
Here, an overview is provided of all replies to the comments of the anonymous reviewers. Each concern is 

tackled separately. First the comment is listed, and our reply is pasted underneath in italics. Also, if we 

adapted the manuscript, this is added to our reply (underlined sentences represent the changes made to the 

draft. 

Directly after the responses to all comments, we included a version of the manuscript marking all the 

performed changes. 

Reply comments Reviewer #1 

1. The authors used the Conditional Spectral Granger Causality framework to evaluate local biosphere – 

climate interactions at a global scale. This was done at three temporal scales (monthly, seasonally and 

yearly) and using vegetation dynamics (based on LAI) retrieved from both satellite observations and earth 

system model data. Overall, I think it is a very interesting and innovative approach. Although the method 

has a few restrictions, such as the inability to account for off-site effects of vegetation on climate, these 

are well acknowledged in the discussion. 

Thank you for your insightful comments and support of the manuscript. 

2. The authors could consider to change the title to multi-temporal scales instead of scales as the latter may 

also refer to spatial scale. 

We acknowledge the possibility for confusion and have changed the title accordingly.  

New title: Global biosphere–climate interaction: a multi-temporal scale appraisal of observations and models 

3. Although not in the scope of this paper, could the approach be useful to evaluate how the interactions 

change over time? 

Conditional Spectral Granger Causality can be used to address changes over time (see Dhamala et al., 2008). 

Currently, the wavelet spectrum is averaged over all time steps. This results in more robust statistical 

measures (i.e. higher statistical confidence), at the expense of a partial loss of time domain information. 

Resolving the time-frequency space requires more statistical power, which can only be achieved by averaging 

across large spatial extent. As the reviewer states, exploring the time dimension lies out of the scope of the 

current manuscript, but is definitely part of our future plans. 

Dhamala, M., Rangarajan, G. & Ding, M. (2018). Estimating Granger causality from Fourier and wavelet 

transforms of time series data. Phys. Rev. Lett., 100, 018701. 

4. There is likely an important anthropogenic effect on both vegetation and climate dynamics. Could this 

impact the obtained results? 

Anthropogenic effects impacting climate on the long term, and resulting in multi-decadal trends, are not 

addressed in this study due to the limited data record. As the reviewer noticed, based on the three-decade 

record length available for the analyses, and considering unavoidable time series edge effects, we can only 



resolve reliably time scales with periods smaller than 10 year. Conversely, vegetation disturbances directly 

driven by human activities, such as deforestation, agricultural practices, etc., can generate variability in the 

vegetation indices on a much broader range of scales, thus directly affecting our analyses. However, because 

this variability is not necessarily related to climate, it will be assimilated into residual noise in our approach. 

Granger causality assumes causal sufficiency and regions with unobservable causes (in this case those leading 

to e.g. deforestation) will be poorly resolved by the framework. This is now explicitly mentioned in the revised 

version. 

In text, Sect. 3.1: Noteworthy is that anthropogenic effects, which are not addressed here, can also impact 

vegetation and climate at short temporal scales. For example, irrigation and deforestation can result in a 

decoupling between climate and vegetation (Lawrence et al., 2015; Chen et al., 2019). In the tropics, 

deforestation results in a warming effect due to reduced plant transpiration, which in turn may induce a 

decline in precipitation, creating a warmer and drier regime (Lawrence et al., 2015). Irrigation allows for 

growing crops in water-limited regions, consequently inducing energy constraints which are captured by the 

CSGC. Note that due to the limited data record, the effects of global warming trends and carbon dioxide 

fertilisation – and the consequent trends in vegetation greening and water use efficiency (Reichstein et al., 

2013; Wu et al., 2015; Zhu et al., 2016) – are not directly addressed in this study. 

5. The inter-annual impact of climate on vegetation is very patch over Africa and North America in contrast 

to the modelled output (fig 2). Do the authors have an idea why this happens? Is this a methodological 

issue, data issue or are the drivers of long term trends more spatially heterogeneous (which is not 

catched by the models). 

We thank the reviewer for this comment. We further explored these patterns after the referee's comment, 

and concluded that the shape parameter of the Morlet wavelet partly influences the results in this regard. 

This parameter provides a trade-off between spectral and temporal resolution. By increasing the time-

resolution the conditional causality patterns at inter-annual scales can be better resolved. This improves the 

clarity in the figures, even if some heterogeneity remains. A further improvement followed one of the 

comments of Reviewer #2 (see comment #2), who requested an ensemble based on multiple datasets of LAI 

and climate variables, which would help resolve issues related data errors. Both the tuning of the shape 

parameter as well as the creation of the ensemble are adopted in the revised version and all figures are 

updated accordingly. We described the selection of the frequency parameter to balance the time and 

frequency resolution in the manuscript. 

In text, Sect 2.2.2: …between predictors and target variable. In order to perform the time-frequency 

decomposition, the Morlet wavelet is used and a balance between the time and frequency resolutions is 

obtained by setting the shape parameter to a value of 6, as in Torrence and Compo (1998), or Casagrande et 

al. (2015). Moreover, to overcome the limitation… 

6. Did the authors try to run the analysis over the same time period for the remote sensing and model data 

(page 4, line 17)? Do the results substantially differ? 

We thank the reviewer for this comment. We have already run the analysis over the same time period and 

found that almost no changes occurred. The results for inter-annual scales faint slightly, but the major 

patterns remain consistent. We have included the results to the supplementary and discussed them in the 

main text. 



In text, Sect. 2.1.2: …under the assumption that sensitivities are stationary (see e.g. Green et al., 2017). Sect. 

3.2 addresses the validity of this assumption. Nonetheless, we… 

In text, Sect. 3.2: …  (Fig 2e), and is also strongly overestimated in absolute terms at most latitudes, especially 

in the tropics. Further analysis shows that the divergence in the considered period between observations and 

models (see Sect. 2.1) does not substantially impact results; repeating the analysis for the overlapping time 

range for observations and models (1982—2005) yields very similar findings (Fig. C1).  

7. The approach includes data outside the growing season to estimate the monthly interactions. Yet, 

variations in LAI might not be meaningful during this period. Could this potentially affect the results? 

Yes, we agree with the reviewer that it would be more meaningful from a biological point of view to include 

only data from the growing season. We are currently working to resolve the time domain to the Conditional 

Spectral Granger Causality formulation (see comment #3), which would allow us to tackle this issue explicitly 

in the future. Below you can find a preliminary figure that shows the percentage of explained variation by 

climate at a monthly scale over a 10-year period for a pixel located in central Russia calculated using CSGC to 

address changes over time. We can clearly see that during wintertime, air temperature (and radiation) 

generally seem to inhibit vegetation growth, while during summer, when the temperature is high enough for 

plants to grow, water limitation spikes. This figure shows how we can disentangle drivers from in- and outside 

the growing season as they do differ. However, as stated in comment #3, this is out of the scope of this paper. 

 

Also, we are confident that the adoption of an ensemble approach (see Reviewer #2 comment #2) will dampen 

the sensitivity of our method to the errors in the individual data sources, thus removing product-specific biases 

in wintertime. 

8. What is the policy of the authors concerning sharing data/scripts? Are the authors planning to make 

these available via a repository/upon reasonable request/…? 

We are open for sharing the scripts using GitHub after publication at https://github.com/lhwm. All datasets 

used in this study are freely available, for which links will be provided in the README.md file of the GitHub-

page. 

  



Reply comments Reviewer #2 

1. The manuscript explores the biosphere-climate interactions at global scale. The method, based on a 

Granger Causality framework, quantifies the climate impact on vegetation and the vegetation feedback 

on climate using satellite observations. The same approach is then applied to four ESMs and differences 

between data and model results are discussed. The study is well written and potentially interesting as – 

to my knowledge – is the first work aimed to isolate the climate-vegetation interactions analytically using 

observations and can help the modelling community to improve ESMs. However, I have some major 

concerns that need to be carefully addressed before publication. 

We thank the reviewer for the insightful comments and we hope that we have addressed all major and minor 

concerns adequately. 

General comments 

2. The study is based on a limited set of observational datasets: only one product per variable. In particular, 

LAI and precipitation data show large discrepancies and inconsistencies across products (Jiang et al., 

2017). Results, based on such a limited set of products, may be largely affected by specific product 

uncertainties. The analysis should be replicated by using an ensemble of different products for LAI, P and 

possibly T and Rn. Results based on an ensemble of combinations would be much more robust. 

Comparison of results obtained from different combinations of products would also enable you to assess 

the validity of your approach and the consistency of your results. (Jiang, C. et al. Inconsistencies of inter-

annual variability and trends in longterm satellite leaf area index products. Glob. Change Biol. 23, 4133–

4146 (2017).) 

We thank the reviewer for this comment. We agree that by creating an ensemble of LAI, P, T and Rn, we can 

significantly improve the robustness of the results. We have added three more LAI products, corresponding to 

those used in Jiang et al. (2017). Furthermore, for climate we added air temperature and net radiation from 

ECMWF’s most recent reanalysis product ERA5, and two more precipitation products, namely ERA5 and GPCC. 

We added more products for LAI and precipitation as for air temperature or net radiation due to the larger 

inter-product variability. A brief description of all included products was added to the data section, and figures 

were updated after repeating the analysis for all ensemble members. Results for all model ensembles 

generally agree well (see comment 3). 

In text, Sect. 2.1.1: To avoid product-specific biases and artefacts, an ensemble of multiple observation-based 

products for each variable is created, consisting of: (a) four LAI, (b) two air temperature, (c) two net radiation, 

and (d) three precipitation data sets. The larger ensemble of data sets here adopted to characterise LAI and 

precipitation is motivated by the larger disparity among the different products of these variables (Jiang et al., 

2017; Sun et al., 2018). Tab. 1 provides an overview of the available datasets. Finally, the International 

Geosphere-Biosphere Program (IGBP) land cover classification (Loveland and Belward, 1997) is used to 

determine biome-specific behaviours… 

  



Table 1. Summary of global data sets used for vegetation, i.e. LAI, and climate, i.e. air temperature (Ta), net radiation (Rn), and 
precipitation (P). 

Product 
Minimum resolution 

Variable Reference 
Spatial Temporal 

Global Inventory Modelling and Mapping Studies 3rd 
generation (GIMMS3g) 

1/12° 
1982-2015; 

LAI Zhu et al. (2013) 
bimonthly 

NOAA/AVHRR Thematic Climate Data Record 
(TCDR) Reflectance 

0.05° 
1982-2018; 

LAI Claverie et al. (2016) 
daily 

GIMMS3g + Terra/MODIS C5 reflectance 
(GLOBMAP) 

1/13.75° 
1982-2017; 

LAI Liu et al. (2012) 
28-day 

NOAA/AVHRR LTDR + Terra/MODIS C5 reflectance 
(GLASS) 

0.05° 
1982-2015; 

LAI Xiao et al. (2016) 
8-day 

ECMWF ERA5 32km 
1979-…; 

Ta, Rn and P Hersbach and Dee (2016) 
hourly 

Climate Research Unit – National Centers for 
Environmental Prediction (CRU-NCEP) version 7 

0.05° 
1901-2016; 

Ta, Rn and P Viovy (2018) 
6-hour 

Global Precipitation Climatology Centre (GPCC) 0.5° 
1891-2016; 

P Schneider et al. (2011) 
daily 

 

3. Spatial patterns shown in figures (e.g., figs. 2, 3 and appendices) are very jeopardized and – a part of the 

radiation control patterns – are not very credible. There is a huge spatial heterogeneity even in regions 

characterized by the same environmental conditions. I’m wondering, if such spatial variability reflects 

some problems of stability in the algorithm or noise in the modelled signal. These strange patterns 

emerge particularly at longer time scales (seasonal, inter-annual) maybe because the sample size is more 

limited? I really find difficult to believe in such patterns and authors should make an extra effort to 

improve or at least understand such spatial variability. In my opinion, such spatial variability could 

originate from the native time series (possible uncertainties in the signal) and the processing of the signal, 

as I do not see any patterns that can be easily related to physical conditions. Maybe, the use of ensemble 

of different observational products (see previous comment) may help to retrieve a more robust signal.  

We are aware of the heterogeneity at longer timescales, and also reviewer #1 (see comment #5) pointed to 

this issue. The problem is partly due to the parametrization of the frequency parameter of the wavelet, which 

provides a trade-off between temporal and spectral resolution. As mentioned in the response to reviewer #1 

(see comment #5), fine-tuning the parameter to increase temporal resolution can improve the inter-annual 

patterns. However, the noisy patterns can also occur due to noise in the input data, as mentioned in comment 

#2, and the length of the available sample. By creating an ensemble of datasets and changing the frequency 

parameter, the noise related to errors in the data is greatly reduced, resulting in more homogeneous patterns, 

even at inter-annual scales. All figures are updated, and the result section is updated accordingly (only minor 

changes). We described the selection of the frequency parameter to balance the time and frequency 

resolution (see Reviewer #1 comment #5).  

4. The benchmark of ESMs is very useful and interesting. However, the authors should try to identify 

potential areas of model improvements. This exercise should aim to clearly understand what are the 

strengths and deficiencies of each single model with respect to the data-model comparison performed. 

A table to synthesize areas of improvements could help to convey the key information to modelers.  

Although we agree this might be of interest to the modelling community, we aimed not to single out individual 

models in this manuscript due to length restrictions. Moreover, we believe that by focusing on model 



differences, or even specific model parameterisations, we might dilute the main findings that relate to the 

whole range of models. Therefore, we believe a model-specific interpretation is outside the scope of this study, 

and hope the reviewer may agree with this rationale. 

5. Remote sensing LAI data in winter season are affected by snow cover conditions. I’m wondering how you 

have addressed this issue. If you did not account for this, I think your results may be strongly affected by 

this bias. 

We acknowledge that snow cover might affect the LAI in the high northern latitudes, especially at the seasonal 

and monthly scales. At the moment, we do not address this issue. As pointed in the response to reviewer #1 

(see comment #7), we are currently working on adapting the CSGC algorithm to explicitly resolve different 

time steps/periods, which would, in the future, allow to resolve the causal relationships in time and mask out 

periods of poor data quality. This however requires an in-depth adaptation of the method. In the response to 

reviewer #1 (see comment #7), we added a preliminary figure showing the temporal variation in explained 

variance by three drivers over a 10-year period. This clearly shows that, in the future, we can tackle this issue. 

Furthermore, we are also confident that the adoption of an ensemble approach (as proposed by comment #2) 

will dampen the sensitivity to errors in individual products, during for instance wintertime, being however 

aware of the fact that these errors are likely systematic and shared by all data products. In the revised 

manuscript, this issue is explicitly discussed.  

In text, Sect. 3.1: …incoming radiation during winter months. However, in those latitudes, LAI retrievals are 

contaminated by snow cover signals. While focusing on the growing season could solve this issue, the CSGC 

requires continuous time series. Because in wintertime, due to limitations in solar radiation, plant growth is 

inhibited in northern latitudes, most variability captured at monthly scales will be dominated by the more 

dynamic spring and summer periods; therefore, our results suggests that radiation still dominates the 

behaviour of vegetation at these latitudes.              This dominant high-latitude radiation control was not 

reported by Papagiannopoulou et al. (2017b), who, based on a non-linear Granger causality framework, found 

that 61% of the vegetated land… 

6. The relevance of the multi-temporal scale needs to be clarified, what is the added value of such analysis 

compared to previous studies focusing only on monthly scale. 

We feel that the fact our results differ for different frequencies (time-scales) highlights by itself the need to 

consider these frequencies separately to better understand the driving role of climate in ecosystem dynamics. 

To better clarify this point, we revised the manuscript to explain why, conceptually, phenology scales and 

inter-annual variability also need to be considered separately when models are evaluated. 

In text, Sect. 1: … Despite efforts to identify the controls of vegetation, which showed that ESMs overestimate 

the annual LAI due to problems related to the timing of the phenological cycle (Anav et al., 2013; Murray-

Tortarolo et al., 2013; Zhu et al., 2013; Forkel et al., 2014; Verger et al., 2016), ESMs remain in need of a 

better understanding of why these multi-temporal scale variabilities differ from the observations. Rather 

than using correlation or regression techniques, a method capable of inferring causality can greatly aid our 

understanding of key climate-biosphere processes, which in turn can help enhance the ESMs (Runge et al., 

2019). In a recent example,… 

Specific comments: 



Page 1 

 Paper of interest: https://www.nature.com/articles/s41467-019-10105-3 (Runge et al.: Inferring 

causation from time series in Earth system sciences, Nature communications, 10.1, 2553, 2019.).  

At the time of submitting the first version of the manuscript, this article was not officially published yet, 

despite it being of interest for our manuscript. We’ve added it to the manuscript (see reply comment #6). 

 Line 9: Are you referring to the onset, end of growing season, or what? Please clarify. LAI is not synonym 

of phenology. 

As this is a recurring comment, we will clarify here what we mean by ‘phenology’. We are aware that LAI 

seasonality is not a synonym of phenology, however, we do believe that LAI is highly sensitive to phenological 

changes, as also shown by Richardson et al. (2009) and Verger et al., 2016, just as Vegetation Optical Depth 

(VOD) is often used as a proxy of the vegetation total biomass due to its close proximity to the vegetation 

water content Liu et al. (2011). Here, if we speak of phenology, or phenological cycle, we mean the dynamics 

of LAI over the seasons. If CSGC points towards a certain climate control on vegetation at seasonal scale, this 

means that the variation in climate within a year, i.e. seasonality, contains information that can explain the 

behaviour of vegetation. For instance, in the northern latitudes, the seasonality of radiation precedes the 

seasonal pattern of vegetation, but these two are closely linked. One can state than that the total 

phenological cycle, e.g. the timing (start and end) of the growing season, the amplitude of the variations, etc. 

are strongly forced by radiation in this example. We incorporated this definition in the main manuscript, as 

we feel the abstract is not the right place to do so. (References not in manuscript: Liu et al. Global long-term 

passive microwave satellite-based retrievals of vegetation optical depth, Geophysical Research Letters, 38, 

L18402, 2011). 

In text, Sect. 2.2.6: …differ from the short-term processes. Hereafter, the terms phenology and phenological 

cycle are used to refer to the seasonal-scale variability in LAI. This reflects features such as the timing of the 

growing season or the amplitude of the intra-annual cycle (Richardson et al., 2009; Verger et al., 2016), since 

CSGC will react to variability in both the time and frequency domains. As explained in Sect. 2.2.3, CSGC allows 

a simultaneous analysis of the interactions at multi-temporal scales, while no assumption… 

In text, Abstract: …The seasonal LAI variability in energy-driven latitudes… 

 Line 11: For completeness, can you also briefly refer to the role of temperature? 

