
1 
 

When trees don’t act their age: size-deterministic tree-ring 1 

standardization for long-tern trend estimation in shade-tolerant 2 

trees 3 

Rachel Dietrich1, Madhur Anand1 4 

1School of Environmental Sciences, University of Guelph, Guelph, N1G2W1, Canada 5 

Correspondence to: Madhur Anand (manand@uoguelph.ca) 6 

 

 

 

 

 

 

 

 

 

 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

https://doi.org/10.5194/bg-2019-210
Preprint. Discussion started: 13 June 2019
c© Author(s) 2019. CC BY 4.0 License.



2 
 

Abstract 15 

With increasing awareness of the consequences of climate change for global ecosystems, the 16 

focus and application of tree-ring research has shifted to reconstruction of long-term climate-17 

related trends in tree growth. Contemporary methods for removing the biological growth-trend 18 

from tree-ring series (standardization) are ill-adapted to shade-tolerant species, leading to biases 19 

in the resultant chronology. Further, many methods, including regional curve standardization 20 

(RCS), encounter significant limitations for species in which accurate age estimation is difficult. 21 

In this study we present and test two tree-ring standardization models that integrate tree size in 22 

the year of ring formation into the estimation of the biological growth-trend. The first method, 23 

dubbed size deterministic standardization (SDS), uses tree diameter as the sole predictor of the 24 

growth-trend. The second method includes the combined (COMB) effects of age and diameter. 25 

We show that both the SDS and COMB methods reproduce long-term trends in simulated tree-26 

ring data better than conventional methods – this result is consistent across multiple species. 27 

Further, when applied to real tree-ring data, the COMB method is more parsimonious than its 28 

than RCS. We recommend the inclusion of tree size in the year of ring formation in future tree-29 

ring standardization models, particularly when dealing with shade-tolerant species, as it does not 30 

compromise model parsimony and allows for the inclusion of unaged trees. 31 

1 Introduction 32 

Tree-rings have long-served as a record of environmental change in forest ecosystems. Early 33 

dendrochronological studies used tree-ring chronologies from climate sensitive species to 34 

elucidate the dynamics of growth-climate relationships and reconstruct climate anomalies from 35 

periods before the existence of instrumental records. However, with increasing awareness of the 36 

consequences of climate change for global ecosystems, the focus and application of tree-ring 37 
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research has shifted to reconstruction of low-frequency climate related trends in tree growth 38 

(Gedalof and Berg 2010, Boisvenue and Running 2006, Jacoby and D’Arrigo 1997). As it stands, 39 

previous optimism regarding the benefits of carbon fertilization for forest growth (Battipaglia et 40 

al. 2012, Norby et al. 2005) has been quelled by a lack of consistent evidence in real forests. 41 

While many studies have noted increases in long-term growth rates over time in temperate 42 

forests (Gedalof and Berg 2010, Huang et al. 2007, Martinelli 2004) others suggest no change 43 

(Giguère-Croteau et al. 2019, Camarero et al. 2015, Granda et al. 2014, Silva et al. 2010, 44 

Peñuelas et al. 2011). Further, in boreal and drought prone species, growth decline (Chen et al. 45 

2017, Dietrich et al. 2016, Girardin et al. 2012, Silva and Anand 2013) and increased mortality 46 

(Herguido et al. 2016, Liang et al. 2016) in response to climate stress have been prevalent. 47 

Central to all these studies is the assumption that long-term growth-trends can be accurately and 48 

unbiasedly estimated from tree-ring data.  49 

As it stands, accurate estimation of long-term growth-trends in forests may be limited by poorly 50 

adapted tree-ring standardization (age-trend removal) methods (Briffa et al. 1996) and 51 

inappropriate sampling methods (Nehrbass-Ahles et al. 2014, Brienen et al. 2012). Early 52 

standardization methods (i.e. conservative detrending) were designed to maintain high-frequency 53 

variation in tree-ring series and discard long-term, low-frequency variation. It is accepted that 54 

these methods are inappropriate for estimating long-term climate related growth-trends (Briffa 55 

1992); however, they are still used in situations where contemporary standardization methods are 56 

not applicable due to restrictive data requirements (e.g. Villalba et al. 2012, Gedalof and Berg 57 

2010, Geoff Wang et al. 2006). More recently, the use of regional curve standardization (RCS), 58 

and its many variants, as well as the conversion of tree-ring widths to basal area increments 59 

(BAI) have become commonplace (Peters et al. 2015). But, due to the difficulties in separating 60 
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climate related trends that vary on long time scales from those related to biological tree growth 61 

and/or succession-related environmental change, neither of these methods are likely to produce 62 

accurate estimates of external forcing when trees from only a single age/size class are sampled 63 

