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Abstract 21 

The sources of dissolved organic matter (DOM) in coastal waters are diverse, and they play 22 

different roles in the biogeochemistry and ecosystems of the ocean. In this study, we measured 23 

dissolved organic carbon (DOC) and nitrogen (DON), δ13C-DOC, and fluorescent dissolved 24 

organic matter (FDOM) in coastal bay waters surrounded by large cities (Masan Bay, Korea) 25 

to determine the different DOM sources in this region. The surface seawater samples were 26 

collected in two sampling campaigns (Aug. 2011 and Aug. 2016). The salinities were in the 27 

range of 10–21 in 2011 and 25–32 in 2016. In 2011, excess DOC was observed for high-salinity 28 

(16–21) waters, indicating that the excess source inputs were mainly from marine 29 

autochthonous production according to the δ13C-DOC values of −23.7‰ to −20.6‰, the higher 30 

concentrations of protein-like FDOM, and the lower DOC/DON (C/N) ratios (8–15). By 31 

contrast, excess DOC observed in high-salinity waters in 2016 was characterized by low 32 

FDOM, more depleted δ13C values of −28.8‰ to −21.1‰, and high C/N ratios (13–45), 33 

suggesting that the excess DOC source is from terrestrial C3 plants by direct land-seawater 34 

interactions. Our results show that multiple DOM tracers such as δ13C-DOC, FDOM, and C/N 35 

ratios are powerful for discriminating the complicated sources of DOM occurring in coastal 36 

waters.   37 
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1. Introduction 38 

 Dissolved organic matter (DOM) plays an important role in biogeochemical cycles 39 

(e.g., de-oxygenation, acidification, photochemistry) and ecosystems of the ocean (Hansell and 40 

Carlson, 2002). DOM composition depends on its parent organic matter and subsequent 41 

biogeochemical processes. DOM in coastal waters originates from various sources including 42 

(1) in situ production by primary production, exudation of aquatic plants, and their degradation 43 

(Markager et al., 2011; Carlson and Hansell, 2015), (2) terrestrial sources by the degradation 44 

of soil and terrestrial plant matter (Opsahl and Benner, 1997; Bauer and Bianchi, 2011), and (3) 45 

anthropogenic sources such as industrial, agricultural, and domestic sewage (Griffith and 46 

Raymond, 2011). 47 

 48 

Depending on the origin and composition of DOM, its behavior and cycling are 49 

different: the labile fraction of DOM is decomposed rapidly through microbially or 50 

photochemically mediated processes, whereas refractory DOM is resistant to degradation and 51 

can persist in the ocean for millennia. In the coastal ocean, organic matter from terrestrial plant 52 

litter or soils appears to be more refractory (Cauwet, 2002) and thus often behaves 53 

conservatively. In addition, refractory DOM is produced in the ocean by bacterial 54 

transformation of labile DOM by reshaping its composition (Tremblay and Benner, 2006; Jiao 55 

et al., 2010). However, it is still very difficult to determine the sources and characteristics of 56 

DOM in coastal waters.  57 

 58 

 There are many approaches to distinguish the source of DOM in coastal areas using 59 

various tracers (Faganeli et al., 1988; Benner and Opsahl, 2001; Chen et al., 2004; Baker and 60 

Spencer, 2004; Cawley et al., 2012; Lee and Kim, 2018). The stable carbon isotopic 61 
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composition of dissolved organic carbon (δ13C-DOC) has been used to distinguish different 62 

sources. In general, δ13C values derived from C3 and C4 land plants are in the range of −23‰ 63 