In text: … inter-annual than multi-month scales. Globally, precipitation is the most dominant driver of 

vegetation at monthly scales, particularly in (semi-)arid regions. The seasonal LAI variability in energy-driven 

latitudes is mainly controlled by radiation, while air temperature controls vegetation growth and decay in the 

high northern latitudes at inter-annual scales. The observational results… 

 Line 13: Please, specify over which temporal scale? 

In text: … semi-arid regions at inter-annual scales. Analogously,… 

https://www.nature.com/articles/s41467-019-10105-3


 Line 15: Again, it is not clear here to what phenology is referring to? 

We refer to the comment of page 1, line 9 that tackled this issue and hope it helped to solve the confusion. 

In text: … control of air temperature on seasonal forest variability. Overall… 

 Line 17: I found a bit too much speculative the interpretation… Could not be just because the direct effect 

of climate on LAI is larger than the opposite feedback of vegetation on climate in nature? The fact that 

you are focusing on local scale without remote effect does not imply per se that the feedback of 

vegetation could be larger than the climate impact on vegetation. 

We thank the reviewer for this remark. We did not mean to state that the feedback on climate is smaller as 

the climate impact on vegetation due to the local nature of our analysis. However, we do see how this 

statement could be interpreted this way. Therefore, we altered the statement slightly. 

In text: …Overall, climate impacts on LAI are found to be stronger than the feedbacks of LAI on climate in both 

observations and models; in other words, local climate variability leaves a larger imprint on temporal LAI 

dynamics than vice versa. Note however that while vegetation reacts directly to its local climate conditions, 

its dynamics may affect climate preferably downwind, especially in the case of precipitation. Consequently, 

the local (i.e. spatially collocated) character of the analysis does not allow for the identification of downwind 

or remote feedbacks, biophysical effects of vegetation on climate might be underestimated. Nonetheless, the 

widespread… 
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 Line 8 and 10: our biosphere  the biosphere, our Earth system  the Earth system 

Agree, corrected in text. 

 Line 12: You give per granted that models do not work well… I would reformulate the sentence… 

something like: models have shown limitations in capturing… 

Agree, the statement was open to interpretation. We changed it in the text. 

In text: The different approaches to objectively evaluate the skill of Earth System Models (ESMs) in 

representing the two-way coupling between vegetation and climate have revealed several limitations 

(Randerson et al., 2009; … 

 Line 14: Consider to include the following publication: https://www.earth-syst-sci-

data.net/10/1265/2018/ (Duveiller et al., Biophysics and vegetation cover change: a process-based 

evaluation framework for confronting land surface models with satellite observations, Earth System 

Science Data, 10, 1265-1279, 2018) 

We thank the reviewer for this suggestion and added the article to the references. 

https://www.earth-syst-sci-data.net/10/1265/2018/
https://www.earth-syst-sci-data.net/10/1265/2018/


 Line 15: Clarify why it is important “the representation of particular inter-variable sensitivities” 

We agree we left this open for interpretation. It is important to study these links between variables in models 

to identify which processes are missing, or remain under-represented. In addition, ESMs have been shown to 

overestimate the mean annual LAI due to overestimation of the length of the growing season (see comment 

#6). 

In text: …Most of these efforts focus on the evaluation of the magnitude and short-term dynamics of individual 

variables (such as LAI, and gross primary production, GPP), rather than on the inter-variable sensitivities, 

which would be more informative on whether the interplay between vegetation and climate is reliably 

represented in these models. Furthermore, previous benchmark studies have typically focused on one specific 

time scale (typically annually or monthly), while the ecosystem response to (and feedback on) climate is 

expected to vary for different time scales; e.g. a model may accurately replicate the observed interplay 

between vegetation and climate at monthly scales, but still fail to capture the sensitivities that become 

relevant at seasonal or inter-annual time scales. 

 Line 24: Please, clarify why it is important to explore the multi-temporal issue. This would help the reader 

to follow your rationale and to better appreciate your findings. I would also stress here the challenges 

that you try to address. From what I understood, the multi-temporal scales and the explicit 

representation of causal relation between vegetation and climate represent the key novelty of your work. 

I would put more emphasis on these two aspects.  

We thank the reviewer for this suggestion. We can see how the manuscript can benefit from stressing this 

more explicitly. We made some alterations in the text (see comment #6 and comment page 1, line 15). 

 Line 25: I would mention that Papagiannopoulou et al. (2017b) do not address the seasonal and inter-

annual scales in order to clearly differentiate your study from the previous work. 

In text: In a recent example, Papagiannopoulou et al. (2017a,b) focused on evaluating multi-month vegetation 

variability in response to local climate, using a non-linear Granger causality framework applied to optical 

remote sensing indices. They showed that water availability and precipitation patterns primarily drive 

vegetation anomalies at monthly scales in more than 60% of the vegetated land, but did not address the 

relevant drivers over longer time scales. The inter-annual variability in terrestrial carbon fluxes has… 

Page 3 

 Line 1: I would suggest integrating your literature review with these relevant articles. 

https://science.sciencemag.org/content/351/6273/600 (Ramdane et al., Biophysical climate impacts of 

recent changes in global forest cover, Science, 351(6273), 600-604, 2016), 

https://www.nature.com/articles/s41467-017-02810-8 (Duveiller et al., The mark of vegetation change 

on Earth’s surface energy balance, 9, 679, 2018) 

We thank the reviewer for this suggestion and added the references to the literature review. 

https://science.sciencemag.org/content/351/6273/600
https://www.nature.com/articles/s41467-017-02810-8


In text, Sect. 1: … mainly due to high transpiration (Bonan et al., 2008; Forzieri et al., 2017). In fact, a net 

warming effect has been reported after tropical deforestation and agricultural expansion (Alkama et al., 

2016; Duveiller et al., 2018). Furthermore, the biosphere… 

 Line 18: In principle, it may serve also to detect where models work well. I would rephrase a bit the 

sentence in a more general way. 

Agree. 

In text: … (CMIP5) models (Taylor et al., 2012; see Sect. 3.2 and 3.3). By comparing the observational and 

model-based results, areas where certain processes and inter-variable sensitivities may be incorrectly 

represented in ESMs, as well as others that match the observed behaviour, are identified. 

 Line 31: Remote sensing LAI data in winter season are affected by snow cover conditions. I’m wondering 

how you have addressed this issue. If you did not account for this, I think your results may be strongly  

affected by this bias. 

We agree with the reviewer that snow cover conditions might affect LAI in winter season, especially in high 

northern latitudes. However, we strongly believe that our results from CSGC, after adopting an ensemble for 

the observations and optimising the shape parameter, are trustworthy. For a full response to this question, 

we refer to comment #5. 
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 Line 4: Why do you not use the ESA-CCI land cover product (and conversion to pass to PFT)? In principle, 

this enables to track for changes in PFT over almost the entire period of study. The ESA-CCI product 

represent the state-of-the-art product aimed to improve the link between remote sensing users and 

climate modellers… https://www.esa-landcover-cci.org/  

We are aware of the ESA-CCI land cover product, and its possibilities. However, due to the fact that our current 

CSGC framework does not allow to detect changes over time in inter-variable sensitivities between climate 

and vegetation (see Reviewer #1 comment #3), we felt that for now, such a state-of-the art land cover product 

was overqualified. Also, the IGBP product is widely used, which simplifies comparison of our results with 

already published ones. Finally, as with all choices regarding data, the final choice remains subjective. 

However, we do see potential to use the ESA-CCI land cover product in our current work focussing in changes 

of explained variation between climate and the biosphere. We hope the reviewer agrees with our decision of 

using the IGBP product in this manuscript. 

 Line 8: Given the large differences amongst different products for some of the variables considered, I 

would strongly suggest to account for multiple products 

(https://onlinelibrary.wiley.com/doi/10.1111/gcb.13787 ; Jian et al., Inconsistencies of inter-annual 

variability and trends in long-term satellite leaf area index products, Global Change Biology, 23, 4133-

4146, 2017). For instance, for LAI, data from GLASS, LTDR, GLOBMAP could also be included in the study. 

The same for precipitation which show large discrepancies – especially at inter-annual scale – depending 

on the dataset used. The use of ensemble of observational products would make your results more 

robust and substantially improve the work. 

https://www.esa-landcover-cci.org/
https://onlinelibrary.wiley.com/doi/10.1111/gcb.13787


We strongly agree with the reviewer and adopted an ensemble for the observations. The manuscript and 

figures are updated accordingly. See comment #2 for more information.  

 Line 9: Please clarify the value of using online model simulations in place of offline simulations. I see a 

potential limitation as in online ESMs the climate signal may largely determine the response of the land 

surface and then mask the interplay between vegetation and biophysical processes. Further reading: 

Blyth et al., A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of 

water and carbon at both the global and seasonal scale, Geoscientific Model Development, 4(2), 255-

269, 2011. (https://doi.org/10.5194/gmd-4-255-2011) and Winckler et al., Robust identification of local 

biogeophysical effects of land cover change in a global climate model, Journal of Climate, 30(3), 1159-

1176. (https://doi.org/10.1175/JCLI-D-16-0067.1)  

We thank the author for this remark and for the articles of interest. Since CSGC is capable of unravelling 

interactions between variables without any assumption on the direction of these interactions, we saw the 

opportunity to use CSGC to investigate both the climate impacts on vegetation, and also the feedbacks of 

vegetation on climate. We also aimed to benchmark how these two-way interactions are represented in the 

ESMs, and therefore, we chose to work with online models as they do not only allow for climate to affect 

vegetation, but also for vegetation to provide a feedback on climate. In offline models, the separate parts of 

the models are driven by their necessary input, without any influence of the other parts. We added a brief 

description of this in the text. 

In text: … account for dynamic vegetation (Anav et al., 2015). Coupled model simulations are used to evaluate 

the full extent of vegetation feedbacks on climate. Using the historical… 

 Line 13: Please, clarify the selection, why only these 4 models are used here? 

These models are selected based on a combination of three criteria. All CMIP5 ESMs are selected based on 

the use of their land surface components also present in TRENDY initiative to allow for comparison with 

studies using these models, such as Forzieri et al. (2018). Also, only ESMs accounting for dynamic vegetation 

are retained and the models must provide hourly climate output (precipitation, air temperature and 

radiation). These criteria results in the selection of four models (CCSM4, HadGEM2-ES, NorESM1-M and IPSL-

CM5A-MR). We added these criteria to the revised version of the manuscript. 

In text: A selection of coupled ESMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor 

et al., 2012) is assessed in their representation of climate—vegetation interactions. This includes the Hadley 

Global… (CCSM4; Gent et al., 2011). This selection is based on (a) use of similar land surface schemes as the 

Trends in Net Land-Atmosphere Exchange (TRENDY; Sitch et al., 2015) initiative, in order to allow for 

comparison with studies focussing on TRENDY models, (b) availability of hourly input data for air temperature, 

precipitation, and net radiation (aggregated to monthly values in this study), and (c) model consideration of 

dynamic vegetation (Anav et al., 2015). Online model simulations… 

 Line 15: Are all models run under a consistent modelling setup (e.g., same land cover changes, same 

climate forcing)?  Please clarify. The consistency in modelling experiment is important to compare the 

different model results with each other 

https://doi.org/10.5194/gmd-4-255-2011
https://doi.org/10.1175/JCLI-D-16-0067.1


Yes, all models simulations where selected from the CMIP5 archive filtering for historical runs, ran with 

increasing greenhouse gas and sulphate aerosol concentrations, changes in solar radiation, forcing by 

volcanic aerosols, and time-evolving land-use changes (Anav et al., 2015).  

 Line 17: Not sure this is correct. You basically used two different periods of analysis of observations and 

models: 1981-2015 (ca 35 years) for observations; 1956-2005 (50 years) for models. A part of the 

temporal shift between the two experiments, I would suggest to verify that the different length in the 

time series do not introduce a systematic bias between observational- and model-based results. Why 

you decided to start from 1956 for models? To me, it would be more logic at least to preserve the same 

length of observations (35 years). Please, check this and clarify your choices. 

We agree that the change in period between observations and models may have an impact on our results. 

However, we analysed both observations and models for their overlapping period, and found no major 

changes to the results. The model results do faint for inter-annual scales due to the drastic decrease in sample 

points, but the general patterns remain, i.e. all regions show a similar climate control as for the 50-year 

period, albeit less clear due to the decreased sample size. Therefore, the models can be assumed to behave 

stationary and the period for models can be extended to 50 years to increase the robustness of the results. 

We added a brief description in the text and added the figures of the analysis for the overlapping period to 

the supplementary. For more information, we refer to the reply to reviewer #1, comment #6. 
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 Line 24: In the present formulation of GC, the temporal lag m is implicitly assumed the same for all 

predictors. In practice, I expected that the legacy effects may differ depending on the predictor. Can this 

be included in the formulation? Please, discuss the implications. 

To clarify, this formula refers to traditional Granger Causality, and not to the (Conditional) Spectral Granger 

Causality as calculated by Dhamala et al. (2008). CSGC, as proposed by Dhamala et al. (2008), is non-

parametric and consequently no longer requires prescribing a specific lag; the dominant lag is in fact resolved 

by the formulation. For traditional Granger causality in the time domain, the parameter m represents the 

maximum temporal lag which best represents the dynamic of the system. This does not mean that all 

predictors have significant effect up to the lag m. A predictor might influence the system up to a lag k<m, 

which means that, for that predictor, the coefficients of the autoregressive model from k+1 to m will equal 

zero. So if the parameter m is chosen big, all possible legacy effects can be included in a multivariate case, 

and the most dominant lags will have the largest coefficients, and not necessarily at the same lag. However, 

by raising the maximum lag, also the computation costs increase. Therefore, a trade-off between included 

memory effects and computational cost needs to be taken into account with traditional Granger Causality. 

We hope resolves the remark. We also added a shorter version of this rationale to the manuscript. 

In text: …where m defines the maximum order of the autoregressive model (with m <= n), 𝑖 is the time lag, 𝑎𝑖  

are the coefficients describing the linear interaction between different time steps, and 𝜖𝑡 is the prediction 

error. Note that the order m defines the maximum lag that is investigated, which does not necessarily imply 

that all predictors have an effect up to time step m. By increasing m, more lags are included, at the cost of 

increasing the computational demand. 



 Line 27: In principle, data could be aggregated at seasonal or annual level and the GC applied to such 

values. I presume that the limited sample size hampers the use of GC in such an “aggregated” mode. 

Please clarify. 

Yes, in principle, this is possible, and this is also roughly what Spectral Granger Causality does (but in a more 

elegant way). SGC decomposes the data in a time and frequency space using wavelet transformation. Then, 

instead of constructing the autoregressive models for each new time series at each determined frequency 

(which would require setting the parameter m arbitrarily, keeping in mind the computational costs), SGC is 

calculated the non-parametric way as described by Dhamala et al. (2008). Aggregating the data to seasonal 

and annual time series would create a limited sample size to determine GC, and would also generate abrupt 

breaking points in the data. Therefore, we apply Conditional Spectral Granger Causality instead of running 

the traditional Granger Causality in an aggregated mode. We shortly described this in the text as a 

justification to switch to Spectral Granger Causality. 

In text: Despite traditional Granger causality being capable of addressing short-term interactions, simply 

aggregating time series to their seasonal or annual equivalents prior to following a traditional Granger 

causality approach does not necessarily lead to realistic causation inference at larger temporal scales. 

Consequently, Granger causality frameworks that are defined in the time domain… 
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 Line 2: …assess temporal scale-dependent…  

Adapted in text. 

 Line 19: I believe that Eq. 7 needs more clarification for readers not familiar with the method. 

We thank the reviewer for the concern and agree that a reader unfamiliar with the method needs more 

clarification. The method starts with traditional Granger Causality, followed by a description of Spectral 

Granger Causality, and ends with Conditional Spectral Granger Causality. We feel that further explanation of 

SGC won’t benefit the reader, but refer to, in our opinion, excellent introductory material on the method and 

its application to ecological problems. Readers that are truly interested in understanding the method are 

better suited in studying this material rather than trying to understand it from the limited space we have 

available in this manuscript.  

In text: … using matrix factorisation (Wilson, 1972). For more information on SGC, we refer to Ding et al., 

(2006), Dhamala et al. (2008) and Detto et al. (2012; 2013). 

 Line 29: Zp in place of Xp 

A minor mistake did indeed slip into the formula. We corrected for it. We thank the reviewer for noticing it. 
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 Line 14: I would clearly mention that CSGC does not allow to quantify the sign of causal relation. It is 

already mentioned in results… but I would also mention here – or somewhere in the method section – 

because important. 

We agree with the reviewer and added a sentence stating that CSGC can only detect that there is a relation 

between variables, but not the sign of the causal relation. However, we also like to clarify that the sign of 

causality is less meaningful in time series analyses, where the concept of positive and negative interactions is 

substituted by the phase angle. For example, a positive interaction between time series corresponds to a zero 

phase angle (the series are in phase or perfectly synchronised, i.e. when one goes up, to other goes up as 

well). Conversely, a negative interaction implies that the series are out of phase (one goes up, the other goes 

down). These series would have an arbitrary angle of 180° or -180°. These phase angles can be determined 

using co-spectral analyses, but not directly from the Granger causality measure. 

In text: ... However, if there is a direct causal influence of X on Y at a specific frequency f, 

𝐶𝑆𝐺𝐶𝑋→𝑌|𝑍1,𝑍2…𝑍𝑝
(𝑓) > 0. Using Eq. 10, it is possible to determine if X (Granger-) causes Y, but no information 

on the sign of the causal relation can be extracted. 
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 Line 3: I would refer to seasonal LAI variability here and in the rest of the manuscript. Phenology implies 

other metrics that are not accounted for in this work. 

We sincerely thank the author for the concern. We hope our reply to the comment on page 1, line 9 clears the 

confusion. 

 Line 8: Please clarify this upper value. 

Theoretically, +∞ is the largest timescale, calculated using extrapolation. However, the first real maximum 

value equals 16.5 years due to the discretisation of the frequency phase by CSGC. The frequency phase is 

discretised in angular frequency from 0 to π, in 100 values (default). As frequency [1/month] equals the 

angular frequency divided by 2π, and since scale [years] equals 1/(Frequency*12), the maximum scale 

(corresponding to an angular frequency of π/99) equals 16.5 years. By tweaking the discretisation level, the 

maximum real scale could be raised to exactly 17 years (half of the total period for observations). However, 

since 16.5 years is extremely close to 17 years, and as we do not study the inter-decadal patterns, we opted 

for using the default value of 100 discrete frequencies, evenly spaced throughout the angular frequency space. 

