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One	of	the	referees’	has	made	some	useful	suggestion.	Also,	there	are	minor	editorial	
comments.	Authors	may	like	to	incorporate	these	suggestions	in	the	manuscript.	
	
Editorial	comments:	
Figure	5:	The	figure	caption	is	somewhat	confusing	to	a	general	reader.	Lines	638-
639	should	read	as	“The	background	concentration	of	cyanobacteria	cells	in	the	
water	column	was	initially	low	-----.	What	is	concept	of	sample	type	given	as	“Just	
air”?	Authors	may	like	to	use	more	appropriate	scientific/technical	terminology	to	
describe	the	experimental	set-up.	
	
Thank	you	for	identifying	the	grammatical	mistake	on	lines	638-639-	they	have	been	
changed.	We	agree	that	the	description	of	sample	types	in	the	graph	was	not	an	
appropriate	scientific	description	of	the	samples.	We	changed	it	to	"Bubbling	above	
sediment"	and	"Bubbling	within	sediment"	to	describe	where	bubbles	originated	from	
in	the	experiment	and	changed	the	figure	caption	as:	
	
Figure	5:	The	concentration	of	cyanobacteria	cells	(as	measured	by	quantitative	PCR)	
increases	in	the	experimental	water	column	and	bubble	traps	after	initiating	bubbling	
within	sediments.	The	background	concentration	of	cyanobacteria	cells	in	the	water	
column	was	initially	low	("Before	bubbling")	but	increased	after	bubbling	air	through	
the	sediment.	The	concentration	of	cells	in	the	bubble	trap	increased	even	if	bubbles	do	
not	pass	directly	through	sediment,	but	instead	originate	above	the	sediment	bed	
("Bubbling	above	sediment"),	from	cells	contaminating	the	surrounding	water	column.	
However,	the	highest	concentration	of	cyanobacteria	in	the	bubble	trap	was	observed	
when	initiating	bubbling	from	within	the	sediment	("Bubbling	within	sediment")	from	
direct	transport	of	cells	from	the	sediment	into	the	bubble	trap.	The	increase	in	cell	
concentration	in	both	the	water	column	and	the	bubble	trap	after	bubbling	within	
sediment	is	evidence	for	cyanobacteria	transport	via	bubble	floatation.	Error	bars	
show	standard	deviation	across	measurements.	
	
	
The	authors	have	improved	their	manuscript.	I	had	asked	for	greater	specificity	and	
clarification	in	their	writing	and	that	was	completed.	I	also	asked	the	authors	to	
provide	qualifying	statements	to	frame	their	results	and	conclusions.	Now	the	
manuscript	makes	the	appropriate	conclusions	given	their	methods	and	results.	The	
paper	forms	a	compelling	hypothesis	for	further	testing,	making	these	data	valuable.	
Thanks	to	the	authors	for	the	improvements	to	their	manuscript	and	providing	
detailed	responses	to	my	concerns.	
	
Minor	corrections	
L365-367:	Not	sure	if	the	doom	and	gloom	statement	of	swimmers	ingesting	Arsenic	
is	warranted	at	this	time.	This	is	one	of	those	conclusions	that	could	be	taken	out	of	
context	in	the	wrong	way.	Your	choice,	but	I	suggest	removing.	The	solid	conclusion	
based	on	the	data	occurs	at	the	end	of	that	section.	
	



Given	the	modest	importance	of	bubbling	in	the	arsenic	cycling	in	this	lake,	this	
statement	is	a	valid	concern,	and	we	have	removed	it	from	the	manuscript.	
	
Figure	4	(a)	and	(c):	Scale	on	Y-axis	should	start	from	0.0	instead	of	–	0.2	and	–	0.5.	
What	is	the	concept/significance	of	negative	values?	
	
The	scale	of	the	Y-axis	was	changed	to	start	at	0.	No	negative	values	were	observed.	
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Abstract. Bubbles adsorb and transport particulate matter in a variety of natural and engineered settings, including 

industrial, freshwater, and marine systems. While methane-containing bubbles emitted from anoxic sediments are found 10 

widely in freshwater ecosystems, relatively little attention has been paid to the possibility that these bubbles transport 

particle-associated chemical or biological material from sediments to surface waters of freshwater lakes.  We triggered 

ebullition and quantified transport of particulate material from sediments to the surface by bubbles in Upper Mystic Lake, 

MA and in a 15 m tall experimental column. Particle transport was positively correlated with the volume of gas bubbles 

released from the sediment, and particles transported by bubbles appear to originate almost entirely in the sediment, rather 15 

than being scavenged from the water column. Concentrations of arsenic, chromium, lead, and cyanobacterial cells in bubble-

transported particulate material were similar to those of bulk sediment, and particles were transported from depths exceeding 

15 m, implying the potential for daily average fluxes as large as 0.18 µg of arsenic m-2 and 2 x 104 cyanobacterial cells m-2 in 

the strongly stratified Upper Mystic Lake.  Bubble-facilitated arsenic transport currently appears to be a modest component 

of total arsenic cycling in this lake. Although more work is needed to reduce uncertainty in budget estimates, bubble-20 

facilitated cyanobacterial transport has the potential to contribute substantially to the cyanobacteria cell recruitment to the 

surface of this lake and may thus be of particular importance in large, deep, stratified lakes. 
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1 Introduction 

Deterioration of water quality is wide-spread and expected to become more acute with increased urbanization and climate-

change (Zhang, 2016; Paerl et al., 2011). In a 2012 national assessment, 15.2% of surveyed lakes in the U.S. were 25 

categorized as Most Disturbed due to the concentration of cyanobacteria, a significant increase in lakes with this 

categorization (8.3%, 95% confidence intervals 4.0-12.5%) over the 2007 assessment (U.S. Environmental Protection 

Agency, 2016). A concentration of 105 cyanobacteria cells mL-1 is considered to present a risk of both acute and chronic 

health effects (Backer, 2002), and many states, including Massachusetts, issue public health warnings for recreational water 

bodies when the cyanobacteria cell concentration exceeds this value. Metals are also important contaminants in freshwater 30 

systems because of their persistence and toxicity (Bronmark and Hansson, 2002). In 2004, 1.5 million lake-acres in the U.S. 

were impaired by metals such as lead, chromium and arsenic (Environmental Protection Agency, 2004). Identifying the 

sources and mechanisms of transport of these substances within lake ecosystems can help predict the fate of contaminants 

and aid remediation efforts. 