– −34‰ and −9‰ – −17‰ (Deines, 1980), respectively, while those derived from marine 64 

phytoplankton range from −18 to −22‰ (Kelley et al., 1998; Coffin and Cifuentes, 1999). In 65 

addition, the optically active fraction of DOM known as fluorescent DOM (FDOM) have been 66 

successfully used for characterizing DOM (Coble et al., 1990; Coble, 1996). Fluorescence 67 

excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) technique has been 68 

applied to trace the source of humic-like versus protein-like DOM in coastal waters and 69 

estuaries (Chen et al., 2004; Jaffé et al., 2004; Murphy et al., 2008). DOC/DON ratios are often 70 

used to differentiate allochthonous versus autochthonous sources. The C/N ratios of terrestrial 71 

organic carbon are usually higher than 12, while those of marine organic carbon from 72 

phytoplankton are almost constant ranging from 6 to 8 (Milliman et al., 1984; Lobbes et 73 

al.,2000). However, the interpretation of isotopic ratio of bulk sample alone in complex coastal 74 

environments is somewhat complicated by the overlap of the isotopic ranges. Thus, several 75 

studies have used δ13C-DOC combined with FDOM (Osburn and Stedmon, 2011; Osburn et 76 

al., 2011; Ya et al., 2015; Lu et al., 2015) or carbon isotope ratios combined with C/N ratio 77 

(Thornton and McManus, 1994; Andrews et al., 1998; Wang et al., 2004; McCallister et al., 78 

2006; Pradhan et al., 2014) to discriminate different sources of DOM in estuarine and coastal 79 

waters. As far as we know, these three tracers together have not yet been used together to 80 

determine DOM sources in coastal waters. 81 

 82 

Our study aimed at discriminating DOM sources in coastal waters, where various 83 

sources are present, using δ13C-DOC, FDOM, and DOC/DON ratios together. Masan bay is 84 

surrounded by cities with thousands of industrial plants and a population of 1.1 million. In 85 
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association with large anthropogenic nutrient loading, this area has been recognized as a highly 86 

eutrophic embayment (Lee and Min, 1990; Yoo, 1991; Hong et al., 2010). Red tides and 87 

hypoxic water mass in the bottom layer of the bay have occurred annually in spring and summer 88 

(Lee et al., 2009). In addition, there are potential point sources of sewage treatment plants 89 

(STPs) which manage domestic and industrial wastewater from Masan and Changwon cities. 90 

Lee et al. (2011) revealed the origins of sewage and organic matter using dissolved sterols in 91 

Masan Bay. They reported that the water samples from the creeks, inner bay, and nearby STP 92 

were affected by sewage sources. Oh et al. (2017) showed that the excess DOC in bay water is 93 

produced by phytoplankton production. Therefore, Masan Bay is a suitable place to test the 94 

applicability of these multiple tracers to differentiate complicated DOM sources in other areas 95 

of the world’s coastal regions. 96 

 97 

2. Materials and methods  98 

2.1 Study site 99 

Masan Bay is located on the southeast coast of Korea with an area of approximately 100 

80 km2 (Fig. 1). The annual precipitation is approximately 1500 mm, and most of the 101 

precipitations occurs in the summer monsoon season. The amount of freshwater discharge into 102 

this bay is approximately 2.5 × 108 m3 yr−1 with significant seasonal variation. The tide is semi-103 

diurnal, showing a maximum tidal amplitude of ~1.9 m (average = 1.3 m) during the sampling 104 

period. Due to topographic conditions, the current is very weak (2–3 cm s−1), and the residence 105 

times of water in the inner bay and in the entire bay are approximately 54 and 23 days, 106 

respectively (Lee et al., 2009). In the middle of the bay, an artificial island was constructed in 107 

2015–2016 (Fig. 1) with an area of 0.64 km2. The artificial island may have resulted in changes 108 

in water currents, residence times, and biogeochemical conditions. 109 
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  110 

