting long-term trends in shade-tolerant species. 401 

Further, SDS appears to provide more reliable reconstructions when the underlying trend is 402 

negative. To our knowledge, only one other study has evaluated size-deterministic models on the 403 

basis of long-term trend reconstruction in chronologies. Bontemps and Esper (2011) compared 404 

RCS and SDS chronologies in common beech (Fagus sylvatica L.)) and conclude that both 405 

exhibit similar variations, with the magnitude of difference varying between 3-7%. However, 406 

other studies have examined the influence tree size in explicit models of BAI. In tropical tree 407 

species of varying shade-tolerance Nock et al. (2011) note that linear mixed models of BAI that 408 

included tree diameter had more support than those that included age. This result is corroborated 409 

by analyses of mixed models of BAI in Mediterranean pine species which suggest that the effect 410 

of DBH on BAI is more important than the effect of tree age (Marqués et al. 2016). In line with 411 

discussion above, Nock et al. (2011) attribute this finding to size being a more important 412 

determinant of light capture as it relates to tree height and crown size (King et al. 2005).  413 

The resultant chronologies are indeed more likely to be influenced by the sample of the 414 

underlying tree population than by choice of standardization model. Tree age can be difficult or 415 

impossible to accurately estimate for some trees. In contrast, annual tree size can be reliability 416 
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estimated from DBH and tree-ring measurements more ubiquitously. We note that in this study 417 

only 66% of sugar maple trees could be accurately aged. Since unaged trees are likely to be the 418 

oldest trees in the chronology, it follows that RCS chronologies may exhibit poor sample 419 

replication (especially in early years) and may be significantly shorter than those typically 420 

produced by SDS or COMB models. This has obvious implications for data quality and 421 

suitability. Considerably problematic is the “segment length curse” whereby, almost all 422 

standardization methods are ill-equipped to estimate long-term trends on time scales greater than 423 

or equal to the length of the chronology itself (Cook et al. 2005). Excessively short RCS 424 

chronologies are therefore limited in their application. A large advantage of SDS and COMB 425 

models is that they can incorporate otherwise inadmissible tree-ring data.  426 

This study does not explicitly test the efficacy of COMB models relative to SDS in the presence 427 

of unaged trees. Nor have we provided evidence to suggest that the added complexity of COMB 428 

models relative to SDS is beneficial to accurate reconstruction of trends in the resultant 429 

chronologies. Given, the merit the of size-deterministic models presented here, we suggest future 430 

research explore the implications of the trade-off between model information and complexity in 431 

the presence of unaged trees.  432 

4.2 BAI, CM and CD methods for long-term trend reconstruction 433 

The finding that CD did not produce accurate long-term trends in simulated tree-ring data is 434 

consistent with our expectations (Peters et al. 2015, Briffa et al. 1992). We maintain CD should 435 

be avoided if the goal is long-term reconstruction from tree-ring data. More interestingly, we 436 

have shown that CM and BAI, although designed for shade-intolerant open growth trees, do not 437 

reliably reconstruct negative long-term trends in simulated white pine tree ring data. Further, our 438 

analysis suggests BAI is less reliable when small/young trees are sampled. This result is 439 
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corroborated in our study by a failure of both methods to reconstruct negative trends in shade-440 

tolerant, sugar maple and red spruce, tree ring data. Further, this finding is in line with Peters et 441 

al. (2015) who note low reliability of BAI and that BAI is likely to produce erroneous trends 442 

when the underlying trend is of low signal, as would be the case for young/small trees that have 443 

low BAI rates and low climate sensitivity.  444 

Both BAI and the CM impart a strict relationship between tree size and growth. It has been 445 

suggested that this relationship may not account for the entire biological growth-trend, leading to 446 

the maintenance of erroneous long-term trends in the resultant chronologies (Peters et al. 2015). 447 

Erroneous increasing trends are indeed noted in both sugar maple (Fig 4a) and red spruce (Fig 448 

4b) chronologies produced by BAI and CM in our study. Accordingly, we caution future studies 449 

in their interpretation of BAI and CM trends in low-signal tree-ring series. Other studies have 450 

explicitly modelled size and/or age effects on BAI using a mixed-effect modelling approach (e.g. 451 

Marqués et al. 2016, Camarero et al. 2015, Nock et al. 2011, Martínez-Vilalta et al. 2008). We 452 

suggest this approach may better account for species- and site-specific factors that influence 453 

expected growth rates, leading to more accurate estimates of long-term trends in the resultant 454 

chronology. While our findings regarding the importance of inclusion of size in tree-ring 455 

standardization models are presented in the context of raw tree-ring width models, they are also 456 

directly relevant to explicit models of BAI. A more thorough discussion of the limitations of CD, 457 

BAI and CM method as relevant to reconstruction of long-term trends is beyond the scope of this 458 

study. The interested reader is directed to Peters et al. (2015). 459 

4.3 Other considerations and future research 460 

It is important to note that the goal of this study was not to explicitly test the effect of sample 461 

biases (i.e. modern sample bias, selection bias, etc.) on trend reconstruction, but instead to assess 462 
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reliability across different underlying sampling distributions. Accordingly, our results do not 463 

suggest that any of the discussed standardization methods are immune to sample biases (i.e. big 464 

tree selection bias, slow grower survivorship bias) as our study is not designed to detect, and 465 

isolate, the effects of contemporaneous differences in growth among trees that lead to these 466 

biases. There is now considerable evidence to suggest that the long-standing practice of sampling 467 

only dominant trees or trees exceeding a minimum size threshold within a stand leads to 468 

considerable bias in the resultant chronology (Nehrbass-Ahles et al. 2014, Brienen et al. 2012, 469 

Briffa and Melvin 2011). This bias is consistent across standardization methods (Duchesne et al. 470 

2019, Nehrbass-Ahles et al. 2014). We maintain that in cases of long-term trend reconstruction, 471 

stands should be sampled according to the underlying stand age/size distribution, either through 472 

use of fixed-plots or random tree selection, regardless of the standardization procedure used. 473 

Given the underlying physiological justification of the models presented here, we have no reason 474 

to suggest they are not broadly applicable to species of all shade-tolerance levels. We 475 

recommend future studies investigate the applicability of SDS and COMB models to both tree-476 

ring width and BAI data in wider range of species. That said, shade-tolerant and broadleaf 477 

species, and their applicable standardization procedures, are underrepresented in 478 

dendrochronological studies (Zhao et al. 2019). Further, the applicability of enhanced tree ring 479 

standardization models (including traditional RCS and BAI) to global tree ring data sets is 480 

limited by widely unavailable metadata (i.e. tree age and DBH) in tree ring databases. 481 

Accordingly, we recommend more stringent requirements on the inclusion of applicable 482 

metadata in global databases in order to accommodate more complicated standardization models. 483 

We advocate for continued refinement of tree-ring standardization procedures that are relevant to 484 

the ecological questions they aim to address.  485 
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