

1 **Soil carbon release responses to long-term versus short-term climatic
2 warming in an arid ecosystem**

4 Hongying Yu^{1,2}, Zhenzhu Xu^{1,*}, Guangsheng Zhou^{1,3,*}, and Yaohui Shi^{1,3}

5 ¹State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,
6 Chinese Academy of Sciences, Beijing 100093, China

7 ²University of Chinese Academy of Sciences, Beijing, 100049, China

8 ³Chinese Academy of Meteorological Sciences, China Meteorological Administration,
9 Beijing 100081, China

10 *Authors for correspondence

12 **Abstract** Climate change severely impacts grassland carbon cycling such as the
13 changes in litter decomposition and soil respiration (R_s), especially in desert
14 steppes. However, little is known about the R_s responses to different warming
15 magnitudes and watering pulses *in situ* in desert steppes. To examine their effects
16 on R_s , we conducted long-term moderate warming (four-year, around 3°C), and
17 short-term acute warming (one-year, around 4°C), and watering field experiments
18 in a desert grassland of Northern China. While experimental warming significantly
19 reduced average R_s by 32.5% and 40.8% under long-term moderate and short-term
20 acute warming regimes, respectively, watering pulses (fully irrigated the soil to
21 field capacity) stimulated it substantially. This indicates that climatic warming
22 constrains soil carbon release, which is controlled mainly by decreased soil
23 moisture, consequently influencing soil carbon dynamics. Warming did not change
24 the exponential relationship between R_s and soil temperature, whereas the
25 relationship between R_s and soil moisture was better fitted to a sigmoid function.
26 The belowground biomass, soil nutrition, and microbial biomass were not
27 significantly affected by either long-term or short-term warming regimes,
28 respectively. The results of this study highlight the great dependence of soil carbon
29 emission on warming regimes of different durations and the important role of
30 precipitation pulse during growing season in assessing the terrestrial ecosystem
31 carbon balance and cycle.

32 **Key words:** Long-term warming; Precipitation pulse; Soil carbon release;
33 Response sensitivity; Belowground characteristics; Desert grassland.

36 **1 Introduction**

37 The global carbon (C) cycle is a critical component in the earth's biogeochemical
38 processes and plays a major role in global warming, which is mainly exacerbated
39 by the elevated carbon dioxide (CO₂) concentration in the atmosphere (e.g.,
40 Falkowski et al. 2000; Carey et al. 2016; Ballantyne et al. 2017; Meyer et al. 2018).
41 Soil respiration (R_s), mainly including the respiration of live roots and

42 microorganisms, is a key component of the ecosystem C cycle as it releases c. 80
43 Pg of C from the pedosphere to the atmosphere annually (Boone et al., 1998; Karhu
44 et al., 2014; Liu et al., 2016; Ma et al., 2014; Schlesinger, 1977). **The effects of**
45 **both soil moisture and temperature on R_s processes and the eco-physiological**
46 **mechanism are reported extensively; however, it is not well known how soil**
47 **moisture modulates the response of R_s to changes in the duration and intensity of**
48 **warming, particularly in arid and semiarid areas, where water and nutrients are**
49 **both severely limited (e.g., Dacal et al., 2019; Fa et al., 2018; Reynolds et al., 2015;**
50 **Ru et al., 2018).**

51 The desert steppe of China is c. 88 million hm², accounting for 22.6% of all
52 grasslands in China, and is located in both arid and semiarid areas. More than 50%
53 of the total area of the steppe is facing severe degradation in terms of the decline
54 of community productivity and soil nutrient depletion, primarily due to improper
55 land use, such as over-grazing and adverse climatic changes, including heat waves
56 and drought stresses (Bao et al., 2010; Kang et al., 2007). Global surface
57 temperature—mainly caused by the anthropogenic CO₂ increase—is expected to
58 increase from 2.6 to 4.8°C by the end of this century, **accelerating land degradation**
59 (IPCC 2014; 2019). Moreover, **the desert steppe ecosystem with low vegetation**
60 **productivity is vulnerable to its harsh environmental conditions, such as scarce**
61 **precipitation and barren soil nutrition. For instance, water deficit and heat waves**
62 **during growing season can markedly decrease plant cover and productivity in this**
63 **arid ecosystem** (Hou et al., 2013; Luo et al., 2018; Maestre et al., 2012; Yu et al.,
64 2018).

65 Numerous studies have shown that soil temperature and moisture are the two
66 crucial factors that mainly control R_s ; **however, it is not well known how soil**
67 **moisture status mediates the response of R_s to the changes in the duration and**
68 **intensity of climatic warming.** Soil temperature is the primary factor driving
69 temporal R_s variations (e.g., Carey et al., 2016; Gaumont-Guay et al., 2006; Li et
70 al., 2008; Wan et al. 2005). Generally, R_s is significantly and positively correlated
71 with soil temperature when soil moisture is ample (Curiel et al., 2003; Jia et al.,
72 2006; Lin et al., 2011; Reynolds et al., 2015; Yan et al., 2013). In general, the
73 seasonal variations of R_s coincide with the seasonal patterns of soil temperature
74 (Keith et al., 1997; Lin et al., 2011; Wan et al., 2007). For instance, Lin et al. (2011)
75 reported that 63 to 83% of seasonal variations of R_s are dominantly controlled by
76 soil temperature. Diurnal R_s variations are highly associated with variations in soil
77 temperature (Drewitt et al., 2002; Jia et al., 2006; Song et al., 2015). Soil
78 respiration, according to previous studies, is expected to increase with soil water
79 content (SWC) (e.g., Chen et al., 2008; Song et al., 2015; Wan et al., 2007; Yan et
80 al., 2013). However, when the SWC exceeds the optimal point to reach saturated
81 levels, R_s decreases (Huxman et al., 2004; Kwon et al., 2019; Moyano et al., 2012;
82 Moyano et al., 2013; Wang et al., 2014; Yan et al., 2018). In a study conducted in

83 a tall grass prairie, water addition dramatically increased soil CO₂ efflux (Liu et al.,
84 2002). Liu et al. (2009) showed a significant R_s increase after a precipitation pulse
85 in a typical temperate steppe. Therefore, in arid and semiarid regions, where soil
86 water is limited, the SWC may control R_s , and regulate the warming effect (Chen
87 et al., 2008; Curiel et al., 2003; Shen et al., 2015). Furthermore, the effect of
88 watering pulses depends on the pulse size, antecedent soil moisture conditions, soil
89 texture and plant cover (Cable et al., 2008; Chen et al., 2008; Shen et al., 2015;
90 Hoover et al., 2016). For instance, the results by Huxman et al. (2004) showed that
91 different precipitation pulses have different effects on carbon fluxes in these arid
92 and semiarid regions; and Sponseller (2007) indicated that CO₂ efflux increases
93 with storm size in a Sonoran Desert ecosystem.

94 A previous study reported the effects of relatively short-term (two-year)
95 warming (2°C) on soil respiration (Liu et al., 2016). However, there is limited
96 information about the long-term (four-year) warming effects on R_s and the
97 underlying mechanism. In this current study, we expect that the long-term (four-
98 year) warming have different effects on R_s (i.e., more profound, even reverse
99 effects relative to previous two-year short term); and the underlying mechanism
100 under longer term warming condition, and the role of soil water status to R_s
101 responses to climatic warming are also uncertain. Thus, in the present study, we
102 used a randomized block design with three treatments: control (no warming, no
103 watering), long-term moderate warming (four years extending from 2011 to 2014,
104 about 3°C), and short-term acute warming (one year in 2014, about 4°C). Moreover,
105 a watering pulse treatment (a full irrigation to reach field capacity) was also
106 established. We present the following hypotheses: (i) both long- and short-term
107 climatic warming can reduce soil CO₂ efflux, in which soil moisture plays a key
108 factor controlling R_s in the arid ecosystem; and (ii) the dynamics of R_s in the water-
109 limited ecosystem can be driven mainly by the combination of soil temperature
110 and soil moisture, and soil moisture can modulate the response of R_s to warming.
111

112 **2 Methods and Materials**

113 **2.1 Experimental site**

114 The experiment was conducted in a desert steppe about 13.5 km from Bailingmiao
115 in Damao County (110°19'53.3"E, 41°38'38.3"N; 1409 m above sea level),
116 situated in Nei Mongol, Northern China. This area is characterized by a typical
117 continental climate. The mean annual temperature of this area was 4.3°C with a
118 minimum of -39.4°C and a maximum of 38.1°C from 1955 to 2014. The mean
119 annual precipitation is 256.4 mm and approximately 70% of the annual
120 precipitation is distributed in the growth season period occurring from June to
121 August (Supplementary Figure S1). According to Chinese classification, the soil
122 type is called "chestnut" (Calcic Kastanozem in the FAO soil classification) with
123 a bulk density of 1.23 g·cm⁻³ and a pH of 7.4. The area has not been grazed since

124 1980; the dominant species is *Stipa tianschanica* var. klemenzii, accompanied by
125 *Cleistogenes squarrosa*, *Neopallasia pectinata*, *Erodium stephanianum* and
126 *Artemisia capillaris* (e.g., Hou et al., 2013; Ma et al. 2018).

127

128 **2.2 Experimental design**

129 The warming experiment used a randomized block design that included three
130 treatments: **control (i.e., ambient temperature), long-term moderate warming,**
131 **short-term acute warming.** The long-term moderate warming plots were exposed
132 to long-term warming from early June to late August (the growing season) for four
133 years (2011–2014), while short-term acute warming was manipulated only during
134 the growing season (June to August) in 2014. **The targeted increases in**
135 **temperatures relative to ambient temperature (control) are around 3°C and 4°C**
136 **under the long-term moderate warming (four-year), and short-term acute warming**
137 **regimes(one-year), respectively.** Watering pulse treatments were conducted in
138 August in 2014 and 2017. The control plots received no additional treatments of
139 either temperature or water (they were recognized as warming or watering control
140 treatments). All of the warmed plots were heated 24 h/day **by infrared (IR) lamps**
141 **(1.0 m long)** (GHT220-800; Sanyuan Huahui Electric Light Source Co. Ltd.,
142 Beijing, China) at 800 W during growing seasons in the experimental years (2011–
143 2014). The IR lamp heights above the ground were 1.5 m and 1.0 m in moderately
144 and acutely warmed plots, respectively. **This facility can effectively mimic**
145 **different climatic warming regimes in field *in situ*, as previously reported (e.g.,**
146 **Hou et al., 2013; Ma et al., 2018; Yu et al., 2018).** The watering pulse plots were
147 fully irrigated to field capacity to simulate a watering pulse on August 19, 2014,
148 and August 14, 2017. **The neither watering nor warming plots were made as the**
149 **control plots.** For the field warming facility, to simulate the shading effects, the
150 control plots were designed to install a “dummy” heater similar to those used for
151 the warmed plots. There were a total of 15 experimental plots (2 m × 2 m) arranged
152 in a 3 × 5 matrix with each treatment randomly replicated once in each block across
153 three experimental blocks; a 1 m buffer for each adjacent plot was made.

