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Abstract. A range of applications analysing the impact of
environmental changes due to climate change, e.g. geograph-
ical spread of climate sensitive infections (CSIs), agriculture
crop modelling, etc., make use of Land Surface Modelling
(LSM) to predict future land surface conditions. There are5

multiple LSMs to choose from that account for land pro-
cesses in different ways and this may introduce predictive
uncertainty when LSM outputs are used as inputs to inform a
given application. For useful predictions for a specific appli-
cation, one must therefore understand the inherent uncertain-10

ties in the LSMs and the variations between them, as well as
uncertainties arising from variation in the climate data driv-
ing the LSMs. This requires methods to analyse multivariate
spatio-temporal variations and differences. A methodology
is proposed based on multi-way data analysis, which extends15

Singular Value Decomposition (SVD) to multi-dimensional
tables, and provides spatio-temporal descriptions of agree-
ments and disagreements between LSMs for both historical
simulations and future predictions. The application underly-
ing this paper is prediction of how climate change will affect20

the spread of CSIs in the Fenno-Scandinavian and north-west
Russian regions, and the approach is explored by compar-
ing Net Primary Production (NPP) estimates over the period
1998-2013 from versions of leading LSMs (JULES, CLM5
and two versions of ORCHIDEE) that are adapted to high25

latitude processes, as well as variations in JULES up to 2100
when driven by 34 global circulation models (GCMs). A sin-
gle optimal spatio-temporal pattern, with slightly different
weights for the four LSMs (up to 14% maximum difference),
provides a good approximation to all their estimates of NPP,30

capturing between 87% and 93% of the variability in the in-

dividual models, as well as around 90% of the variability
in the combined LSM dataset. The next best adjustment to
this pattern, capturing an extra 4% of the overall variabil-
ity, is essentially a spatial correction applied to ORCHIDEE- 35

HLveg that significantly improves the fit to this LSM, with
only small improvements for the other LSMs. Subsequent
correction terms gradually improve the overall and individ-
ual LSM fits, but capture at most 1.7% of the overall vari-
ability. Analysis of differences between LSMs provides in- 40

formation on the times and places where the LSMs differ and
by how much, but in this case no single spatio-temporal pat-
tern strongly dominates the variability. Hence interpretation
of the analysis requires the summation of several such pat-
terns. Nonetheless, the three best principal tensors capture 45

around 76% of the variability in the LSM differences, and
to a first approximation successively indicate the times and
places where ORCHIDEE-HLveg, CLM5 and ORCHIDEE-
MICT respectively differ from the other LSMs. Differences
between the climate forcing GCMs had a marginal effect up 50

to 6% on NPP predictions out to 2100 without specific spatio-
temporal GCM interaction.

1 Introduction

The rise in surface temperatures under global warming is
predicted to be most severe in the Arctic, where it is al- 55

ready altering surface conditions and perturbing ecological
systems (Overland et al., 2014). This will have multiple so-
cietal impacts, not least on the health of animals and humans
(IPCC AR5 WG2 A, 2014). The term climate sensitive infec-
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tion (CSI) refers to diseases whose epidemiological aspects
are driven, at least in part, by climatic factors (McMichael
et al., 2006; Ebi et al., 2017; Cayol et al., 2017). In the Arc-
tic, climate change is likely to cause enhanced CSI risk in
terms of increased incidence, more frequent outbreaks, geo-5

graphic spread of existing affected zones, and occurrence of
newly affected zones (Pauchard et al., 2016; Sajanti et al.,
2017; Waits et al., 2018) The complex ecology of CSI organ-
isms presents a challenge to modelling and predicting their
epidemiology (Ostfeld, 2010; Carvalho et al., 2014; Ruscio10

et al., 2015; Sormunen et al., 2016; Li et al., 2016; Gilbert,
2016; White et al., 2018). However, such modelling is needed
as disease vectors, such as ticks, mosquitoes, badgers and
roedeer, which are associated, for example, with Lyme dis-
ease (Borreliosis) and Tularemia are expanding their ranges15