2.2 Sampling 111 

 Sampling was conducted in August 2011 and August 2016 in Masan Bay. Water 112 

samples were collected from the surface at 17 sites in 2011 and 10 sites in 2016. The bay 113 

receives a large amount of freshwater discharge from the northernmost part of the region. The 114 

average surface water temperatures were 30.4 ± 2.3°C in 2011 and 26.5 ± 0.7°C in 2016. All 115 

water samples were filtered through pre-combusted GF/F filters. Samples for FDOM analysis 116 

were stored at 4°C in pre-combusted amber vials. Samples for DOC, total dissolved nitrogen 117 

(TDN), and δ13C-DOC analysis were stored in pre-combusted glass ampoules after acidifying 118 

to a pH ~2 with 6M HCL. Samples analyzed for dissolved inorganic nitrogen (DIN) were stored 119 

frozen in a HDPE bottle (Nalgene) prior to analyses. 120 

 121 

2.3 Analytical methods  122 

The concentrations of DOC and TDN were determined using a high-temperature 123 

catalytic oxidation (HTCO) analyzer (TOC-VCPH, Shimadzu, Japan). The standardization for 124 

DOC analysis was performed using a calibration curve of acetanilide (C:N ratio = 8) in ultra-125 

pure water. The acidified samples were purged with pure air carrier gas for two min to remove 126 

dissolved inorganic carbon. Samples were carried into a combustion tube heated to 720 °C 127 

where the DOC was converted quantitatively to CO2. CO2 gas was detected by a non-dispersive 128 

infrared detector (NDIR). Our DOC and TDN methods were verified using the seawater 129 

reference samples for DOC of 44–46 μ mol L−1 and for TDN of 32–34 μ mol L−1, which were 130 

produced by the University of Miami (Hansell’s lab, USA). Inorganic nutrients were measured 131 

using nutrient auto-analyzers (Alliance Instruments, FUTURA+ for 2011 samples and 132 

QuAAtro39, SEAL Analytical Ltd. for 2016 samples). Reference seawater materials (KANSO 133 
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Technos, Japan) were used for the verification of analytical accuracy. DON concentrations 134 

were calculated based on the difference between the TDN and DIN concentrations.  135 

 136 

The values of δ13C-DOC were determined using a TOC-IR-MS instrument (Isoprime, 137 

Elementar, Germany). The analytical method is the same as that used by Kim et al. (2015) and 138 

Lee and Kim (2018). Low carbon water (< 2 μM; University of Miami, Hansell’s lab) was 139 

measured for blank corrections and used for preparing all standard samples. The blank 140 

correction procedure is the same as that reported previously (Panetta et al., 2008; De Troyer et 141 

al., 2010). Certified IAEA-CH6 sucrose (International Atomic Energy Agency, −10.45 ± 142 

0.03‰) was used for standardization. The standard solution was measured for every ten 143 

samples to monitor the drifting effect. Our measured values of δ13C-DOC of the Deep-Sea 144 

Water Reference (University of Miami) samples were ±0.3‰ relative to the values provided 145 

by Panetta et al. (2008) and Lang et al. (2007).  146 

  147 

FDOM was determined using a spectrofluorometer (FluoroMate FS-2, SCINCO) 148 

within two days from the sampling time. EEMs were collected for the emission (Em) 149 

wavelength range of 240–600 nm with 2 nm intervals and an excitation (Ex) wavelength range 150 

of 240–500 nm with 5 nm intervals. Each sample value was subtracted for the signal of Milli-151 

Q water produced daily to remove Raman scattering peaks. All data were converted to ppb 152 

quinine sulfate equivalent (QSE) using a quinine sulfate standard solution dissolved in 0.1N 153 

sulfuric acid at Ex/Em of 350/450 nm. We did not correct EEM data for inner filter effects 154 

before measurements, because the inner filter effects were found to be negligible for coastal 155 

water samples using this instrument (Lee and Kim, 2018). EEMs-PARAFAC was performed 156 
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on MATLAB (R2013a) using a DOMFluor toolbox, and the three components (C1-C3) were 157 

validated by split-half analysis (Figs. S1 and S2). 158 

 159 

3. Results and Discussion 160 

3.1 Horizontal distributions of DOM 161 

The salinity of surface seawater in August 2011 ranged from 10 to 21, while the salinity in 162 