We added a brief description to the method section. 

In text: …between climate and vegetation. Moreover, based on the characteristics of the climate data used in 

this study, CSGC can be applied to assess causality over a wide range of temporal scales, starting at 2 months 

(twice the temporal resolution) and going up to 16.5 years (maximum temporal scale due to discretisation of 

the frequency space; can be adjusted if needed, especially for longer time series). 
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 Line 9: Could irrigation or land enlargement, particularly relevant in some regions of the globe, partially 

explain some patterns (e.g. India and China). Should the irrigated lands not be factored out? 



https://www.nature.com/articles/s41893-019-0220-7 (Chen et al., China and India lead in greening of 

the world through land-use management, Nature Sustainability, 2, 122-129, 2019) 

We thank the reviewer for this comment. We could factor out irrigated lands and other disturbed surfaces, 

but chose to only exclude non-vegetated areas such as desserts. We acknowledge that practices such as 

irrigation can impact the results. Here, only three dominant climate drivers are addressed, meaning that if 

human activities, such as e.g. irrigation, are the main driver of vegetation in an area, as could be in India and 

China, these regions probably get an energy-related driver attributed to them. However, if maps would be 

created of the part of variance that is not explained by the (considered) climate variables, areas with high 

human impact would be highlighted (see figure below, showing the variability in LAI not driven by climate). 

As can be seen, areas such as India and China show close to 100% of variation in LAI not driven by climate 

(white colors) at monthly scales. We chose not to show these maps in the supplementary, to avoid an 

abundance of plots. However, if the reviewer finds it necessary to include these maps, we can add them. In 

the manuscript, we chose not to exclude these areas, as also irrigated lands remain partly driven by climate, 

albeit to a limited extent. We added a paragraph to the manuscript to discuss this issue (see reviewer #1 

comment #4) 

 

 Line 16: I presume that if you mask irrigated lands, this fraction will increase. Can you please comment 

on this? 

Yes, if irrigated lands are masked, the percentage of water limited regions would probably increase. Also, if 

irrigation would have been included, the percentage of water limited area would be higher. However, 

although we do not include irrigation as a driver, we strongly believe that are findings are valid, as irrigation 

is performed with the intention to resolve a water limitation, consequently making the vegetation more 

dependent on the energy constraints. We added a brief description to the manuscript. 

https://www.nature.com/articles/s41893-019-0220-7


In text: Here, our monthly-scale results also show a dominant role of precipitation, yet more moderate; 51% 

of vegetated land is primarily controlled by precipitation, with radiation being the primary control factor in 

40% as well. When the analysis… 

In text: … as opposed to the use of precipitation only in this study. Note that not accounting for irrigation 

explicitly, does net necessary bias our results, since irrigation is intended to increase the energy-dependence 

of LAI dynamics, and will still reflect on a larger dominance of air temperature and net radiation in our 

analysis. A final difference… 

 Line 17: same detrending and deseasonalisation approach used for the predictors, right? 

We agree that it is not clear from the text that also anomalies are calculated for the predictors and clarified 

it in the text. 

In text: … When the analysis targets vegetation anomalies by detrending linearly and subtracting the average 

seasonal cycle for both LAI and climate (as was done in Papagiannopoulou et al. (2017a, b)), the results… 

 Line 22: compared to what? Fig A1? Papagiannopoulou et al. (2017)? 

We mean compared to Papagiannopoulou et al. (2017b). We rearranged this statement to clear this up. We 

also reduced the comparison of the findings of Papagiannopoulou et al. (2017b) with previous studies, and 

added a short comparison with our findings. 

In text: …net radiation in our analysis. A final difference with Papagiannopoulou et al. (2017b) is the 

consideration in the latter of snow water equivalent as a water availability driver, which explains the 

divergence with our results in higher latitudes. Our results can also be reconciled with previous studies, such 

as Nemani et al. (2003), Wu et al. (2015), and Seddon et al. (2016); regional differences may relate to the 

specific focus of those studies on one temporal scale only, their calculation of covariances instead of inferring 

causality in a more formal manner, or the use of different variables to assess water availability drivers.  

 Line 22: also the methods used to quantify the causal relations differ 

We agree with the reviewer, the methods do differ substantially. Whereas we use raw data and a spectral 

variant of Granger Causality, Papagiannopoulou et al. (2017a, b) used an adapted non-linear Granger 

Causality framework on anomalies. However, this concern is valid for every study, as no study is repeated 

exactly in the same fashion. We do, however, agree that caution has to be taken when concluding from the 

comparison of both studies. 

 Line 23: Should the snow precipitation not be already considered in CRU data that is used here? 

Snow precipitation is considered in CRU, but snowmelt, and thus the delayed availability of water, is not 

considered by CRU. Papagiannopoulou et al. (2017b) did consider snowmelt as an additional climate driver 

related to water availability. 

 Line 24: battery  set 



Resolved due to rearranging and condensing the paragraph (see reply comment page 10, line 22). 
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 Line 1: forcing on vegetation 

Resolved due to changes in the results and rephrasing.  

In text: … however, using incoming radiation as driver instead, leads to a similar 54% dominance (see Fig. B1). 

Compared to monthly scales, seasonal precipitation control is less widespread, as only 33% of the vegetated 

land is primarily controlled by precipitation (compared to 51% at monthly scales; Fig. 2a and 2c). This reduced 

importance of precipitation can be attributed to the observed temperature-driven hotspot in the Sahel 

regions, but more importantly to increase of radiation control over the south of Eurasia and in tropical forests. 

Furthermore, the patterns in Amazonia tend to agree 

 Line 6: I find a dominance of precipitation very elusive… There are no clear patterns emerging at inter-

annual scales. Probably the P control is just a bit over the other driver… but to me what emerges from 

Fig. 2e is a major co-dominance of multiple drivers. Please, can you please comment on this. 

We strongly agree with the concern of the reviewer. From Fig 2e, a major co-dominance of all three drivers is 

observed at inter-annual scales, with precipitation being slightly higher in some regions. However, due to 

adopting an ensemble for the observations (see comment #2), and by adjusting the shape parameter for the 

wavelet transformation (see comment #3), clear patterns emerged in line with what was stated before. 

However, compared to monthly and seasonal scales, some co-dominance remains, so the manuscript is 

altered to account for this. 

In text: Finally, at inter-annual scales, despite co-dominance of multiple drivers in some regions, global 

ecosystems tend to be water limited with 43% of the vegetated land surface being primarily dominated by 

precipitation (Fig. 2e), especially in the subtropics. Although patterns… 

 Line 28: To me, the comparison performed only on these numbers is misleading because they refer to 

the relative contribution to the total explained variance. Therefore, ESMs could be in principle represent 

well the variability of the T control on vegetation in absolute terms, but could overestimate the P control 

on vegetation in absolute terms. This would lead to an underestimation of the T control in relative terms 

over the globe… Again, not because they fail to represent the T control but because they fail the P or Rn 

controls. The analyses should be complemented with the comparison in absolute terms. 

We agree that a relative contribution does not tell the complete story, and can result in regions that are falsely 

identified with poor model performance. If, for example, Ta is correctly captured by the models, but P is 

overestimated in absolute terms, Ta would indeed appear to be underestimated in relative terms. Therefore, 

we chose to add the latitudinal profiles, which show how much vegetation is driven by climate in absolute 

terms. If a systematic overestimation of one driver would occur, this would be noticeable in the latitudinal 

profiles. Also, the spiderplots show the behavior per biome in absolute terms, which complements Fig. 2 and 

3 in our opinion. We have thought of showing the global maps in absolute terms, where red still means pure 

control by Ta, green by Rn and blue by P. However, by doing so, we would transfer from a triangular 

colorscheme to a 3D-colorcube, where black means no climate control by all three drivers and white means 



maximum climate control by all three drivers (not possible in practice as we use a conditioned measure of 

Granger causality, so theoretically, the sum of the explained variance by all three drivers has as maximum 

value 100%). As often only one driver controls vegetation dominantly, the other two bands of the RGB plot 

remain (close to) zero, resulting in a grey-tinted figure. One could threshold this figure in order to get it more 

bright, but also then oversaturation is a problem. The figure below illustrates this, as on the left the relative 

contributions of each driver are shown for the observations (identical to Fig 2, but without dotting for 

significance), while on the right the absolute explained variance is shown. Here, a simple thresholding was 

performed by multiplying each figures with a factor 2, so bright green here means that not 100% of vegetation 

variation is controlled by net radiation, but 50% is. Without this simple thresholding, all figures are mainly 

black or grey-tinted. As it is impossible to find an ideal threshold for all three temporal scales, we opted for 

showing the relative contributions in the maps in the manuscript, which implies that we lose the ability the 

compare the absolute value between pixels. But we can compare the ranking of the drivers over pixels. The 

latitudinal profiles in Fig. 2 and 3 and the spiderplots (Fig. 4 and 5) complement these maps with absolute 

values. 
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 Line 1: Clarify what you mean? Precipitation and air temperature? 

The statement was indeed not clear. We altered it in the manuscript. 

In text: Seasonally, a larger control of precipitation and air temperature on vegetation phenology is noticeable 

over the equator for ESMs… 



 Line 20: I found the patterns from observations very jeopardized across all analysed temporal scales, and 

in particular at seasonal and inter-annual scales. It is really difficult to believe that in the real world you 

pass from one dominant control to another one while remaining in the same environmental conditions. 

This heterogeneity should be better explored and understood. The use of ensemble of combination of 

different observational products of LAI, P, T and Rn could help to derive more robust and spatially 

consistent patterns. 

We agree with the reviewer that the patterns appear extremely heterogeneous. Adopting the ensemble for 

the observations greatly improved the patterns (see comment #2) as did optimizing the shape parameter of 

the wavelet transformation (see comment #3). We hope that with these changes, all concerns are addressed. 

Page 13 

 Line 13: more clear  clearer 

Resolved due to rephrasing and changes in the results. 

In text: At seasonal scales, an increase of feedbacks on temperature is observed in the Northern Hemisphere, 

and feedbacks on precipitation remain limited to the tropics, although practically no statistical significance is 

reached outside the tropics (Fig. 3c). Finally, at inter-annual scales, the observations-based results… 

 Line 19: You could move figure 6 earlier and refer to it. 

We thank the reviewer for the suggestion, but we see Fig. 6 more as a synthesis of all our findings to conclude 

the manuscript. If the reviewer agrees, we would like to keep it in the conclusion. We are aware this is not 

standard practice. 

 Line 25: ESMs capture correctly the LAI effects on net radiation throughout most of the Northern 

hemisphere. How do you reconcile with results from Forzieri et al. (2018)? (Forzieri et al., Evaluating the 

interplay between biophysical processes and leaf area changes in land surface models, Journal of 

Advances in Modelling Earth Systems, 10(5), 1102-1126, 2018.) 

This difference could arise from the use of online (here) ESMs and offline (Forzieri et al., 2018) land surface 

models (LSMs), as the latter force the model with climatic data and carbon dioxide concentration, without 

any feedbacks of the land surface on climate. However, after using an ensemble for the observations (see 

comment #2) and optimising the shape parameter (see comment #3), the patterns did change. From Fig. 3, 

one could state that the feedbacks on vegetation seem to be well captured by the ESMs in the northern 

latitudes, however, as this figure shows the relative feedbacks, one can only with certainty state that ESMs 

correctly identify the feedback on net radiation to be the strongest in these regions. When looked at Fig. 5 

(the spiderplot showing the feedbacks per biome), one can clearly see that, especially at seasonal and monthly 

scales, needleleaf forests (both evergreen and deciduous) seem to overestimate the absolute feedback on net 

radiation, which is in line with the findings of Forzieri et al. (2018). Overall, the result section changed slightly 

due to adopting the ensemble for the observations, and the alteration of the shape parameter.  

In text: In general, ESMs seem to correctly capture the spatial extent of LAI effects on net radiation throughout 

most of the Northern Hemisphere, but underestimate feedbacks of vegetation on air temperature, which 



originates from either an actual underestimation of the air temperature feedback by ESMs, or an 

overestimation of the feedback on net radiation in these regions, as reported by Forzieri et al. (2018) and 

confirmed by the latitudinal profiles (Fig. 3b,d,f), which masks the vegetation feedback on air temperature. 

Despite the overestimation, models do agree with each other on the influence of LAI on net radiation at polar 

latitudes (see dotted pixels), and the overall mean ensemble patterns for monthly and seasonal time scales 

also agree with observational results. Interestingly, while observations…. 

In text, Sect. 3.4: …Nonetheless, the effect of needleleaf forests on the radiation budget tends to be 

overestimated by most CMIP5 models, especially at monthly and seasonal time scales, which aligns with the 

findings of Forzieri et al. (2018). ESMs also overestimate… 
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 Line 9: I would say only for EBF, DNF, DBF, MF. For the rest of classes, the data-model comparison is fine… 

We agree with this remark. However, due to the updates of the figures, the patterns changed slightly, 

aggravating the difference between observations and models even more for mixed forests (MF), deciduous 

broadleaf forests (DBF), deciduous needleleaf forests (DNF) and evergreen broadleaf forests (EBF). The 

overestimation is strongest for broadleaf forest in that sense that even the minimum model simulations 

exceed the maximum observed impact of air temperature on LAI. A short description of these findings is added 

to the manuscript. 

In text: …In regards to the influence of air temperature, strong differences with observations can be noticed 

at seasonal time scales for forest biomes; this is most remarkable for broadleaf forests, both evergreen and 

deciduous (EBF and DBF), which show a model overestimation of the control of temperature on LAI dynamics, 

even for the minimum modelled temperature control. Interestingly, models… 

 Line 19: Only when averaged at biome level. Maps in Fig. 3 differ substantially. Maybe this concept would 

merit to be expanded a bit. Results from ESMs and satellite tend to converge when averaged at biome 

level… can you please comment on this? 

We agree with the statement that feedbacks of vegetation seems to be well modelled by ESMs if the response 

is averaged at biome level. When looked at the maps in relative terms, such as Fig. 3, patterns tend to be 

masked sometimes, probably due to the under- or overestimation of a single driver. However, at biome level, 

these errors are lost in the average biome response. We also refer to the comment of page 13, line 25, which 

already tackled these differences between patterns in relative and absolute terms. We added a comment on 

this in the manuscript. 

In text: On the other hand, short-term feedbacks of LAI on climate seem to be better represented in ESMs, as 

small differences can be seen when compared to the observational results in Fig. 5. Note that this statement 

only holds if looked at biome-averaged patterns, as comparison of observations and models in Fig. 3 does 

indicate to clear regional differences. Deciduous needleleaf forests (DNF) and evergreen needleleaf forests 

(ENF) exhibit … 

 Line 30: Can you please reconcile or at least interpret these divergences? 



We agree this section stops abrupt. However, due to changes in the results, this statement was no longer 

correct and it was altered.  

In text: The strength of the effect of LAI on precipitation is overall lower than its impact on net radiation and 

air temperature, partly due to the non-consideration of downwind influences in this analysis. However, similar 

to the results of Green et al. (2017), a strong influence of LAI on precipitation can be observed in savannah 

regimes.  

Fig 2 and 3 and appendices: I suggest a different color palette because colours tend to saturate quickly and 

differences can not be appreciated well. 

We thank the author for his concerns, however, as stated in the reply to comment page 11, line 28, the other 

option is using absolute numbers, which darken the maps and also make them hard to compare. 

Figure 4: change order of variables consistently with figure legend.  

We agree with the reviewer and changed the order in the legend so it is consistent with the figures, also for 

Fig. 5. 
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Abstract. Improving the skill of Earth System Models (ESMs) in representing climate–vegetation interactions is crucial to

enhance our predictions of future climate and ecosystem functioning. Therefore, ESMs need to correctly simulate the im-

pact of climate on vegetation, but likewise, feedbacks of vegetation on climate must be adequately represented. However,

model predictions at large spatial scales remain subjected to large uncertainties, mostly due to the lack of observational pat-

terns to benchmark them. Here, the bi-directional nature of climate-vegetation
:::::::::::::::
climate–vegetation

:
interactions is explored5

across multiple temporal scales by adopting a spectral Granger causality framework that allows identifying potentially co-

dependent variables. Results based on global and multi-decadal records of remotely-sensed leaf area index (LAI) and ob-

served atmospheric data show that the climate control on vegetation variability increases with longer temporal scales, being

higher at inter-annual than multi-month scales. The phenological cycle
:::::::
Globally,

:::::::::::
precipitation

::
is
:::
the

:::::
most

::::::::
dominant

::::::
driver

::
of

:::::::::
vegetation

::
at

:::::::
monthly

::::::
scales,

:::::::::
particularly

:::
in

:::::::::
(semi-)arid

:::::::
regions.

::::
The

:::::::
seasonal

::::
LAI

:::::::::
variability in energy-driven latitudes is10

mainly controlled by radiation, while in (semi-)arid regimes precipitation variability dominates at all temporal scales. However,

at
::
air

::::::::::
temperature

:::::::
controls

:::::::::
vegetation

::::::
growth

::::
and

:::::
decay

::
in

::::
high

::::::::
northern

:::::::
latitudes

::
at

:
inter-annual scales, the control of water

availability gradually becomes more wide-spread than that of energy constraints. The
:
.
:::::
These

:
observational results are used

as a benchmark to evaluate ESM simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Findings

indicate a tendency of ESMs to over-represent the climate control on LAI dynamics, and a particular overestimation of the15

dominance of precipitation in arid and semi-arid regions
:
at

::::::::::
inter-annual

::::::
scales. Analogously, CMIP5 models overestimate the

control of air temperature on forest seasonal phenology
::::::
seasonal

::::::
forest

::::::::
variability. Overall, climate impacts on LAI are found

to be stronger than the feedbacks of LAI on climate in both observations and models, arguably due to the local
:
;
::
in

:::::
other

:::::
words,

:::::
local

::::::
climate

:::::::::
variability

::::::
leaves

:
a
::::::
larger

::::::
imprint

:::
on

:::::::
temporal

::::
LAI

:::::::::
dynamics

::::
than

::::
vice

:::::
versa.