154

155 **2.3 Soil temperature and moisture**

156 At the center of each plot, a thermocouple (HOBO S-TMB-M006; Onset Computer
157 Corporation, Bourne, MA, USA) was installed at a depth of 5 cm to measure the
158 soil temperature, and a humidity transducer (HOBO S-SMA-M005; Onset
159 Computer Corporation, Bourne, MA, USA) was installed at a depth of 0 to 20 cm
160 to monitor the soil moisture (**v/v**). Continuous half-hour measurements were
161 recorded by an automatic data logger (HOBO H21-002; Onset Computer
162 Corporation, Bourne, MA, USA).

163

164 **2.4 Soil respiration**

165 The soil respiration was measured with a Li-8100 soil CO₂ Flux System (LI-COR
166 Inc., Lincoln, NE, USA) with the R_s chamber mounted on polyvinyl chloride (PVC)
167 collars. Fifteen PVC collars (10 cm inside diameter, 5 cm in height) were inserted
168 into the soil 2 to 3 cm below the surface. They were randomly placed into the soil
169 in each plot after clipping all plants growing in the collar placement areas. The
170 collars were initially placed a day before measurements were begun to minimize
171 the influence of soil surface disturbance and root injury on R_s (Bao et al., 2010;
172 Wan et al., 2005). Respirations for the control and all of the warmed plots were
173 measured from 6:00 a.m. to 6:00 p.m. on July 7 and 8 and August 18, 19, 20 and
174 21, 2014. The R_s for watering pulse treatment was measured after the water
175 additions on August 19, 2014, and August 14, 15, 16 and 17, 2017. To stabilize the
176 measurement, R_s was measured only on the selected typical days (i.e., mildly windy,
177 sunny days). The R_s in all plots was measured once every 2 h on that day and each
178 measurement cycle was finished within 30 min to minimize the effects of
179 environmental variables, such as temperature and light. Thus, a total of six
180 measurement cycles was completed each day. The **soil water content** (SWC, (0–20
181 cm soil depth) in watering plots was measured using the Field Scout TDR 300 Soil
182 Moisture Meter (Spectrum Technologies, Inc., Aurora, IL, USA).

183

184 **2.5 Belowground biomass and related soil characteristics**

185 Soil samples of 0 to 10 cm in depth were taken from each collar after the R_s
186 measurements and then passed through a 1 mm sieve to separate the roots. The
187 roots were washed and oven-dried at 70°C for 48 h to a constant weight and then
188 weighed. Subsamples of each soil sample were separated to determine the
189 gravimetric water content and soil chemical properties. Briefly, to determine the
190 soil organic C (SOC) content, we mixed a 0.5 g soil sample, 5 ml of concentrated
191 sulfuric acid (18.4 mol L⁻¹), and 5.0 ml of aqueous potassium dichromate (K₂Cr₂O₇)
192 (0.8 mol L⁻¹) in a 100 ml test tube, then heated them in a paraffin oil pan at 190°C,
193 keeping them boiling for 5 minutes. After cooling, the 3 drops of phenanthroline
194 indicator were added and then the sample was titrated with ferrous ammonium
195 sulphate (0.2 mol L⁻¹) until the color of the solution changed from brown to purple
196 to dark green (Nelson and Sommers, 1982; Chen et al. 2008; Edwards et al. 2013).
197 The soil ammonium-nitrogen (N) (NH₄⁺-N) concentration and the nitrate-N (NO₃⁻
198 -N) concentration were extracted with a potassium chloride (KCl) solution and
199 measured using a flow injection analyzer (SEAL Auto Analyzer 3; SEAL
200 Analytical, Inc., Mequon, WI, USA) (Liu et al. 2014). Soil samples (0–10 cm in
201 depth) from each collar were oven-dried at 105°C for at least 48 h and weighed to
202 determine the SWC. The soil microbial biomass C (MBC) and microbial biomass
203 N (MBN) were measured using the chloroform-fumigation extraction method and
204 calculated by subtracting extractable C and N contents in the unfumigated samples
205 from those in the fumigated samples (Liu et al., 2014; Rinnan et al., 2009). All

206 extracts were stored at 4°C until further testing commenced.

207

208 2.6 Statistical analysis

209 All statistical analyses were performed using IBM SPSS Statistics 21.0 (IBM,
210 Armonk, NY, USA). All the data were normal as tested by the Shapiro-Wilk
211 method. A one-way analysis of variation (ANOVA) with LSD multiple range tests
212 was conducted to test the statistical significance of the differences in the mean
213 values of the soil temperature, soil moisture, R_s , belowground biomass, SOC,
214 NH_4^+ -N and NO_3^- -N concentrations, and MBC and MBN concentrations at depths
215 of 0 to 10 cm among the different treatments. A linear regression analysis was also
216 used to test the relationship between the SWC and R_s . The relationship between R_s
217 and the soil temperature in each treatment was tested with an exponential function.

218 We used Q_{10} to express the temperature sensitivity of R_s and calculated it
219 according to the following equations:

220

221
$$R_s = ae^{bT_s} \quad (1)$$

222

$$Q_{10} = e^{10b} \quad (2)$$

223

224 Here, T_s is the soil temperature, a refers to the intercept of R_s when the soil
225 temperature is 0°C, and b is the temperature coefficient reflecting the temperature
226 sensitivity of R_s and is used to calculate Q_{10} (Lloyd and Taylor, 1994; Luo et al.,
227 2001; Shen et al., 2015).

228 The relationship between R_s and the SWC was further conducted to fit the
229 Gompertz function, a sigmoid function (Gompertz, 1825; Yin et al., 2003), which
230 could express that the linear increase is rapid followed by a leveling off:

231

232
$$R_s = a * e^{-b * (\exp(-k * \text{SWC}))} \quad (3)$$

233

234 Here, a is an asymptote; the SWC halfway point of $a/2$ equals $-\ln(\ln(2)/b)/c$. The
235 turning point of the maximum rate of R_s increase equals ak/e when the SWC equals
236 $\ln(b)/k$. Thus, from the sigmoid function curve, the thresholds of the changes in R_s
237 with increasing SWC can be obtained from the Gompertz function (Gompertz,
238 1825; Yin et al., 2003).

239 A non-linear regression model was used to fit the relationship of R_s with both
240 soil temperature and soil moisture (Savage et al., 2009):

241

242
$$R_s = (R_{\text{ref}} * Q_{10}^{(T_s-10)/10}) * \beta^{(\text{SWC}_{\text{OPT}} - \text{SWC})^2} \quad (4)$$

243

244 where T_s is the soil temperature at a soil depth of 5 cm, R_{ref} is R_s at 10°C and Q_{10}
245 is a unitless expression in R_s for each increase in 10°C. SWC is water content in 0

246 to 20 cm soil depth, SWC_{OPT} is the optimal water content and β is a parameter
247 modifying the shape of the quadratic fit.

248 Following the key factors selected by the stepwise regression method, a path
249 analysis was used to examine the primary components directly and indirectly
250 affecting R_s by integrating both the stepwise linear regression module and Pearson
251 correlation analyses (Gefen et al., 2000). The statistical significances were set at P
252 < 0.05 for all tests, unless otherwise indicated.

253

254 **3 Results**

255 **3.1 Warming effects on belowground characteristics**

256 The soil temperatures at a soil depth of 5 cm in the warmed plots were much higher
257 than those in the control plots (Figure 1). During growing season, the mean soil
258 temperatures in the control, the moderately and acutely warmed plots were 21.9°C
259 (± 0.13 SE), 24.5°C (± 0.15), and 25.0°C (± 0.18), respectively. The moderately and
260 acutely warmed plots were respectively increased by 2.6°C ($P < 0.001$) and 3.1°C
261 ($P < 0.001$) compared to those in the control plots. The SWC in the moderately and
262 acutely warmed plots (0–20 cm soil profile, **defined as ratios of water volume and**
263 **soil volume**) were significantly reduced ($P < 0.001$) compared to those in the
264 control plots (Figure 1), indicating that warming led to marked declines in the SWC,
265 consequently enhancing drought stress. On August 18, 19, 20 and 21, which were
266 the dates that we measured R_s , the daily soil temperatures in the moderately and
267 acutely warmed plots were around 3°C and 4°C higher than those in the control
268 plots, respectively. All belowground variables (belowground biomass, soil N and
269 microbial characteristics) were not significantly altered by warming regimes at the
270 site of this experiment (Supplementary Table S1; $P > 0.05$). However, the organic
271 soil carbon content tended to decrease with long-term climatic warming.

272

273 **3.2 Watering pulse effects on R_s**

274 The R_s significant increased with SWC both linearly ($R^2 = 0.83$; $P < 0.01$) and
275 quadratically ($R^2 = 0.88$; $P < 0.01$, Figure 2A). Moreover, the Gompertz function
276 was well fitted to their relationship ($R^2 = 0.87$; RMSE = 4.88) (Figure 2B). From
277 the Gompertz functional curve, the R_s asymptote value, as an estimated maximum,
278 was $3.76 \mu\cdot\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ when the optimal SWC was 22.85%. In the watering plots,
279 an exponential function was well fitted to the relationship between soil respiration
280 and the soil temperatures ($R^2 = 0.31$; $P < 0.01$), with a temperature sensitivity (Q_{10})
281 of 1.69. However, the exponential function was not well fitted in the control plots
282 (Figure 3A).

283

284 **3.3 Effects of warming regimes on R_s**

285 Warming regimes resulted in marked declines in R_s . Whereas no difference in R_s
286 was observed in July, during August average R_s values were 1.57, 1.06, and 0.93

287 $\mu\text{-mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ in the control, moderately warmed and acutely warmed plots,
288 respectively, indicating that warming regimes resulted in marked declines (Figure
289 4). Changes in R_s differed significantly between the control and both warmed plots
290 ($P < 0.01$), while the R_s in the two warmed plots did not significantly differ ($P =$
291 0.45). The relationships between the R_s and soil temperature of each treatment were
292 well fitted by the exponential equations ($P < 0.05$) (Figure 3B). The Q_{10} values
293 were 1.88, 2.12 and 1.58 in the temperature controlled, moderate and acute
294 warming treatments, respectively (Figure 3B). It indicated that R_s increases
295 exponentially with temperature in watered plots but was lower and insensitive to
296 temperature in the control plots (Figure 3A); and that long-term warming rather
297 than temporary high temperature reduced R_s , despite having a positive relationship
298 with soil temperature (Figure 3B, 4).