northwards (Jaenson et al., 2012; Jore et al., 2014; Andersen
and Davis, 2017; Laaksonen et al., 2017; Blomgren et al.,
2018). Under climate change and human-induced land use
changes, fragmentation of the landscape was found to affect
Lyme disease (Simon et al., 2014), whilst mosquito abun-20

dance was associated with outbreaks of Tularemia in boreal
forest (Rydén et al., 2012). CSIs can also be non-vector dis-
eases, as climate change may force increasing proximity and
contacts between animals, e.g. pestivirus affects mammals
(livestock or wild) and so reindeer (Kautto et al., 2012). This25

could threaten the successful bovine pestivirus eradication
programs existing in Scandinavia since the 1990’s (Tryland,
2013).

The Nordic Centre of Excellence (NCoE) CLINF,
"Climate change effects on the epidemiology of infec-30

tious diseases and the impacts on Northern societies”
(www.clinf.org), is an interdisciplinary project supported by
NordForsk (www.nordforsk.org), covering an area extending
across Norway, Sweden, Finland and north-west Russia. Its
aim is to study how climate change will affect the prevalence35

of human and animal CSIs and the consequences for Arctic
societies. To do so it needs to characterise how a changing
climate will change the environmental and societal condi-
tions affecting a range of CSIs in Nordic regions. Besides
predicting environmental changes likely to affect the spread40

of CSIs, CLINF also aims to gather and generate information
on the societal impacts of climate change. Achieving this aim
requires tools to model land surface and aquatic changes un-
der climate forcing. This paper focuses on land surface mod-
els (LSMs) and the extent to which existing LSMs could pro-45

vide forecasts useful for the purposes of predicting CSI epi-
demiology.

An important factor in discussing the predictive value of
these models is the variability in their outputs. This variabil-
ity arises from two sources: variability in the climate drivers,50

since there are many Global Circulation Models (GCMs),
and differences between LSMs, whose core concepts are sim-
ilar but with many differences in process representation and
parameterisation. This leads to three key questions:

(i) How does the choice of the GCM affect the CSI-55

relevant outputs of a given LSM?

(ii) For a given GCM, how different are the CSI-relevant
outputs of the different LSMs?

(iii) How do the joint effects of GCM and LSM differences
translate into variability in predictions of CSI-relevant 60

quantities?

Addressing these questions requires methods to describe
spatio-temporal differences in models, and the first part of
this paper describes such methods. The treatment here is rel-
evant to a range of applications and is generic, but the evalu- 65

ation of the methods in the latter part of the paper is couched
in terms of differences between LSM predictions of Net Pri-
mary Productivity (NPP), i.e. a single model output variable
indicating vegetation activity, hence with relevance to CSI
modelling involving changes in habitat for specific vectors, 70

as well as carbon fluxes and ecosystem functioning (Koca
et al., 2006; Rafique et al., 2016).

It is important that we quantify the uncertainty in any vari-
able derived from an LSM model as a predictor in CSI mod-
elling, so that the full uncertainty in the predictions (and as- 75

sociated risk) is available to public health decision-making.
Typically, the uncertainty in the predictions from a single
LSM is poorly known, and we instead treat the spread in
data simulated by a range of leading LSMs as a proxy for
this uncertainty. Since Arctic CSIs are the underlying mo- 80

tivation for this work, we only consider LSMs that rep-
resent characteristics of Nordic areas, including high lati-
tude processes, vegetation and landscapes. These are CLM5
(the Community Landscape Model version 5) (Lawrence
et al., 2019); JULES (the Joint UK Land Environment 85