August 2016 ranged from 25 to 32 (Table 1 and Fig. 2). The concentrations of DOC in both 163 

sampling periods ranged from 100 μM to 200 μM (Fig. 2), which fall within the DOC ranges 164 

commonly observed in coastal waters (Gao et al., 2010; Osburn and Stedmon, 2011; Kim et al., 165 

2012). The highest concentration of DOC in 2011 (186 μM) was observed at station M4-1 in 166 

the middle of the bay, whereas the highest concentration of DOC in 2016 (191 μM) was 167 

observed at station M1, which is the innermost station in the bay. DOC concentrations were 168 

lowest at the outermost stations in both sampling periods. Concentrations of DON were in the 169 

range of 7–24 μM in 2011 and 3–15 μM in 2016, with the highest value at M5-1 in 2011 and 170 

at M1 in 2016 (Fig. 2).  171 

 172 

EEM-PARAFAC dataset analyses identified three components in the surface water 173 

samples. EEMs contour plots and split-half validation results of three components are shown 174 

in the supplementary (Figs. S1 and S2). Based on the comparison with the data in the 175 

OpenFluor (Murphy et al., 2014), Component 1 (FDOMH, Ex/Em = 322/405 nm) is associated 176 

with a terrestrial humic-like component (Liu et al., 2019; Dalmagro et al., 2019; Chen et al., 177 

2016). Component 2 (FDOMM, Ex/Em = 386/450 nm) is also associated with an allochthonous 178 

humic-like component (Wünsch et al., 2017). Component 3 (FDOMP, Ex/Em = 280/330 nm) 179 

is associated with a protein-like component, which is a product of microbial processes (Liu et 180 
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al., 2019; Murphy et al., 2011; Osburn et al., 2011). We use Component 1 as a representative 181 

of terrestrial humic-like FDOM (FDOMH) in this study because there was a significant 182 

correlation (r2 =0.95) between Component 1 and Component 2. 183 

 184 

FDOMH is known to indicate humic substances from terrestrial, anthropogenic, or 185 

agricultural sources (Coble, 2007), whereas FDOMP is likely related to autochthonous or 186 

anthropogenic sources (Coble, 1996; Hudson et al., 2007). The intensities of FDOMH and 187 

FDOMP in 2011 were in the range of 3.6–9.2 ppb QSE and 4–79 ppb QSE, respectively (Fig. 188 

3). The intensities of FDOMH and FDOMP in 2016 were in the range of 2.7–0.6 ppb QSE and 189 

4.8–2.1 ppb QSE, respectively (Fig. 3). An exceptionally higher concentration of FDOMP was 190 

observed at station M4-1 (78 ppb QSE) relative to that of other stations (2–25 ppb QSE) in 191 

2011 (Fig. 4d).  192 

   193 

3.2 Origin of excess DOM  194 

The plot of DOC against salinity in 2011 showed two different mixing trends. The first 195 

slope showed a slight increase in DOC with decreasing salinity toward the innermost stations, 196 

including M1, M1-1, and M2 (Fig.4a, Group 1). The second trend showed a sharp rise in DOC 197 

(excess DOC in 2011) to the maximum at stations with salinities between 18 and 22 (Fig.4a, 198 

Group 2), indicating that there are other DOC sources at the high-salinity stations, besides the 199 

two end-member mixing. The plot of DOC against salinity showed that DOC in 2016 was in a 200 

range similar to that of 2011, although there was much less influence from fresh water (Fig. 4a, 201 