299

300 **3.4 Interactive effects on R_s from soil temperature and soil water content**

301 Across all watering and warming treatments, generally, a high temperature led to
302 an increase in R_s under ample soil moisture, whereas R_s was limited under a soil
303 water deficit. As shown in Figure 5, A non-linear regression model (equation 4)
304 was well fitted to the relationship of R_s with both soil temperature and soil moisture
305 in the control plots ($R^2 = 0.40$, RMSE = 0.60). Based on the function $R_s =$
306 $(0.733*1.796^{(Ts-10)/10})*\beta^{(0.229-SWC)^2}$, the key parameters were obtained: R_{ref} , a R_s at
307 10°C, was 0.73 $\mu\text{-mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$; Q_{10} , a unitless expression in R_s for each increase in
308 10°C, was 1.80; and β , a parameter modifying the shape of the quadratic fit, was
309 0.001 (Figure 5).

310

311 **3.5 Effects of multiple factors on R_s : a path analysis**

312 Based on a stepwise regression analysis of the relationships between the R_s and
313 multiple factors, four key factors were screened: soil temperature, soil moisture,
314 belowground biomass and SOC. Their effects on R_s were further determined by a
315 path analysis. The results showed that soil moisture and soil temperature were two
316 major direct factors controlling R_s (the two direct path coefficients were 0.72 and
317 0.55, respectively). SOC had the highest indirect effect on R_s (the indirect path
318 coefficient was 0.57). Soil moisture highly correlated with R_s ($R = 0.78$, $P < 0.01$;
319 Supplementary Table S2, Figure 6), indicating again that the soil water status may
320 impose the greatest effect on the carbon release from soil in the desert grassland.

321

322 **4. Discussion**

323 **4.1 Warming effects on R_s**

324 Previous studies have shown positive R_s responses to increased soil temperatures
325 below a critical high temperature (e.g., Carey et al., 2016; Drewitt et al., 2002;
326 Gaumont-Guay et al., 2006; Meyer et al., 2018). However, in the current study site,
327 the climatic warming finally reduced the average R_s by 32.5% and 40.8% under

328 long-term versus short-term climatic warming conditions in the desert dryland,
329 respectively, which chiefly confirmed our first hypothesis. In a semiarid grassland
330 on the Loess Plateau of China, the total R_s was also constrained substantially by a
331 field manipulative experiment (Fang et al., 2018). This result may have been
332 caused by the following factors. First, high temperatures may cause thermal stress
333 on microbes and subsequently reduce microbial respiration (i.e., heterotrophic, R_h ,
334 Chang et al., 2012; Dacal et al., 2019). For instance, in an alpine steppe on the
335 Tibetan Plateau, microbial respiration was significantly reduced when the
336 temperature rose to 30°C (Chang et al., 2012). Second, in the desert grassland,
337 where water is often limited, the SWC becomes the primary factor affecting R_s
338 (Supplementary Table S2; Figure 6), while warming can cause greater
339 evapotranspiration, consequently lessening soil moisture (Figure 1), and finally
340 reducing R_s (Munson et al., 2009; Wan et al., 2007; Yan et al., 2013). **The decreases**
341 **in average R_s with warming implicate that positive feedback on climatic change**
342 **may be weaken with warming time or under an acute warming condition.**

343 Actually, the R_s [the sum of root (autotrophic, R_a) and R_h respiration—the former
344 accounting for c. 22 % of the total R_s in the ecosystem, Liu et al. 2016] may
345 acclimatize to warming within an appropriate range of temperature change at an
346 ample soil moisture; however, it decreases with increasing temperatures above an
347 optimum level. The mechanisms may include: within an appropriate range of
348 temperature change at an ample soil moisture, climatic warming can enhance both
349 plant root (Luo et al., 2001; Liu et al. 2016) and microbial activities (Tuker et al.
350 2014), leading to increases in both R_a and R_h , consequently the R_s (Luo et al., 2001;
351 Tuker et al. 2014; Xu et al., 2019). However, when warming continues or with
352 increasing temperatures above an optimum level, the root growth can be
353 constrained, directly reducing R_a (Carey et al., 2017; Liu et al., 2016; Luo et al.,
354 2001; Wan et al., 2007); and the limitation to microbial activities may also occur
355 (Tucker et al.. 2013; Yu et al., 2018), decreasing the R_h (Bérard et al., 2011; Tucker
356 et al., 2013; Bérard et al., 2015; Romero-Olivares et al., 2017). In addition,
357 decreases in soil enzyme pools and its activity under warming may also contribute
358 to a reduction in R_a (e.g., Alvarez et al. 2018). Further, R_s decreases with warming
359 under water deficit (Moyano et al., 2013; Wang et al., 2014; and see below).
360 Together, the declines in both root and microbial respirations finally reduce the R_s .
361 Nevertheless, the drastic declines in R_s under both long-term and short-term
362 climatic warming regimes in the desert dryland ecosystem may be driven by
363 multiple factors, including the ecosystem type, time and soil features (Liu et al.,
364 2016; Wan et al., 2007; Meyer et al., 2018; Thakur et al., 2019). **It implies that the**
365 **effects of multiple factors should be considered in assessing the carbon balance**
366 **between ecosystem and atmosphere.**

367

368 **4.2 Interactive effect of soil water status and temperature**

369 As stated above, in an arid ecosystem, soil water deficit is a primary factor
370 inhibiting soil carbon release (Supplementary Table S2; Figure 6; Liu et al., 2016;
371 Munson et al., 2009; Yan et al., 2013). Thus, R_s linearly increases with increasing
372 soil moisture. However, it could be leveled off or decreased when soil moisture
373 exceeds an optimal level for the soil carbon release (Huxman et al., 2004; Moyano
374 et al., 2013; Wang et al., 2014). Thus, the relationship between R_s and SWC may
375 be well fitted to the Gompertz functional curve model, a sigmoid function
376 (Gompertz, 1825; Yin et al., 2003), which can be confirmed by the present results
377 in the native arid desert ecosystem (Figure 2). The mechanisms mainly are: an
378 increase in SWC may increase rapidly microbial activities (Cable et al., 2008;
379 Meisner et al., 2015; Wu & Lee, 2011), and enhance root growth (Xu et al., 2014),
380 leading to a linear increase in R_s . However, when soil moisture reaches an ample
381 level, microbial activities may also reach a maximum where the limiting effects of
382 substrate occur (Skopp et al., 1990), finally maintaining a stable change in R_h at a
383 higher level. Similar response to watering appears for root growth (Xu et al., 2014),
384 and also similarly leading to a stable change in R_h at a higher level. Thus, R_s can
385 be leveled off at a high and stable level. Moreover, the decrease in R_s at a saturated
386 SWC level may be ascribed to inhibitions of both root systems and microbial
387 activities under the anaerobic environment (Drew 1997; Huxman et al., 2004;
388 Kwon et al., 2019; Sánchez-Rodríguez et al. 2019; Yan et al., 2018). The model
389 concerning the relationship R_s with a broad range of SWC is helpful to assess and
390 predict the dynamics in soil carbon release in natural arid ecosystems.

391 As indicated by Tucker and Reed (2016), soil water deficit can shrink the R_s
392 itself and its response to temperature, suggesting the changes in R_s may be
393 determined simultaneously by both soil temperature and water status (Janssens et
394 al., 2001; Yan et al., 2013; Sierra et al., 2015). Moreover, in the present experiment,
395 the interactive effects of both factors were tested based on the relationship of R_s
396 with both soil temperature and soil moisture in a non-linear regression model
397 (Savage et al., 2009). The model utilized was well fitted but marginally so ($R^2 =$
398 0.40, RMSE = 0.596; Figure 5), indicating that both the soil temperature and soil
399 water content coordinated the changes in R_s . However, this interaction may also be
400 affected simultaneously by other abiotic and biotic factors, such as soil nutrition
401 availability and soil microbe activity (e.g., Camenzind et al., 2018; Karhu et al.,
402 2014; Thakur et al., 2019; Zhang et al., 2014).

404 4.3 Key factors and the influence path

405 As noted above, R_s is affected by several abiotic and biotic factors. The current
406 results showed that soil moisture and soil temperature were two major direct
407 factors, and SOC only was an indirect factor controlling R_s (Supplementary Table
408 S2, Figure 6). Importantly, soil moisture, with both the highest direct path
409 coefficients (0.7) and correlation coefficient (0.8) for R_s , may become the most

410 important factor affecting R_s in this desert steppe. These findings agree with the
411 previous results: Improved soil water status had a significantly positive effect on
412 R_s (e.g., Chen et al., 2008; Liu et al., 2016; Xu et al., 2016). Furthermore, the soil
413 moisture condition can mediate the relationship between soil temperature and R_s ,
414 thus affecting the its temperature sensitivity; it becomes the main key factor
415 controlling R_s , especially in arid ecosystems, such as desert steppes, where the
416 available soil water is limited (Conant et al., 2000; Curiel et al., 2003; Fa et al.,
417 2018; Jassal et al., 2008; Roby et al., 2019). Thus, under both the long-term and
418 short-term climatic warming regimes, soil moisture could modulate the response
419 of R_s to warming; and the changes in R_s might be driven by both soil temperature
420 and soil moisture as two key factors, and SOC as an indirect factor, thus mostly
421 confirming our second hypothesis. The findings again implicate that the multiple
422 factors may together coordinate R_s , and provide new insight into how to control
423 soil carbon release in arid ecosystems. The models on the R_s changes should
424 consider multiple-factor effects of soil carbon dynamics when assessing and
425 predicting carbon cycle, and its climate feedback.