Simulator) (Clark et al., 2011; Comyn-Platt et al., 2018);
and two versions of ORCHIDEE (ORganizing Carbon and
Hydrology in Dynamic EcosystEms), ORCHIDEE-MICT
(OR_MICT) (Guimberteau et al., 2018) and ORCHIDEE-
HLveg (OR_HL) (Druel et al., 2017). The simulated climate 90

data cover the historical period from December 1997 to De-
cember 2013, while for JULES we also analysed data from
100-year forecasts to the end of the 21st century under forc-
ing by 34 different GCMs (Comyn-Platt et al., 2018). The
specifics of the four models and the driving climate data are 95

briefly described in section 1.2.
Section 2 motivates the use of a multi-way methodology

to characterise variations between LSMs, and the essentials
of such a methodology are described in Section 3. In Sec-
tion 4 we use this methodology to analyse the differences 100

between the four selected LSMs, while Section 5 shows how
the methodology can be applied directly to differences be-
tween the LSMs. The same approach is then used in Section
6 to assess how the choice of a particular GCM affects the
NPP predictions from the JULES LSM. Section 7 gives our 105

discussion and conclusions.
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1.1 LSM and ecological modelling aspects relevant to
CSI prediction

Climate change is driving the spread of a range of CSI dis-
ease vectors (Zuliani et al., 2015; Andersen and Davis, 2017;
Blomgren et al., 2018), so understanding the spatio-temporal
distribution and evolution of characteristics, such as habitat5

suitability of these vectors or reservoirs, is essential. These
characteristics can then be used in an ecological model that
could be coupled with epidemiological models to estimate
future risks of disease incidence, e.g. where and when the
transmission risks are likely to be highest. For example,10

changes in abundance and extent of habitat suitability are
important factors to be considered in dynamic landscape epi-
demiology modelling (Lambin et al., 2010). Changes due to
global warming could affect both abundance and geographi-
cal extent, and also extend the period of transmission, e.g. by15

affecting the vector life cycle (Rose et al., 2015). Extreme
weather conditions and events may either introduce out-
breaks of abundance, thereby increasing the risk of pathogen
occurrence in disease vectors, or wipe out a species at a given
location.20

Under different scenarios of climate drivers, such as the
Representative Concentration Pathways (RCPs) developed
by the Intergovernmental Panel on Climate Change (IPCC),
LSMs can simulate future atmospheric and land conditions
that can be related to vector habitat suitability. Variables sim-25

ulated by combined climate and land surface models, such
as surface temperature, soil moisture, precipitation and land
cover, can be used in ecological models or as part of an
epidemiological model, e.g. for a species distribution model
(Booth et al., 2014). However, the predictive uncertainty in30

these variables may lead to significant uncertainty in the pre-
dictions from CSI modelling (Asghar et al., 2016). This pa-
per describes and quantifies the spatio-temporal uncertainty
arising from the choice of LSM alone, i.e. without assessing
its impact on CSI predictions, but provides an essential com-35

ponent in understanding the uncertainty in any statistical or
mathematical predictions of CSI epidemiology and ecology
(Beale and Lennon, 2012; Zuliani et al., 2015; Metcalf et al.,
2017) that use LSM outputs as predicting variables.

1.2 Land Surface Model and Data Description40

The four LSMs used in this study, CLM5, two versions of
ORCHIDEE (OR_MICT and OR_HL) and JULES, were
chosen because of their high degree of maturity and their
ability to model characteristics of Nordic areas, including
high latitude processes, vegetation and landscapes. Table 145

summarises these characteristics; details can be found in the
references. OR_MICT (Guimberteau et al., 2018) includes
major high latitude adaptations, including snow and soil ther-
mal interaction, plant primary productivity constrained by
high latitude conditions, and soil carbon stocks with feed-50

back dynamics. OR_HL (Druel et al., 2017, 2019) adapts

ORCHIDEE with specific plant functional types (PFTs) such
as non-vascular plants (mosses, lichens), Arctic C3 grass and
boreal shrubs. CLM5 (Lawrence et al., 2019) includes per-
mafrost modelling and snow processes, C3 Arctic grass and 55

deciduous boreal shrubs as part of its 15 PFTs (see Appendix
B) but no non-vascular plants. The version of JULES (Clark
et al., 2011) used here has been extended to be suitable for
high latitudes (Comyn-Platt et al., 2018) by including pro-
cesses such as permafrost-carbon feedbacks (Burke et al., 60