 Because sediments are typically major repositories of contaminants (Nriagu et al., 1996; Pan and Wang, 2012; 35 

Taylor and Owens, 2009), it is important to understand the processes leading to contaminant mobilization. Metals can be 

mobilized from sediments via solubilization by oxidation-reduction reactions, and by sediment resuspension, acidification, or 

bioturbation (Calmano et al., 1993; Eggleton and Thomas, 2004; Schaller, 2014; Schindler et al., 1980).  Likewise, over-

wintering cyanobacteria and algae concentrated in the sediments are mobilized through germination, wind-induced 

resuspension, or bioturbation (Ramm et al., 2017; Verspagen et al., 2004; Stahl-Delbanco and Hansson, 2002). In some 40 

cases, the number of resting cells in sediment can be predictive of the severity of subsequent bloom events (Anderson et al., 

2005).  Previous research showed that recruitment from sediments of the potentially toxic cyanobacterium Microcystis was a 

major driver of the summer bloom (Verspagen et al., 2005). Cyanobacterial recruitment to surface waters from deep 

sediments is inhibited by stratification, low oxygen concentration, and low light levels (Ramm et al., 2017).  Metals 

mobilized from sediment under stratified water columns will also be inhibited from reaching surface waters due to 45 

stratification (Wetzel, 2001). 
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 An alternative mechanism for vertical transport of metals and cells from sediment to surface water could be bubble-

facilitated transport.  Bubbling from anoxic sediments, driven by methanogenesis, is widespread in freshwater systems 

(Bastviken et al., 2011; Deemer et al., 2016), and bubbles are known to be effective particle transporters.  Bubble particle 

flotation, a process by which amphiphilic particles attach to a bubble’s gas-water interface and are transported upwards 50 

during bubble rise, is used extensively in industry for applications such as separating valuable minerals from gangue (Min et 

al., 2008; Rodrigues and Rubio, 2007), removing ink during paper recycling (Vashisth et al., 2011), recovering desirable 

proteins and microorganisms from industrial bioreactors (Schugerl, 2000), and treating wastewaters (Aldrich and Feng, 

2000; Lin and Lo, 1996; Rubio et al., 2002). Bubble-mediated particle transport also occurs in the open ocean where bubbles 

are injected into the water by breaking waves, scavenge surface-active particles as they rise, and then deposit these particles 55 

on the ocean surface (Aller et al., 2005; Blanchard, 1975; Wallace et al., 1972; Liss, 1975). 

 Despite this previous work, little is known about the importance of particle transport by bubbles in freshwater 

systems.  Bubbles produced by methanogenesis in anoxic sediments are prevalent in freshwater systems, and bubbles are 

released to the surface during drops in hydrostatic pressure, sediment disturbance, or upon sufficient gas accumulation 

(Chanton et al., 1989; Joyce and Jewell, 2003; Scandella et al., 2011; Liu et al., 2016; Maeck et al., 2014; Varadharajan and 60 

Hemond, 2012). Bubble flotation could thus potentially provide a chemical and biological link from deep water to surface 

waters that would otherwise not occur through advective or eddy-diffusive transport alone.  Additionally, the relatively rapid 

rise time of bubbles limits the time available for oxidation reactions, and suggests that particulate matter from the 

hypolimnion could reach the lake surface in a reduced state, with possible consequences for both toxicity and reactivity.  

Some evidence does suggest that bubbles can transport polycyclic aromatic hydrocarbons (Viana et al., 2012) and 65 

manufactured gas plant tar from sediments (McLinn and Stolzenburg, 2009). Additional work has shown that bubble-

mediated transport of microorganisms including methane oxidizing bacteria (MOB) is an important mechanism connecting 

benthic and pelagic populations at 10 m water depth (Schmale et al., 2015). However, researchers in the previous study were 

unable to quantify the importance of bubble-mediated transport to overall recruitment of pelagic MOB populations, and the 

extent of bubble particle flotation in aquatic systems remains unknown.   70 
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 The present study is motivated by authors’ observations of particle accumulations associated with bubbling events 

at Upper Mystic Lake (UML), where bursting bubbles often left black particles distributed on the water surface in a ring 

pattern (Fig. S1). Particles were also observed at the air-water interface in bubble traps during long-term deployments (data 

not shown).  The significant volume of gas observed to bubble from UML during previous studies (Delwiche and Hemond, 

2017; Varadharajan and Hemond, 2012), together with strong thermal stratification suppressing other mechanisms of 75 

sediment transport to the surface, led to the hypothesis that bubbles could serve as a relatively important mode of particle 

transport from the sediment to the water surface. This potential transport pathway could be relatively more important for 

metal and cyanobacteria transport in eutrophic, deep, stratified lakes, such as UML.  

 In the present study, we quantified particle transport by bubbles in UML, an urban lake with a history of sediment 

contamination. We also used a 15 m tall bubble column to study bubble-mediated particle transport under controlled lab 80 

conditions.  Given the expected importance of bubble size on key characteristics (e.g. surface area, buoyancy, diffusion of 

gas), we used a bubble size sensor (Delwiche et al., 2015; Delwiche and Hemond, 2017) to measure bubble diameter 

distribution both in the lake and in the laboratory.  We address the following questions: 