426

427 **4.4 Warming effects on the variables belowground**

428 Elevated temperature has been shown to increase or decrease root productivity and
429 biomass, depending on experimental sites and vegetation types (Bai et al., 2010;
430 Fan et al., 2009; Litton and Giardina, 2008; Wan et al., 2004). The decreased
431 availability of soil nutrients apparently limits root growth, finally inducing root
432 mortality and weakening responses to the elevated temperature (Eissenstat et al.,
433 2000; Johnson et al., 2006; Wan et al., 2004; Zhang et al., 2014). In our experiment,
434 no significantly different changes occurred in either soil $\text{NH}_4^+ \text{-N}$ or $\text{NO}_3^- \text{-N}$
435 concentrations among the three treatments (Supplementary Table S1), and these
436 might be linked to the non-significant response of belowground biomass to
437 increasing temperature. Microbial biomass and its activities in soil depend on the
438 root biomass, SWC and soil N conditions (Liu et al., 2014; Rinnan et al., 2007;
439 Zhang et al., 2008; Zhang et al., 2014). Warming regimes had no significant effects
440 on either MBC or MBN in the current study (Supplementary Table S1), which
441 might be due to the lack of any difference in the changes in basic soil nutrition
442 status, such as the N conditions, among the three warming treatments. This result
443 is consistent with that of Zhang et al. (2005) and Liu et al. (2015). Moreover, in
444 the present study, SOC concentrations were not significantly affected by climatic
445 warming (Supplementary Table S1), which is inconsistent with the findings of
446 previous studies (Jobbágy and Jackson, 2000; Prietzel et al., 2016). However, there
447 might be a decreasing trend evident with long-term warming. For instance,
448 Crowther et al. (2016) reported a loss of approximately 30 ± 30 Pg of C in the
449 upper soil horizons at 1°C warming in global soil C stocks and projected a loss of
450 203 ± 161 Pg of C under 1°C of warming over 35 years. The C losses from soil

451 moving into the atmosphere may result in positive feedback regarding global
452 warming (Bradford et al., 2016; Dacal et al., 2019; Jenkinson et al., 1991; Liu et
453 al., 2016). However, SOC exerted an indirect effect via a path analysis (Figure 6).
454 For this difference, therefore, more evidence needs to be provided to address the
455 issue (Xu et al., 2019).

456 In conclusion, we determined the responses of R_s to field experimental long-
457 term versus short-term climatic warming and watering pulses in a desert steppe
458 ecosystem. We found the following: i) both long- and short-term warming
459 significantly reduced R_s during the peak growth season; ii) soil moisture was the
460 main factor controlling R_s in desert grassland; iii) R_s was significantly and
461 exponentially increased with soil temperature, **meanwhile soil moisture condition**
462 **can mediate the relationship between soil temperature and R_s , thus affecting its**
463 **temperature sensitivity**; and iv) belowground biomass, soil nutrition variables and
464 soil microbial characteristics showed no significant changes after either long-term
465 or short-term climatic warming. **These findings may be useful to assess and predict**
466 **dynamics of soil CO₂ fluxes, particularly the feedback of warming to climatic**
467 **change**, and finally optimize C management work in arid and semiarid regions
468 under the changing climate. However, the patterns of the changes in soil C fluxes
469 and the underlying mechanism in response to climatic change are markedly
470 complicated at various spatial-temporal scales during growing season—from site
471 and regional to global scales, and from daily, seasonal and yearly to decade scales—
472—and still need to be investigated further (e.g., Ballantyne et al., 2017; Dacal et al.,
473 2019; ; Meyer et al., 2018; Romero-Olivares et al., 2017).

474
475 **Data availability.** The final derived data presented in this study are available at
476 <https://doi.org/10.5281/zenodo.3546062> (Yu et al., 2019).

477
478 **Supplement.** The supplement related to this article is available online at:

479
480 **Author contributions.** ZX and GZ conceived and designed this study. HY, ZX and
481 YS conducted this experiment and analysed the data. All authors wrote and
482 proofread this manuscript.

483
484 **Competing interests.** The authors declare that they have no conflict of interest.

485
486 **Acknowledgements.** This research was jointly funded by National Natural
487 Science Foundation of China (31661143028, 41775108), and the Special Fund for
488 Meteorological Scientific Research in the Public Interest (GYHY201506001-3).
489 We greatly thank Feng Zhang, Bingrui Jia, Hui Wang, Minzheng Wang, He Song
490 for their loyal help during the present study.

491

492 **References**

493 Alvarez, G., Shahzad, T., Andanson, L., Bahn, M., Wallenstein, M.D., and Fontaine, S.:
494 Catalytic power of enzymes decreases with temperature: New insights for understanding
495 soil C cycling and microbial ecology under warming. *Glob. Change Biol.*, 24, 4238–4250,
496 <https://doi.org/10.1111/gcb.14281>, 2018.

497 Bai, W., Wan, S., Niu, S., Liu, W., Chen, Q., Wang, Q., Zhang, W., Han, X., and Li, L.:
498 Increased temperature and precipitation interact to affect root production, mortality, and
499 turnover in a temperate steppe: implications for ecosystem C cycling. *Glob. Change Biol.*,
500 16, 1306–1316, <https://doi.org/10.1111/j.1365-2486.2009.02019.x>, 2010.

501 Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., Shevliakova, E.,
502 Pan, Y., Poulter, B., Anav, A., and Friedlingstein, P.: Accelerating net terrestrial carbon
503 uptake during the warming hiatus due to reduced respiration. *Nature Clim. Change*, 7,
504 148–152, <https://doi.org/10.1038/nclimate3204>, 2017.

505 Bao, F., Zhou, G. S., Wang, F. Y., and Sui, X. H.: Partitioning soil respiration in a temperate
506 desert steppe in Inner Mongolia using exponential regression method. *Soil Biol. Biochem.*,
507 42, 2339–2341, <https://doi.org/10.1016/j.soilbio.2010.08.033>, 2010.

508 Bérard, A., Bouchet, T., Sévenier, G., Pablo, A.L., and Gros, R.: Resilience of soil microbial
509 communities impacted by severe drought and high temperature in the context of
510 Mediterranean heat waves. *Eur. J. Soil Biol.* 47, 333–342,
511 <https://doi.org/10.1016/j.ejsobi.2011.08.004>, 2011.

512 Bérard, A., Sassi, M.B., Kaisermann, A., and Renault, P.: Soil microbial community responses
513 to heat wave components: drought and high temperature. *Clim. Res.* 66, 243–264,
514 <https://doi.org/10.3354/cr01343>, 2015.

515 Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J. P.: Roots exert a strong influence
516 on the temperature sensitivity of soil respiration. *Nature*, 396, 570–572,
517 <https://doi.org/10.1038/25119>, 1998.

518 Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther, T.
519 W.: Managing uncertainty in soil carbon feedbacks to climate change. *Nature Clim.
520 Change*, 6, 751–758, <https://doi.org/10.1038/nclimate3071>, 2016.

521 Cable, J. M., Ogle, K., Williams, D. G., Weltzin, J. F., and Huxman, T. E.: Soil texture drives
522 responses of soil respiration to precipitation pulses in the Sonoran Desert: Implications
523 for climate change. *Ecosystems*, 11, 961–979, <https://doi.org/10.1007/s10021-008-9172-x>, 2008.

525 Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., and Rillig, M. C.: Nutrient
526 limitation of soil microbial processes in tropical forests. *Ecol., Monogr.*, 88, 4–21,
527 <https://doi.org/10.1002/ecm.1279>, 2018.

528 Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J.
529 S., Emmett, B., Frey, S. D., Heskell, M. A., and Jiang, L.: Temperature response of soil
530 respiration largely unaltered with experimental warming. *P. Natl. Acad. Sci. USA*, 113,
531 13797–13802, <https://doi.org/10.1073/pnas.1605365113>, 2016.

532 Chang, X., Wang, S., Luo, C., Zhang, Z., Duan, J., Zhu, X., Lin, Q., and Xu, B.: Responses of
533 soil microbial respiration to thermal stress in alpine steppe on the Tibetan plateau. *Euro.
534 J. Soil Sci.*, 63, 325–331, <https://doi.org/10.1111/j.1365-2389.2012.01441.x>, 2012.

535 Chen, S. P., Lin, G. H., Huang, J. H., and He, M.: Responses of soil respiration to simulated
536 precipitation pulses in semiarid steppe under different grazing regimes. *J. Plant Ecol.*, 1,
537 237–246, <https://doi.org/10.1093/jpe/rtn020>, 2008.

538 Conant, R. T., Klopatek, J. M., and Klopatek, C. C.: Environmental factors controlling soil

respiration in three semiarid ecosystems. *Soil Sci. Soc. Am. J.*, 64(1), 383–390, <https://doi:10.2136/sssaj2000.641383x>, 2000.

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., and Blair, J. M.: Quantifying global soil carbon losses in response to warming. *Nature*, 540, 104–108, <https://doi.org/10.1038/nature20150>, 2016.

Curiel, J. C., Janssens, I. A., Carrara, A., Meiresonne, L., and Ceulemans, R.: Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. *Tree Physiol.*, 23, 1263–1270, <https://doi.org/10.1093/treephys/23.18.1263>, 2003.

Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T., and García-Palacios, P.: Soil microbial respiration adapts to ambient temperature in global drylands. *Nat. Ecol. Evol.*, 3, 232–238, <https://doi.org/10.1038/s41559-018-0770-5>, 2019.

Drew, M.C.: Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. *Annu. Rev. Plant Biol.*, 48, 223–250, <https://doi.org/10.1146/annurev.arplant.48.1.223>, 1997.

Drewitt, G. B., Black, T. A., Nesić, Z., Humphreys, E. R., Jork, E. M., Swanson, R., Ethier, G. J., Griffis, T., and Morgenstern, K.: Measuring forest floor CO₂ fluxes in a Douglas-fir forest. *Agric. For. Meteorol.*, 110, 299–317, [https://doi.org/10.1016/S0168-1923\(01\)00294-5](https://doi.org/10.1016/S0168-1923(01)00294-5), 2002.

Edwards, K. A. and Jfferies, R. L.: Inter-annual and seasonal dynamics of soil microbial biomass and nutrients in wet and dry low-Arctic sedge meadows. *Soil Biol. Biochem.*, 57, 83–90, <https://doi.org/10.1016/j.soilbio.2012.07.018>, 2013.

Eissenstat, D. M., Wells, C. E., Yanai, R. D., and Whitbeck, J. L.: Research view: Building roots in a changing environment: Implications for root longevity. *New Phytol.*, 147, 33–42, 2000.

Fa, K., Zhang, Y., Lei, G., Wu, B., Qin, S., Liu, J., Feng, W., and Lai, Z.: Underestimation of soil respiration in a desert ecosystem. *Catena*, 162, 23–28, <https://doi.org/10.1016/j.catena.2017.11.019>, 2018.

Falkowski, P., Scholes, R. J., Boyle, E. E. A., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Höglberg, P., Linder, S., and Mackenzie, F. T.: The global carbon cycle: a test of our knowledge of earth as a system. *Science*, 290, 291–296, <https://doi.org/10.1126/science.290.5490.291>, 2000.