2017).
For all the LSMs, the initial PFTs were derived from land

cover maps. JULES and the two versions of ORCHIDEE
use the land cover product from the European Space Agency
Climate Change Initiative (ESA-CCI) (Poulter et al., 2015). 65

The supplementary material to Druel et al. (2017) describes
the correspondence between land cover and the added Arctic
PFTs. CLM5 uses the Land Use Harmonised data version 2,
a product of the Land Use Intercomparison Project (LUMIP)
(Lawrence et al., 2016) to define its initial spatial distribu- 70

tion of PFTs. For the historical analyses, the data were re-
gridded to the finest grid-spacing, 0.5°E × 0.5°N, by simple
disaggregation which introduces a limitation when compar-
ing the LSMs. All analyses were performed for a sub-area of
the CLINF zone between 4.5°E-34.5°E and 58.5°N-70.5°N. 75

Note that the climate forcing data are not the same for the dif-
ferent LSMs (see Table 1) since the LSM data were provided
by different modelling groups, each of which uses preferred
GCMs. This is unlikely to have any significant impact on the
LSM comparisons (see Section 5). 80

2 Analysing spatio-temporal variations in LSMs

Unpublished analysis within the CLINF project has identi-
fied specific variables whose spatio-temporal behaviour is
correlated with CSI incidence; these include vegetation ac-
tivity (here represented by net primary production [NPP]), 85

soil moisture, soil surface temperature, snow cover, precipi-
tation and land cover. This section concerns analysis of how
predictions of such variables differ between LSMs.

For a given variable, say NPP, the data simulated by an
LSM can be arranged as a 2-way Spatial×Temporal table, 90

where the Spatial dimension has as many entries as latitude-
longitude positions and the Temporal dimension represents
monthly values for each year over the period studied. For
our dataset, the historical data simulations from December
1997 to December 2013 have 193 monthly entries over the 95

selected zone of 1152 grid-cells. Therefore for the 4 LSMs
we get a 3-way 1152× 193× 4 data table per variable or a
4-way 1152×193×4×6 table if we include all the variables
given above. Since the LSMs provide NPP for each PFT, the
PFT dimension could also be added, but this is not done here. 100

Analysing such structured datasets to understand spatial,
temporal and between-model variations can be challenging
when there are long-tail distributions (as is the case in our
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Table 1. Summary of the main characteristics of the four LSMs (for details see references) analysed for the historical period 1997-2013 and
the forecasts to 2100 with JULES. Acronyms and references for the GCM drivers are given in the associated references to the LSMs.

Land Sur-
face Model

Initial
grid-
spacing

Climate driver
model (GCM)

High latitude characteristics and processes

OR_MICT 1°E 1°N CRUNCEPv8 Permafrost thaw - snow processes - soil stocks and carbon feedback on soil
temperature - impact of severe climatic conditions on plant productivity - 13
PFTs, including Arctic vegetation, but no non-vascular plants, specific Arctic
C3 grass, or evergreen shrubs - no vegetation competition

OR_HL 2°E 2°N CRUNCEPv7
GSWP3v0

Permafrost thaw - snow processes - 16 PFTs, including non-vascular plants,
Arctic C3 grass, evergreen shrubs and deciduous shrubs, vegetation competition

CLM5 1.25°E
0.94°N

GSWP3v1 Permafrost thaw - snow processes - 15 PFTs, vegetation competition, Arctic
vegetation, but no non-vascular plants