1. How much sediment is transported to the surface through ebullition? 

2. How does bubble-mediated sediment transport contribute to metal cycling? 85 

3. How does bubble-mediated sediment transport contribute to cyanobacteria recruitment to the upper water column? 

2 Methods 

2.1 Upper Mystic Lake field site history 

 UML in Arlington, MA is an urban, dimictic kettle lake with an average depth of 15 m, a maximum depth of 24 m, 

and a surface area of 0.58 km2.   The lake is used extensively for recreational and scientific purposes, and previous studies 90 

have characterized several aspects of methane ebullition (Delwiche and Hemond, 2017; Scandella et al., 2016; Varadharajan 

and Hemond, 2012) and microbial community structure and function (Preheim et al., 2016; Arora-Williams et al., 2018). 
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Chemical manufacturing and leather tanning industries during the late 1800s and 1900s released toxic metals such as arsenic, 

chromium, and lead that flowed into the lake and were deposited in the lake sediments. Sediment cores reveal a distinct 

layered pattern with peak metal/metalloid concentrations traceable to years of peak manufacturing or subsequent earth-95 

moving (Spliethoff and Hemond, 1996). Additionally, high nutrient loading promotes the growth of algal and cyanobacterial 

blooms.  A public health advisory was issued for UML as recently as July 2017 for cyanobacteria cell concentrations 

>70,000 cells mL-1 (https://www.arlingtonma.gov/Home/Components/News/News/4965/16 accessed on 06/05/2019).  

 Years of field observations at UML have provided a thorough picture of the typical hydrological conditions in the 

lake. Significant volumes of gas are produced from the sediments, which escape to the surface via ebullition, resulting in an 100 

average release rate of 22 ml of bubble volume m-2 d-1(Varadharajan, 2009). From June - Oct., the oxycline and thermocline 

are typically found between 6-12 m and 3-9 m, respectively (Varadharajan, 2009; Delwiche and Hemond, 2017). The Secchi 

depth in the lake is typically 2-3 m during the same period (Varadharajan, 2009). Light was sufficient for germination down 

to 12 m in Lake Scharmützelsee with a similar average Secchi depth (Ramm et al., 2017), thus we assume light does not 

limit cyanobacteria germination down to a depth of at least 12 m when estimating the impact of bubbling on cyanobacteria 105 

recruitment. 

 

2.2 Field sampling  

Bubble-transported particles were collected from both the laboratory column and the lake in 350 mL plastic sampling cups 

affixed either to the top of a custom bubble size sensor [sensor described previously (Delwiche et al., 2015; Delwiche and 110 

Hemond, 2017)], or to the top of a collection funnel (the bubble sensor was used in 2017 sampling; the funnel alone was 

used for sampling in 2018).  The plastic sampling cup lid contained a barbed bulkhead fitting connected via flexible plastic 

tubing to an on-off valve and a quick-release adapter (Fig. S2).  The sampling cup, valve, and adapter were connected to the 

custom bubble size sensor or collection funnel with flexible tubing.  All bubbles rising through the bubble size sensor or 

collection funnel entered the flexible tubing and rose into the sample cup. The interaction of bubbles with the flexible tubing 115 

resulted in visible particle attachment to the tubing, making our estimates of particle mass transport a lower bound. The 

sample cup lid contained a secondary valve to release water upon bubble entry.   All sample cups were soaked in 5-10% 
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reagent grade HNO3 for 24 hours and rinsed and filled with Milli-Q water prior to use. Gas and associated particles 

accumulated in the collection cup during sampling, and were then transported back to the lab for analysis.  

 On 17 October 2017 we sampled for bubble-mediated sediment mass fluxes and associated particulate metal fluxes 120 

in an area of the lake previously found to have relatively high ebullition rates [42.432 latitude, -71.151 longitude, and 16 m 

deep; (Delwiche and Hemond, 2017)].  This previous work showed that sediment ebullition rates from this location remain 

high from July to November, yet the water column remains stratified, preventing mixing of sediment to the surface. Previous 

work at this particular location within the lake indicated that natural bubble fluxes were around 45 mL m-2 day-1 with high 

spatial and temporal variability (Delwiche and Hemond, 2017).  Given the need to collect samples as soon after bubbling as 125 

possible to minimize potential changes in cyanobacteria population, and the difficulty with predicting flux from natural 

bubble events, we chose to trigger ebullition manually by dropping a 20 cm x 20 cm x 20 cm cinderblock anchor into the 

sediment.  This procedure enabled us to collect multiple samples during a single field trip, with minimal time for samples to 

change after collection in the sampling cup.  Since anchor triggering was expected to release a plume of sediment, we used 

laboratory experiments to explore whether bubbles rising through suspended sediment would scavenge particles (more 130 

details below). 

After bubble triggering, the bubble size sensor was positioned above the bubble plume and 1 m below the water 

surface.  Bubbles exiting the sensor, together with any particles adhered to the bubble/water interface, were collected in the 

sample cup described previously.  Several anchor drops within an area of approximately 10 m by 10 m were required to 

intercept a sufficient number of bubbles for mass quantification per sample, and we intentionally collected samples with 135 

different total gas volumes.  We collected blank water samples to correct for background contributions of particulate matter, 

arsenic, lead, and chromium. Bubbling resulted in the visual accumulation of particles at the surface (Fig. S1) and in the 

sampling cup.  During a separate field visit in November 2017 we used an Ekman dredge to collect sediment and stored the 

sediment in a 5 gallon bucket below 4 C° until use in February 2018 for bubble column experiments.   

 On 26 June 2018 we sampled for cyanobacteria bubble transport using similar procedures, except we used a simple 140 

inverted funnel instead of a custom bubble size sensor to intercept rising bubbles.  The sampling funnel was placed 10 m 

below the water surface, where cyanobacteria concentrations were expected to be lower than the surface based on previous 
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observations (Preheim et al., 2016) to reduce sample contamination with cyanobacteria from the surrounding water column.  

Water temperature measurements taken using a Hydrolab sonde (Hach Co.) confirmed that the thermocline depth was above 

10 m in this location during sampling (Fig. S3).  We collected 30-40 mL of water samples at 15m, 11m, 10m, and 1m depths 145 

for background cell concentration counts, and gathered sediment grab samples with an Ekman dredge.  All sample cups were 

sterilized prior to use by rinsing with 10% bleach followed by 70% ethanol and deionized, sterile water, and cups were filled 

with sterile water prior to sample collection.  Samples were stored in a dark cooler on ice and were refrigerated upon return 

to the lab.  On 26 June 2018 we also used an Ekman dredge to collect a bulk sediment sample, which was kept in a dark 

refrigerator at 4 C° until use in February 2019 for cyanobacteria transport in the experimental bubble column.   150 

 

2.3 Large laboratory column design and sampling 

 To study bubble particle shedding and scavenging, we built a 15 m tall bubble column in the laboratory stairwell.  