Fan, J. W., Wang, K., Harris, W., Zhong, H. P., Hu, Z. M., Han, B., Zhang, W. Y., and Wang, J. B.: Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. *J. Arid Environ.*, 73, 521–528, <https://doi.org/10.1016/j.jaridenv.2008.12.004>, 2009.

Fang, C., Li, F., Pei, J., Ren, J., Gong, Y., Yuan, Z., Ke, W., Zheng, Y., Bai, X., and Ye, J. S.: Impacts of warming and nitrogen addition on soil autotrophic and heterotrophic respiration in a semi-arid environment. *Agric. For. Meteorol.*, 248, 449–457, <https://doi.org/10.1016/j.agrformet.2017.10.032>, 2018.

Gaumont-Guay, D., Black, T. A., Griffis, T. J., Barr, A. G., Jassal, R. S., and Nesić, Z.: Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. *Agric. For. Meteorol.*, 140, 220–235, <https://doi.org/10.1016/j.agrformet.2006.08.003>, 2006.

Gefen, D., Straub, D., and Boudreau, M. C.: Structural equation modeling and regression: Guidelines for research practice. *Communications of the Association for Information Systems*, 4: 7. <http://doi.org/10.17705/1CAIS.00407>, 2000.

586 Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on
587 a new mode of determining the value of life contingencies. Philos. TR. Soc. London, 115,
588 513–583, <https://doi.org/10.1098/rstl.1825.0026>, 1825.

589 Han, G. X., Zhou, G. S., Xu, Z. Z., Yang, Y., Liu, J. L., and Shi, K.Q.: Soil temperature and
590 biotic factors drive the seasonal variation of soil respiration in a maize (*Zea mays* L.)
591 agricultural ecosystem. Plant Soil, 291, 15–26, <https://doi.org/10.1007/s11104-006-9170-8>, 2006.

593 Hoover, D. L., Knapp, A. K., and Smith, M. D.: The immediate and prolonged effects of
594 climate extremes on soil respiration in a mesic grassland. J. Geophys. Res.-Biogeosci.,
595 121, 1034–1044, <http://dx.doi.org/10.1002/2015JG003256>, 2016.

596 Hou, Y. H., Zhou, G. S., Xu, Z. Z., Liu, T., and Zhang, X. S.: Interactive effects of warming
597 and increased precipitation on community structure and composition in an annual forb
598 dominated desert steppe. PLoS one, 8, e70114.
599 <http://dx.doi.org/10.1371/journal.pone.0070114>, 2013.

600 Huxman, T. E., Snyder, K. A., Tissue, D., Leffler, A. J., Ogle, K., Pockman, W. T., Sandquist,
601 D. R., Potts, D. L., and Schwinnig, S.: Precipitation pulses and carbon fluxes in semiarid
602 and arid ecosystems. Oecologia, 141, 254–268, <http://dx.doi.org/10.1007/s00442-004-1682-4>, 2004.

604 IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II
605 and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
606 [Core Writing Team, Pachauri RK, Meyer LA (eds.)]. IPCC, Geneva, Switzerland, pp151.

607 IPCC. 2019. Climate Change and Land: an IPCC special report on climate change,
608 desertification, land degradation, sustainable land management, food security, and
609 greenhouse gas fluxes in terrestrial ecosystems. [Arneth A, Barbosa H, Benton T et al. (eds)]
610 IPCC, <https://www.ipcc.ch/report/srccl/>.

611 Janssens, I. A., Kowalski, A. S., and Ceulemans. R.: Forest floor CO₂ fluxes estimated by eddy
612 covariance and chamber-based model. Agric. For. Meteorol. 106: 61–69,
613 [http://dx.doi.org/10.1016/S0168-1923\(00\)00177-5](http://dx.doi.org/10.1016/S0168-1923(00)00177-5), 2001.

614 Jassal, R. S., Black, T. A., Novak, M. D., Gaumont-Guay, D., and Nesic, Z.: Effect of soil water
615 stress on soil respiration and its temperature sensitivity in an 18-year-old temperate
616 Douglas-fir stand. Glob. Change Biol., 14, 1–14, <http://dx.doi.org/10.1111/j.1365-2486.2008.01573.x>, 2008.

618 Jenkinson, D. S., Adams, D. E., and Wild, A.: Model estimates of CO₂ emissions from soil in
619 response to global warming. Nature, 351, 304–306, <http://dx.doi.org/10.1038/351304a0>,
620 1991.

621 Jia, B., Zhou, G., Wang, Y., Wang, F., and Wang, X.: Effects of temperature and soil water-
622 content on soil respiration of grazed and ungrazed *Leymus chinensis* steppes, Inner
623 Mongolia. J. Arid Environ., 67, 60–76, <http://dx.doi.org/10.1016/j.jaridenv.2006.02.002>,
624 2006.

625 Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its
626 relation to climate and vegetation. *Ecol. Appl.*, 10, 423–436,
627 [https://doi.org/10.1890/1051-0761\(2000\)010\[0423:TVDOSO\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2), 2000.

628 Johnson, M. G., Rygiewicz, P. T., Tingey, D. T., and Phillips, D. L.: Elevated CO₂ and elevated
629 temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. *New
630 Phytol.*, 170, 345–356, <http://dx.doi.org/10.1111/j.1469-8137.2006.01658.x>, 2006.

631 Kang, L., Han, X. G., Zhang, Z. B., and Sun, O. J.: Grassland ecosystems in China: review of
632 current knowledge and research advancement. *Philos. T. R. Soc. B*, 362, 997–1008,
633 <http://dx.doi.org/10.1098/rstb.2007.2029>, 2007.

634 Karhu, K., Auffret, M. D., Dungait, J. A., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke,
635 J. A., Wookey, P. A., Agren, G. I., Sebastia, M. T., Gouriveau, F., Bergkvist, G., Meir, P.,
636 Nottingham, A. T., Salinas, N., and Hartley, I. P.: Temperature sensitivity of soil
637 respiration rates enhanced by microbial community response. *Nature*, 513, 81–84,
638 <http://dx.doi.org/10.1038/nature13604>, 2014.

639 Keith, H., Jacobsen, K. L., and Raison, R. J., Effects of soil phosphorus availability,
640 temperature and moisture on soil respiration in *Eucalyptus pauciflora* forest. *Plant
641 Soil*, 190, 127–141, <https://doi.org/10.1023/A:1004279300622>, 1997.

642 Kwon, M. J., Natali, S. M., Hicks, C. E., Schuur, E. A., Steinhof, A., Crummer, K. G., Zimov,
643 N., Zimov, S. A., Heimann, M., and Kolle, O.: Mathias Göckedel Drainage enhances
644 modern soil carbon contribution but reduces old soil carbon contribution to ecosystem
645 respiration in tundra ecosystems. *Glob. Change Biol.*, <https://doi.org/10.1111/gcb.14578>,
646 **In Press**, 2019.

647 Li, H. J., Yan, J. X., Yue, X. F., and Wang, M. B.: Significance of soil temperature and moisture
648 for soil respiration in a Chinese mountain area. *Agric. For. Meteorol.*, 148, 490–503,
649 <http://dx.doi.org/10.1016/j.agrformet.2007.10.009>, 2008.

650 Lin, X. W., Zhang, Z. H., Wang, S. P., Hu, Y. G., Xu, G. P., Luo, C. Y., Chang, X. F., Duan, J.
651 C., Lin, Q. Y., Xu, B., Wang, Y. F., Zhao, X. Q., and Xie, Z. B.: Response of ecosystem
652 respiration to warming and grazing during the growing seasons in the alpine meadow on
653 the Tibetan plateau. *Agric. For. Meteorol.*, 151, 792–802,
654 <http://dx.doi.org/10.1016/j.agrformet.2011.01.009>, 2011.

655 Litton, C. M. and Giardina, C. P.: Below-ground carbon flux and partitioning: global patterns
656 and response to temperature. *Funct. Ecol.*, 22, 941–954, [http://dx.doi.org/10.1111/j.1365-2435.2008.01479.x](http://dx.doi.org/10.1111/j.1365-
657 2435.2008.01479.x), 2008.

658 Liu, L. T., Hu, C. S., Yang, P. P., Ju, Z. Q., Olesen, J. E., and Tang, J. W.: Effects of experimental
659 warming and nitrogen addition on soil respiration and CH₄ fluxes from crop rotations of
660 winter wheat–soybean/fallow. *Agric. For. Meteorol.*, 207, 38–47,
661 <https://doi.org/10.1016/j.agrformet.2015.03.013>, 2015.

662 Liu, L., Wang, X., Lajeunesse, M. J., Miao, G., Piao, S., Wan, S., Wu, Y., Wang, Z., Yang, S.,
663 Li, P. and Deng, M.: A cross-biome synthesis of soil respiration and its determinants under
664 simulated precipitation changes. *Glob. Change Biol.*, 22, 1394–1405,
665 <http://dx.doi.org/10.1111/gcb.13156>, 2016a.

666 Liu, T., Xu, Z. Z., Hou, Y. H., and Zhou, G. S.: Effects of warming and changing precipitation
667 rates on soil respiration over two years in a desert steppe of northern China. *Plant Soil*,
668 400, 15–27, <http://dx.doi.org/10.1007/s11104-015-2705-0>, 2016b.

669 Liu, W. X., Jiang, L., Hu, S. J., Li, L. H., Liu, L. L., and Wan, S. Q.: Decoupling of soil
670 microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe.
671 *Soil Biol. Biochem.*, 72, 116–122, <http://dx.doi.org/10.1016/j.soilbio.2014.01.022>, 2014.

672 Liu, W. X., Zhang, Z., and Wan, S. Q.: Predominant role of water in regulating soil and
673 microbial respiration and their responses to climate change in a semiarid grassland. *Glob.*
674 *Change Biol.*, 15, 184–195, <http://dx.doi.org/10.1111/j.1365-2486.2008.01728.x>, 2009.

675 Liu, X. Z., Wan, S. Q., Su, B., Hui, D. F., and Luo, Y. Q.: Response of soil CO₂ efflux to water
676 manipulation in a tallgrass prairie ecosystem. *Plant Soil*, 240, 213–223,
677 <http://dx.doi.org/10.1023/a:1015744126533>, 2002.

678 Lloyd, J. and Taylor, J. A.: On the temperature dependence of soil respiration. *Funct. Ecol.*, 8,
679 315–323, <http://dx.doi.org/10.2307/2389824>, 1994.

680 Luo, Y. Q., Wan, S. Q., Hui, D. F., and Wallace, L. L.: Acclimatization of soil respiration to
681 warming in a tall grass prairie. *Nature*, 413, 622–625,
682 <http://dx.doi.org/10.1038/35098065>, 2001.