(Brienen et al. 2012, Briffa and Melvin 2011). While increased awareness of sample biases has 64 

led to better prescriptions for study design (see Nehrbass-Ahles et al. 2014, Brienen et al. 2012), 65 

systematic tests of the ability of these models to accurately reproduce long-term trends are 66 

limited (e.g. Sullivan et al. 2016, Peters et al. 2015, Esper 2010).  67 

RCS remains the standard method for estimating long-term growth-trends in tree-ring data 68 

(Helama et al. 2017). However, the standard RCS approach encounters large limitations for 69 

many species in which accurate age estimation is difficult. Additionally, we suggest the inherent 70 

assumption of RCS that biological growth-trends are sufficiently determined by tree age may not 71 

be appropriate in all species. More specifically, this assumption is problematic for shade-tolerant 72 

trees. Shade-tolerant species exhibit relatively low low-light mortality and thus can persist in 73 

forest understories for variable amounts of time before release from overstory light suppression. 74 

In these cases, traditional age-deterministic models exhibit high variance, and thus low precision, 75 

in the period following tree establishment and leading up to the age when most trees have been 76 

released from suppression (Fig. 1). This period of ill-fit means that trees which are released 77 

relatively early (or late) from light suppression will exhibit inflated (or deflated) growth relative 78 

to the chronology. As a result, the final chronology will show less agreement than would be 79 

expected in a shade-intolerant species. Even more problematic, if trees are sampled according to 80 

minimum size thresholds, the youngest trees in the chronology are likely to be early-release trees 81 

leading to an artificial inflation of modern growth rates in the final chronology. While 82 

modifications to traditional RCS that address variance in contemporaneous growth rates and 83 
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regional environmental conditions have been prevalent in shade-intolerant species (see Helama 84 

et al. 2017) there has been little to no focus on the improvement of standardization techniques 85 

specific to shade-tolerant tree species.  86 

Figure 1: (a) In shade-tolerant species young trees are stochastically released from low-light suppression in 87 
the understory. (b) Since release from suppression is not strictly related to tree age, widely used communal 88 
age-trend models (RCS) poorly model tree growth in the period following establishment and leading up to the 89 
age when most trees have been released from suppression. (c) Poor model-fit in this period implies that the 90 
biological growth-trend is not entirely removed from individual series and leads to high residual variance 91 
when standardized tree-ring series are aligned according to calendar year. 92 

Alternatively, in the field of forest growth and yield modelling, size, rather than age, 93 

deterministic predictive growth models are ubiquitous. It is well understood that tree size 94 

regulates the capacity for resource acquisition, namely, light (Canham et al. 2004), water and 95 

nutrients (Homann et al. 2000), resource allocation (Lehnebach et al. 2018) and metabolic costs 96 

(West et al. 2001). As such, the notion of radial growth being deterministic according to size 97 

rather than age is logical from both a physiological and ecological perspective. We propose that a 98 

size-deterministic model for tree-ring standardization may be more appropriate than traditional 99 

RCS for shade-tolerant tree species. The application of size-deterministic models has been 100 

limited, with few examples of tree size in a given year being incorporated into BAI models (e.g. 101 

Marqués et al. 2016, Camarero et al. 2015, Nock et al. 2011, Martínez-Vilalta et al. 2008) and 102 

even fewer of uniquely size-based tree-ring models (e.g. Bontemps and Esper 2011). Further, 103 
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there have been no systematic evaluations of the ability of size-based models to accurately 104 

estimate long-term trends in tree-ring series.  105 

We present two tree-ring standardization models that integrate tree size in the year of ring 106 

formation into estimation of the biological growth-trend. The first model uses tree diameter as 107 

the sole predictor of the communal growth-trend while the second includes the combined effects 108 

of both age and diameter. It follows that the objective of this study is to determine the efficacy of 109 

both models in estimating long-term growth-trends in their resultant tree-ring chronologies. First, 110 

we use modelled tree-ring data from shade-tolerant and intolerant species to make explicit the 111 

inappropriateness of age-based models for shade-tolerant trees. Further, we investigate the 112 

performance of size-based models relative to contemporary standardization methods in the 113 

presence of size thresholds in tree sampling. Last, we apply the developed models to tree-ring 114 

data from shade-tolerant temperate species to evaluate model performance relative to 115 

contemporary methods on the basis of model-fit and chronology quality statistics. 116 