:::::
Note

:::::::
however

::::
that

:::::
while

::::::::
vegetation

::::::
reacts

::::::
directly

::
to
:::
its

::::
local

:::::::
climate

:::::::::
conditions,

:::
its

::::::::
dynamics

::::
may

:::::
affect

:::::::
climate

::::::::
preferably

::::::::::
downwind,

:::::::::
especially

::
in20

::
the

::::
case

::
of

:::::::::::
precipitation.

::::::::::::
Consequently,

:::::
since

:::
the

::::
local

::::
(i.e.

:::::::
spatially

:::::::::
collocated) character of the analysis that does not allow for

the identification of downwind or remote vegetation feedbacks
::::::::
feedbacks,

::::::::::
biophysical

::::::
effects

::
of

::::::::
vegetation

:::
on

::::::
climate

:::::
might

:::
be

::::::::::::
underestimated. Nonetheless, wide-spread effects

::
the

::::::::::
widespread

:::::
effect of LAI variability on radiationare ,

::
as

:
observed over the

northern latitudes , presumably related
:::
due to albedo changes, which are well-captured

::
is

:::::::::::
overestimated

:
by the CMIP5 models.

1



Overall, our experiments emphasise the potential of benchmarking the representation of particular interactions in online ESMs

using causal statistics in combination with observational data, as opposed to the more conventional evaluation of the magnitude

and dynamics of individual variables.

Copyright statement. TEXT

1 Introduction5

The biosphere is a key actor in the global carbon and water cycles, mainly through its impact on the energy balance at the

Earth’s surface and the chemistry of the atmosphere (McPherson, 2007; Pearson et al., 2013; Le Quéré et al., 2018). Long-term

patterns in temperature, incoming radiation and water availability strongly control the global distribution of biomes, while veg-

etation in turn alters climate via a series of local and remote feedbacks (Kottek et al., 2006; Bonan, 2008). In boreal regions,

for example, vegetation is thought to preferentially warm the atmosphere (positive feedback) by lowering the surface albedo,10

while in tropical regions, it is expected
::::::
thought to have a local net cooling effect (negative feedback), mainly due to high tran-

spiration (Bonan, 2008; Forzieri et al., 2017). Furthermore, our
:
In
:::::

fact,
:
a
:::
net

::::::::
warming

:::::
effect

:::
has

::::
been

::::::::
reported

::::
after

:::::::
tropical

::::::::::
deforestation

::::
and

:::::::::
agricultural

:::::::::
expansion

::::::::::::::::::::::::::::::::::::::::::
(Alkama and Cescatti, 2016; Duveiller et al., 2018b)

:
.
:::::::::::
Furthermore,

:::
the biosphere also

provides a strong negative feedback to the the global carbon cycle
::::::
negative

:::::::
climate

::::::::
feedback by acting as a

:::
net carbon sink

(Schimel et al., 2015). This strong regulating power of vegetation in our
:::
the

:
Earth system indicates the need to properly15

::::::::
accurately

:
incorporate biosphere–climate interactions in the models used to predict changes in terrestrial ecosystems and fu-

ture climate (Piao et al., 2013; Pachauri et al., 2014; Le Quéré et al., 2018). As
:::
The

:::::::
different

:::::::::
approaches

::
to
::::::::::
objectively

:::::::
evaluate

::
the

:::::
skill

::
of

:
Earth System Models (ESMs) are expected to imperfectly capture the sensitivity of vegetation to climate, and

vice versa (Green et al., 2017), different approaches have been followed to objectively evaluate their skill in representing these

interactions (Randerson et al., 2009; Weiss et al., 2012; Murray-Tortarolo et al., 2013; Alessandri et al., 2017; Forzieri et al., 2018)20

::
in

::::::::::
representing

:::
the

:::::::
two-way

:::::::
coupling

:::::::
between

:::::::::
vegetation

:::
and

:::::::
climate

::::
have

:::::::
revealed

::::::
several

:::::
model

:::::::::
limitations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Randerson et al., 2009; Weiss et al., 2012; Murray-Tortarolo et al., 2013; Alessandri et al., 2017; Green et al., 2017; Duveiller et al., 2018a; Forzieri et al., 2018)

. Most of these efforts focus on the evaluation of the magnitude and
::::::::
short-term

:
dynamics of individual variables (such as leaf

area index, LAI, and gross primary production, GPP), rather than on the representation of particular inter-variable sensitivities.

:
,
:::::
which

::::::
would

::
be

:::::
more

::::::::::
informative

::
on

:::::::
whether

:::
the

::::::::
interplay

:::::::
between

:::::::::
vegetation

::::
and

::::::
climate

::
is
:::::::
reliably

::::::::::
represented

::
in

:::::
these

::::::
models.

::::::::::::
Furthermore,

:::::::
previous

::::::::::
benchmark

::::::
studies

::::
have

::::::::
typically

:::::::
focused

:::
on

:::
one

:::::::
specific

:::::
time

::::
scale

:::::::::
(typically

:::::::
annually

:::
or25

::::::::
monthly),

:::::
while

:::
the

::::::::
ecosystem

::::::::
response

::
to

::::
(and

::::::::
feedback

:::
on)

::::::
climate

::
is

::::::::
expected

::
to

::::
vary

::
for

::::::::
different

::::
time

::::::
scales;

:::
e.g.

:
a
::::::
model

:::
may

:::::::::
accurately

::::::::
replicate

:::
the

:::::::
observed

::::::::
interplay

:::::::
between

:::::::::
vegetation

::::
and

::::::
climate

::
at

:::::::
monthly

::::::
scales,

:::
but

::::
still

:::
fail

::
to

:::::::
capture

:::
the

:::::::::
sensitivities

::::
that

:::::::
become

::::::
relevant

::
at
::::::::
seasonal

::
or

::::::::::
inter-annual

::::
time

::::::
scales.

Nonetheless, a first and necessary requirement towards improving the predictive skill of ESMs is the availability of data

that can be used as reference. Satellite observations of our biosphere, hydrosphere and atmosphere are now widely available,30

providing multi-decadal records of climatological and environmental variables at global scale that can be used as bench-
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mark. Several studies have already focused on identifying short- and long-term global impacts of climate on vegetation using

observational data, mostly from satellites (Nemani et al., 2003; Zhao and Running, 2010; Forkel et al., 2014; De Keers-

maecker et al., 2015; Wu et al., 2015; Seddon et al., 2016; Papagiannopoulou et al., 2017b). Nonetheless, studies focusing

on how the dominant interactions vary as a function of temporal scale (e. g., monthly, seasonally and inter-annually) are still

lacking, and so is the evaluation of this inter-scale variability in ESMs
::::::
Despite

::::::
efforts

::
to

:::::::
identify

:::
the

:::::::
controls

::
of

::::::::::
vegetation,5

:::::
which

:::::::
showed

::::
that

:::::
ESMs

:::::::::::
overestimate

::::
the

::::::
annual

::::
LAI

::::
due

::
to

:::::::::
problems

::::::
related

::
to

::::
the

::::::
timing

::
of

:::
the

::::::::::::
phenological

:::::
cycle

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Anav et al., 2013; Murray-Tortarolo et al., 2013; Zhu et al., 2013; Forkel et al., 2014; Verger et al., 2016),

:::::
ESMs

::::::
remain

::
in

::::
need

::
of

:
a
:::::
better

::::::::::::
understanding

::
of

::::
why

::::
these

:::::::::::::
multi-temporal

::::
scale

::::::::::
variabilities

:::::
differ

::::
from

:::::::::::
observations.

::::::
Rather

::::
than

:::::
using

:::::::::
correlation

::
or

::::::::
regression

::::::::::
techniques,

::
a

::::::
method

:::::::
capable

::
of

::::::::
inferring

:::::::
causality

::::
can

::::::
greatly

:::
aid

:::
our

::::::::::::
understanding

::
of

:::
key

::::::::::::::::
climate–biosphere

::::::::
processes,

:::::
which

::
in
::::
turn

:::
can

::::
help

:::::::
enhance

:::
the

:::::
ESMs

::::::::::::::::
(Runge et al., 2019). In a recent example, Papagiannopoulou et al. (2017b)10

::::::::::::::::::::::::::::
Papagiannopoulou et al. (2017a, b) focused on evaluating multi-month vegetation variability in response to local climate, using

a non-linear Granger causality framework
::::::
applied

::
to
::::::
optical

:::::::
remote

::::::
sensing

::::::
indices. They showed that water availability and

precipitation patterns primarily drive vegetation anomalies at monthly scales in more than 60% of the vegetated land. While

this study evaluated the ecosystem response based on optical remote sensing indices, the influence of climate on terrestrial

ecosystem ,
::::

but
:::
did

:::
not

:::::::
address

:::
the

:::::::
relevant

::::::
drivers

::::
over

:::::
longer

:::::
time

:::::
scales.

::::
The

::::::::::
inter-annual

:::::::::
variability

::
in
:::::::::

terrestrial carbon15

fluxes has also been intensively explored in recent years, with apparent contradictions in the findings regarding the importance

of water availability for inter-annual
:::
and

:::
air

::::::::::
temperature

:::
for

:
biosphere dynamics (Jung et al., 2017; Humphrey et al., 2018;

Green et al., 2019; Stocker et al., 2019). In addition, most studies to date have either attributed the covariance of vegetation

and climate dynamics to the role of atmospheric processes driving biosphere variability (e.g., Nemani et al., 2003; Zhao and

Running, 2010; Forkel et al., 2014; De Keersmaecker et al., 2015; Wu et al., 2015; Papagiannopoulou et al., 2017b), or to20

the opposite processes, i.e. the feedbacks of vegetation on climate (e.g., Forzieri et al., 2017; Zeng et al., 2017). To ;
:::

to the

authors knowledge, the study by Green et al. (2017) is the only exception in which the causal directionality of vegetation–

climate interactions has been formally disentangled at global scales. In this
:::
that

:
study, a linear Granger causality approach

was used to successfully unravel impacts and feedbacks between biosphere and climate at multi-month scales. However, the

traditional Granger causality framework is unsuited to identify which interactions dominate at different temporal scales, thus25

to differentiate between the dominant causes and effects at multi-month, seasonal and inter-annual scales (Detto et al., 2012).

Here, we investigate climate–vegetation interactions over the global domain using an innovative variant of Granger causality,

referred to as Conditional Spectral Granger Causality (CSGC) – see
::::::::::::::::::
Dhamala et al. (2008)

:::
and

:
Detto et al. (2012). CSGC

relies on transforming time series from the time domain into a time–frequency space using the continuous wavelet transform,

enabling the simultaneous analysis of interactions that are active at different temporal scales, from
:
(e.g.

:
)
:
monthly to inter-30

annual. In addition, this technique allows for evaluating the contribution of any variable while conditioning on the others, and,

because CSGC can cope with lagged responses, it enables the assessment of bi-directional interactions (Dhamala et al., 2008;

Detto et al., 2012; see Sect. 2.2). The latter implies that the vegetation feedback on climate can be quantified separately from

the climate impact on vegetation. In this study, CSGC is first applied to satellite observations to reveal useful insights regarding

the global, multi-scale
::::::::::::
multi-temporal

:::::
scale, bi-directional interaction between vegetation dynamics and local climate (Sect.35
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3.1 and 3.3). Next, to benchmark the ESM representation of these biosphere–climate interactions, the approach is replicated

using the outcome from online simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Taylor

et al., 2012; see Sect. 3.2 and 3.3). By comparing the observational and model-based results, areas where certain processes and

inter-variable sensitivities may be incorrectly represented in ESMs
:
,
::
as

::::
well

::
as

::::::
others

:::
that

::::::
match

:::
the

::::::::
observed

:::::::::
behaviour, are

identified.5

2 Data and methods

2.1 Data

Multiple satellite-based datasets
::::
data

:::
sets

:
are used to evaluate the representation of climate–vegetation interactions in ESMs.

The focus is on the key climatic drivers of vegetation growth, here assumed to be precipitation, net radiation and air temperature,

consistent with previous studies (Nemani et al., 2003; Seddon et al., 2016; Jung et al., 2017; Papagiannopoulou et al., 2017b).10

Vegetation dynamics are diagnosed using LAI; in the following, when vegetation (state) is mentioned, the latter refers to LAI

unless stated otherwise. All datasets have global coverage, are processed into 0.5◦ spatial resolution via bilinear interpolation,

and are averaged to monthly values prior to the application of CSGC.

2.1.1 Observational data

Observations of LAI come from the Global Inventory Modelling and Mapping Studies 3rd generation (GIMMS3g; Zhu et al.15

, 2013). Bimonthly LAI data at 1/12◦ spatial resolution is produced using aneural network between GIMMS3g Normalised

Difference Vegetation Index (NDVI) and LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) . The final

dataset covers the period July 1981 – December 2015. Climate data is obtained from the Climate Research Unit - National

Centers for Environmental Prediction (CRU-NCEP) version 7 (Viovy, 2018). CRU-NCEP provides atmospheric data obtained

through merging the CRU TS3.2 observations and NCEP reanalysis data, resulting in a 0.5◦ product, available from 1901 up20

to 2016. Finally, for the comparison of the results between observations and models, the International Geosphere-Biosphere
::
To

::::
avoid

::::::::::::::
product-specific

:::::
biases

::::
and

::::::::
artefacts,

::
an

::::::::
ensemble

:::
of

:::::::
multiple

:::::::::::::::
observation-based

::::::::
products

:::
for

::::
each

:::::::
variable

::
is

:::::::
created,

::::::::
consisting

:::
of:

:::
(a)

::::
four

:::::
LAI,

:::
(b)

:::
two

:::
air

:::::::::::
temperature,

:::
(c)

::::
two

:::
net

::::::::
radiation,

::::
and

:::
(d)

::::
three

:::::::::::
precipitation

::::
data

:::::
sets.

:::
The

::::::
larger

::::::::
ensemble

::
of

:::
data

::::
sets

::::
here

::::::
adopted

::
to
::::::::::
characterise

::::
LAI

:::
and

:::::::::::
precipitation

::
is

::::::::
motivated

::
by

:::
the

:::::
larger

::::::::
disparity

::::::
among

::
the

::::::::
different

:::::::
products

::
of

:::::
these

:::::::
variables

:::::::::::::::::::::::::::::
(Jiang et al., 2017; Sun et al., 2018)

:
.
::::
Tab.

:
1
:::::::
provides

:::
an

::::::::
overview

::
of

:::
the

:::::::
available

::::
data

::::
sets.

:::::::
Finally,25

::
the

:::::::::::
International

:::::::::::::::::::
Geosphere–Biosphere Program (IGBP) land cover classification (Loveland and Belward, 1997) is used to

determine biome-specific behaviours. At a biome-level, the mean observed and modelled interactions are calculated, and the

range in ESM results is determined. These biomes include mixed forests
::::
forest

:
(MF), deciduous broadleaf forest (DBF),

deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), barren or sparsely

vegetated (BSV), cropland or natural vegetation mosaic (CNVM), croplands
:::::::
cropland (C), grasslands

:::::::
grassland

:
(G), savannas30

::::::
savanna

:
(S), woody savannas

::::::
savanna

:
(WS), and open shrublands

::::::::
shrubland (OS).
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Table 1.
:::::::
Summary

::
of
:::::
global

::::
data

:::
sets

:::
used

:::
for

::::::::
vegetation,

:::
i.e.

::::
LAI,

:::
and

::::::
climate,

:::
i.e.

::
air

:::::::::
temperature

::::
(Ta),

::
net

:::::::
radiation

::::
(Rn),

:::
and

::::::::::
precipitation

:::
(P).

Product
Minimum resolution

Variable Reference
:::::
Spatial

:::::::
Temporal

:::::
Global

:::::::
Inventory

:::::::::
Modelling

:::
and

:::::::
Mapping

::::::
Studies

:::
3rd

::::::::
generation

:::::::::
(GIMMS3g)

:

:::::
1/12◦ :::::::::

1982–2015;

:::::::
bimonthly

:

:::
LAI ::::::::::::

Zhu et al. (2013)

::::::::::::
NOAA/AVHRR

::::::::
Thematic

::::::::
Climate

:::::
Data

:::::::
Record

::::::
(TCDR)

:::::::::
Reflectance ::::

0.05◦
:

:::::::::
1982–2018;

::::
daily :::

LAI ::::::::::::::::
Claverie et al. (2016)

::::::::
GIMMS3g

::::
+

::::::::::::
Terra/MODIS

:::::
C5

:::::::::::
reflectance

::::::::::
(GLOBMAP)

:::::::
1/13.75◦

:::::::::
1982–2017;

:::::
28-day :::

LAI ::::::::::::
Liu et al. (2012)

::::::::::::
NOAA/AVHRR

:::::
LTDR

:
+
:::::::::::
Terra/MODIS

:::
C5

::::::::
reflectance

:::::::
(GLASS) ::::

0.05◦
:

:::::::::
1982–2015;

::::
8-day

:

:::
LAI :::::::::::::

Xiao et al. (2016)

:::::::
ECMWF

:::::
ERA5

::::
32km

:

::::::
1979–...;

:::::
hourly

::
Ta,

:::
Rn

:::
and

:
P

:::::::::::::::::::
Hersbach and Dee (2016)

::::::
Climate

::::::::
Research

:::::
Unit

::
-
::::::::

National
:::::::

Centers
::::

for

:::::::::::
Environmental

::::::::
Prediction

::::::::::::
(CRU-NCEP)

:::::::
version

::
7

::::
0.05◦

:

:::::::::
1901–2016;

:::::
6-hour

::
Ta,

:::
Rn

:::
and

:
P

::::::::::
Viovy (2018)

:::::
Global

::::::::::
Precipitation

:::::::::
Climatology

:::::
Centre

:::::::
(GPCC)

:::
0.5◦

:

:::::::::
1891–2016;

::::
daily :

P :::::::::::::::::
Schneider et al. (2011)

2.1.2 Earth System Model data

A selection ESMs, i. e.
::
of

:::::::
coupled

:::::
ESMs

::::
from

:::
the

::::::::
Coupled

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

:::::
Phase

:
5
::::::::
(CMIP5;

::::::::::
Taylor et al.,

:::::
2012

:
)
:
is
::::::::
assessed

::
in

::::
their

::::::::::::
representation

::
of

:::::::::::::::
climate–vegetation

:::::::::::
interactions.