The column is composed of four sections of 6-inch (15.3 cm) nominal diameter transparent polyvinyl chloride (PVC) pipe 

joined by threaded unions with O-ring seals.  The base of the column is a reducing tee fitting with a removable spigot for 155 

drainage, and the column was filled from the top with tap water.  We built a sediment container connected to 1/8 inch (3.1 

mm) outer diameter copper tubing that could be lowered into the column and secured at any depth.  The container was filled 

with sediment originally collected with an Ekman dredge from the same place in UML used for field sampling. We used a 

syringe pump to push air into the sediment through the tubing at a controlled rate, resulting in bubble release from the 

sediment. The bubbling rate was calibrated to achieve a relatively steady release of bubbles without substantial wait time in 160 

between.  While we expect that much of the gas naturally existing within the sediment was released during sediment 

collection and as it was transferred to the sample bed (indeed we did not observe natural bubble release from the sediment 

bed prior to experimental trials), remaining gas could have been incorporated into rising bubbles. 

 We conducted one set of column experiments in February 2018 to quantify shedding, scavenging, and metals 

transport, and another set of column experiments in February 2019 to quantify cyanobacterial transport.  For the shedding 165 

and metals transport experimental runs, we filled the sediment bed with sediment collected from the same site as ebullition 

experiments during our November 2017 field visit, and we injected 50 mL of air at 0.7 mL min-1 into the sediment bed.  
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Prior to the start of each run we collected water samples to correct for background contributions to particulate matter and 

arsenic concentrations in bubble-transported particle data.  Three experimental runs were each conducted at each of three 

depths: 5m, 10m, and 15m, with the mobile sediment bed being repositioned between runs. To quantify particle scavenging 170 

rates, we also conducted trials in which we injected air into the water column several centimetres above the sediment 

surface. Scavenging tests were conducted after particle transport tests, so the water column above the sediment bed was 

turbid and contained a plume of sediment particles.  For the cyanobacterial transport experiments, we used sediment from the 

June 2018 field visit and injected variable volumes of air into the sediment bed.  We ran four experiments each at 6 m and 13 

m depth, with the sediment being replenished between the 6 m and 13 m runs.  Six surface water grab samples were 175 

collected at multiple times throughout the experiment to quantify background cell concentrations, and at each depth one trial 

was run where air was bubbled into the water directly below sensor.  For both sets of experiments, bubbles passed through 

the same customized bubble size sensor (Delwiche et al., 2015; Delwiche and Hemond, 2017) and sample cup apparatus 

used in the field setting.  

 180 

2.4 Sample processing for particle mass and heavy metals analysis 

 We filtered the field samples collected from UML for metals analysis within 24 hours of sampling with pre-

weighed Whatman Grade 41 quantitative cotton filters (nominal pore size 20 µm, 25 mm diameter).  Due to filter clogging, 

we typically used multiple filters for each sample, and total particulate transport per sample was calculated by summing the 

particle mass on each filter and dividing by the total gas volume associated with the sample.  After filtering we air-dried the 185 

filters, weighed them, transferred each to microwave digestion vessels, and added 10 mL of nitric acid from Fisher Scientific 

(Optima grade for ultra-trace elemental analysis).  Samples were digested in a MARS6 microwave oven, diluted with 30 mL 

of Milli-Q water, and then filtered with a 0.2 µm polyethersulfone membrane syringe filter.  For analysis, we diluted samples 

to 2% nitric acid, added a rhodium internal standard, and analyzed the samples using an Agilent 7900 inductively coupled 

plasma mass spectrometer (ICP-MS) with a 5-point calibration curve from 0.05 - 10 ppb. Blank analysis to determine 190 

background arsenic concentrations in the Whatman cotton filter paper found levels of less than a nanogram of arsenic.   For 

metal analysis in bulk sediment sample we added 100 mg of dried sediment to 10mL of nitric acid and digested as described 
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above.  The relative standard deviation (RSD) values for counts-per-second from the ICP data were on average 5.2% ± 

2.8% for the bubble-transported sediment particles, and were 1.1% ± 0.6% for the bottom sediment digests (which 

contained more particle mass per digest).  These relatively low RSD values indicate that analytical uncertainty is low, 195 

especially compared experimental uncertainty. 

We filtered bubble column samples using pre-weighed 5.0 µm and 0.2 µm Whatman Nuclepore membrane filters 

(47mm diameter).  Filters were dried, weighed, digested, diluted, and analyzed as described above.  Duplicate analysis of 

clean Nuclepore membranes (blank) was used to determine arsenic contamination of the filters and was below the detection 

limit for the 5 µm filters and 0.003 ± 0.002 µg per filter for the 0.2 µm filter (less than 1% of the arsenic found in the least 200 

concentrated sample).   

   

2.5 Sample processing for cyanobacteria analysis 

For both the field and bubble column cyanobacterial transport experiments, we filtered a subset of the samples 

within 24 hours with 0.2 µm pore size filters held in autoclaved Swinnex filter holders (25 mm diameter).  Filters were then 205 

removed from the filter holders and transferred to PowerWater bead beating tubes (Qiagen, Inc.). Approximately 8-9 mL of 

remaining liquid for each sample was preserved with 1-2 mL of formamide (10% final concentration volume/volume) for 

microscopic cell counts.  Lastly, the remaining sample volume was filtered on pre-weighed Whatman Nuclepore membrane 

filters (0.2 µm pore size, 47mm diameter), air dried, and re-weighed to estimate bulk mass transport.  