2 Methods 117 

2.1 Model formulation 118 

Traditional RCS makes two assumptions about tree growth. First that trees of the same species in 119 

a given region exhibit a common growth-trend as they age, and second, that growth of an 120 

individual tree in a given year is thus a product of its age and common climatic or environmental 121 

forcing in that year (Esper et al. 2003, Briffa et al. 1992). We present a variant of the RCS 122 

method that uses tree size, measured by diameter at breast height (DBH), in the year of ring 123 

formation as the primary determinant of the common biological growth-trend. As with RCS we 124 

assume that the relationship between expected growth and tree size is non-linear and can be 125 

approximated for a region from a sufficiently large sample of trees from the species in question. 126 
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Further, we assume that using a sample of trees from a range of size/age classes ensures 127 

estimation of the common trend is not confounded by underlying low-frequency climate or 128 

environmental forcing in the chronology (Brienen et al. 2012). The size-based regional curve 129 

model, hereafter referred to as the size deterministic standardization (SDS) model, takes the 130 

following form: 131 

(1) E(RWy,i)= Bo+f1(DBHy,i) + eyi 132 

Where E(RWyi) represents the expected ring width of a given tree (i) in year (y), and f1 133 

represents a non-linear function relating DBH of a given tree (i) in year (y) to E(RWyi). The non-134 

linear relationship is estimated using penalized spline fitting techniques in a generalized additive 135 

model (GAM). Under this paradigm the model residuals (eyi) represent individual standardized 136 

ring width indices and, by extension, individual tree response to climatic or environmental 137 

forcing. Annual model residuals subject to a robust mean, thus, represent the final standardized 138 

chronology. This approach differs slightly from traditional RCS, whereby occasionally 139 

standardized ring width indices are produced by division of raw data by the expected value. 140 

Calculation of standardized ring width indices by subtraction from the expected value, as in the 141 

case of residuals, is now commonly used as it tends to reduce bias in the resultant chronology 142 

(Helama et al. 2004) and eases in the formulation of more complex tree-ring standardization 143 

models. However, unlike division methods, the subtraction method does not provide any 144 

stabilization of variance in the resulting residuals; as such, it may be necessary to use a 145 

stabilization procedure (i.e. log transformation, power transformation) on raw ring width data 146 

beforehand.  147 

Tree size in a given year can be estimated by outside-in or inside-out techniques. If the pith of a 148 

tree is present in the core (or reasonably close to) DBHy is a simple summation of all previous 149 
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ring widths since the year of origin, multiplied by two. Alternatively, if the pith is missed, DBHy 150 

can be calculated via subtraction of more modern ring widths (multiplied by two) from the 151 

inside-bark diameter. In this case inside-bark diameter is calculated as the measured DBH minus 152 

bark thickness (multiplied by two), where bark thickness can be directly measured or estimated 153 

using species-specific allometric equations (e.g. Stayton and Hoffman 1970).  154 

Similar to the model formulation for SDS, RCS models were estimated with GAMs of the 155 

following form: 156 

(2) E(RWyi) = Bo+f1(Ageyi) + eyi 157 

Where Ageyi is the age of an individual tree in a given year and the resultant standardized tree-158 

ring indices are derived from model residuals (eyi).  159 

In addition, a more complex model that integrated independent size and age effects was also 160 

evaluated for comparison. This model, hereafter referred to as the combined model (COMB), 161 

took the following form:  162 

(3) E(RWyi) = Bo +f1(Ageyia) + f2(DBHyi) + eiy 163 

In a large variety of long-lived tree species, accurate age estimation (pith sampling) is difficult or 164 

impossible; rendering traditional RCS or combined models inappropriate for all trees sampled. 165 

To address this issue, the above model incorporates unaged trees. Here f1 represents the non-166 

linear function relating age to expected ring width for the subset of all trees that are aged (ia). In 167 

this model, ring widths from unaged trees are assigned arbitrary ages which do not contribute to 168 

the linear approximation of the smooth term for Age (i.e. f1(Ageyia) but these trees still contribute 169 

to the smooth term for size f2 (DBHyi). Syntax for missing data in GAMs followed the protocol 170 
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provided in mgcv (Wood 2011). In this study all GAMs were fit using the mgcv package (Wood 171 

2011) in the R statistical program (v.3.5.0).  172 

In addition to the models presented above we investigated two more contemporary 173 

standardization methods; conservative detrending (CD) and BAI. Conservative detrending 174 

describes functions (i.e. negative exponentials, straight lines) or flexible splines fit to individual 175 

tree-ring series. In this study we use spline fitting techniques rather than modified negative 176 

exponentials as they are more appropriate for shade-tolerant tree species. Alternatively, BAI 177 

attempts to remove biological growth-trends by converting ring widths from individual trees to 178 

estimates of annual basal area growth. For simplicity, untransformed BAI was used to compile 179 

chronologies for this study. Both CD and BAI methods were applied using the dplR package 180 