::::
This

:::::::
includes

:::
the Hadley Global Environment Model 2 -

Earth System (HadGEM2-ES; Collins et al., 2011), Institut Pierre Simon Laplace - Component Models 5 - Medium Resolution

(IPSL-CM5A-MR; Dufresne et al., 2013), Norwegian Earth System Model 1 - Medium Resolution (NorESM1-M; Bentsen5

et al., 2013), and Community Climate System Model 4 (CCSM4; Gent et al., 2011), from the Coupled Model Intercomparison

Project Phase 5 (CMIP5; Taylor et al., 2012) is assessed in their representation of climate–vegetation interactions. .
:::::

This

:::::::
selection

::
is

:::::
based

:::
on

:::
(a)

:::
use

:::
of

::::::
similar

::::
land

::::::
surface

::::::::
schemes

::
as

:::
the

::::::
Trends

:::
in

:::
Net

:::::::::::::::
Land-Atmosphere

:::::::::
Exchange

::::::::::
(TRENDY;

::::::::
Sitch et al.

:
,
:::::
2015)

::::::::
initiative,

:::
in

:::::
order

::
to

:::::
allow

:::
for

::::::::::
comparison

::::
with

::::::
studies

::::::::
focusing

::
on

:::::::::
TRENDY

:::::::
models,

:::
(b)

:::::::::
availability

:::
of

:::::
hourly

:::::
input

::::
data

:::
for

:::
air

:::::::::::
temperature,

:::::::::::
precipitation

:::
and

::::
net

:::::::
radiation

::::::::::
(aggregated

:::
to

:::::::
monthly

::::::
values

::
in

::::
this

::::::
study),

::::
and

:::
(c)10

:::::
model

:::::::::::
consideration

::
of

::::::::
dynamic

:::::::::
vegetation

:::::::::::::::
(Anav et al., 2015)

:
.
:::::::
Coupled

:::::
model

::::::::::
simulations

:::
are

::::
used

::
to

:::::::
evaluate

:::
the

:::
full

::::::
extent

::
of

:::::::::
vegetation

::::::::
feedbacks

:::
on

:::::::
climate. Using the historical input climate data, one realisation was used for each model to sim-

ulate vegetation dynamics, resulting in a monthly time series of LAI. Due to the discontinuation of historical simulations in

2005, the overlap with the observational record is limited to 24 complete years. To enhance the robustness of the results, the

analysis period considers the entire 1956-2005
:::::::::
1956–2005 in the case of ESMs, under the assumption that the sensitivities are15
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stationary (see e.g. Green et al., 2017).
::::
Sect.

:::
3.2

::::::::
addresses

:::
the

:::::::
validity

::
of

:::
this

::::::::::
assumption.

:
Nonetheless, we acknowledge that

the non-stationarity associated with changes in land use and land cover may induce divergences between the observation and

model results.

2.2 Methods

Multi-frequency
::::::::::::
Multi-temporal

::::
scale

:
interactions between climate and vegetation are here explored using CSGC. To describe5

the method comprehensively, we first introduce the Granger causality in its classical formulation (parametric in the time

domain; Sect 2.2.1), followed by the derivation of its spectral counterpart (non-parametric in the time-frequency domain; Sect.

2.2.2 and 2.2.3).

2.2.1 Granger Causality: Time domain formulation

According to Granger (1969), causality can be inferred if a predictor X ([x1,x2...xn−1,xn]), with n the number of time steps,10

contains information in past terms that aids the prediction of a target variable Y ([y1,y2...yn−1,yn]), while this information is

not contained in any other predictor or past values of the target variable itself. To assess the predictive power of X on Y , the

self-explanatory power of Y , i.e. the autocorrelation, has to be determined first, so it can later be factored out. At time t, the

auto-predictive power of Y can be calculated with the following univariate autoregressive equation:

yt =

m∑
i=1

aiyt−i + εt (1)15

where m defines the
::::::::
maximum

:
order of the autoregressive model (with m≤ n), i is the time lag, ai are the coefficients

describing the linear interaction between different time steps, and εt is the prediction error.
::::
Note

:::
that

:::
the

:::::
order

::
m

:::::::
defines

:::
the

::::::::
maximum

:::
lag

::::
that

::
is

::::::::::
investigated,

::::::
which

::::
does

:::
not

::::::::::
necessarily

:::::
imply

::::
that

::
all

:::::::::
predictors

::::
have

:::
an

:::::
effect

:::
up

::
to

::::
time

::::
step

:::
m.

:::
By

::::::::
increasing

:::
m,

:::::
more

:::
lags

:::
are

::::::::
included,

::
at

:::
the

::::
cost

::
of

:::::::::
increasing

:::
the

::::::::::::
computational

:::::::
demand.

The predictive power of X on Y can be assessed through construction of a second autoregressive model, containing a term20

capturing the contribution of X , given by:

yt =

m∑
i=1

aiyt−i +

m∑
i=1

bixt−i + ηt (2)

with ηt representing the prediction error of the bivariate model. A drawback is the need to set the order m, which, if set

non-optimal, can result in large estimation errors.

Granger causality is then typically defined as the natural logarithm of the ratio of two prediction error variances (Ding et al.,25

2006), σ2
ε and σ2

η for the univariate and bivariate model, respectively:

GCX→Y = ln
σ2
ε

σ2
η

(3)

The null hypothesis of X causing Y (or vice versa), can be tested for significance against a preset p-value, typically 5%.

Thus, ifGCX→Y exceeds the preset threshold, assuring that σ2
η is significantly smaller than σ2

ε ,X is said to have a causal effect
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on Y . Similarly, the causal effect of Y on X can be determined. Note that as the effect of autocorrelation is removed, a simple

correlation betweenX and Y does not guarantee the presence of Granger causality as co-movement does not necessarily imply

causality (Aldrich, 1995).

This framework can also be extended to the multivariate case, where the effect of predictors X , Z1, Z2 ... Zp (with p+1 the

number of predictor variables) on Y can be evaluated. In order to determine the effect of X on Y in a multivariate case, the5

performance of a model containing all predictors is compared against that of a multivariate model from which X is excluded,

as given by:

yt =

m∑
i=1

aiyt−i +

p∑
j=1

(

m∑
i=1

bj,izj,t−i) + εx,t (4)

yt =

m∑
i=1

aiyt−i +

p∑
j=1

(

m∑
i=1

bj,izj,t−i) +

m∑
i=1

cixt−i + ηt (5)

The added value of incorporating X in the set of predictors (Z1, Z2 ... Zp) to improve the prediction of Y can be expressed10

in terms of Granger causality as:

GCX→Y = ln
σ2
εX

σ2
η

σ2
εx

σ2
η

:::

(6)

2.2.2 Spectral Granger Causality

Inherent to the use of discrete time series,
::::::
Despite

:
traditional Granger causality can only address

:::::
being

::::::
capable

:::
of

:::::::::
addressing

short-term interactions, i.e. one variable at a past time-step affecting other variables in the current or future time-step
::::::
simply15

:::::::::
aggregating

::::
time

:::::
series

::
to

::::
their

::::::::
seasonal

:::
and

::::::
annual

:::::::::
equivalents

::::
prior

::
to

::::::::
following

::
a
::::::::
traditional

:::::::
Granger

::::::::
causality

::::::::
approach

::::
does

:::
not

:::::::::
necessarily

::::
lead

::
to
::::::::

realistic
::::::::
causation

::::::::
inference

::
at

:::::
larger

::::::::
temporal

::::::
scales. Consequently, Granger causality frameworks

that are defined in the time domain ,
:
– such as the newly-developed framework of Papagiannopoulou et al. (2017a), all fail

:::::::::
framework

::
by

:::::::::::::::::::::::::::
Papagiannopoulou et al. (2017a),

:::
are

:::
not

:::::::
designed

:
to capture low-frequency processes. To assess

:::::::
temporal scale-

dependent processes, transforming the data into a frequency-dependent domain is crucial as it allows to differentiate between20

::
for

::
a

::::::::::::
differentiation

::
of interactions active at various temporal scales. Therefore, we propose the use of CSGC, which enables to

simultaneously condition for other predictors, thus factoring out co-dependency among variables, while addressing processes

active at different scales.

The spectral Granger causality
:::::::
Spectral

:::::::
Granger

::::::::
Causality (SGC) is an

:
a
:
non-parametric extension of the Granger causality

theory in which timeseries
::::
time

:::::
series are first transformed into a frequency domain, resulting in a spectral analogue of Granger25

causality (Geweke, 1982). A well-known example of such a transformation is the Fourier transformation, where a time series is

decomposed in a space solely consisting of frequency. This allows for highlighting strong spectral features, but comes at the cost

of time localisation, i.e. the ability to differentiate between processes active at different times. To prevent the loss of the time

dimension, SGC adopts a wavelet transformation, which decomposes the original time series into a time–frequency space, thus

allowing for both spectral (i.e.
:::::::
temporal

:
scale-dependent) evaluation and time localisation of interactions between predictors30

7



and target variable. To
::
In

::::
order

::
to

:::::::
perform

:::
the

:::::::::::::
time–frequency

:::::::::::::
decomposition,

::
the

::::::
Morlet

:::::::
wavelet

:
is
:::::
used

:::
and

:
a
:::::::
balance

:::::::
between

::
the

::::
time

::::
and

::::::::
frequency

:::::::::
resolutions

::
is
::::::::
obtained

::
by

::::::
setting

:::
the

:::::
shape

::::::::
parameter

::
to

::
a

::::
value

::
of
::
6,
:::
as

::
in

:::::::::::::::::::::::
Torrence and Compo (1998)

:
,
::
or

::::::::::::::::::::
Casagrande et al. (2015).

:::::::::
Moreover,

::
to

:
overcome the limitation of assigning an arbitrary order of the system given by Eq.

1 and 2, Dhamala et al. (2008) developed a non-parametric method to express spectral Granger causality
::::::
Spectral

::::::::
Granger

::::::::
Causality based on spectral properties of the variables without the need to estimate the model order, given by:5

SGCX→Y (f) = ln
Syy(f)

Syy(f)−
[
Γxx−

(
Γ2
yx

Γyy

)]
|Hyx(f)|2

(7)

where Syy(f) equals the spectral density (power spectrum) of the target variable Y at frequency f , which can be estimated from

the wavelet transform. Using the variables X and Y , the error covariance matrix Γ and the spectral transfer function matrix

H(f) can be calculated using matrix factorisation (Wilson, 1972).
::
For

:::::
more

::::::::::
information

::
on

:::::
SGC,

:::
we

::::
refer

::
to

:::::::::::::::
Ding et al. (2006)

:
,
:::::::::::::::::
Dhamala et al. (2008)

:
,
:::
and

::::::::::::::::::::
Detto et al. (2012, 2013)

:
.10

2.2.3 Conditional Spectral Granger Causality

Eq. 7 is only valid to determine the effect of a variable X on Y , without taking into account that other variables might

influence both the predictor and target, consequently inducing an apparent causal relationship. To tackle this issue, condition-

ality between variables has to be taken into account, for which the SGC framework can be extended to conditional spectral

Granger causality
::::::::::
Conditional

:::::::
Spectral

:::::::
Granger

:::::::::
Causality (CSGC). In other words, SGC can be adapted to CSGC to as-15

sess if X causes Y given that Z1, Z2 ... Zp may cause Y and X , resulting in a conditioned measure of spectral causality

CSGCX→Y |Z2,Z3...Zp
(f)

:::::::::::::::::::::
CSGCX→Y |Z1,Z2...Zp

(f). For a multivariate problem with p+2 variables (Y , X , Z1, Z2 ... Zp), the

system can be written, after spectral transformation and Wilson factorisation (Wilson, 1972), as:

S(Y,X,Z1,Z2...Zp,f) = H(f)ΣH∗(f) (8)

U(Y,Z1,Z2...XpZp
::
,f) = G(f)ΓG∗(f) (9)20

with S and U representing the spectral matrices of the complete system and the system with the variable whose causality is

tested being excluded, i.e. X in this case, respectively. Similarly, H and G are the spectral transfer function matrices, while
∑

::
Σ and Γ equal the error covariance matrix of the full and incomplete system of variables, respectively, and where ∗ indicates

matrix adjoint.

From Eq. 8 and 9, CSGC of X on Y given Z1, Z2 ... Zp can be calculated as:25

CSGCX→Y |Z1,Z2...Zp
(f) = ln

Γyy
|Qyy(f)ΣxxQ∗yyf |

(10)
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where:

Q =



G̃Y Y 0 G̃Y Z1
... G̃Y Zp

0 1 0 ... 0

G̃Z1Y 0 G̃Z1Z1 ... G̃Z1Zp

... ... ... ... ...

G̃ZpY 0 G̃ZpZ1
... G̃ZpZp



−1

H̃Y Y H̃Y X ... ... H̃Y Zp

H̃XY ... ... ... ...

... ... ... ... ...

... ... ... ... ...

H̃ZpY H̃ZpX ... ... H̃ZpZp


(11)

In Eq. 11, H̃(f) = H(f)P−1 and G̃ = GP−1
2 represent corrected transfer function matrices to separate the directional

interactions (Geweke, 1982). The rotation matrices P are normalisation matrices needed to transform the multivariate systems

in their canonical form with uncorrelated errors (Detto et al., 2013). For more information on CSGC, we refer to Dhamala et al.5

(2008) and Detto et al. (2012, 2013).

Using Eq. 10, spectral Granger causality
::::::::::
Conditional

:::::::
Spectral

:::::::
Granger

::::::::
Causality

:
of X on Y can be determined, given the

influence of Z1, Z2 ... Zp on both X and Y . If X is not directly affecting Y , but for example Z1 is forcing both X and Y ,

the numerator in Eq. 10 will equal the denominator, thus resulting in a Granger causality measure of zero. However, if there

is a direct causal influence of X on Y at a specific frequency f , CSGCX→Y |Z1,Z2...Zp
(f)> 0.

:::::
Using

:::
Eq.

:::
10,

::
it

::
is

:::::::
possible

::
to10

::::::::
determine

::
if

::
X

:::::::::
(Granger-)

::::::
causes

::
Y ,

:::
but

:::
no

::::::::::
information

::
on

:::
the

::::
sign

::
of

:::
the

::::::
causal

::::::
relation

::::
can

::
be

::::::::
extracted.

:

2.2.4 Significance testing of CSGC

Despite the ability of Eq. 10 to account for conditional effects between variables, it fails to determine how robust the found

interactions are. Therefore, the robustness of the determined CSGC values needs to be tested against the null hypothesis that X

has no causal effects on Y . In case of Granger causality in the time domain, significance of the determined statistic, e.g. GC,15

can be tested by a bootstrapping scheme in which the time series are randomly shuffled before determining the GC-values.

By repeating this procedure n times, the distribution of GC can be determined. By selecting a p-value, typically 5%, the

determined Granger causality of X on Y can be tested against the null hypothesis of no causal interaction.

However, for the spectral variant of Granger causality, a simple randomisation of the time series induces unwanted artefacts.

Due to the spectral nature of the method, the power spectrum of the randomised time series must be preserved, i.e. to be20

equal to that of the original time series at each frequency. In other words, if the original time series are characterised by

much high-frequency variation and less at lower frequencies, the time series used for significance testing need to show the

same frequency-dependent variability. Therefore, surrogate time series exhibiting the same spectral power as the original time

series need to be used. Here, iterative amplitude adjusted Fourier transform (IAAFT) surrogates are used in combination with

Monte Carlo simulations, as CSGC is non-parametric (Detto et al., 2012), to test the determined CSGC-value against the null25

hypothesis of no causal interaction. Due to computational restraints
:::::::::
constraints, 100 runs with surrogates were run

:::::::::
performed

for each set of original time series (i.e. for each pixel),
::::
and

:::
will

:::
be

::::
used

::
to
::::

test
:::
for

::::::::::
significance

:::::::
(p-value

::
<
:::::
0.05). However,

to increase
:::
the

:
robustness of the results, a p-value of 1% is chosen to compensate for the limited amount of repetitions.

::
an

::::::::
ensemble

::
of

:::::::
products

::
is

::::
used

:::
for

::::
both

:::
the

::::::::::
observations

::::
and

::::::
models

::
as

:::::::::
explained

::
in

::::
Sect.

::::
2.1.
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2.2.5 Explained variance

CSGC as defined by Eq. 10, compares the performance of two autoregressive models in explaining variation in a target variable

Y . In other words, does X , given a set of predictors Z1, Z2 ... Zp, improve the estimate of Y compared to a model that only

uses Z1, Z2 ... Zp. In this study, we are interested in quantifying how much of variance in the target variable is actually directly

explained by a predictor, and not how much did the estimation error improve upon adding X to the set of the predictors.5

Therefore, we deviate from the traditional formulation of Granger causality and define a new measure, the fraction (F ) of

variance in the target variable Y that is explained by a predictor X . Ideally, the new formulation would be:

FX→Y =
σ2
X

σ2
Y

× 100% (12)

with, σ2
Y representing the total variance of Y and σ2

X the variance in Y explained by X . However, a part of the variance in Y

is not explainable by any predictor, as is is forced by the autocorrelation of Y (σ2
Y,auto). Therefore, in order to account for the10

part of variance in Y that will not be able to be explained by any predictor, Eq. 12 is adapted to:

FX→Y =
σ2
X

σ2
Y −σ2

Y,auto

× 100% (13)

As traditional Granger causality and CSGC determine a measure of causality that is defined in a similar way, Eq. 1 can be used

to determine how F can be calculated from the actual Granger causality value. Considering the univariate model given by Eq.

1, the total variance in the target variable Y can be rewritten as:15

σ2
Y = σ2

Y,auto +σ2
ε (14)

with σ2
ε representing the unexplained variance or prediction error variance. Substituting Eq. 14 into Eq. 13 results in:

FX→Y =
σ2
X

σ2
ε

× 100% (15)

This derivation can also be extended towards the multivariate case, and even to CSGC. As Eq. 15 equals 1− e−GCX→Y , the

conditional spectral variant of the fraction of variance in Y explained by X can be calculated as:20

FX→Y |Z1,Z2...Zp
(f) =

Γyy − |Qyy(f)ΣxxQ
∗
yyf |

Γyy
× 100% (16)

Using Eq. 16, the impact of climate on vegetation and the feedbacks of vegetation on climate can be quantified and reported in

an intuitive manner (see Sect. 3).

2.2.6 Determining scales of interest

As pointed up in the Sect. 1, monthly interactions between climate and vegetation have been studied by many authors (Nemani25

et al., 2003; Wu et al., 2015; Papagiannopoulou et al., 2017b). On the other hand, the phenological cycle or inter-annual vari-

ability of climate and vegetation are also expected to interact, yet little is known about how these interactions differ from the

10



short-term processes. CSGC is ideal to assess these differences as it allows to simultaneously analyse interactions at different

temporal
::::::::
Hereafter,

:::
the

::::
terms

:::::::::
phenology

:::
and

:::::::::::
phenological

::::
cycle

::
are

::::
used

::
to
:::::
refer

::
to

:::
the

::::::::::::
seasonal-scale

::::::::
variability

::
in

:::::
LAI.