Group 3). This plot shows that there was an addition of DOC (excess DOC) in 2016 for high-202 

salinity water in the bay. The potential sources of excess DOC occurring in this bay water may 203 

include terrestrial freshwater in creeks, STP water, direct land-seawater interaction, and in situ 204 
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biological production. The creek water may also include various anthropogenic sources (i.e., 205 

industrial, agricultural, and domestic sewage) as well as natural land sources. There are no salt-206 

marsh or wetland habitats in Masan Bay. To determine the main sources of the excess DOC 207 

using δ13C-DOC, FDOM, and DOC/DON ratios, the excess DOC stations are separated into 208 

three groups (Group 1, Group 2 in 2011, and Group 3 in 2016) (Fig. 4a).  209 

 210 

Group 1 includes low-salinity water stations (M1, M1-1, M2, M3, M5-1, M5-2, and 211 

M5-3) observed in 2011 (Fig. 1). δ13C-DOC values for Group 1 ranged from −25.4‰ to 212 

−23.3‰. We plotted a conservative mixing curve of δ13C-DOC for two end-member mixing 213 

(Spiker, 1980; Raymond and Bauer, 2001). The assumed end-member values of DOC and δ13C-214 

DOC were 185 μM and −28‰ (Raymond and Bauer, 2001), respectively, for the terrestrial 215 

end-member (S=0) and 100 μM and −18‰ (Kelley et al., 1998), respectively, for the marine 216 

end-member (S=34). The δ13C values of Group 1 fall into the mixing line or are slightly heavier 217 

than the mixing line within 1.5 ‰, indicating the conservative mixing between the terrestrial 218 

C3 land plant (−23‰ to −32‰; Deines, 1980) in freshwater and the open ocean seawater. The 219 

slightly heavier values could be produced by in situ biological production during the mixing 220 

processes. As such, the plot of δ13C-DOC values versus C/N ratios also indicates that the excess 221 

DOC of Group 1 is from freshwater DOC (Fig. 5a).  222 

 223 

Group 2 includes high-salinity water stations (M4-1, M4-2, M6, M6-1, M7-1, M7-2, 224 

M8, M9, and M9-1) observed in 2011 (Fig. 1). The δ13C-DOC values of Group 2 were in the 225 

range of −23.3‰ to −20.6‰ and were more enriched than the conservative mixing curve. 226 

These values are close to the marine δ13C-DOC values (−22 to −18‰) (Fry et al., 1998), except 227 

for one station (M6), in this group (−23.3‰). The δ13C-DOC values of Group 2 suggest that 228 
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excess DOM was added in situ by biological production in seawater. As such, the plot of δ13C-229 

DOC values versus C/N ratios also indicates that the excess DOC of Group 2 is produced by 230 

marine phytoplankton (Fig. 5a).  231 

 232 

Group 3 includes high-salinity water stations (M1, M2, M3, M4, M5, M6, and M7) 233 

observed in 2016 (Fig. 1). Although all data were collected in the same wet season (August), 234 

the salinity ranges of both campaigns were different from those in 2011, with a narrow high 235 

salinity range in 2016. The δ13C-DOC values for Group 3 also showed significantly different 236 

values relative to those sampled in 2011 (Group 1 and Group 2). The δ13C-DOC values for 237 

Group 3 were depleted (−28.8‰ and −21.1‰) relative to the conservative mixing curve (Fig. 238 

4b). The plot of δ13C-DOC values versus C/N ratios indicates that the excess DOC of Group 3 239 

is from C3 terrestrial plants through direct land (including the possible sources from a newly-240 

built artificial island)-seawater interactions, based on the fact that the excess DOC occurred in 241 

high-salinity (26–32) waters (Fig. 5a). 242 

 243 

FDOMH showed a significant negative correlation with salinity (r2 = 0.89). The 244 

concentrations were highest for Group 1 and lowest for Group 3. This result indicates that 245 

humic DOM in this region was mainly from a terrestrial source and behaved conservatively in 246 

the freshwater and seawater mixing zone. This trend is commonly observed in coastal waters 247 

worldwide (Coble et al., 1998; Mayer et al., 1999). However, the concentration of FDOMP 248 

showed no correlation with salinity. In general, FDOMP shows non-conservative behavior in 249 

many estuaries owing to the extra source of DOC produced by in situ biological production 250 