For qPCR analysis on the June 2018 bulk sediment samples, 0.13 g of wet sediment was suspended in 15 mL of 210 

sterile water and then filtered as described above.  For microscopy cell counts, 0.14 g wet sediment were preserved in 2% by 

volume paraformaldehyde.  Water column samples from the June 2018 field campaign were also preserved in 2% by volume 

paraformaldehyde for cell counts.  For qPCR analysis of the June 2018 sediment samples before use in the bubble column, 

we filtered 0.7 g of wet sediment (0.007 g dry sediment).  For microscopy cell counts of the June 2018 sediment samples 

before use in the experimental bubble columns, we placed 0.8 and 2.0 mg of wet sediment (0.08 and 0.18 mg dry weight, 215 

respectively) in to 10 mLs of 10% formalin. 
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2.6 Cyanobacteria cell quantification 

 Cyanobacteria cell counts were assessed through quantitative polymerase chain reaction (qPCR) and microscopy. 

These two methods estimate cyanobacteria cells numbers by targeting different features of cyanobacterial cells. qPCR targets 220 

the unique genetic signatures in the 16S ribosomal RNA (rRNA) gene of cyanobacteria (Nubel et al., 1997) to estimate cell 

number from gene copy numbers. Microscopy takes advantage of the unique fluorescence spectra of cyanobacterial 

photosynthetic pigments to identify cells (Salonen et al., 1999).  Positive control Microcystis aeruginosa UTEX LB 2386 

and negative control Pseudomonas aeruginosa samples were used to optimize amplification conditions to ensure specificity 

for cyanobacteria qPCR. Microcystis and Pseudomonas cultures were grown overnight (12 h) under fluorescent lights at 25 225 

°C in BG11 and Luria Broth media, respectively. Microcystis stock culture was serially diluted in phosphate buffered saline 

to make a standard curve, filtered onto 0.22 µm polyethersulfone membrane filters (Millipore Sigma, Inc.) and frozen at – 80 

°C until DNA extraction. Additionally, serial dilutions of Microcystis cultures were fixed with 1% formalin (final 

concentration, volume/volume) for microscopy.  While Microcystis cells were used as a positive control to test the method, 

qPCR primers targeted all cyanobacteria cells (not limited to Microcystis).  230 

 To estimate the total number of cells in the Microcystis stock culture and samples with microscopy, between 4.6 mL 

to 10.4 mL of fixed water samples or 1000 µL fixed Microcystis stock culture were filtered onto 0.22 µm polyethersulfone 

membrane filters (Millipore Sigma, Inc.). Cells were visualized under a Zeiss AxioObserver Epifluorescence SIM 

microscope [excitation: 545 nm; emission: 572 nm (Salonen et al., 1999)]. The total number of autofluorescent cells per 

filter was estimated from twenty to forty random fields of view spanning the entire area of each filter. Cells were identified 235 

from images with ImageJ (Schneider et al., 2012). First, background noise was reduced by excluding low intensity pixels, 

with threshold values ranging between 14-162 (pixel intensities ranged from 0-255 for 8-bit gray-scale images). Next, only 

particles within the size range of 0.1 µm2 – 29.4 µm2 were counted as cells. A dilution series of Microcystis fixed culture was 

created by diluting cultures 2-fold in 1% formalin to test the variance and accuracy of this counting method (Fig. S4). We 

did not test the quantification below 20 cells per field of view and all the experimental samples (not controls) had an average 240 

of less than 20 cells per field of view, so microscopy measurements were only used for detection, not quantification.  
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 For cyanobacteria cell quantification with (qPCR), DNA was extracted using PowerWater kits (Qiagen, Inc) 

following the manufacturer's protocol, with the addition of 20 µl proteinase K and incubation at 65 °C for 10 min before 

bead beating as an alternative lysis step. Primers were used to amplify Cyanobacteria 16S rRNA genes as previously 

described (Nubel et al., 1997), with CYA359F (5'- GGG GAA TYT TCC GCA ATG GG) and an equal mixture of 245 

CYA781R(a) (5'- GAC TAC TGG GGT ATC TAA TCC CAT T) and CYA781R(b) (5'- GAC TAC AGG GGT ATC TAA 

TCC CTT T). qPCR reactions contained 10 µl of SsoAdvanced Universal SYBR Green Supermix (BioRad Laboratories, 

Inc.), 1.6 µl DNA template, 2 µl forward primer (10 mM), 2 µl reverse primer (10 mM), and 4.4 µl deionized, reagent grade 

sterile water. The following cycling conditions were used: denaturation at 98 °C for 30 seconds, annealing at 68 °C for 30 

seconds, and elongation at 72 °C for 30 seconds followed by visualization step for 40 cycles. A dilution series of Microcystis 250 

was created by diluting cells 10-fold in PBS before filtration and DNA extraction. Cell numbers for environmental samples 

were determined from a linear regression of threshold cycle number (Cq) values of Microcystis and the number of cells 

calculated for each dilution, (e.g. Fig. S5) and different batches were calibrated with internal standards of Microcystis 

culture. Inhibition was determined for a subset of samples by spiking known concentrations of Microcystis DNA into 

environmental DNA extracts and measuring the resulting threshold cycle number (Fig. S6). In all cases tested, inhibition was 255 

negligible. The limit of quantification is 5 cells per filter, based on a signal to noise ratio (SNR) 2-3 x the average cell 

concentration of the blanks (2.76 SNR). 

 

2.7 Cyanobacterial recruitment estimates for cells from Upper Mystic Lake 

The contribution (%) of ebullition to cyanobacteria recruitment (Pe) was calculated as: 260 

𝑃! = 100× !!×!"
!!×!" ! !!×!!×!"