::::
This

::::::
reflects

::::::
features

:::::
such

::
as

::
the

::::::
timing

::
of

:::
the

:::::::
growing

::::::
season

::
or

::
the

:::::::::
amplitude

::
of

:::
the

::::::::::
intra-annual

::::
cycle

::::::::::::::::::::::::::::::::::::
(Richardson et al., 2009; Verger et al., 2016)

:
,
::::
since

::::::
CSGC

::::
will

::::
react

:::
to

::::::::
variability

:::
in

::::
both

:::
the

::::
time

::::
and

::::::::
frequency

::::::::
domains.

:::
As

:::::::::
explained

::
in

::::
Sect.

:::::
2.2.3,

::::::
CSGC

::::::
allows

::
a

:::::::::::
simultaneous

:::::::
analysis

::
of

:::
the

::::::::::
interactions

::
at

::::::::::::
multi-temporal

:
scales, while no assumption has

::::
needs

:
to be made about the direc-5

tion of the interplay between climate and vegetation. However, CSGC determines the Granger causality at
::::::::
Moreover,

:::::
based

:::
on

::
the

::::::::::::
characteristics

::
of

:::
the

:::::::
climate

:::
data

:::::
used

::
in

:::
this

:::::
study,

::::::
CSGC

:::
can

::
be

:::::::
applied

::
to

:::::
assess

::::::::
causality

:::
over

:
a wide range of temporal

scales, starting at 2 months (twice the minimum temporal scale
:::::::
temporal

:::::::::
resolution) and going up to 16.5 years

:::::::::
(maximum

:::::::
temporal

:::::
scale

:::
due

::
to

:::::::::::
discretisation

::
of

:::
the

:::::::::
frequency

:::::
space;

::::
can

::
be

:::::::
adjusted

::
if

:::::::
needed,

::::::::
especially

:::
for

:::::
longer

:::::
time

:::::
series).

In order to determine which range of temporal scales better represents monthly, seasonal and inter-annual interactions, an10

experiment with synthetic monthly time series was performed. First, a predictor variable (X1) is constructed with imposed

variability at the scales of interest (e.g. monthly, seasonal and inter-annual). Monthly variability is assumed to be random

from month to month, while seasonality is defined as consecutive three-block periods of constant value. Inter-annual variation

is defined as blocks of one year with a fixed value. The predictor X1 is constructed by randomly generating these three

variabilities and adding them. Finally, a linear trend is added to X1 to be able to retrieve the maximum scale at which inter-15

annual variability can be observed. Next, a target variable (Y 1) is constructed with a known causal relation to the predictor

X1 by multiplying X1 with a random factor and then shifting Y 1 in time so that Y 1 lags X1 by one month. Using these two

synthetic time series, SGC is used to determine the Granger causality of X1 on Y 1. Note that SGC is used instead of CSGC

as the scales at which the targeted interactions can be observed are identical for a bivariate and multivariate case.

In order to identify the scales that are most sensitive to monthly, seasonal and inter-annual interactions, a new predictor20

variable X2 is constructed as an identical copy of X1, except for one specific variability. For example, if the range of scales

that capture monthly interactions is determined, X2 will be equal to X1, but with perturbed monthly variability. Next, a new

target variable Y 2 is constructed by multiplying X2 with a new random factor and again guaranteeing that Y 2 lags X2 by

one month. Then, SGC is used to determine if X1 Granger causes Y 2, which will show a decrease in Granger causality at

scales that capture the perturbed interaction compared to the Granger causality of X1 on Y 1. Consequently, by repeating25

this procedure for all the interactions that are to be assessed (i.e. monthly, seasonal and inter-annual), comparison of the two

Granger causalities allows to record the range of scales that capture these interactions. To increase robustness, this procedure

is repeated 100,000 times, resulting in a clear delineation of scales representing monthly (0–0.32 years), seasonal (0.32–1.54

years) and inter-annual (1.54–9 years) interactions. Decadal patterns of trends cannot be investigated here due to length of

the observational record (see Sect. 2.1), but are used in the determination of the ranges to fix the upper limit for inter-annual30

interactions. See Fig. 1 for an illustration of the resulting scales, which are considered to be time- and space-invariant. Results

will be presented as mean patterns for each scale using the determined ranges. Selecting the maximum explained variance

within each range, unwillingly results in the taking the CSGC at the highest scale of each interval, as the CSGC increases with

the scale (for more information, see Sect. 3.1).
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3 Results and discussion

3.1 Climate impact on vegetation in observations

Fig. 2illustrates
::::
a,c,e

::::::::
illustrate

:
the Granger causality of precipitation, air temperatureand net radiation

::
air

:::::::::::
temperature,

:::
net

:::::::
radiation

::::
and

::::::::::
precipitation

:
on LAI dynamics, based on observations(Fig. 2a, 2c, 2e),

:
, globally and latitudinally. Results are

shown separately for monthly (Fig. 2a), seasonal (Fig. 2c) and inter-annual (Fig. 2e) time-scales
::::
time

:::::
scales

:
using a tri-variate5

colormap according to the fraction explained by each climatic driver (see Sect. 2.2.5). Dotted pixels highlight significance of

the strongest climate impacton vegetation at a 1% -significance level
::::::
indicate

::::
that

::
in

::
at

::::
least

::::
75%

::
of

:::
the

::::::::
ensemble

:::::::
members

:::::
there

:
is
:::
(a)

:::::::::
agreement

::::::::
regarding

:::
the

:::::::::
dominant

::::::
climate

:::::::
impact,

:::
and

:::
(b)

::::::::
statistical

::::::::::
significance

:::
(at

:::
the

:::
5%

:::::
level). At monthly scales,

overall spatial patterns in the observation-based results (Fig. 2a) are in agreement with previous studies, showing the dominance

of precipitation in arid and semi-arid regions, while radiation and temperature dominate in northern latitudes and rainforests
:
,10

::::::::::
respectively (Nemani et al., 2003; de Jong et al., 2013; Seddon et al., 2016; Papagiannopoulou et al., 2017b). Strong radiation

effects on vegetation can be observed over northern latitudes due to severe limitations in incoming radiation during winter

months. Recently, Papagiannopoulou et al. (2017b) reported ,
:::::::
However,

:::
in

::::
those

::::::::
latitudes,

::::
LAI

::::::::
retrievals

:::
are

:::::::::::
contaminated

:::
by

::::
snow

:::::
cover

:::::::
signals.

:::::
While

::::::::
focusing

::
on

:::
the

:::::::
growing

::::::
season

:::::
could

:::::
solve

::::
this

:::::
issue,

:::
the

::::::
CSGC

:::::::
requires

:::::::::
continuous

::::
time

::::::
series.

:::::::
Because

::
in

::::::::::
wintertime,

:::
due

:::
to

:::::::::
limitations

::
in

:::::
solar

::::::::
radiation,

:::::
plant

::::::
growth

::
is

::::::::
inhibited

::
in

:::::::
northern

::::::::
latitudes,

:::::
most

:::::::::
variability15

:::::::
captured

::
at

:::::::
monthly

:::::
scales

::::
will

::
be

:::::::::
dominated

:::
by

:::
the

::::
more

::::::::
dynamic

:::::
spring

:::
and

:::::::
summer

:::::::
periods;

:::::::::
therefore,

:::
our

:::::
results

::::::::
suggests

:::
that

::::::::
radiation

:::
still

:::::::::
dominates

:::
the

::::::::
behaviour

::
of

:::::::::
vegetation

::
at

:::::
these

::::::::
latitudes.

::::
This

::::::::
dominant

:::::::::::
high-latitude

:::::::
radiation

:::::::
control

:::
was

:::
not

::::::::
reported

::
by

:::::::::::::::::::::::::::
Papagiannopoulou et al. (2017b)

:
,
::::
who,

:
based on a non-

linear Granger causality framework,
::::
found

:
that 61% of the vegetated land surface is primarily driven by water availability at

monthly time scales, while temperature and radiation are the primary factors in only 23% and 15% of the vegetated surface20

(respectively). These results contrasted strongly
:::
also

:::::::::
contrasted with earlier studies, that pointed to a less dominant role of

water availability for global ecosystems (Nemani et al., 2003; Wu et al., 2015). Here, our monthly-scale results also highlight

a more moderate
::::
show

:
a
::::::::
dominant

:
role of precipitation, which dominates (i.e is highest) in 41% of the vegetated land

::
yet

:::::
more

::::::::
moderate;

::::
51%

:::
of

::::::::
vegetated

::::
land

::
is

::::::::
primarily

:::::::::
controlled

::
by

:::::::::::
precipitation, with radiation being the primary control factor in

41
::
40% as well. However, when

:::::
When

:
the analysis targets vegetation anomalies by detrending linearly and subtracting the aver-25

age seasonal cycle
::
for

::::
both

::::
LAI

::::
and

::::::
climate (as was done in Papagiannopoulou et al. (2017a, b)), the results show precipitation

and air temperature gaining
:::::
results

:::::
show

:
a
::::::
similar

::::::::::
dominance

::
of

:::::::::::
precipitation,

:::
but

::
air

::::::::::
temperature

:::::
gains importance over net ra-

diation as they are
:::::
(being the dominant driver over 45%, 21% and 33

::::
13%,

:::
and

:::
36%, respectively, as indicated in Supplementary

Fig. A1. Using anomalies results to a slight increase of the importance of precipitation, but Papagiannopoulou et al. (2017b)

also accounted
:
).
::::
The

:::::
higher

::::::::::
importance

::
of

::::
water

::::::::::
availability

::
in

:::::::::::::::::::::::::::
Papagiannopoulou et al. (2017b)

::
can

:::
be

::::::::
attributed

::
to

:::::::::
accounting30

directly for the effect of (root-depth) soil moisture as a driver of water availability, consequently increasing the dominance of

precipitation . Finally, the lower water limitation in the northern latitudes (Fig. 2a) relates to the fact that Papagiannopoulou et al. (2017b)

considered also
:::::::::
vegetation,

::
as

::::::::
opposed

::
to

:::
the

:::
use

:::
of

::::::::::
precipitation

:::::
only

::
in

:::
this

::::::
study.

::::
Note

::::
that

:::
not

::::::::::
accounting

:::
for

::::::::
irrigation

::::::::
explicitly,

::::
does

:::
not

::::::::
necessary

::::
bias

:::
our

::::::
results,

:::::
since

::::::::
irrigation

::
is

:::::::
intended

::
to

:::::::
increase

:::
the

::::::::::::::::
energy-dependence

::
of

::::
LAI

:::::::::
dynamics,
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:::
and

::::
will

::::
still

::::::
reflect

::
on

::
a
::::::
larger

:::::::::
dominance

:::
of

:::
air

::::::::::
temperature

::::
and

:::
net

::::::::
radiation

::
in
::::

our
::::::::
analysis.

::
A

::::
final

:::::::::
difference

:::::
with

:::::::::::::::::::::::::::
Papagiannopoulou et al. (2017b)

:
is

:::
the

::::::::::::
consideration

::
in

::::
the

::::
latter

:::
of

:
snow water equivalent as a water availability driver.

Evenmore, the framework used by Papagiannopoulou et al. (2017b) incoporates a battery of remotely-sensed products, which

can widely diverge and consequently lead to discrepancies in the results. This also reconciles the results in Papagiannopoulou et al. (2017b)

:
,
:::::
which

:::::::
explains

:::
the

:::::::::
divergence

:::::
with

:::
our

::::::
results

::
in

::::::
higher

:::::::
latitudes.

::::
Our

::::::
results

:::
can

::::
also

:::
be

:::::::::
reconciled with previous studies

:
,5

such as Nemani et al. (2003), Wu et al. (2015), and Seddon et al. (2016)that focused on other temporal scales or used
:
;
:::::::
regional

:::::::::
differences

::::
may

:::::
relate

::
to

:::
the

::::::
specific

:::::
focus

::
of

:::::
those

::::::
studies

::
on

::::
one

:::::::
temporal

:::::
scale

::::
only,

::::
their

::::::::::
calculation

::
of

::::::::::
covariances

::::::
instead

::
of

:::::::
inferring

::::::::
causality

::
in

:
a
:::::
more

::::::
formal

:::::::
manner,

::
or

:::
the

:::
use

::
of

:
different variables to assess water availability

::::::
drivers.

As mentioned before, a key feature of CSGC is that it also enables the assessment of interactions at longer temporal scales,

such as seasonally (Fig. 2c) and inter-annually (Fig. 2e). Radiation
::
As

::::::::
expected,

::::::::
radiation

:
is found to dominate the seasonal10

phenology over 51
::
55% of the global vegetated land. The strong radiation control over northern latitudes is attributed to the

amplitude of the solar cycle, which ultimately inhibits vegetation growth during wintertime. In this analysis, net radiation

instead of incoming radiation has been used, in order to be consistent with the investigation of vegetation–climate feedbacks in

Sect. 3.3; however, using incoming radiation as driver instead, leads to a similar 50
::
54% dominance (see Fig. B1). Compared

to monthly scales, the importance of precipitation as a driver of vegetation decreases in regions such as the Mediterranean15

regionand western South America that still show the dominant role of radiation forcing vegetation phenology, while hotspots

of
:::::::
seasonal

:::::::::::
precipitation

::::::
control

::
is

:::
less

::::::::::
widespread,

:::
as

::::
only

::::
33%

::
of

:::
the

::::::::
vegetated

::::
land

::
is

::::::::
primarily

:::::::::
controlled

::
by

:::::::::::
precipitation

:::::::::
(compared

::
to

::::
51%

:
at
::::::::
monthly

:::::
scales;

::::
Fig.

::
2a

::::
and

:::
2c).

::::
This

:::::::
reduced

:::::::::
importance

::
of

:::::::::::
precipitation

:::
can

::
be

::::::::
attributed

::
to

:::
the

::::::::
observed

temperature-driven phenology are found over the Sahel region and south of the Congo rainforest
::::::
hotspot

::
in
:::

the
::::::

Sahel
::::::
region,

:::
but

::::
more

::::::::::
importantly

::
to

:::::::
increase

::
of

::::::::
radiation

::::::
control

::::
over

:::
the

:::::
south

::
of

:::::::
Eurasia

:::
and

::
in

:::::::
tropical

::::::
forests. Furthermore, the results20

for seasonal scales
::::::
patterns

:
in Amazonia tend to agree with the findings of Saleska et al. (2007)

:::::::::::::::::::::
Saleska et al. (2007, 2016),

Phillips et al. (2009), Hilker et al. (2014), and Saleska et al. (2016),
::
and

::::::::::::::::
Hilker et al. (2014)

:
,
:
showing a dominance of water

availability in the southeastern side, while radiation is more limiting in the northwest. Overall, precipitation primarily controls

ecosystem phenology in (semi-)arid regions, adding up to 30% of the vegetated land (Fig. 2c).

Finally, at inter-annual scales,
::::::
despite

::::::::::::
co-dominance

::
of

:::::::
multiple

::::::
drivers

::
in

:::::
some

:::::::
regions, global ecosystems tend to be more25

water limited : 46
::::
water

::::::
limited

:::::
with

::
43% of the vegetated land surface is

::::
being

:
primarily dominated by precipitation (Fig.

2e),
:::::::::
especially

::
in

:::
the

::::::::
subtropics. Although patterns appear highly heterogeneous

::::::
exhibit

:::::
some

:::::::::::
heterogeneity, not only arid and

semiarid
:::::::
semi-arid

:
regions show a

::::::::::
(significant) dominant control by precipitation, but also substantial parts of continental

Eurasiaand North America, albeit the results for most of these regions are not statistically significant. This
:::::::
southern

:::::::
Eurasia.

::::
This

:::::::::
widespread

:
inter-annual dependency of ecosystem dynamics on water availability

::
of

:::::::::
ecosystem

::::::::
dynamics

:
may arise due30

to the large inter-annual variability of precipitation– compared to e.g, radiation –
:
, and has already been documented in relation

to the impact of precipitation of global carbon budgets (Poulter et al., 2014) and terrestrial evaporation (Miralles et al., 2014).

Air temperature thrives scattered
:::::::::
Moreover,

:
it
::::::
agrees

::::
with

:::
the

::::::
results

:::
of

::::::::::::::::
Green et al. (2019)

:::
and

:::::::::::::::::::
Humphrey et al. (2018)

:
,
:::
yet

:
it
::::
does

::::
not

:::::::::
necessarily

:::::::::
contradict

:::
the

:::::::
findings

::
by

:::::::::::::::
Jung et al. (2017)

:
;
:::
the

::::
latter

::::::::
reported

:
a
::::::::
dominant

::::
role

::
of

:::::::::::
temperature

::
at

:::
the

:::::
global

:::::
scale,

:::
yet

:::::::
showed

::
a

:::::::::
dominance

::
of

:::::
water

::::::::::
availability

::
at

:::::::
regional

::::::
scales

:::
that

::
is
::::::::::::

compensated
:::::
when

::::::::
upscaling

::
to

::::::
global35
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::::::
means.

::::::::::::
Inter-annually,

:::
the

::::::
control

:::
of

::
air

::::::::::
temperature

:::::::
extends

:
over the high northern latitudes

:::
and

::::::
eastern

:::::
China, dominating

in 28
::
20% of vegetated land, while radiation is typically less crucial than the other two drivers at

::::::
remains

:::
the

:::::
most

::::::
crucial

:::::
driver

:::
for

::::
37%

::
of

:::
the

::::
land

:::::::
surface,

::::::
almost

:::::::::
exclusively

::
in

:::
the

::::::::
northern

:::::::
latitudes,

::::::
likely

::::::
affected

:::
by

:::
the

::::::
strong

:::::::
seasonal

:::::::
patterns

::::
(Fig.

:::
2e).

:::::
Once

:::
the

:::::::::
seasonality

::
is
::::::::
removed,

:::
the

:
inter-annual scales, likely due to its lower inter-annual variability as mentioned

above. Nonetheless
:::::::::
dominance

::
of

::::::::
radiation

::::::
control

::::
falls

:::::
down

::
to

::::
20%

::
of
:::
the

:::::::::
vegetated

:::
land

:::::::
surface

:::
(see

::::
Fig.

:::::
A1c).