JULES 0.5°E
0.5°N

WFDEI Permafrost thaw - snow processes - 14 PFTs, vegetation competition, Arctic
vegetation, but no non-vascular plants, no Arctic specific C3 grass, no evergreen
shrubs

JULES
(horizon
year 2100)

3.75°E
2.5°N

34 GCMs
with IMOGEN
(1.5°C and 2°C
targets)

Permafrost thaw - snow processes - 10 PFTs, vegetation competition, Arctic
vegetation, but no non-vascular plants, specific Arctic C3 grass or evergreen
shrubs

Figure 1. Histogram of NPP values (kg m−2 s−1) in the 3-way table
for the 4 LSMs for the period 1998-2013 and the selected CLINF
region; the top axis indicates cumulative frequencies.

dataset: see Fig.1, which shows the histogram of NPP values
in the combined historical datasets simulated by the 4 LSMs)
which preclude the use of classical geostatistical methods,
and due to their multivariate nature. For 2-way tables, Singu-
lar Value Decomposition (SVD) is a powerful tool to extract
associations of variables and patterns within data, e.g. clus-5

ters and trends. The SVD of a data matrix finds pairs of vec-
tors (components) that successively extract decreasing frac-
tions of the variation in the data and are uncorrelated with
previous pairs. Visual description of these optimal vectors
can be obtained by plotting the component weights, e.g. a10

Spatial effect as a map and a Temporal effect as a time
series plot.

With more than two dimensions, the data is a multi-way
table; combining different dimensions to obtain a 2-way data
table, i.e. a matrix, suitable for SVD would lead to difficul-15

ties in interpreting the results. We could instead compare the
SVDs of the four spatio-temporal (1152×193) tables of NPP

for each LSM, which may indicate whether the models be-
have similarly but would not readily highlight their differ-
ences. When the spatio-temporal effects extracted from the 4 20

SVDs would be similar, one would say it is a trend in NPP
and the small differences would be interpreted as uncertainty
due to intra modelling variations. But when no similarities
in patterns could be read across the SVDs for each of the 4
LSMs, one could infer larger inter-model uncertainty with 25

specific spatio-temporal variations per LSM without other
means of comparisons. Such considerations have led to the
development of methods to extend the SVD to multi-way ta-
bles; these are briefly described below, before giving a fuller
description in Section 3 of the PTAk method used in this pa- 30

per (Leibovici, 2010), which is an optimal nested decompo-
sition of the data variation.

3 From Singular Value Decomposition to multi-way
data analysis

Let X be a n× p matrix, which we can regard as a collec- 35

tion of n p-dimensional vectors or p n-dimensional vectors.
The matrix XtX is positive semi-definite, so all its eigen-
values are positive, and its eigenvectors, ϕh, are mutually or-
thogonal, i.e. ϕthϕh′ = 0 if h 6= h′. The matrices XtX and
XXt have the same eigenvalues, σ2

h, and the sum of squares 40

of the elements of X is given by xtx= trace(XtX) =
trace(XXt) =

∑
hσ

2
h, where x is the matrix X vectorised

as a np-dimensional vector.
The SVD of any matrix X is defined by the series of

decreasing σh, the singular values, each associated with 45

a pair of unit vectors ϕh (p-dimensional) and ψh (n-
dimensional), with ψthψh = ϕthϕh = 1, which explain a frac-
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tion σ2
h/(

∑
hσ

2
h) of the variability of X (defined as the sum

of squares of the elements of X), i.e. ϕthX
tXϕh = σ2

h =
ψthXX

tψh. Hence SVD can be used for dimension reduction
by defining a p′-dimensional subspace (p′ < p) that captures
most of the variability in X:

X = SV D(X) =

p′∑
h=1

σhψhϕ
t
h+

∑
h>p′

σhψhϕ
t
h5

=

p′∑
h=1

σhψh⊗ϕh+ ε (1)