(Benner and Opsahl, 2001). In the study region, a remarkably high FDOMP concentration was 251 

observed at station M4-1 in 2011, where DOC concentration was highest. This trend also 252 
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supports the argument, based on the δ13C-DOC results, that the main source of DOC at this 253 

station is from in situ biological production. We observed the decoupling between DOC and 254 

FDOMH because FDOMH is not the major portion of DOC in this bay, except M4-1 station. 255 

 256 

Masan Bay has many potential land sources of DOM from different creeks. In addition, 257 

the treated sewage outflow from a STP is located near station M7-1 (Fig. 1). Many studies have 258 

been conducted to identify organic pollutants from STP (Kannan et al., 2010; Lee et al., 2011). 259 

In our study, however, station M7-1 did not show different DOM characteristics: (1) the 260 

concentrations of DOC, FDOMH, and FDOMP against salinity did not show anomalously 261 

higher or lower trends, relative to the other stations nearby. (2) The δ13C-DOC values at M7-1 262 

(−20.6‰) were close to the marine values (Fry et al., 1998), similar to those in other stations 263 

nearby, although they are known to be lighter in some US wastewater treatment plants (−26‰) 264 

(Griffith et al., 2009). (3) A fulvic-like peak was not observed, although a significantly higher 265 

fulvic-like peak (Ex/Em 320–340 nm/410–430 nm) was observed in treated sewage (Baker and 266 

Inverarity, 2004). (4) The increase of FDOMP intensities at stations M7-1 and M7-2 was 267 

insignificant relative to those at stations M6-1 and M8, although FDOMP is often used as a 268 

tracer of anthropogenic material including treated effluents (Hudson et al., 2007). Thus, we 269 

conclude that the concentration of DOC at station M7-1 was not influenced by STP. This STP 270 

appears to reduce TOC concentrations to a level that cannot influence the DOC concentrations 271 

resulting from the other mixing sources, as shown in several other estuaries (Abril et al., 2002).  272 

In general, anomalously high FDOMP was observed for anthropogenic sources (Coble, 273 

1996; Baker et al., 2003). The δ13C values of sewage effluents generally ranged from –22‰ to 274 

–28.5‰ (Andrews et al., 1998; Barros et al., 2010), and those of STP effluents ranged from –275 

24‰ to –28‰ (Griffith et al., 2009). The δ13C vs FDOMP plot (Fig. 5b) shows that there was 276 
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no increase in FDOMP concentrations for samples which had depleted δ13C values. Thus, we 277 

conclude that there was no significant DOC input from untreated sewage or STP sources in this 278 

bay. 279 

 280 

4. Conclusions 281 

We determined the sources of DOM in 2011 and 2016 using the δ13C-DOC, FDOM, 282 

and DOC/DON ratios. The main sources were separated into three groups based on DOC 283 

concentrations versus salinity plots. The DOM concentrations in the first group in 2011, which 284 

included the lowest salinity waters, were found to be mixtures of terrestrial DOM and open-285 

ocean DOM sources based on the δ13C values of −25.4‰ to −23.3‰ and a good correlation 286 

between FDOMH and salinity. The excess DOC concentrations in the second group in higher 287 

salinity waters in 2011 were found to be produced in situ by biological production based on 288 

more enriched δ13C-DOC values (−22.0‰ to −20.6‰), high FDOMP concentrations, and low 289 

C/N ratios. The excess DOC concentrations in the third group in high salinity waters in 2016 290 

seemed to be produced by direct interaction between land and seawater based on more depleted 291 

δ13C-DOC values (−28.8‰ and −21.1‰), low FDOM concentrations, and high C/N ratios. Our 292 

results show that the combination of multiple DOM tracers, including δ13C-DOC, FDOM, and 293 