   (1) 

Where Ce is the average cell flux from ebullition to the lake surface, Cg is the recruitment rate due to germination, SA is lake 

surface area, and Fg is the fraction of the lake surface area that could support recruitment through germination.  We estimated 

Ce using our measured range of potential particle transport and the concentration of cells in the lake sediment.  Values for 

recruitment estimates were calculated assuming ebullition occurs at an average rate of 22 mL m-2 d-1 for the entire summer 265 

from all areas of the lake equally based on previous lake-wide ebullition surveys, (Varadharajan, 2009). We used the average 
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cyanobacteria cell concentration from this study of 880 cells mL gas volume-1  to calculate the average flux of cells to the 

surface via ebullition (Ce) of 2 x 104 cells m-2 d-1.  We estimated the recruitment rate due to resuspension and germination 

(Cg) as the maximum observed rate from a previous experiment in Lake Limmaren of 2.3 x 105 cell m-2 d-1 (Brunberg and 

Blomqvist, 2003), and applied this recruitment rate to areas of the lake suitable for germination, although this is likely an 270 

overestimation.  We conservatively assumed that germination could occur to a depth of 12 meters based on typical light, 

temperature, and oxygen levels observed in UML (Varadharajan, 2009). The fraction (Fg) of the surface area (SA = 580,000 

m2) of lake above 12 meters that could support cyanobacterial recruitment through germination is approximately 0.50 

(Varadharajan, 2009).  

 275 

3 Results and Discussion 

3.1 Rate of bubble-particle transport 

Both field and bubble column experiments demonstrate that bubbles can transport particles from the sediment to the 

lake surface.  A positive correlation (p< 0.05 level for October 2017 (r2 = 0.76),  p=0.15  (r2=0.38) for June 2018 ) was found 

between total particle mass and gas volume in bubble traps for both field sampling campaigns (Fig. 1).  The general 280 

magnitudes of particle loadings on bubbles in column experiments and on bubbles observed in triggered experiments in the 

field were of similar magnitude; 0.01 ± 0.006 mg mL-1 in the column vs. 0.09 ± 0.07 mg mL-1 on October 2017 and 0.01 ± 

0.01 mg mL-1 on June 2018 in the field.  

These particle loadings on bubbles, and any ecosystem-wide flux estimates derived from them, must be qualified by 

the fact that neither triggered bubbles nor bubbles in the bubble column fully replicate natural bubbling. In particular, the 285 

triggering of bubbles with an anchor may have raised plumes of suspended sediment through which some fraction of 

produced bubbles had to rise, and within which the possibility of scavenging should be considered.  Likewise, bubbles could 

shed particles part-way up the water column during rise.  To estimate the significance of particle shedding, we used the 

bubble column to compare transport rates from bubbles released at 5 m, 10 m, and 15 m depths (Fig. 2).  We found no 

significant difference in transport rates from any depths, suggesting that net particle shedding was not a major process.   We 290 

did however note that the first bubble column test conducted after repositioning the sediment source yielded a higher particle 
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transport rate than those found in subsequent tests (Fig. 2), consistent with the intuitively reasonable possibility that 

mechanical sediment disturbance can affect particle loading on bubbles. We also note that while bubbles do dissolve as they 

rise, bubbles in the size range seen during this study remain relatively constant in volume during their rise through 15 m of 

water column because dissolution is partially compensated by bubble expansion during rise (Delwiche and Hemond, 2017), 295 

and we therefore do not expect bubble dissolution to substantively impact particle shedding. 

   To observe the possible extent of bubble scavenging of particles from the water column, we compared  data from 5 

m and 10 m column experiments to samples gathered when gas was bubbled from several centimetres above sediment, thus 

allowing maximum opportunity for scavenging to occur.  We conducted the scavenging tests when the water column was 

visibly turbid and contained a plume of suspended particles from previous tests.  Particle mass scavenging represented only 300 

around 10% of the mean particle loading for bubbles in the 5 m and 10 m experiments (grey diamonds in Fig, 2), indicating 

that while scavenging rates were non-zero, the large majority of the particulate matter transported to the top of the water 

column originated in the sediment.  Taken together, the minimal particle shedding and particle scavenging in column 

experiments suggests that particles observed on bubbles in the field, even when bubble release was triggered, mainly 

originated in the sediment. 305 

While bubbles transported sediment directly from the bottom of the laboratory column to the water surface, a 

vertical distance of 15 m, there appears to be no reason that transport of particles from significantly larger depths cannot 

occur.  Such transport provides a direct chemical and biological link between sediment and surface waters, and this could be 

the dominant link between deep sediments and the surface water during months of stratification. However, many questions 

remain regarding bubble-mediated transport in natural systems, including how the change in water density at the thermocline 310 

affects bubble rise and associated chemical and biological material.   

 

3.2 Bubble size distribution similar between field triggered and natural bubbles 

Bubble volume has been found to significantly affect particle flotation rates in industrial processes (Yoon and Luttrell, 

1989), and therefore it is important to compare the anchor-triggered bubble sizes to naturally-occurring bubble sizes to 315 

understand how our measured transport rates may reflect naturally occurring transport rates.  Anchor-triggered bubbles were 

significantly smaller (average diameter 5.6 mm) than those measured for natural bubbling events (average diameter 6.4 mm) 
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during a 2016 field campaign [Fig. S7, (Delwiche and Hemond, 2017)], even though relatively high bubble flux events (such 

as those triggered by anchor dropping) can lead to some bubble coalescence within the funnel constriction in the bubble size 

sensor [as described previously (Delwiche and Hemond, 2017)]. 320 

However, both natural and triggered bubbles were still very large compared to bubbles used in traditional flotation 

chambers (Yoon and Luttrell, 1989; Rubio et al., 2002).  While research on particle flotation for large bubbles is limited, 

several previous studies have found that differences in particle transport rates decrease for bubbles above 1 mm diameter 

(Dai et al., 1998; Koh and Schwarz, 2008), indicating that particle transport rates should be similar between natural and 

triggered bubbles. Bubble sizes measured in the cyanobacteria transport experiment displayed a bimodal distribution (Fig. 325 

S8) that was not observed in other bubble experiments.  This bimodal distribution could be a result of artificially pumping 

gas in to the sediment, but the impact of this on particle transport is unknown. 