For a suitable p′, the residual variation ε=
∑
h>p′ σhψhϕ

t
h

is small enough to be considered as insignificant. As shown
in equation (1), this decomposition can be written in tenso-
rial form, since ψhϕth = ψh⊗ϕh. The rank-1 matrix ψhϕth is10

known as a decomposed rank-1 tensor (Leibovici, 2010). The
term σ1ψ1⊗ϕ1 is the best rank-1 tensor approximation to
the matrix X in the sense of capturing the maximum fraction
of variability in X among all rank-1 tensors, i.e. the maxi-
mum value of σ = ψtXϕ. Subsequent rank-1 tensors in the15

decomposition in equation (1), given by the other eigenvec-
tors, are orthogonal to the previous ones and successively ex-
tract decreasing fractions of the variability. Matrices can be
seen as order 2 tensors and multi-way tables as order k ten-
sors, where k is the number of dimensions of the table. For20

k = 2 the SVD can be seen as an optimal basis vector system
in each dimension and in the tensor space, and generalisa-
tions of SVD to tensors of order k ≥ 3 aim to find equivalent
optimal systems.

Several algorithms to extend SVD to tables with more25

than 2 entries have been proposed (Tucker, 1966; Carroll
and Chang, 1970; Harshman, 1970; Kroonenberg, 1983; Lei-
bovici, 2010) and development of methods and their applica-
tions is is still very active (Demšar et al., 2013; Kroonenberg,
2016; Takeuchi et al., 2017; Lock and Li, 2018). Most exten-30

sions aim to find an optimum decomposition of a multi-way
table that allows dimension reduction by looking for a de-
composition similar to equation (1) under specific optimisa-
tion criteria. The algebraic embedding of two-way data tables
as tensors of order 2 (equivalent to matrices) and by exten-35

sion, of k-way data tables as tensors of order k, facilitates the
understanding of these extensions. For a multi-way table X
with k ≥ 3 entries this takes the generic form:

X = SV D_k_method(X)+ ε

=
∑

h1,h2,...,hk

σh1h2...hk
ψh1
⊗ϕh2

⊗ ...⊗ ξhk
+ ε (2)40

where the hi index the basis vectors of the individual vec-
tor spaces making up the k-dimensional data table and ε ex-
presses the residual of the approximation given by the sum-
mation. This residual depends on the method and the number
of components used in the decomposition, and can be zero45

(as would be the case if we retained all the terms in a SVD).

The decompositions carried out by the CANDECOMP and
PARAFAC methods (Carroll and Chang, 1970; Harshman,
1970) fix the number of rank-1 tensors in the decomposition
but do not impose an orthogonality constraint, while PCA- 50

3modes (Kroonenberg, 1983) considers both orthogonality
and rank within each vector space. However, all three meth-
ods need to choose in advance the number of rank-1 tensors
in their optimisation and obtain decompositions that are not
nested as with SVD, in which the rank p′′ approximation of 55

X contains the approximation obtained for p′ (with p′′ > p′).
This property is often desirable for environmental data anal-
ysis (Frelat et al., 2017), as decomposition of the variance or
sum of squares has a practical interpretation.

To address this, Leibovici and Sabatier (1998) developed 60

the PTAk method, which is a hierarchical decomposition giv-
ing nested approximation by construction. For k = 2, the
PTAk algorithm is the same as SVD, while for k = 3 it is
given by:

X = PTA3(X) = σ1(ψ1⊗ϕ1⊗φ1) 65

+ ψ1⊗1 PTA2(P(ϕ1⊗φ1)⊥X..ψ1)

+ ϕ1⊗2 PTA2(P(ψ1⊗φ1)⊥X..ϕ1)

+ φ1⊗3 PTA2(P(ψ1⊗ϕ1)⊥X..φ1)

+ PTA3(P(ψ⊥
1 ⊗ϕ⊥

1 ⊗φ⊥
1 )X) (3)