(Bunn 2008) in R.  181 

2.2 Simulated tree-ring data 182 

To evaluate the efficacy of each standardization method in detecting long-term trends, we 183 

simulated tree-ring data using a well-established gap-phase model. The SORTIE-ND model was 184 

chosen over other similar gap-phase models as it better emulates understory light conditions and 185 

low-light mortality both of which are central to the notion of age being an inappropriate 186 

determinant of growth in shade-tolerant species. For simplicity, a 100% sugar maple (Acer 187 

saccharum) dominated stand was simulated as sugar maple is a model shade-tolerant species that 188 

grows in self-replacing stands. All living trees (>5 cm dbh), (n=3657) in the final year of the 189 

model run were used for further analysis. Additionally, to elucidate our claim that age-190 

deterministic growth estimation is more problematic in shade-tolerant species, we completed a 191 

similar SORTIE simulation for the shade-intolerant species white pine (Pinus strobus). Again, 192 

the stand was 100% white pine, standard model parameters were used, and the simulation was 193 
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run for 1000 years. All living trees (>5 cm dbh), (n=7362) in the final year of the model run were 194 

used for further analysis. Additional details regarding model parameters for the SORTIE 195 

simulations are provided in the supplementary materials (Suppl. S1).  196 

To simulate a low-frequency climate related growth-trend, a logistic trend was added to raw tree-197 

ring width of individual trees produced by both SORTIE simulations. The logistic trend 198 

simulated an initial rapid increase in growth and subsequent levelling off that aimed to represent 199 

a period of carbon fertilization and eventual acclimation. The logistic model was applied to the 200 

last 100 years of growth and took the following form, where RWt represents ring widths with the 201 

simulated long-term trend and RWr are raw ring widths: 202 

(4) 𝑅𝑊𝑡𝑦𝑖 = 𝑅𝑊𝑟𝑦𝑖 +
0.6∗𝑅𝑊̅̅ ̅̅ ̅𝑖

1+𝑎𝑒−𝑟∗𝑦
 203 

The logistic trend parameters (r, a) were chosen such that increases in growth did not exceed 5% 204 

of individual average tree growth per decade. 205 

Sixty trees were randomly selected, without replacement, from the simulated tree populations 206 

and subject to each of the five standardization methods (SDS, RCS, COMB, CD, BAI). Model 207 

residuals (in the case of RCS, SDS and COMB), and standardized (CD) or transformed (BAI) 208 

tree-ring widths were compiled into an annual mean chronology using Tukey’s biweight robust 209 

mean. The resultant chronologies were then tested for significant correlation with the logistic 210 

growth-trend using Spearman’s rank correlation coefficient. This process was bootstrap 211 

resampled 100 times to produce confidence intervals for correlation coefficients.  212 

To examine the effect of minimum size sampling thresholds on the accuracy of long-term trend 213 

reconstruction by each of the standardization methods, we completed the same analysis on trees 214 

from the simulated populations that exceeded certain size thresholds. The thresholds employed 215 
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were 10 cm DBH, which represented a practical minimum size threshold for sampling, and 30 216 

and 50 cm DBH which represented thresholds for mature and dominant trees, respectively. The 217 

mean Spearman’s rho for all detrending methods and sampling thresholds were compared using 218 

two-way ANOVA and post-hoc tests. Further, two-way ANOVA compared the effect of model 219 

choice on Spearman’s rho between species (sugar maple and white pine).  220 

2.3 Real tree-ring data 221 

We evaluated the appropriateness of the SDS, COMB and RCS models for use in real tree-ring 222 

data from shade-tolerant species. We collected tree-ring data from seven mature sugar maple 223 

dominated stands in Ontario, Canada (Table 1). Further, tree-ring data sets from the shade-224 

tolerant species red spruce (Picea rubens) were obtained from the DendroEcological Network 225 

database (https://www.uvm.edu/femc/dendro), (Table 1). Red spruce was chosen as it had 226 

sufficient replication across studies in the database. Descriptions of the sampling strategies and 227 

data processing methods for all sites considered are provided in either the supplementary 228 

materials (Suppl. S2) or in their respective references (i.e. Kosiba 2013, Kosiba 2017). Data was 229 

considered suitable for this study if age and DBH estimates were provided and if a minimum 20 230 

trees per site and species were sampled. All cores in which pith offset was estimated to be greater 231 

than 10 years were considered unaged. The SDS, RCS, and COMB models were fit to tree-ring 232 

data from all site-species combinations and the resultant chronologies were compiled with a 233 

robust mean. In all cases models were fit to log-transformed ring widths, as it increased residual 234 
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homoskedasticity. For simplicity and ease of model comparison we did not fit CD or BAI models 235 

to the real tree-ring data set.  236 

Model fits from the SDS, RCS and COMB methods were compared according to Akaike 237 

information criterion (AIC) and percent variance explained (R2). Since model comparison via 238 

AIC requires equal sample sizes, reduced data SDS (SDSred) and COMB (COMBred) models, 239 

which only included aged trees, were also fit. These reduced data models have no practical 240 

application but allow for direct AIC comparison between the RCS, COMBred and SDSred models. 241 

Further, we calculated chronology quality statistics including: mean interseries-correlation, 242 

expressed population signal (EPS) and signal-to-noise ratio (SNR), for all chronologies. 243 

Table 1:

Location, sample size, chronology length and source of tree ring data sets used in this study. 