:::::::
Despite

:::
the5

:::::::::::
heterogeneity, the overall control of climate on vegetation is higher at inter-annual scales than at shorter time scales, as can

be observed in the latitudinal profiles, which show the total causality in absolute terms (Fig. 2). This is partly a consequence

of the time-frequency
::::::::::::
time–frequency

:
decomposition of CSGC, which generally results in higher values of explained variance

at longer timescales
:::
time

::::::
scales due to the increased time frame over which a predictor variable is assessed, thus increasing

the chance of incorporating memory effects. However, during the significance test against the null hypothesis of exhibiting no10

causal effect, the calculated threshold for significance also increases with the temporal scales, consequently ensuring
::::::
ensures

that regions exhibiting significant responses can be compared over different timescales. The dominant role of water availability

at inter-annual scales, agrees with the results of Green et al. (2019) and Humphrey et al. (2018), yet it does not necessarily

contradict the results by Jung et al. (2017); the latter reports a dominant role of temperature at the global scale, yet shows a

clear dominance of water availability at regional scales, that is compensated when upscaling to global means
:::
time

::::::
scales.

:
15

:::::::::
Noteworthy

:::
is

:::
that

::::::::::::
anthropogenic

:::::::
effects,

:::::
which

::::
are

:::
not

:::::::
directly

::::::::
addressed

:::::
here,

:::
can

::::
also

:::::::
impact

:::::::::
vegetation

:::
and

:::::::
climate

:
at
:::::

short
::::::::
temporal

::::::
scales.

:::
For

::::::::
example,

::::::::
irrigation

:::
and

:::::::::::
deforestation

::::
can

:::::
result

::
in

:
a
::::::::::
decoupling

:::::::
between

::::::
climate

::::
and

:::::::::
vegetation

::::::::::::::::::::::::::::::::::::::::
(Lawrence and Vandecar, 2015; Chen et al., 2019)

:
.
::
In

:::
the

::::::
tropics,

:::::::::::
deforestation

::::::
results

:
in
::
a
:::::::
warming

:::::
effect

::::
due

::
to

::::::
reduced

:::::
plant

:::::::::::
transpiration,

:::::
which

::
in

:::
turn

::::
may

::::::
induce

:
a
::::::
decline

::
in

:::::::::::
precipitation,

:::::::
creating

:
a
:::::::
warmer

:::
and

::::
drier

::::::
regime

::::::::::::::::::::::::::
(Lawrence and Vandecar, 2015)

:
.
::::::::
Irrigation

:::::
allows

:::
for

:::::::
growing

:::::
crops

::
in

:::::::::::
water-limited

:::::::
regions,

:::::::::::
consequently

::::::::
inducing

:::::
energy

::::::::::
constraints

:::::
which

:::
are

:::::::
captured

:::
by20

::
the

:::::::
CSGC.

::::
Note

::::
that

:::
due

::
to

:::
the

::::::
limited

::::
data

::::::
record,

:::
the

::::::
effects

::
of

:::::
global

::::::::
warming

:::::
trends

::::
and

::::::
carbon

::::::
dioxide

::::::::::
fertilisation

:
–
::::
and

::
the

::::::::::
consequent

:::::
trends

::
in

:::::::::
vegetation

:::::::
greening

:::
and

:::::
water

:::
use

::::::::
efficiency

:::::::::::::::::::::::::::::::::::::::::::::::
(Reichstein et al., 2013; Wu et al., 2015; Zhu et al., 2016)

:
–
:::
are

:::
not

:::::::
directly

::::::::
addressed

::
in

:::
this

:::::
study.

3.2 Climate impact on vegetation in models

Results of the observations are next used to benchmark CMIP5 ESM performance in representing the control of climate on25

vegetation (Fig. 2b, 2d, 2f). Dotted pixels indicate that at least three models find the same climate driver to be the significant

primary control of vegetation at a 1% -significance level. At monthly scales, comparison
:::
out

::
of

::::
four

::::::
models

:::::
reach

:::::::::
agreement

::::::::
regarding

::
(a)

:::::::::
dominant

::::::
climate

::::::
impact,

::::
and

:::
(b)

::::::::
statistical

::::::::::
significance

:::
(at

:::
the

:::
5%

:::::
level).

:::::::::::
Comparison of Fig. 2a and 2b shows

that the
:::::::
monthly

:
impact of air temperature on ecosystems is strongly overestimated by ESMs, with 17% and 26% of vegetated

land being primarily dominated by temperature for observations and ESMs, respectively. This coincides with a lower effect of30

net radiation in central Eurasia and, more importantly,
:::::::
elevated

::
air

::::::::::
temperature

:::::::
control in the Amazon and Congo rainforests.

These contrasting results with observations might hint towards problems in ESMs with respect to representing the behaviour

of the tropics, but may also relate to the difficulties to retrieve LAI from satellites in dense tropical forests (Hilker et al., 2015).
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Nevertheless, ESMs agree on the general patterns that highlight the strong radiation effects in northern latitudes (albeit less

extended), and the water availability as main driver in arid and semiarid regions
::::::::
semi-arid

::::::
regions

::
at

:::::::
monthly

::::
time

::::::
scales.

Seasonally, a larger control of climate
::::::::::
precipitation

::::
and

:::
air

::::::::::
temperature on vegetation phenology is also noticeable over

the equator for ESMs (
:::
see

:::::::::
latitudinal

::::::
profile

::
in

:
Fig. 2d). The dominant control of radiation on vegetation phenology over

northern latitudes is similar for all models (inter-model agreement and significance represented by the black dotting), and5

:::::::
whereas

:::
the

:::::
spatial

::::::
extent

:
agrees with the observational results

:
,
:::
the

:::::::::
magnitude

::
is

:::::::::::::
underestimated

::
by

:::
the

:::::::
models (see Fig. 2c

:::
and

::
2d). Radiation is the primary driver of the seasonal LAI variation in 40

::
45% of the vegetated land in models (compared to

51
::
55% for the observations). The role of precipitation and air temperature as a driver

:::::
drivers

:
of the phenological cycle gains

in importance in ESMs, at the cost of radiation, with 34% and 24
::::
40%

:::
and

:::
15% of seasonal LAI variation being dominated by

precipitation and air temperature variability, respectively, versus the 30% and 17
::::
33%

::::
and

::
12% in observations, respectively.10

Despite the overall similarities in the patterns of dominant drivers, regional differences between observations and models are

still observed. Models point towards a water-limited phenological cycle in the Sahel, while observations hint also towards a

dominant role of temperature .
:::::::
(compare

::::
Fig.

::
2c

::::
and

:::
2d).

:
Furthermore, whereas observations clearly highlight a south-to-north

water-to-energy-limited gradient in Amazonia, models tend to disagree and point towards temperature as a key driver over

most
::
of

:
the Amazonian rainforest at seasonal scales. These differences might indicate difficulties to model climate–vegetation15

interactions across the basin, yet they may again be influenced by the difficulties to retrieve LAI from satellites over dense

canopies,
:::
as

::::::
pointed

:::::
above.

Similar to observations, the climate impact on LAI increases with longer temporal scales in ESMs. More
::::::::
However,

:::::
more

remarkable than in the observations , is the strong water limitation across the globe at inter-annual scales, which is not restricted

to the typical arid and semi-arid regions (Fig. 2f). Water availability at inter-annual scales is dominant for vegetation over20

52
::
62% of land versus the 46

::
43% found in observations (Fig. 2e). However, this divergence ,

::::
and

:
is
::::
also

:::::::
strongly

::::::::::::
overestimated

::
in

:::::::
absolute

:::::
terms

::
at
:::::

most
::::::::
latitudes,

:::::::::
especially

::
in

:::
the

:::::::
tropics.

:::::::
Further

:::::::
analysis

:::::
shows

::::
that

:::
the

::::::::::
divergence

::
in

:::
the

::::::::::
considered

:::::
period

:
between observations and models is also influenced by the shorter record of satellite data, which, as mentioned above, is

expected to affect the results at longer (e. g., inter-annual)temporal scales
:::
(see

:::::
Sect.

:::
2.1)

:::::
does

:::
not

::::::::::
substantially

::::::
impact

:::::::
results;

:::::::
repeating

::::
the

:::::::
analysis

:::
for

:::
the

::::::::::
overlapping

::::
time

:::::
range

:::
for

:::::::::::
observations

:::
and

:::::::
models

:::::::::::
(1982–2005)

:::::
yields

::::
very

:::::::
similar

:::::::
findings25

::::
(Fig.

:::
C1).

3.3 Vegetation feedback on climate in observations and models

Analogous to the effect of climate on vegetation, vegetation can alter local (and remote) climate conditions via biophysical

and biochemical feedbacks. These feedbacks arise from the effect of vegetation structure and physiological activity on the

surface radiation budget, available energy partitioning into latent and sensible heat fluxes, aerodynamic conductance of the30

ecosystem, atmospheric chemical composition, and indirect processes affecting incoming radiation, atmospheric humidity and

temperature (McPherson, 2007; Bonan, 2008). The representation of these feedbacks in ESMs remains in need for improvement

to accurately predict future climate (de Noblet-Ducoudré et al., 2012; Zhang et al., 2016). Here, we unravel these feedbacks

of LAI on different climate variables based on observations (Fig. 3a, 3c, and 3e) and ESM data (Fig. 3b, 3d, and 3f), and at

15



different temporal scales, from monthly (Fig. 3a and 3b), to seasonal (Fig. 3c and 3d) and inter-annual (Fig. 3e and 3f). Dotted

pixels indicate significance at
:::
that

::
in

::
at

::::
least

::::
75%

:::
of the 1% -level of the strongest feedback (for observations, e.g. Fig. 3a, 3c,

and 3e) , or three models agreeing on the significance of the strongest feedbacks (Fig. 3b, 3d, and 3f
:::::::
ensemble

::::::::
members

:::::
there

:
is
:::
(a)

:::::::::
agreement

::::::::
regarding

:::
the

::::::::
dominant

:::::::::
feedback,

:::
and

:::
(b)

::::::::
statistical

::::::::::
significance

:::
(at

:::
the

:::
5%

:::::
level). To aid comparison to the

strength of climate impacts on vegetation – measured in relative or absolute percentage of caused variance (see Sect. 2.2.5) –5

an identical tri-variate colormap to that in Fig. 2 is used.

Observed LAI feedbacks over the mid and high northern latitudes mainly reflect on the direct impact on
::::::::::
concentrate

::
on

:
sur-

face net radiation at monthly time scales (Fig. 3a). As vegetation lowers the surface albedo in boreal regions, it allows for more

energy storage and less reflection back into the atmosphere; this increases
::::::
surface

:
net radiation and may lead to a net warming

effect (e.g. Bonan, 2008; Forzieri et al., 2017). By repeating the analysis using only incoming (shortwave and longwave) radi-10

ation, instead of surface net radiation, the results indicate that the influence of LAI on
::::
(e.g.) cloud formation is limited, at least

considering the local
:::
(in

:::
the

:::::
sense

::
of

::::::::
’spatially

::::::::::
collocated’)

:
scales revealed by the causal framework (see Fig. D1). Monthly

feedbacks of vegetation on precipitation and air temperature are spatially heterogeneous and weaker. Seasonally, two distinct

areas of significant effect (see dotted pixels) of LAI on precipitation can be distinguished, namely southern Amazonia and the

Congo rainforest. Patterns
:::
less

::::::::::
widespread,

::::::::
however,

:::::::::
significant

::::::::
feedbacks

:::
on

:::::::::::
precipitation

::
are

:::::::::
observed,

::::::::
especially

::
in

:::::::
tropical15

::::::
forests.

::::
The

::::::
patterns

:
in Amazonia suggest a more dominant effect of vegetation on radiation in the north, while precipitation

feedbacks dominate in the south .
:::
(Fig.

::::
3a).

:
We note that the method does not differentiate whether higher or lower values of

LAI cause more or less rainfall, only that a causal effect of LAI on rainfall exists. The south-to-north patterns in the Amazon

agree with the larger dependency on precipitation recycling in the South (Dirmeyer et al., 2009; Zemp et al., 2014). Tropi-

cal forests are known to regulate local (and global) precipitation as their large use of water increases atmospheric humidity20

and results in cloud formation (Malhi et al., 2008). This also directly affects the incoming short- and long-wave radiation.

However
::::::::::
Nevertheless, we restate that the method only focuses on the effects of LAI on its immediate climatic environment,

not in neighbouring or remote locations. Seasonal feedbacks are more clear for radiation and air temperature , although their

::
At

:::::::
seasonal

::::::
scales,

:::
an

:::::::
increase

:::
of

::::::::
feedbacks

:::
on

::::::::::
temperature

:::
is

:::::::
observed

:::
in

:::
the

::::::::
Northern

:::::::::::
Hemisphere,

:::
and

:::::::::
feedbacks

:::
on

::::::::::
precipitation

::::::
remain

::::::
limited

:::
to

:::
the

::::::
tropics,

::::::::
although

:::::::::
practically

::
no

:
statistical significance is lower

::::::
reached

:::::::
outside

:::
the

::::::
tropics25

(Fig. 3c); however, these results do indicate to an effect of LAI on the seasonal cycle of the ecosystem energy budget, albeit

less significant as for monthly interactions .

Finally, the observation-based results suggest that .
:::::::

Finally,
::
at
:::::::::::

inter-annual
::::::
scales,

:::
the

:::::::::::::::
observation-based

::::::
results

:::::
show

::
a

:::::::::::
north-to-south

::::::::
gradient

::::
over

:::
the

:::::
Sahel

::::::
region,

:::::
with

:::
the

:::::
north

::::::::
exhibiting

:::::::::
feedbacks

:::
on

:::::::::::
precipitation,

:::::
while

::::::
strong

:::::::::
vegetation

::::::::
feedbacks

::
on

::::::::::
temperature

:::
are

::::::::
observed

::
in

:::
the

:::::
south

::::
(Fig.

:::
3e).

::::::::
However,

::::::
despite

:::
the

::::::
highly

:::::::::
significant

:::::::::
interactions

::
in
:::
the

:::::::
tropics,30

:::
and

::::::
except

::
for

:::
the

::::::::
feedback

::
on

::::::::
radiation

::
in

:::
the

:::::::
Northern

:::::::::::
Hemisphere,

:::
the

::::::::::
inter-annual feedbacks cannot be clearly disentangled

at inter-annual scales using the CSGC, as shown by the incoherent spatial patterns in Fig. 3e. This may occur due to the long

integration time and the somehow limited observational record. Overall, and as expected, comparisons between Fig. 2 and 3

reveal that the impact of climate on vegetation consistently exceeds the strength of the vegetation feedback on climate. This

:::::
means

::::
that

::::
local

:::::::
climate

::::::::
variability

::::::
leaves

:
a
::::::

larger
::::::
imprint

:::
on

::::
LAI

::::::::
dynamics

::::
than

::::
vice

:::::
versa.

::::
This

:
can be partly attributed to35
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the fact that only local interactions are considered here: while vegetation reacts to its most immediate environment, vegeta-

tion can lead to remote effects on climate that are not addressed in our analyses (Dirmeyer et al., 2009; Guillod et al., 2015)

::::::::::::::::::::
(Dirmeyer et al., 2009; ?). Nevertheless, these results show the importance of LAI variability in explaining the variance in local

climate at intra-annual scales – mainly through impacts on the net radiation induced by albedo changes – and the potential of

the CSGC framework to disentangle the bi-directional interaction between vegetation and climate.5

ESMs capture correctly the
::
In

:::::::
general,

::::::
ESMs

:::::
seem

::
to

::::::::
correctly

:::::::
capture

:::
the

::::::
spatial

::::::
extent

::
of

:
LAI effects on net radia-

tion throughout most of the Northern Hemisphere. While models only
:
,
:::
but

::::::::::::
underestimate

:::::::::
feedbacks

::
of

:::::::::
vegetation

:::
on

:::
air

::::::::::
temperature,

:::::
which

:::::::::
originates

::::
from

:::::
either

::
an

:::::
actual

:::::::::::::
underestimation

:::
of

::
the

:::
air

::::::::::
temperature

:::::::
feedback

:::
by

::::::
ESMs,

::
or

::
an

::::::::::::
overestimation

::
of

:::
the

:::::::
feedback

:::
on

:::
net

::::::::
radiation

::
in

::::
these

:::::::
regions,

::
as

:::::::
reported

:::
by

::::::::::::::::::
Forzieri et al. (2018)

::
and

:::::::::
confirmed

:::
by

:::
the

::::::::
latitudinal

:::::::
profiles

::::
(Fig.

::::::
3b,d,f),

::::::
which

:::::
masks

:::
the

:::::::::
vegetation

::::::::
feedback

::
on

:::
air

::::::::::
temperature.

:::::::
Despite

:::
the

:::::::::::::
overestimation,

::::::
models

:::
do agree with each10

other in
::
on the influence of LAI on net radiation in very high northern

::
at

:::::
polar latitudes (see dotted pixels), the

:::
and

:::
the

::::::
overall

mean ensemble patterns agree well with observational results, for both
:::
for monthly and seasonal timescales

:::
time

::::::
scales

::::
also

::::
agree

::::
with

:::::::::::
observational

::::::
results. Interestingly, while observations show significant impacts of LAI on precipitation in the edges

of the tropical forests, these effects are not
::::::
entirely

:
reproduced by ESMs, which tend to show a larger influence of LAI on tem-

perature in the tropics
:::::
those

::::::
regions. This may suggest a lower dependency of tropical forests on rainfall recycling (Malhi et al.,15

2008; Hilker et al., 2014; Zemp et al., 2017) and/or an overall wet bias in the ESMs (Mueller and Seneviratne, 2014); the

latter is however not supported by the results in Fig. 2 that indicate an overall overestimation of water limitations in models.

Nonetheless, these
:::
local

:
feedbacks on temperature and precipitation are overall weak – both in observations and models – as

indicated by the absolute magnitudes shown in the latitudinal profiles .
::::
(Fig.

::
3).