683 Ma, Q., Yu, H., Liu, X., Xu, Z., Zhou, G. and Shi, Y.: Climatic warming shifts the soil nematode
684 community in a desert steppe. *Climatic Change*, 150(, 243–258,
685 <https://doi.org/10.1007/s10584-018-2277-0>, 2018.

686 Ma, Y. C., Piao, S. L., Sun, Z. Z., Lin, X., Wang, T., Yue, C., and Yang, Y.: Stand ages regulate
687 the response of soil respiration to temperature in a *Larix principis-rupprechtii* plantation.
688 *Agric. For. Meteorol.*, 184, 179–187, <http://dx.doi.org/10.1016/j.agrformet.2013.10.008>,
689 2014.

690 Maestre, F. T., Salguero-Gómez, R. and Quero, J. L.: It is getting hotter in here: determining
691 and projecting the impacts of global environmental change on drylands. *Philos. T. R. Soc.*
692 B., 367, 3062–3075, <http://dx.doi.org/10.1098/rstb.2011.0323>, 2012.

693 Martins, C. S. C., Macdonald, C. A., Anderson, I. C., and Singh, B. K.: Feedback responses of
694 soil greenhouse gas emissions to climate change are modulated by soil characteristics in
695 dryland ecosystems. *Soil Biol. Biochem.*, 100, 21–32,
696 <http://dx.doi.org/10.1016/j.soilbio.2016.05.007>, 2016.

697 Meisner, A., Rousk, J., and Bååth E.: Prolonged drought changes the bacterial growth response
698 to rewetting. *Soil Biol. Biochem.*, 88, 314–322,

699 https://doi.org/10.1016/j.soilbio.2015.06.002, 2015.

700 Meyer, N., Welp, G., and Amelung, W.: The temperature sensitivity (Q_{10}) of soil respiration:
701 controlling factors and spatial prediction at regional scale based on environmental soil
702 classes. *Glob. Biogeochem. Cycle*, 32, 306–323,
703 http://dx.doi.org/10.1002/2017GB005644, 2018.

704 Moncrieff, J. B., and Fang, C.: A model for soil CO_2 production and transport 2: application to
705 a Florida *Pinus elliottii* plantation. *Agric. For. Meteorol.*, 95, 237–256,
706 https://doi.org/10.1016/S0168-1923(99)00035-0, 1999.

707 Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to
708 moisture availability: an exploration of processes and models. *Soil Biol. Biochem.*, 59,
709 72–85, http://dx.doi.org/10.1016/j.soilbio.2013.01.002, 2013.

710 Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Yuste, J. C., Don, A., Epron,
711 D., Formanek, P., Franzluebbers, A., Ilstedt, U., Kätterer, T., Orchard, V., Reichstein, M.,
712 Rey, A., Ruamps, L., Subke, J. A., Thomsen, I. K., and Chenu, C.: The moisture response
713 of soil heterotrophic respiration: interaction with soil properties. *Biogeosciences*, 8,
714 1173–1182, http://dx.doi.org/10.5194/bg-9-1173-2012, 2012.

715 Munson, S. M., Benton, T. J., Lauenroth, W. K., and Burke, I. C.: Soil carbon flux following
716 pulse precipitation events in the shortgrass steppe. *Ecol. Res.*, 25, 205–211,
717 https://doi.org/10.1007/s11284-009-0651-0, 2009.

718 Nelson, D. W. and Sommers, L. E.: Dry combustion method using medium temperature
719 resistance furnace. In: Page AL, Miller RH, Keeney DR (eds). *Methods of Soil Analysis*,
720 Part 2. Chemical and Microbial Properties. Madison, WI: American Society of Agronomy
721 and Soil Science Society of America, 539–579, 1982.

722 Prietzel, J., Zimmermann, L., Schubert, A., and Christopel, D.: Organic matter losses in
723 German Alps forest soils since the 1970s most likely caused by warming. *Nat. Geosci.*, 9,
724 543–548, http://dx.doi.org/10.1038/ngeo2732, 2016.

725 Reynolds, L. L., Johnson, B. R., Pfeifer-Meister, L., and Bridgham, S. D.: Soil respiration
726 response to climate change in Pacific Northwest prairies is mediated by a regional
727 Mediterranean climate gradient. *Glob. Change Biol.*, 21, 487–500,
728 http://dx.doi.org/10.1111/gcb.12732, 2015.

729 Rinnan, R., Michelsen, A., Bååth, E., and Jonasson, S.: Fifteen years of climate change
730 manipulations alter soil microbial communities in a subarctic heath ecosystem. *Glob.*
731 *Change Biol.*, 13, 28–39, http://dx.doi.org/10.1111/j.1365-2486.2006.01263.x, 2007.

732 Rinnan, R., Stark, S., and Tolvanen, A.: Responses of vegetation and soil microbial
733 communities to warming and simulated herbivory in a subarctic heath. *J. Ecol.*, 97, 788–
734 800, http://dx.doi.org/10.1111/j.1365-2745.2009.01506.x, 2009.

735 Roby, M. C., Scott, R. L., Barron-Gafford, G. A., Hamerlynck, E. P., Moore, D. J.,

736 Environmental and vegetative controls on soil CO₂ efflux in three semiarid ecosystems.
737 *Soil Syst.*, 3, 6, <https://doi.org/10.3390/soilsystems3010006>, 2019.

738 Romero-Olivares, A. L., Allison, S. D., and Treseder, K. K.: Soil microbes and their response
739 to experimental warming over time: A meta-analysis of field studies. *Soil Biol. Biochem.*,
740 107, 32–40, <http://dx.doi.org/10.1016/j.soilbio.2016.12.026>, 2017.

741 Ru, J., Zhou, Y., Hui, D., Zheng, M., and Wan, S.: Shifts of growing-season precipitation peaks
742 decrease soil respiration in a semiarid grassland. *Glob. Change Biol.*, 24, 1001–1011,
743 <http://dx.doi.org/10.1111/gcb.13941>, 2018.

744 Sánchez-Rodríguez, A.R., Nie, C., Hill, P.W., Chadwick, D.R., Jones, D.L.: Extreme flood
745 events at higher temperatures exacerbate the loss of soil functionality and trace gas
746 emissions in grassland. *Soil Biol. Biochem.*, 130, 227–236,
747 <https://doi.org/10.1016/j.soilbio.2018.12.021>, 2019.

748 Savage, K., Davidson, E. A., Richardson, A. D., and Hollinger, D. Y.: Three scales of temporal
749 resolution from automated soil respiration measurements. *Agric. For. Meteorol.*, 149,
750 2012–202, <http://dx.doi.org/10.1016/j.agrformet.2009.07.008>, 2009.

751 Schlesinger, W. H.: Carbon balance in terrestrial detritus. *Annu. Rev. Ecol. Evol. Syst.*, 8, 51–
752 81, <http://dx.doi.org/10.1146/annurev.es.08.110177.000411>, 1977.

753 Shen, Z. X., Li, Y. L., and Fu, G.: Response of soil respiration to short-term experimental
754 warming and precipitation pulses over the growing season in an alpine meadow on the
755 Northern Tibet. *Appl. Soil Ecol.*, 90, 35–40,
756 <http://dx.doi.org/10.1016/j.apsoil.2015.01.015>, 2015.

757 Sierra C. A, Trumbore S. E, Davidson E. A, Vicca S., and Janssens I.: Sensitivity of
758 decomposition rates of soil organic matter with respect to simultaneous changes in
759 temperature and moisture. *J. Adv. Model. Earth Syst.*, 7, 335–356,
760 <http://dx.doi.org/10.1002/2014MS000358>, 2015.

761 Skopp, J., Jawson, M.D. and Doran, J.W.: Steady-state aerobic microbial activity as a function
762 of soil water content. *Soil Sci. Soc. Am. J.* 54, 1619–1625,
763 <https://doi.org/10.2136/sssaj1990.03615995005400060018x>, 1990.

764 Song, W. M., Chen, S. P., Wu, B., Zhu, Y. J., Zhou, Y. D., Lu, Q., and Lin, G. H.: Simulated
765 rain addition modifies diurnal patterns and temperature sensitivities of autotrophic and
766 heterotrophic soil respiration in an arid desert ecosystem. *Soil Biol. Biochem.*, 82, 143–
767 152, <http://dx.doi.org/10.1016/j.soilbio.2014.12.020>, 2015.

768 Sponseller, R. A.: Precipitation pulses and soil CO₂ flux in a Sonoran Desert ecosystem. *Glob.*
769 *Change Biol.*, 13, 426–436, <https://doi.org/10.1111/j.1365-2486.2006.01307.x>, 2007.

770 Thakur, M. P., Del Real, I. M., Cesarz, S., Steinauer, K., Reich, P. B., Hobbie, S., Ciobanu, M.,
771 Rich, R., Worm, K., and Eisenhauer, N.: Soil microbial, nematode, and enzymatic
772 responses to elevated CO₂, N fertilization, warming, and reduced precipitation. *Soil Biol.*
773 *Biochem.*, 135, 184–193, <http://dx.doi.org/10.1016/j.soilbio.2019.04.020>, 2019.

774 Tucker, C. L. and Reed, S. C.: Low soil moisture during hot periods drives apparent negative
775 temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model

776 comparison. *Biogeochemistry*, 128: 155–169, <http://dx.doi.org/10.1007/s10533-016-0200-1>, 2016.

777

778 Tucker, C.L., Bell, J., Pendall, E., and Ogle K.: Does declining carbon-use efficiency explain
779 thermal acclimation of soil respiration with warming? *Glob. Chang Biol.*, 19, 252–263,
780 <https://doi.org/10.1111/gcb.12036>, 2013.

781 Wan, S. Q., Hui, D. F., Wallace, L., and Luo, Y. Q.: Direct and indirect effects of experimental
782 warming on ecosystem carbon processes in a tallgrass prairie. *Glob. Biogeochem. Cycle*,
783 19, 1–13, <http://dx.doi.org/10.1029/2004GB002315>, 2005.

784 Wan, S. Q., Norby, R. J., Ledford, J., and Weltzin, J. F.: Responses of soil respiration to
785 elevated CO₂, air warming, and changing soil water availability in a model old-field
786 grassland. *Glob. Change Biol.*, 13, 2411–2424, <http://dx.doi.org/10.1111/j.1365-2486.2007.01433.x>, 2007.