Species Site (code)
Longitude 

(°)
Latitude 

(°)

N. trees 

total

N. trees 

aged

Length of 

chronology
Source

Toobee Lake (TB) 46.7459 -82.8668 79 67 1750-2015 This study

Wolf Mtn. (WM) 46.7390 -82.8467 22 18 1827-2015 …

Roosevelt Road (RS) 47.2852 -79.7063 20 11 1792-2016 …

Raven Lake (RL) 45.3309 -78.6339 31 19 1864-2015 …

Freezy Lake (FR) 45.2998 -78.4329 20 11 1887-2015 …

Kakakise Lake (KK) 46.0554 -81.3317 22 7 1773-2016 …

Mt. Zion Road (MT) 46.4000 -83.7004 29 15 1777-2015 …

Mt. Mansfield (MTM) 44.3750 -73.8750 111 109 1769-2011 Kosiba et al. (2016)

Burnt Mtn. (BNT) 44.2068 -72.3515 40 40 1891-2010 Kosiba et al. (2013)

Mt. Carmel (CAR) 43.7709 -72.9205 41 41 1795-2010 …

Mt. Ellen (ELL) 44.1656 -72.9221 42 42 1824-2010 …

Mt. Equinox (EQU) 43.1487 -73.1273 89 89 1857-2010 …

Mt. Greylock (GRY) 42.6738 -73.1575 44 44 1911-2010 …

Hubbard Brook (HUB) 43.9577 -71.7350 89 89 1885-2010 …

Killington Mtn. (KIL) 43.6146 -72.8088 104 103 1742-2010 …

Mt. Mansfield (MAN) 44.5106 -72.8297 57 57 1767-2010 …

Mt. Moosilauke (MOO) 44.0056 -71.8215 54 54 1760-2010 …

Mad River Glen (MRG) 44.1932 -72.9232 36 36 1927-2010 …

Sugar maple    

(A. saccharum )

Red spruce    

(P. rubens )
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Differences between model fit statistics and quality indices among models were tested using a 244 

linear mixed-effect modelling (LME) approach whereby, model error was specified according to 245 

site. This approach is analogous to traditional repeated-measures ANOVA but allows for contrast 246 

analysis between models.  247 

3 Results 248 

3.1 Comparisons of methods in simulated data 249 

Bootstrapped correlations for chronologies produced by each standardization method are 250 

displayed in Figure 2a for the sugar maple and Figure 2b for white pine.  251 

The sugar maple two-way ANOVA suggested a significant effect of both standardization model 252 

(p<0.001) and minimum size sampling threshold (p<0.001) on average correlation. Across all 253 

sampling thresholds the SDS model produced chronologies with the highest mean correlation 254 

(𝑟�̅�=0.972±0.024). Tukey HSD contrasts suggested mean correlation for the SDS model was 255 

significantly higher than all other models (p<0.001, all cases) except for the COMB model 256 

(𝑟�̅�=0.969±0.023), (p=0.993) which produced the second highest mean correlation. BAI produced 257 

the third highest mean correlation (𝑟�̅�=0.954±0.103) which was not significantly different from 258 

the combined model (p=0.61) but was significantly higher than correlations from the two 259 

remaining models (RCS and CD), (p<0.001). The CD (𝑟�̅�=0.720±0.153) and RCS 260 

(𝑟�̅�=0.925±0.054) models produced the lowest and second lowest correlations respectively; both 261 

were significantly different from each other and all other models (p<0.01, all cases).  262 
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Contrasts suggested that the significant effect of minimum size threshold was driven by 263 

significant differences in correlations between BAI produced chronologies among samples. As 264 

evident in Figure 2a, BAI chronologies performed best when size thresholds exceeded 50 cm 265 

DBH. At this threshold BAI chronologies produced significantly higher correlations than when 266 

all trees were sampled (p=0.002) and marginally significantly higher correlations than when trees 267 

>10 cm DBH were sampled (p=0.054). Contrastingly, the SDS, RCS, COMB and CD 268 

chronologies produced similar correlations across all minimum size thresholds. Bootstrapped 269 

sugar maple chronologies produced by each of the standardization methods are provided in 270 