:

3.4 Biome-specific interactions20

Finally, to better visualise the multi-scale
::::::::::::
multi-temporal

::::
scale

:
vegetation–climate interactions in observations and models,

results are presented averaged per biome type. Fig. 4 shows the biome-averaged absolute observed and modelled climate

control on LAI dynamics, while Fig. 5 presents the vegetation feedbacks on climate. Both boreal and tropical forests are
:::::
Forest

:::::::::
ecosystems

:::
are

::::::::
generally

:
found to be mostly energy-driven, in agreement with previous studies (Nemani et al., 2003; Seddon

et al., 2016; Papagiannopoulou et al., 2017b). ESMs tend to agree with the observations on the magnitude of the response of25

ecosystems to radiation at all temporal scales, with the exception of the over-sensitivity of evergreen broadleaf forests (EBF) at

monthly scales and for most models. In regards to the influence of air temperature, even though ESMs agree with each other,

strong differences with observations can be observed at seasonal timescales for most
::::::
noticed

::
at

:::::::
seasonal

:::::
time

:::::
scales

:::
for forest

biomes; this is
:::
most

:
remarkable for broadleaf forests, both evergreen and deciduous (EBF and DBF), which show a model

overestimation of the control of temperature control on LAI dynamics,
:::::
even

::
for

:::
the

:::::::::
minimum

::::::::
modelled

::::::::::
temperature

::::::
control.30

Interestingly, models also overestimate the sensitivity of broadleaf forests (EBF and DBF) to precipitationat seasonal and
:
,

::::::::
especially

::
at

:
inter-annual time-scales

::::
time

:::::
scales. Observation results show limited water stress in tropical and mid-latitude

forests, arguably due to the deep rooting system and mild climate. However, this apparent model over-dependency of broadleaf

forests on climate may also emerge from the under-sensitivity of the observational results due to the saturation of the greenness

17



signal received by satellites in dense canopies. Models unambiguously overestimate the importance of water availability for

LAI in most biome types , and for all three timescales, with the exception of open shrublands (OS) and grasslands (G). This
::
at

::::::::::
inter-annual

::::
time

:::::
scales,

::::
and

::
to

:
a
:::::
more

::::::
limited

:::::
extent

::
at
::::::::
monthly

:::
and

:::::::
seasonal

::::::
scales

:
–
:::
this

:
appears in contrast with the results

of Green et al. (2017). As expected, savannas are found to be mainly driven by precipitation across all timescales
:::
time

::::::
scales

both in observations and models, although models strongly disagree among each other, as reflected by the large error bars in5

Fig. 4.

On the other hand, short-term feedbacks of LAI on climate seem to be well
:::::
better represented in ESMs, as small differences

can be seen when compared to the observational results in Fig. 5. Deciduous
::::
Note

::::
that

:::
this

::::::::
statement

:::::
only

:::::
holds

::
if

::::::
looked

:
at
::::::::::::::

biome-averaged
:::::::
patterns,

:::
as

::::::::::
comparison

::
of

:::::::::::
observations

:::
and

:::::::
models

::
in

::::
Fig.

:
3
:::::

does
:::::::
indicate

::
to

:::::
clear

:::::::
regional

::::::::::
differences.

:::::::::
Deciduous

::::::::
needleleaf

::::::
forests (DNF) and evergreen

:::::::::
needleleaf

:::::
forests

:
(ENF) needleleaf forests exhibit the strongest feedback

::
on10

net radiation (and temperature) at all temporal scales; once again this appears related to albedo changes and not impacts on, e.g.,

cloud formation (see Fig. D1). Nonetheless, the effect of needleleaf forests on the radiation budget tends to be overestimated

by most CMIP5 models, especially at monthly and seasonal time scales,
::::::
which

:::::
aligns

::::
with

:::
the

:::::::
findings

::
of

:::::::::::::::::
Forzieri et al. (2018)

. ESMs also overestimate the influence of ecosystem phenology on net radiation in mixed forests (MF), open shrublands (OS),

and woody savannas (WS); yet, large inter-model disagreements exist on the seasonal influence of LAI on net radiation for15

almost all biomes, as illustrated by the large error bars Fig. 5). The strength of the effect of LAI on precipitation is overall

lower than its impact on net radiation and air temperature, partly due to the less localised influence and the non-consideration

of downwind influences in this analysis. Contrary
::::::::
However,

::::::
similar to the results of Green et al. (2017), no particular

:
a
::::::
strong

influence of LAI on precipitation can be observed for semi-arid regions, although these regions have been found to be able to

offset decreases in precipitation when considering non-local mechanisms (Miralles et al., 2016)
::
in

::::::::
savannah

:::::::
regimes.20

4 Conclusion

Here, bi-directional interactions between climate and vegetation in global remotely-sensed observations were analysed at dif-

ferent temporal scales using conditional spectral Granger causality
:::::::::
Conditional

:::::::
Spectral

:::::::
Granger

::::::::
Causality

:
(CSGC) with the

aim to benchmark the representation of these interactions in ESMs. Three main climate variables are considered, namely air

temperature, net radiation and precipitation, while LAI is used as a proxy for vegetation state. While CSGC is not
:
in

::::::::
principle25

designed to cope with non-linear interactions, it has the advantage of being able to assess both the climate impact on vegetation

and the vegetation feedback on climate, while differentiating simultaneously between different temporal scales. Our findings

for monthly interactions agree with those of earlier studies (Nemani et al., 2003; Wu et al., 2015; Papagiannopoulou et al.,

2017b), with (semi-)arid regions showing a primary control by water-availability, while the tropics and high northern latitudes

being primarily energy-limited. Fig. 6 gives an overview of the overall global interactions between climate and biosphere.30

Averaged over continental vegetated land, radiation is found to dominate vegetation dynamics at seasonal scale, but models

seem consistently incapable of reproducing the strength of this dependency. At longer timescales, precipitation control gains

in importance, but modelstend to overestimate this
::::::::::
Precipitation

::::::
control

::
is
:::::

most
::::::::
dominant

::
at
::::::::
monthly

:::::
scales

::::
and

::
is,

:::::::
overall,

18



:::
well

::::::::
captured

:::
by

:::::::
models,

:::
but

:::::
ESMs

::::::::
strongly

::::::::::
overestimate

::::
the inter-annual control of water availability. On the other hand,

vegetation feedbacks are found to be most widespread
:::::
locally

:::::
more

:::::::::::
predominant

:
for net radiation over all timescales

::::
time

:::::
scales, mainly due to the strong interplay between radiation and vegetation at northern latitudes. As shown by the summary

in Fig. 6, the range of feedbacks as estimated from the ESM output includes the feedbacks from the observations, except

for feedbacks on precipitation, which
:::::
ESMs

::::
tend

::
to

:::::::::::
overestimate

:::
the

::::::::
feedbacks

:::
on

:::
the

::::::::
radiation

::::::
budget,

:::::
while

:::::::::
feedbacks

:::
on5

::::
local

:::::::::::
precipitation are often underestimated. Finally, interactions , in both ways , were

::
are

:
found to increase with increasing

timescales
::::
time

:::::
scales, and feedbacks of vegetation on climate explain a lower percentage of variance, as expected, than the

climate impact on vegetation
::::::
fraction

::
of
:::
the

::::::::
variance

::
in

:::
the

::::
latter

::::
than

::::
vice

:::::
versa.

Despite the clear advantages over traditional statistical analysis, the application of CSGC is subject to a series of assump-

tions. Firstly, CSGC can condition for other variables to exclude effects due to co-dependency, but this implies that the variable10

has to be considered. Here, we limited the potential drivers of vegetation to air temperature, net radiation and precipita-

tion, but vegetation is also affected by other factors such as nutrient availability, atmospheric carbon dioxide concentrations

etc. Secondly
::::::
Second, only local interactions are considered, meaning that interactions are assumed to occur within a pixel

::
be

:::::::
spatially

:::::::::
collocated. This assumption might be valid for the impact of climate on vegetation, but is certainly an oversimplifi-

cation regarding the vegetation feedbacks on climate which are rarely of local nature, especially when it refers to cloudiness15

and rainfall. Finally, errors in the observations
::::::
despite

:::
the

:::
use

:::
of

::::::::::
observation

:::::::::
ensembles,

:::::
errors

:
due to difficulties in retriev-

ing LAI over dense canopies, such as tropical forests, may falsely point towards process misrepresentations in ESMs, which

overall show a good agreement with the observational results in our analyses
:::
and

::::::
biases

::
in

::::
LAI

:::::::
products

::::::
outside

::::
the

:::::::
growing

:::::
season

::::::
might

:::::
affect

:::
our

::::::
results.

::::::::
Adapting

:::
the

::::::
causal

:::::::::
framework

::
to
:::::::
resolve

:::::::
changes

::
in

::::::::::
sensitivities

::::
over

::::
time

::::::
would

:::::
allow

:::
the

:::::::::::
consideration

::
of

:::::
these

:::
and

:::::
other

:::::::
aspects,

::::
and

:::::::
increase

:::
the

::::::::
potential

::
of

:::
the

:::::::
method

::
to

::::::
address

::::::::
scientific

:::::::::
challenges

:::::::
related

::
to20

::::::
changes

::
in
:::::::::
sensitivity

::
of

::::::::
different

::::::
climate

::::::
factors

::::
over

:::::
time.

::::
That

:::::
would

::::::
enable,

:::
for

::::::::
instance,

:
a
::::::::::::
benchmarking

::
of

:::
the

:::::
ESM

::::
skill

::
to

::::::::
reproduce

:::::::
changes

::
in

:::::::::
ecosystem

::::::::
resilience

::
to

::::::
climate.

Code availability. Our scripts can be accessed via https://github.com/lhwm.
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Appendix A: Climate impact on vegetation in anomalies of observations

Appendix B: Climate impact on vegetation in observations using incoming radiation instead of net radiation

Appendix C:
:::::::
Climate

::::::
impact

:::
on

:::::::::
vegetation

::
in

:::::::::::
observations

::::
and

::::::
ESMs

::::::
during

:::::::::
1982–2005

Appendix D: Vegetation feedback on climate in observations using incoming radiation instead of net radiation
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Figure 1. (a) Scales affected by perturbation of variability in synthetic time series at a particular temporal scale. Coloured lines show for

each perturbed variability the scales that changed most compared to the unperturbed runs as a percentage of runs out of 100,000.
:::
The

::::::
shaded

:::::
colours

:::::::
indicate

::
the

::::::
ranges

::::::
adopted

:::
for

::::
each

:::::::
temporal

::::
scale

::
in

:::
the

:::::::
analysis.

:
(b) Schematic overview of the principle of CSGC, with the

extension of calculating the fraction of explained variance.
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Figure 2. Global climate impact on vegetation. Variability in (a, c, e) observed and (b, d, f) modelled LAI caused by precipitation (P), air

temperature (Ta)and ,
:

net radiation (Rn)
:::
and

:::::::::
precipitation

:::
(P) at (a, b) monthly, (c, d) seasonal, and (e, f) inter-annual timescales

::::
time

::::
scales.

Maps show the causality in relative terms with respect to the dominant driver at each pixel, while the latitudinal profiles show the absolute

impact of each driver. The period 1982-2015
::::::::
1982–2015

:
is taken as reference for the observations, while models span 1956-2005

::::::::
1956–2005.

Modelled maps
::::
Maps show the mean from the ensemble of

::
the

::::::::::
observations

::
or four CMIP5 models: CCSM4, HadGEM2-ES, NorESM1-M,

IPSL-CM5A-MR. Dotted pixels indicate a significant (p-value = 1
:
5%) primary driver (or

:::::
agreed

::::
upon

::
by

:
at least three models agreeing on

:::
75%

::
of

:
the significant primary driver)

:::::::
ensemble

:::::::
members.
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Figure 3. Global vegetation feedback on climate. Variability in precipitation (P), air temperature (Ta)and ,
:
net radiation (Rn)

::
and

::::::::::
precipitation

::
(P)

:
that is caused by ((a, c, e) observed and (b, d, f) modelled LAI at (a, b) monthly, (c, d) seasonal, and (e, f) inter-annual timescales

:::
time

::::
scales. Maps show the causality in relative terms with respect to the strongest feedback at each pixel, while the latitudinal profiles show

the absolute feedback on each driver. The period 1982-2015
::::::::
1982–2015

:
is taken as reference for the observations, while models span

1956-2005
::::::::
1956–2005. Modelled maps

::::
Maps

:
show the mean from the ensemble of

:::::::::
observations

::
or four CMIP5 models: CCSM4, HadGEM2-

ES, NorESM1-M, IPSL-CM5A-MR. Dotted pixels indicate a significant (p-value = 1
:
5%) strongest feedback (or

:::::
agreed

::::
upon

::
by

:
at least three

models agreeing on
:::

75%
::
of the significant strongest feedback)

:::::::
ensemble

:::::::
members.
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Figure 4. Climate impact on vegetation per biome. Biome averages of absolute observed (filled polygons) and modelled (lines) variation

of LAI caused by precipitation (P), air temperature (Ta)and
:
, net radiation (Rn)

::
and

::::::::::
precipitation

:::
(P), at monthly (a, b, c), seasonal (d, e,

f), and inter-annual (g, h i) timescales
:::

time
:::::
scales.

::::::::::
Observations

::::::
present

::
the

::::
total

:::::
range

:::
over

:::
all

:::::::
ensemble

:::::::
members,

:::
and

:::
the

:::::
25%-

::::
(Q1)

:::
and

:::::::::::
75%-percentile

::::
(Q3).

:
Models present an error-bar indicating the inter-model maximum, minimum and average results of four CMIP5 models

(CCSM4, HadGEM2-ES, NorESM1-M, IPSL-CM5A-MR). Represented biomes are mixed forests (MF), deciduous broadleaf forest (DBF),

deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), barren or sparsely vegetated (BSV),

cropland or natural vegetation mosaic (CNVM), croplands (C), grasslands (G), savannas (S), woody savannas (WS), and open shrublands

(OS). 30
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Figure 5. Vegetation feedback on climate per biome. Biome averages of absolute observed (filled polygons) and modelled (lines) variation

of precipitation (P), air temperature (Ta)and ,
:
net radiation (Rn)

:::
and

::::::::::
precipitation

::
(P)

:
caused by LAI, at monthly (a, b, c), seasonal (d, e,

f), and inter-annual (g, h i) timescales
:::

time
:::::
scales.

::::::::::
Observations

::::::
present

::
the

::::
total

:::::
range

:::
over

:::
all

:::::::
ensemble

:::::::
members,

:::
and

:::
the

:::::
25%-

::::
(Q1)

:::
and

:::::::::::
75%-percentile

::::
(Q3).

:
Models present an error-bar indicating the inter-model maximum, minimum and average results of four CMIP5 models

(CCSM4, HadGEM2-ES, NorESM1-M, IPSL-CM5A-MR). Represented biomes are mixed forests (MF), deciduous broadleaf forest (DBF),

deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), barren or sparsely vegetated (BSV),

cropland or natural vegetation mosaic (CNVM), croplands (C), grasslands (G), savannas (S), woody savannas (WS), and open shrublands

(OS). 31
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Figure 6. Continental average climate impact on vegetation and vegetation feedback on climate. Continental averages of absolute observed

(filled rectangles), and modelled (lines) variation in vegetation (a, c, e) (climate (b, d, f)) caused by climate (vegetation), at monthly (a, b),

seasonal (c, d), and inter-annual (e, f) timescales
:::
time

:::::
scales. Models present an error-bar indicating the inter-model maximum, minimum and

average results of four CMIP5 models (CCSM4, HadGEM2-ES, NorESM1-M, IPSL-CM5A-MR).
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Figure A1. Global climate impact on anomalies of vegetation. Variability in observed anomalies of LAI caused by anomalies in precipitation

(P), air temperature (Ta)and
:
, net radiation (Rn)

:::
and

::::::::::
precipitation

::
(P)

:
at (a) monthly, (b) seasonal, and (c) inter-annual timescales

::::
time

::::
scales.

Maps show the causality in relative terms with respect to the dominant driver at each pixel, while the latitudinal profiles show the absolute

impact of each driver. The period 1982-2015
::::::::
1982–2015 is taken as reference for the observations.

33



(a)

P

Ta R

Ta
R
P

(b)

(c)

0% 50%

Observations

M
on

th
ly

Se
as

on
al

ly
In

te
r-

an
nu

al
ly

Figure B1. Global climate impact on vegetation using incoming radiation instead of net radiation. Variability in observed LAI caused by

precipitation (P), air temperature (Ta)and
:
, incoming radiation (Rin

:
R)

::
and

::::::::::
precipitation

::
(P)

:
at (a) monthly, (b) seasonal, and (c) inter-annual

timescales
::::
time

::::
scales. Maps show the causality in relative terms with respect to the dominant driver at each pixel, while the latitudinal profiles

show the absolute impact of each driver. The period 1982-2015
::::::::
1982–2015 is taken as reference for the observations.
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Figure C1.
::::
Global

::::::
climate

::::::
impact

::
on

::::::::
vegetation

:::::
during

:::::::::
1982–2005.

::::::::
Variability

::
in

::
(a,

::
c,

:
e)

::::::
observed

:::
and

:::
(b,

::
d,

:
f)

::::::
modelled

::::
LAI

:::::
caused

::
by

:::
air

:::::::::
temperature

::::
(Ta),

::
net

:::::::
radiation

::::
(Rn)

:::
and

::::::::::
precipitation

:::
(P)

:
at
:::
(a,

::
b)

::::::
monthly,

::
(c,

::
d)

::::::
seasonal,

::::
and

::
(e,

::
f)

:::::::::
inter-annual

::::
time

:::::
scales.

::::
Maps

:::::
show

::
the

:::::::
causality

::
in

::::::
relative

:::::
terms

:::
with

::::::
respect

::
to

:::
the

:::::::
dominant

:::::
driver

::
at

::::
each

::::
pixel,

:::::
while

:::
the

::::::::
latitudinal

::::::
profiles

::::
show

:::
the

::::::
absolute

::::::
impact

::
of

:::
each

:::::
driver.

:::::
Maps

::::
show

:::
the

:::::
mean

::::
from

:::
the

:::::::
ensemble

::
of

:::
the

::::::::::
observations

::
or

:::
four

::::::
CMIP5

::::::
models:

:::::::
CCSM4,

::::::::::::
HadGEM2-ES,

:::::::::::
NorESM1-M,

:::::::::::::
IPSL-CM5A-MR.
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Figure D1. Global vegetation feedback on climate using incoming radiation instead of net radiation. Variability in precipitation (P), air

temperature (Ta)and
:
, incoming radiation (Rin

:
R)

:::
and

:::::::::
precipitation

:::
(P) that is caused by observed LAI at (a) monthly, (b) seasonal, and (c)

inter-annual timescales
:::
time

:::::
scales. Maps show the causality in relative terms with respect to the strongest feedback at each pixel, while the

latitudinal profiles show the absolute feedback on each driver. The period 1982-2015
:::::::::
1982–2015 is taken as reference for the observations.
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