DOC/DON ratios, is powerful for discriminating the complicated sources of DOM occurring 294 

in coastal waters. 295 
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Table 1. Salinity, DOC, FDOMH, FDOMP, and δ13C-DOC in surface water of Masan Bay in 495 

August 2011 and August 2016. 496 

Sampling station salinity DOC  FDOMH FDOMT 
δ13C-

DOC 
DON DOC/DON 

   (μM) (ppbQSE) (ppbQSE) (‰) (μM)  

Aug. 2011 M1 14.0 148 6.7 13.6 −25.4 12 12 

 M1-1 12.8 151 9.2 14.3 −24.3 7 21 

 M2 10.2 157 9.0 5.4 −24.6 11 14 

 M3 16.3 147 8.2 14.7 n/a 16 9 

 M4-1 19.0 186 7.1 78.7 −21.9 13 15 

 M4-2 18.6 155 6.9 8.3 −21.6 10 15 

 M5-1 17.7 138 4.5 4.5 −23.3 24 6 

 M5-2 18.4 133 5.8 20.9 −24.5 11 12 

 M5-3 18.9 135 8.0 11.3 −23.7 13 11 

 M6 18.4 146 6.6 24.8 −23.3 19 8 

 M6-1 19.2 142 5.5 7.4 n/a 9 15 

 M7-1 19.5 157 5.8 10.5 −20.6 11 15 

 M7-2 18.9 148 5.6 9.6 −21.5 12 12 

 M8 19.5 152 5.6 7.6 −21.5 15 10 

 M9 18.8 149 5.6 14.5 −21.9 10 15 

 M9-1 19.1 154 5.1 10.2 −21.0 12 13 

 M9-2 20.8 106 3.6 13.1 −22.0 8 13 

Aug. 2016 M1 29.2 191 2.7 4.8 −22.8 15 13 

 M2 29.9 164 2.0 3.4 −21.1 7 22 

 M3 26.0 155 2.5 3.8 −28.8 8 19 

 M4 27.4 149 1.9 3.5 −22.6 9 17 

 M5 25.5 165 1.8 3.3 −23.5 10 16 

 M6 30.5 147 1.1 3.0 −23.7 6 26 

 M7 31.4 166 1.3 4.4 −26.2 4 45 

 M8 32.0 123 0.8 2.3 −23.7 5 26 

 M9 32.0 146 0.6 2.1 −24.4 5 30 

 M10 31.9 130 0.7 2.7 −25.0 3 39 

n/a = not available.   497 
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 498 

Figure 1. A map showing the sampling stations for DOC, δ13C-DOC, FDOM, and DOC/DON 499 

ratio in Masan Bay, Korea, in 2011 and 2016.  500 
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 501 

Figure 2. Surface distributions of salinity, DOC, and DON in Masan Bay, Korea, in 2011 and 502 

2016.  503 
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 504 

Figure 3. Surface distributions of δ13C-DOC, FDOMH, and FDOMP in Masan Bay, Korea, in 505 

2011 and 2016.   506 



27 

 

 507 

Figure 4. Relationships between salinity versus (a) DOC, (b) δ13C-DOC, (c) FDOMH, (d) 508 

FDOMT, (e) DON, and (f) DOC/DON values. The DOC concentrations are divided into three 509 

groups based on probable different sources (in the dashed circles). The dashed line (b) 510 

represents the binary conservative mixing line for δ13C-DOC between the terrestrial end-511 

member and the marine end-member. The solid line (c) represents a linear regression fit of the 512 

data. 513 

 514 
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 515 

Figure 5. Relationships between δ13C-DOC values versus (a) DOC/DON ratio and (b) FDOMP 516 

in Masan Bay, Korea. The ranges of DOC/DON ratio and δ13C-DOC values for each group are 517 

based on the values reported by Lamb et al. (2006) and Beaupré (2015). 518 