Figure 3a. 271 

Minimum tree size sampled (DBH) 

Figure 2: Spearman’s rank correlation between chronologies produced by each of the five standardization methods and 

the imposed logistical trend in simulated (a) sugar maple and (b) white pine tree-ring data. Horizontal axis denotes 

minimum tree size (DBH) thresholds for sampling from the population.  
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The white pine two-way ANOVA also suggested a significant effect of both standardization 272 

model (p<0.001) and minimum size sampling threshold (p<0.001) on average correlation. Across 273 

all size thresholds the SDS (𝑟�̅�=0.965±0.035), COMB (𝑟�̅�=0.954±0.037), and RCS 274 

(𝑟�̅�=0.949±0.049) models produced the highest correlations respectively. Among these, none 275 

were significantly different from each other. Again, chronologies produced by CD produced the 276 

lowest correlations of all models (𝑟�̅�=0.785±0.074), (p<0.001, all cases). BAI produced 277 

chronologies (𝑟�̅�=0.922±0.177) performed significantly worse than SDS, COMB and RCS 278 

chronologies and significantly better than CD (p<0.001, all cases). Tukey HSD contrasts 279 

suggested that the significant effect of minimum size threshold was again driven by significant 280 

differences in correlations between BAI produced chronologies among samples. As evident in 281 

Figure 2b, BAI chronologies performed significantly better when sampling size thresholds 282 

Time step (years) 

Tr
ee

-r
in

g 
w

id
th

 in
d

ex
 

  

Figure 3: 95% confidence intervals for chronologies produced by each standardization method in SORTIE 

simulated (a) sugar maple and (b) white pine tree-ring data (Top: BAI, CD; Bottom: SDS, RCS, COMB). 

Confidence intervals were obtained via bootstrap resampling (rep=100) of 60 trees (>10 cm DBH) from the 

SORTIE simulated populations. Dotted lines indicate the logistic trend that was added to the raw tree-ring 

data. For ease of comparison all chronologies and the simulated trend were centred and scaled before plotting.  

a b 
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exceed 30 cm DBH (p<0.001, all cases). However, for BAI chronologies increased size 283 

thresholds of 50 cm DBH did not produce significantly higher correlations relative to the 30 cm 284 

DBH threshold (p=1.000). Bootstrapped white pine chronologies produced by each of the 285 

standardization methods are provided in Figure 3b.  286 

When comparing mean correlations produced by each method between sugar maple and white 287 

pine, two-way ANOVA suggested a significant interaction between species and method 288 

(p<0.001). Tukey HSD contrasts suggested this effect is driven by significant differences in 289 

correlations produced by RCS, BAI and CD between species. More specifically, across all size 290 

thresholds RCS and CD produced significantly higher correlations in white pine relative to sugar 291 

maple (p=0.011, p<0.001, respectively). Whereas, BAI produced significantly higher 292 

correlations in sugar maple (p<0.001).  293 

3.2 Comparisons of methods in real tree-ring data 294 

The standardized partial predictors estimated for each of the SDS, RCS and COMB models fit to 295 

the sugar maple and red spruce data are provided in Figure 4. In general, SDS and RCS models 296 

suggested rather flat relationships between tree age and size with in average growth (log-297 

transformed) in both species. However, when the effects of age and tree size were considered 298 

together in COMB models both showed more distinct relationships with average growth. In the 299 

COMB models average tree growth appeared to increase rapidly with tree size and eventually 300 

decline as trees exceed 50 cm DBH in both species. Average growth appeared to decline with 301 

increasing age before leveling off around 100 years. In both cases the COMB models showed 302 

better agreement among sites in small/young trees than the simpler models.  303 
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304 

In sugar maple, Tukey HSD contrasts suggested no significant differences in the meaningful AIC 305 

comparisons after controlling for site differences (Fig. 5a). However, R2 produced by the COMB 306 

Figure 4: Standardized partial predictors of age (purple) and diameter (green) estimated by GAMs for the 

SDS, RCS (left) and COMB (right) standardization models for (a) sugar maple and (b) red pine tree-ring 

data. Ribbons represent 95% confidence intervals of the partial predictors. 

a 

b 
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models were significantly higher than those produced by both the SDS (p=0.039) and RCS 307 

(p<0.001) models, but SDS and COMB were not significantly different from each other 308 