787

788 Wan, S. Q., Norby, R. J., Pregitzer, K. S., Ledford, J., and O'Neill, E. G.: CO₂ enrichment and
789 warming of the atmosphere enhance both productivity and mortality of maple tree fine
790 roots. *New Phytol.*, 162, 437–446, <http://dx.doi.org/10.1111/j.1469-8137.2004.01034.x>,
791 2004.

792 Wang, Y., Hao, Y., Cui, X. Y., Zhao, H., Xu, C., Zhou, X., and Xu, Z.: Responses of soil
793 respiration and its components to drought stress. *J. Soils Sedim.*, 14, 99–109,
794 <http://dx.doi.org/10.1007/s11368-013-0799-7>, 2014.

795 Wu, H. J., and Lee, X.: 2011. Short-term effects of rain on soil respiration in two New England
796 forests. *Plant Soil* 338, 329–342, <https://doi.org/10.1007/s11104-010-0548-2>, 2011.

797 Xu, W., Yuan, W., Cui, L., Ma, M., and Zhang, F.: Responses of soil organic carbon
798 decomposition to warming depend on the natural warming gradient. *Geoderma*, 343, 10–
799 18, <https://doi.org/10.1016/j.geoderma.2019.02.017>, 2019.

800 Xu, Z., Hou, Y., Zhang, L., Tao, L., and Zhou, G.: Ecosystem responses to warming and
801 watering in typical and desert steppes. *Sci., Rep.*, 6, 34801,
802 <http://dx.doi.org/10.1038/srep34801>, 2016.

803 Xu, Z., Shimizu, H., Ito, S., Yagasaki, Y., Zou, C., Zhou, G. and Zheng, Y.: Effects of elevated
804 CO₂, warming and precipitation change on plant growth, photosynthesis and peroxidation
805 in dominant species from North China grassland. *Planta*, 239, 421–435,
806 <https://doi.org/10.1007/s00425-013-1987-9>, 2014.

807 Yan, M. F., Zhou, G. S., and Zhang, X. S.: Effects of irrigation on the soil CO₂ efflux from
808 different poplar clone plantations in arid northwest China. *Plant Soil*, 375, 89–97,
809 <http://dx.doi.org/10.1007/s11104-013-1944-1>, 2013.

810 Yan, Z. B., Bond-Lamberty, K. E., Todd-Brown, V. L., Bailey, S., Li, C., Liu, C. Q., Liu C.: A
811 moisture function of soil heterotrophic respiration that incorporates microscale processes,
812 *Nat. Commun.*, 9, 2562, <http://doi:10.1038/s41467-018-04971-6>, 2018.

813 Yin, X., Goudriaan, J. A. N., Lantinga, E. A., Vos, J. A. N., and Spiertz, H. J.: A flexible
814 Gompertz function of determinate growth. *Ann. Bot.*, 91, 361–371,
815 <http://aob.oupjournals.org/cgi/doi/10.1093/aob/mcg029>, 2003.

816 Yu, H. Y., Chen, Y. T., Xu, Z. Z., and Zhou, G. S.: Analysis of relationships among leaf
817 functional traits and economics spectrum of plant species in the desert steppe of Nei
818 Mongol. *Chin. J. Plant Ecol.*, 38, 1029–1040, doi: 10.3724/SP.J.1258.2014.00097, 2014.

819 **Yu, H. Y., Xu, Z. Z., Zhou, G. S., and Shi, Y. H: The data for the article entitled "Soil carbon**
820 **release responses to long-term versus short-term climatic warming in an arid ecosystem"**
821 **[Data set]. Zenodo, <https://doi.org/10.5281/zenodo.3546062>, 2019.**

822 Yu, H., Ma, Q., Liu, X., Xu, Z., Zhou, G. and Shi, Y.: Short-and long-term warming alters soil
823 microbial community and relates to soil traits. *Appl. Soil Ecol.*, 131, 22–28,
824 <https://doi.org/10.1016/j.apsoil.2018.07.006>, 2018.

825 Zhang, C. P., Niu, D. C., Hall, S. J., Wen, H. Y., Li, X. D., Fu, H., Wan, C. G., and Elser, J. J.:
826 Effects of simulated nitrogen deposition on soil respiration components and their
827 temperature sensitivities in a semiarid grassland. *Soil Biol. Biochem.*, 75, 113–123,
828 <http://dx.doi.org/10.1016/j.soilbio.2014.04.013>, 2014.

829 Zhang, N. L., Wan, S. Q., Li, L. H., Bi, J., Zhao, M. M., and Ma, K. P.: Impacts of urea N
830 addition on soil microbial community in a semi-arid temperate steppe in northern China.
831 *Plant Soil*, 311, 19–28, <http://dx.doi.org/10.1007/s11104-008-9650-0>, 2008.

832 Zhang, W., Parker, K. M., Luo, Y., Wan, S., Wallace, L. L., and Hu, S.: Soil microbial responses
833 to experimental warming and clipping in a tallgrass prairie. *Glob. Change Biol.*, 11, 266–
834 277, <http://dx.doi.org/10.1111/j.1365-2486.2005.00902.x>, 2005.

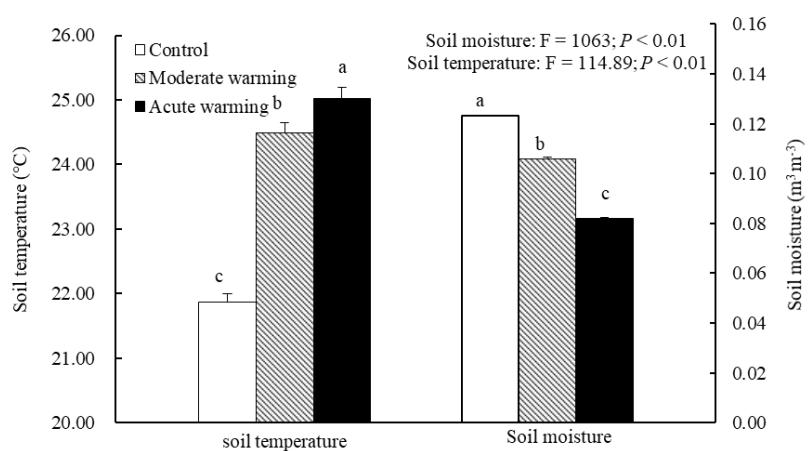
835 **Figure legends**

836 Figure 1. Effects of warming on the soil temperature and soil moisture during the
837 growth peak in 2014 (Mean \pm SE). Mean daily values were presented (n = 120).
838 The mean values with the same lowercase letters on the SE bars are not different
839 at $P < 0.05$ according to LSD multiple range tests (P values and F ratios are shown
840 inside).

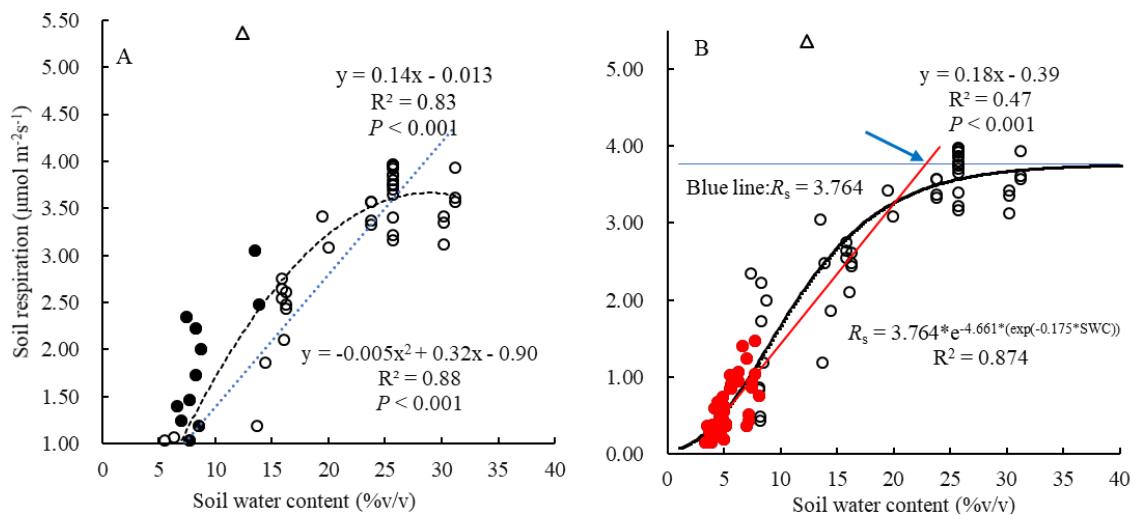
841 Figure 2. Relationship between R_s and soil water content based on a linear (blue
842 line) and a quadratic (black line) functional model (A), and Gompertz functional
843 model (B). Close and open circles denote the data in 2014 and 2017, respectively.
844 The close red circles indicate data used for the linear R_s response to SWC at low
845 levels. The one open triangle may be an outlier point due to some errors, but it does
846 not notably affect the functional fitting when removing it (ref. Figure S2). Based
847 on Gompertz functional curve, the R_s asymptote value, as an estimated maximum,
848 is $3.76 \mu\cdot\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ when the optimal SWC is 22.85% [The red line denotes the
849 initial R_s response to SWC; the blue line denotes $R_s = \text{constant}$ value of the
850 maximum estimated by the asymptote value; and the intersection of the two lines
851 represents a point (the blue arrow) at which R_s levelled off]. Note, we measured
852 the R_s during 9:00-10:00 in these cloudless days with calm/gentle wind in order to
853 maintain other environmental factors such as soil temperature and radiation to
854 relatively stable and constant. The data were collected in the plots of watering
855 treatments (n = 92)..

856 Figure 3. The relationships between soil respiration and soil temperature under
857 both watering (n = 23-25, A), and warming treatments (n=28-33, B) (Mean \pm SE).