 

3.3 Bubble-transported particles have chemical and biological characteristics similar to sediment 

The data on bubble particle mass transport clearly shows that bubbles are capable of transporting particles from 330 

relatively deep depths, and minimal rates of particle shedding and scavenging in the water column suggests that these 

particles originate primarily in the sediment.  Concentrations of arsenic, chromium, and lead in the bubble-transported 

particulate matter collected during field experiments were similar to concentrations in the sediment  (Fig. 3).  Bubble- 

transported particles contain arsenic, chromium, and lead at average ratios of 100 µg kg-1, 120 µg kg-1, and 240 µg kg-1 

(respectively, excluding outlier in chromium data, see Fig 3), compared to 136 µg kg-1, 160 µg kg-1, and 330 µg kg-1 335 

(respectively) in bulk sediment samples.  In the bubble column, arsenic and chromium levels are similar to the bulk sediment 

in the column experiments (Fig. S9), although lead levels appear to be higher.  Overall, this similarity supports our 

conclusion that bubbles are primarily transporting sediment matter to the lake surface with only modest amounts of 

scavenging or particle shedding, despite the relatively deep water column.   

In addition to the heavy metal results indicating that the transported particles are from the sediment, biological 340 

evidence also suggests a sedimentary origin.  All particle samples transported by bubbles contained an abundance of 

biological structures (Fig. S10), such as the apparent head shields and carapaces of Bosmina spp., which have also been 

found extensively in other freshwater lake sediments (Kerfoot, 1995).  These particle samples also contained structures that 
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appear to be ephippia (Fig. S10-B), the protective cases enclosing diapausing eggs produced by zooplankton such as 

Daphnia.  Ephippia can overwinter in lake sediments or survive periods of desiccation, providing a seed bank to recolonize 345 

the water column when favourable conditions return (Caceres and Tessier, 2003; Hairston, 1996).  These biological findings 

further support the finding that bubbles are transporting sediment particles through the profundal water column.  There 

remains the possibility that our measured bubble particle transport rates differ significantly from those from naturally emitted 

bubbles, and this remains an important area for future research.  However, despite this uncertainty, broad-scale estimates of 

arsenic and cyanobacteria cycling can provide important context as to whether these processes may be significant in UML. 350 

 

3.4 Implications for arsenic and heavy metal cycling 

 The presence of arsenic and other heavy metals in the bubble-transported particles could have significant 

implications for chemical cycling in aquatic ecosystems.  Measured rates of arsenic flotation in field samples were about 8 ± 

4 µg arsenic L-1 of gas bubbled (Fig. 4a).  Typical natural bubble flux for UML was estimated as 0.02 ± 0.02 L m-2 day-1 355 

during previous ebullition studies (Varadharajan, 2009), which corresponds to a potential arsenic flux of 0.2 ± 0.2 µg m-2 

day-1 from the sediment to the lake surface.  This flux would be highly episodic given the spatial and temporal heterogeneity 

of methane bubbling in UML (Varadharajan, 2009; Scandella et al., 2016).  

This estimate of daily arsenic flux can be compared with historical measurements showing significant arsenic 

accumulation within the epilimnion at rates exceeding 30 µg m-2 day-1 (Knauer et al., 2000). This flux is two orders of 360 

magnitude larger than our estimate for bubble transported arsenic of 0.2 µg m-2 day-1, indicating that bubble-arsenic transport 

may be of relatively low importance in UML where a significant fraction of the arsenic input to epilimnetic waters can be 

attributed to inflow from the Aberjona River (Hemond, 1995). However, bubble-mediated fluxes of arsenic or other 

sediment-borne metals may represent a larger fraction of epilimnetic input in other lakes having lower influx rates from 

surface water inflow or other external sources, such as atmospheric deposition (Csavina et al., 2012).  365 

Although bubble-facilitated transport does not appear to dominate arsenic transport in UML, much higher ebullition 

rates have been reported elsewhere in the world (Deemer et al., 2016). For example, a mid-latitude reservoir in Switzerland 

Microsoft Office User� 4/21/20 4:42 PM
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was reported to have an order of magnitude higher ebullition flux [0.225 L m-2 day-1 (Delsontro et al., 2010)]. Co-occurrence 

of high ebullition rates and contaminated sediment could lead to significant bubble-facilitated contaminant cycling.   

 

3.5 Implications for cyanobacteria transport and possible bloom initiation 375 

Since cyanobacteria are known to overwinter in lake sediments, bubble-mediated transport could be one mechanism 

by which resting cells inoculate the upper water column. Bubble column experiments showed that bubble-transported 

particulate matter contained cells at approximately 30 cells mL-1 gas, indicating that bubbles are capable of transporting 

cyanobacteria through deep water columns.  We also measured cyanobacteria transport in the field with bubble traps, but our 

measurements were contaminated by cyanobacteria in the surrounding water column (see SI for results and discussion).  380 

While we could not directly measure bubble cyanobacteria transport in the field, we can estimate it using a combination of 

measured bubble particle flotation rates, and the average cyanobacteria cell concentration in lake sediment.   Estimated cell 

transport using this method is 880 ± 1140 cyanobacteria cells mL-1 of bubble volume. Although this is significantly higher 

than the measurements made in the bubble column, the conditions in the column are substantially different from the 

conditions in the field and the sediments used in column had been stored for 8 months, so the cyanobacteria cell 385 

concentration was 10 times less than fresh sediments.  While this variability in cell transport between column measurements 

and estimates of potential field transport highlights the need for continued research, it is useful to estimate the potential range 

of cyanobacterial transport. 