(p=0.177), (Fig. 5a). LMEs did not suggest a significant effect of model choice on any of the 309 

chronology quality statistics (mean interseries-correlation, SNR, EPS). 310 

In red spruce, the COMB model fits exhibited 311 

significantly lower AIC values than the SDS model 312 

(p<0.001) after controlling for site differences (Fig. 313 

5b). Similarly, the COMBred model fits exhibited 314 

significantly lower AIC vales than the SDSred 315 

(p<0.001) and RCS (p<0.001) models, while the 316 

SDSred and RCS were not significantly different 317 

from each other (p=0.706), (Fig. 5a). Similarly, R2 318 

produced by the COMB models were significantly 319 

higher than those produced by both SDS (p<0.001) 320 

and RCS (p<0.001), which were not different from 321 

each other (p=0.114), (Fig. 5a). As with sugar 322 

maple LME did not suggest a significant effect of 323 

model choice on any of the chronology quality 324 

statistics. 325 

4 Discussion 326 

4.1 Size-vs age-deterministic models for long-term trend reconstruction 327 

a 

b 

Figure 5: Adjusted AIC and R2 values for fits of 

standardization models applied to (a) 7 sugar maple and (b) 

11 red spruce tree-ring chronologies. Site-specific error was 

removed via a mixed modelling approach. Significant 

differences (a=0.05) between models are indicated with 

small letters (a, b). Dashed vertical lines signify meaningful 

pairwise AIC comparisons (i.e. COMB vs. SDS). 
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Using simulated tree-ring data, from the shade-tolerant species sugar maple, we have shown that 328 

standardization models which include tree size in the year of ring formation (SDS, COMB) 329 

produced chronologies that retain long-term/low-frequency variation better than those produced 330 

by models that only include age as a predictor (RCS). Alternatively, in the shade-intolerant 331 

species white pine, chronologies produced by the SDS, RCS and COMB models showed no 332 

significant difference in their estimation of long-term trends. Further, our analysis suggests that 333 

the traditional RCS method performed significantly worse in the shade-tolerant species, sugar 334 

maple, than in shade-intolerant white pine.  335 

The finding that size-based standardization models performed well in simulated tree-ring data is 336 

not surprising given that the SORTIE model calculates annual tree growth as function of tree 337 

size. Thus, the underlying growth-trend would be well-approximated by a flexible curve 338 

estimated on the basis of tree size. As such, we use these results solely to elucidate the 339 

problematic nature of age-based standardization methods for shade-tolerant species. SORTIE’s 340 

use of diameter, rather than age, as a determinant of tree growth is not arbitrary; it is well 341 

established that tree metabolic processes are directly related to size (West et al. 2001). 342 

Additionally, there is little evidence for a unique effect of age on tree growth that is independent 343 

of size (Munné-Bosch 2007 (and within)). With the exception of dendrochronological models, 344 

the vast majority of individual tree growth and process models are indeed size-based. It follows 345 

that the ubiquitous use of age or calendar year in tree-ring standardization methods (RCS, signal-346 

free standardization, C-method, CD, Hugershoff curves) is a practice born out of convenience 347 

rather than physiological consideration. As such, we agree with previous accounts that this 348 

assumption may be especially problematic in shade-tolerant trees where age and size may not be 349 

perfectly correlated (Peters et al. 2015, Bontemps and Esper 2011).  350 
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Unfortunately, all systematic comparisons of tree-ring standardization methods in real tree-ring 351 

data (e.g. Sullivan et al. 2016) are limited by their inability to validate long-term trends estimated 352 

by chronologies. Instead, we evaluate standardization models on the basis of model parsimony. 353 

We have shown that in the shade-tolerant species red spruce, COMB models are significantly 354 

more parsimonious (estimated by AIC) than simpler models (RCS, SDS). Further, the COMB 355 

models explain more variance (estimated by R2) in tree-ring data regardless of differences in 356 

underlying sample sizes. Overall, our results are conservative relative to similar comparisons 357 

performed by Nock et al. (2011) in tropical tree species of varying shade-tolerance. Nock et al. 358 

(2011) note that LMEs of BAI that included tree diameter had more support than those that 359 

included age. In line with discussion above, Nock et al. (2011) attribute this finding to size being 360 

a more important determinant of light capture as it relates to tree height and crown size (King et 361 

al. 2005). Further, in both red spruce and sugar maple we have shown that tree size and age 362 

exhibit stronger relationships with average growth when their unique effects are estimated 363 

simultaneously in COMB models rather than alone in SDS and RCS models, respectively. This 364 

result is interesting given the high correlation expected between these variables and it may 365 

explain why COMB models explained significantly more variance than each of the simpler 366 

models. Given the relatively weak trends shown in predictors from both the SDS and RCS, 367 

models we suggest that low-frequency variance related to the underlying biological growth-trend 368 

may be retained in these chronologies. 369 

Regardless of differences in model fits, the implications for the resultant chronologies remain 370 

conservative (Fig. S.2). Similarly, in comparison of RCS and SDS chronologies in common 371 

beech (Fagus sylvatica L.) Bontemps and Esper (2011) note both chronologies exhibit similar 372 

annual variations. The resultant chronology is more likely to be influenced by sample size of the 373 
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underlying tree population than by choice of standardization model. Tree age can be difficult or 374 

impossible to accurately estimate for some trees. In contrast, annual tree size can be reliability 375 

estimated from DBH and tree-ring measurements more ubiquitously. We note that in this study 376 

only 66% of sugar maple trees could be accurately aged. Since unaged trees are likely to be the 377 

oldest trees in the chronology, it follows that RCS chronologies may exhibit poor sample 378 

replication (especially in early years) and may be significantly shorter than those produced by 379 