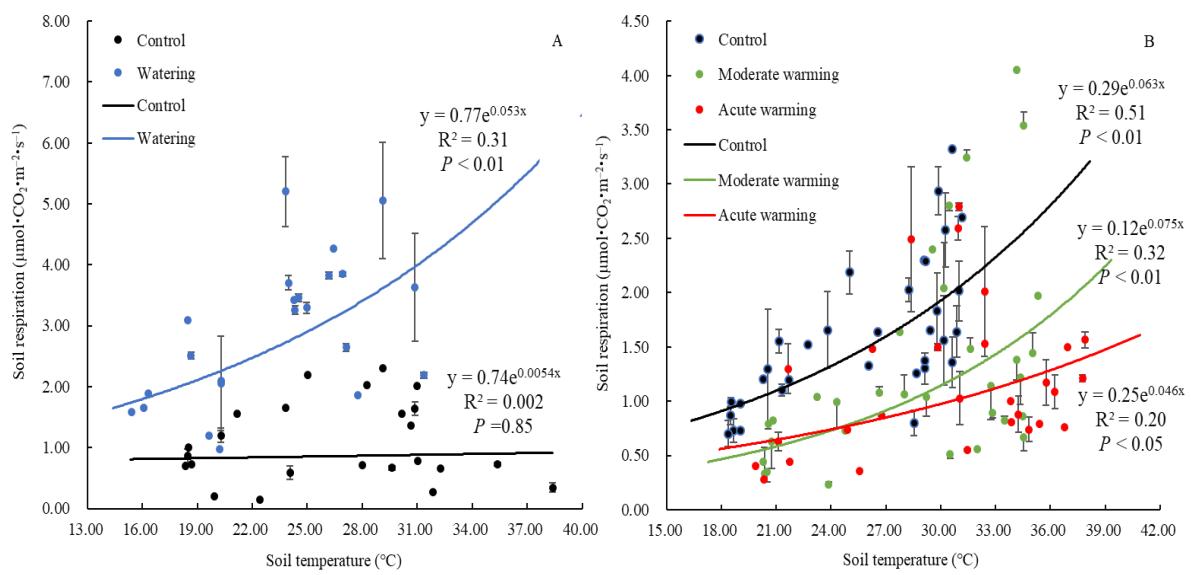
858 Figure 4. Effects of warming regimes on average soil respiration in 2014 (mean \pm
859 SE), the mean values with the same lowercase letters on the SE bars are not
860 different at $P < 0.05$ according to LSD multiple range tests (P values and F ratios
861 are shown inside).

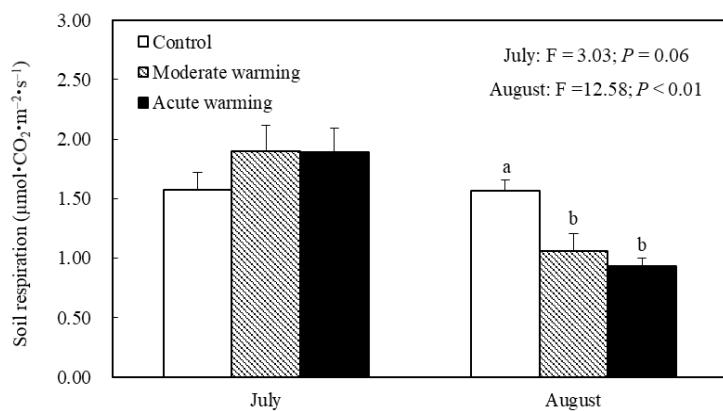

862 Figure 5. An interactive relationship of soil respiration with both soil temperature
863 (Ts) and soil water content (SWC) based on a nonlinear mixed model ($R_s =$
864 $(0.733*1.796^{(Ts-10)/10})*\beta^{(0.229-SWC)^2}$). The data were used in control plots in the
865 warming experiment. The optimal SWC of 0.229 was estimated by the Gompertz
866 functional curve (see Figure 2B).

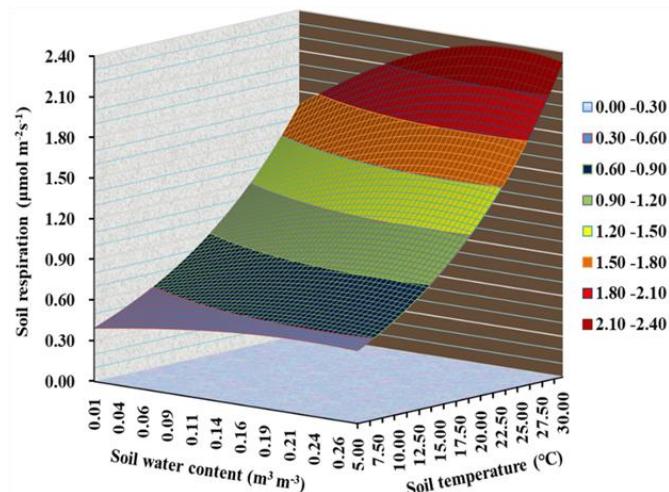
867 Figure 6. A diagram of the effects of key environmental factors on soil respiration
868 and their relationships. Blue double-headed arrows represent the relationships
869 between the key environmental factors, data on the arrows are correlation
870 coefficients. Black arrows represent the relationships between soil respiration and
871 the key environmental factors, data on the arrows are correlation coefficients (bold)
872 and direct path coefficients (italic), respectively. *, $P < 0.05$; **, $P < 0.01$, n = 12.
873 For other details, see Supplementary Table S2.

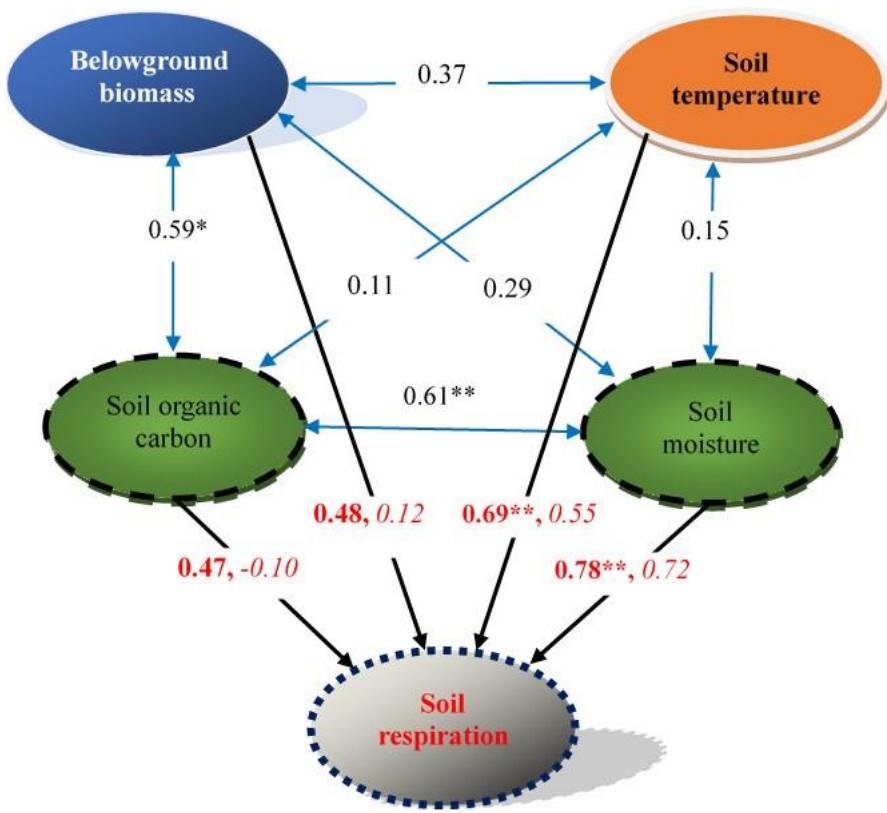

874
875 Supplementary Figure S1. Long-term air temperature (A) and total annual

876 precipitation (B) records from 1955 to 2014 in the experiment site in the desert
877 steppe ecosystem, Damao Banner, Nei Mongol, China.


878 Supplementary Figure S2. Relationship between R_s and soil water content based
879 on a linear (black line) and a quadratic (dotted line) functional model (A), and
880 Gompertz functional model (B). Close and open circles denote the data in 2014
881 and 2017, respectively. The close red circles indicate data used for the initial R_s
882 response to SWC. The functional fitting does not substantially affect despite a
883 slight improvement with greater R^2 values when the outlier point was removed (ref.
884 Figure 2). Note, we measured the R_s during 9:00-10:00 in the cloudless days with
885 calm/gentle wind in order to maintain other environmental factors such as soil
886 temperature and radiation to relatively stable and constant ($n = 91$).


887 **Figure 1.** Effects of warming on the soil temperature and soil moisture during the growth
 888 peak in 2014 (Mean \pm SE). Mean daily values were presented ($n = 120$). The mean values with
 889 the same lowercase letters on the SE bars are not different at $P < 0.05$ according to LSD
 890 multiple range tests (P values and F ratios are shown inside).


891 **Figure 2.** Relationship between R_s and soil water content based on a linear (blue line) and a
892 quadratic (black line) functional model (A), and Gompertz functional model (B). Close and
893 open circles denote the data in 2014 and 2017, respectively. The close red circles indicate data
894 used for the linear R_s response to SWC at low levels. The one open triangle may be an outlier
895 point due to some errors, but it does not notably affect the functional fitting when removing it
896 (ref. Figure S2). Based on Gompertz functional curve, the R_s asymptote value, as an estimated
897 maximum, is $3.76 \mu\text{-mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ when the optimal SWC is 22.85% [The red line denotes the
898 initial R_s response to SWC; the blue line denotes $R_s = \text{constant}$ value of the maximum estimated
899 by the asymptote value; and the intersection of the two lines represents a point (the blue arrow)
900 at which R_s levelled off]. Note, we measured the R_s during 9:00-10:00 in these cloudless days
901 with calm/gentle wind in order to maintain other environmental factors such as soil
902 temperature and radiation to relatively stable and constant. The data were collected in the plots
903 of watering treatments ($n = 92$).


904 **Figure 3.** The relationships between soil respiration and soil temperature under both watering
 905 ($n = 23-25$, A), and warming treatments ($n=28-33$, B) (Mean \pm SE).
 906

907 **Figure 4.** Effects of warming regimes on **average** soil respiration in 2014 (mean \pm SE), the
 908 mean values with the same lowercase letters on the SE bars are not different at $P < 0.05$
 909 according to LSD multiple range tests (P values and F ratios are shown inside).

910 **Figure 5.** An interactive relationship of soil respiration with both soil temperature (Ts) and soil
 911 water content (SWC) based on a nonlinear mixed model ($R_s = (0.733 * 1.796^{(Ts-10)/10}) * \beta^{(0.229-SWC)^2}$,
 912 B). The data were used in control plots in the warming experiment. The optimal SWC of 0.229
 913 was estimated by the Gompertz functional curve (see Figure 2B).
 914

915 **Figure 6.** A diagram of the effects of key environmental factors on soil respiration and their
916 relationships. Blue double-headed arrows represent the relationships between the key
917 environmental factors, data on the arrows are correlation coefficients. Black arrows represent
918 the relationships between soil respiration and the key environmental factors, data on the arrows
919 are correlation coefficients (bold) and direct path coefficients (italic), respectively. *, $P < 0.05$;
920 **, $P < 0.01$, $n = 12$. For other details, see Supplementary Table S2.
921