To assess the likelihood that bubble-mediated cell transport could significantly inoculate surface waters, we use the 

upper transport estimate of 880 ± 1140 cyanobacteria cells mL-1 of bubble volume and the bubble flux estimate mentioned 390 

previously of 22 ± 20 mL m-2 day-1 to estimate a daily transport of 2 x 104
 ± 3 x 104 cells m-2 day-1. If cyanobacteria cells 

concentrate within the upper 1 meter of the lake, outcompeting other phytoplankton species for sunlight (Xiao et al., 2018), 

this results in an increase in concentration of 20 ± 30 cells L-1 day-1
. While this concentration is not a human health concern, 

such a concentration from the average rate of bubbling could represent a significant inoculum. At a maximum growth rate of 

approximately 1 day-1 (Robarts and Zohary, 1987) and absent significant losses, this cell concentration alone would result in 395 

a cell density greater than the Massachusetts Health limit of 7 x 104 cells mL-1 in about three weeks. Larger bubbling events 
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[e.g. (Deemer et al., 2016)] could result in the same cyanobacteria cell concentration within approximately 15 days. The 

estimated growth of bubble-transported cyanobacterial cells is dependent on the cells being viable.  Incubating cells to assess 

viability will be an important step for future studies.  These calculations demonstrate that bubble transported cyanobacteria 

could negatively impact water quality, though more research is warranted to improve these estimates. 400 

Given the potential impact on bloom formation, we compared this source of cells to other pathways of cell 

recruitment to the lake surface, especially in deep, stratified lakes like UML. Cyanobacteria are thought to largely be 

recruited to surface waters from shallow areas due to a combination of higher light, temperature, and oxygen levels that 

promote germination, and increased wind-driven sediment resuspension (Ramm et al., 2017). While sediment cyanobacteria 

concentrations are higher in deeper areas of the lake, cells are not able to germinate because of the dark, anoxic conditions in 405 

deep, eutrophic lakes (Ramm et al., 2017).  Bubble-mediated transport is a mechanism by which this large reservoir of "lost" 

cells in deep sediments could contribute to overall recruitment to the surface waters. To determine the potential contribution 

of bubble mediated transport to cyanobacteria recruitment to the surface, we assume that germination does not occur 

significantly past the oxycline (12 m) in UML between June and Oct., as low oxygen concentrations and low light levels 

prevent germination, and wind-driven mixing cannot resuspend sediments across the shallow thermocline (Varadharajan, 410 

2009). We also assume that cells resuspended in the spring overturn in March would have germinated, settled, lysed or have 

been consumed by grazers by June [e.g. (Tijdens et al., 2008; Verspagen et al., 2005)]. Furthermore, we do not include 

external inputs of cyanobacteria to the lake, such as from the river [e.g. (Bouma-Gregson et al., 2019)] or air (Seifried et al., 

2015; Lewandowska et al., 2017; Evans et al., 2019). Since literature estimates of recruitment rates for these sources are 

lacking, we assume these inputs are small compared to shallow sediment and bubble-mediated recruitment. Using the 415 

maximum observed recruitment rate of 2.3 x 105 cells m-2 day-1 (Brunberg and Blomqvist, 2003) from sediments for the area 

of the lake above 12 meters, we estimate that bubbling could contribute 14 % of cyanobacterial recruitment in the lake, but 

95% confidence intervals range from less than 0 to 46% of overall recruitment. While we cannot rule out the possibility that 

this is an insignificant source of cells given the large uncertainty in these measurements, the potential for bubble-mediated 

transport to contribute substantially to the source of cyanobacteria cells at the lake surface warrants further investigation. 420 
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4 Conclusions 

 Bubble-particle transport between the sediment and surface of UML is a novel transport pathway capable of moving 

particulate matter upwards through a stratified water column, over depths of 15 m or greater, without shedding a major 

fraction of their particle burden or accumulating large amounts of additional particles as they rise.  Bubble-facilitated metal 425 

transport in present-day UML appears minor compared to surface inflows, but lakes with higher ebullition flux or more 

contaminated surficial sediments may experience more significant chemical transport from contaminated sediments. Bubble 

mediated transport of cyanobacteria cells may contribute substantially to cellular recruitment from the sediment, but the 

uncertainties in our measurements make these estimates speculative. Bubble transport is expected to be particularly 

important in deep, eutrophic lakes in which alternative mechanisms of sediment regeneration to surface waters are limited.  430 

Further work is warranted to more thoroughly quantify this ebullitive transport pathway, and its implications for chemical 

and biological cycling. In addition, future work should include alternative methods of bubble triggering as well as the 

quantification of particle transport rates on naturally-occurring bubbles. 
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Figures and Legends 

 

 

 610 

Figure 1: Total particle mass in mg associated with the bubbles captured during each field campaign with bubble triggering 

events in Oct. 2017 (filled circles) and June 2018 (open circles).  Triggering events yielded different bubble volumes (given 

in mL). 
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Figure 2: Transported particle mass per L of gas bubbled in the large bubble column, as a function of bubble release depth. 615 

Solid circles represent samples where bubbles were emitted from the sediment bed, diamonds represent samples where gas 

was bubbled directly above the sediment bed.  Hollow circles around solid circles denote samples with recently-disturbed 

sediments.  

  



25 
 

 620 

 

 

Figure 3: Comparison between mass of arsenic, chromium, and lead per kg of sediment (open triangles) and bubble-

transported particulate matter (solid circles).  Standard deviation scale similar to point size and therefore omitted for figure 

clarity. 625 
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Figure 4: Chemical amounts observed in bubble traps associated with bubble-mediated transport of sediment particles.  (a) 

Arsenic mass, (b) chromium mass, (c) lead mass (in µg) transported versus the bubble volume of each sample (in mL, as 

measured at the lake surface a-c). Standard deviation is added to each measurement but the scale similar to point size for 

most measurements. 
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Figure 5: The concentration of cyanobacteria cells (as measured by quantitative PCR) increases in the experimental water 640 

column and bubble traps after initiating bubbling within sediments. The background concentration of cyanobacteria cells in 

the water column was initially low ("Before bubbling") but increased after bubbling air through the sediment. The 

concentration of cells in the bubble trap increased even if bubbles do not pass directly through sediment, but instead 

originate above the sediment bed ("Bubbling above sediment"), from cells contaminating the surrounding water column. 

However, the highest concentration of cyanobacteria in the bubble trap was observed when initiating bubbling from within 645 

the sediment ("Bubbling within sediment") from direct transport of cells from the sediment into the bubble trap. The increase 

in cell concentration in both the water column and the bubble trap after bubbling within sediment is evidence for 

cyanobacteria transport via bubble floatation. Error bars show standard deviation across measurements. 
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