SDS or COMB models. This has obvious implications for data quality and suitability. 380 

Considerably problematic is the “segment length curse” whereby, almost all standardization 381 

methods are ill-equipped to estimate long-term trends on time scales greater than or equal to the 382 

length of the chronology itself (Cook et al. 2005). Excessively short RCS chronologies are 383 

therefore limited in their application. A large advantage of SDS and COMB models is that they 384 

can incorporate otherwise inadmissible tree-ring data. 385 

4.2 BAI and CD methods for long-term trend reconstruction 386 

The finding that CD did not produce accurate long-term trends in simulated tree-ring data is 387 

consistent with our expectations (Peters et al. 2015, Briffa et al. 1992). We maintain CD should 388 

be avoided if the goal is long-term reconstruction from tree-ring data. 389 

BAI chronologies accurately reproduced long-term trends in simulated tree-ring data. However, 390 

our analysis suggests BAI is less reliable when small/young trees are sampled. This was in line 391 

with Peters et al. (2015) who note high accuracy and sensitivity of BAI chronologies to imposed 392 

long-term trends, but that BAI is likely to produce erroneous trends when the underlying trend is 393 

of low signal, as would be the case for young/small trees that have low BAI rates and low 394 

climate sensitivity. As presented here, the BAI method imparts a strict relationship between tree 395 

size and growth. It has been suggested that this relationship may not account for the entire 396 
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biological growth-trend (Peters et al. 2015). Accordingly, we caution future studies in their 397 

interpretation of BAI trends in low-signal tree-ring series. Alternatively, other studies have 398 

explicitly modelled size and/or age effects on BAI using a mixed-effect modelling approach (e.g. 399 

Marqués et al. 2016, Camarero et al. 2015, Nock et al. 2011, Martínez-Vilalta et al. 2008). We 400 

suggest this approach may better account for species- and site-specific factors that influence 401 

expected growth rates, leading to more accurate estimates of long-term trends in the resultant 402 

chronology. While our findings regarding the importance of inclusion of size in tree-ring 403 

standardization models are presented in the context of raw tree-ring width models, they are also 404 

directly relevant to explicit models of BAI. 405 

4.3 Other considerations and future research 406 

It is important to note that the goal of this study was not to explicitly test the effect of sample 407 

biases (i.e. modern sample bias, selection bias, etc.) on trend reconstruction, but instead to assess 408 

reliability across different underlying sampling distributions. There is now considerable evidence 409 

to suggest that the long-standing practice of sampling only dominant trees or trees exceeding a 410 

minimum size threshold within a stand leads to considerable bias in the resultant chronology 411 

(Nehrbass-Ahles et al. 2014, Brienen et al. 2012, Briffa and Melvin 2011). This bias is consistent 412 

across standardization methods (Nehrbass-Ahles et al. 2014). We maintain that in cases of long-413 

term trend reconstruction, stands should be sampled according to the underlying stand age/size 414 

distribution, either through use of fixed-plots or random tree selection, regardless of the 415 

standardization procedure used. 416 

Our study has suggested that the choice of standardization model (SDS, RCS, COMB) has no 417 

discernable effect on indices of chronology quality (EPS, SNR, interseries-correlation). We 418 

suggest this finding is a result of the chosen species exhibiting low climate sensitivity (Phipps 419 
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1982) and thus, low common signal in the chronology. As such we do not regard this finding as 420 

failure of any of the standardization models. We suspect more conclusive results would be found 421 

in climate sensitive species. Given the underlying physiological justification of the models 422 

presented here, we have no reason to suggest they are not broadly applicable to species of all 423 

shade-tolerance levels. We recommend future studies investigate the applicability of SDS and 424 

COMB models to both raw tree-ring width and BAI data in wider range of species. That said, 425 

shade-tolerant and broadleaf species, and their applicable standardization procedures, are 426 

underrepresented in dendrochronological studies (Zhao et al. 2019). We advocate for continued 427 

refinement of tree-ring standardization procedures that are relevant to the ecological questions 428 

they aim to address.  429 
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