The notation⊗i means that the vector on the left takes the ith 70

place in the tensor product, e.g. ϕ1⊗2 (α⊗β) = α⊗ϕ1⊗β
and ".." indicates the contraction operation (defined in Ap-
pendix A along with definitions of the other notation used
in equation (3)). Note that the PTA3 algorithm is recursive
as the last line of equation (3) calls another PTA3. This pro- 75

cess can be continued until it leads to a null table, but nor-
mally a stopping rule is imposed by requiring the decomposi-
tion to capture a prescribed fraction of the overall variability
or specifying the desired number of order k rank-1 tensors
(right-hand side of equation 3). 80

Similarly to SVD, the PTA3 algorithm first retrieves the
rank-1 tensor approximation to X , σ1ψ1⊗ϕ1⊗φ1, that cap-
tures the maximum possible fraction of the variability in X
and is termed the first principal tensor (PT) of X . The sec-
ond, third and fourth lines in equation (3) correspond to op- 85

timisations associated with this first PT in which the decom-
posed tensors share one of the components in the first PT. The
corresponding PTA2 analyses are complete SVD decompo-
sitions into series of tensor products. Given this decomposi-
tion, descriptive statistics or plots of the triple of components 90

(ψ1, ϕ1, φ1) can then be used to visualise the pattern or ef-
fect associated with the fraction of the variability captured by
each of the tensors.

The generalisation of equation (3) to k-way data tables is
straightforward. In a PTAk decomposition, the first rank-1 95

tensor will have associated PTA(k− 1)’s which will recur-
sively end up at associated PTA2’s, i.e. SVDs.
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4 Spatio-temporal variations of NPP across the 4
LSMs

This principal aims of this section are to perform a PTA3
analysis of the 3-way Spatial×Temporal×LSM table X
of NPP and to interpret the results. However, it is useful to
first examine some of the properties of the distributions of5

NPP for each LSM. The histogram of the NPP values in the
full data table X , displayed in Fig.1, conceals distinct dif-
ferences between the LSMs. Some of these differences are
indicated by Table 2, which gives the mean NPP and sum of
the squares of NPP for each LSM, and Table 3, which shows10

for each LSM the fraction of NPP values in each decile of the
reference distribution in Fig.1. In Table 2, OR_MICT stands
out by its low mean NPP (23% less than JULES) and low
variability (significantly less than the other LSMs, and 37%
less than OR_HL). The LSMs also exhibit different distribu-15

tions (see Table 3): notably CLM5 has 35% of its NPP values
in the first decile of the reference distribution, while OR_HL
and JULES have very few values in this decile, and the decile
with peak occupancy is different for all four LSMs. How-
ever, all the LSMs place around 10% of their NPP estimates20

in each of the higher deciles (70% to 100%).
These distributional differences tell us nothing about the

spatio-temporal differences between the LSMs, and for that
we use the decomposition provided by the R package PTAk
(Leibovici, 2010) of which the first ten terms are displayed25

in Fig.2. This describes the hierarchical and nested decom-
position of the sum of squares of X into PTs and associ-
ated PTs. Each row corresponds to a PT, identified by a la-
bel and number, -no-, and its singular value, e.g. vs111
and -no-1 correspond to the first line of equation (3) giv-30

ing the best rank-1 approximation of X , with singular value
σ1 = 2.7147e−05. The row with label vs222 gives the sin-
gular value corresponding to the next order-3 rank-1 approx-
imation, which corresponds to the recursive step in the last
line of equation (3).35

The rows between vs111 and vs222 correspond to PTs
associated with vs111, which are derived from PTA2s, i.e.
SVDs. The labels given to these decomposed components
start with the dimension of the component used in contract-
ing the tensor X (see Appendix A) and continue with the40

label of the PT from which they are derived and the dimen-
sions of the contracted tensor, e.g. 1152 vs111 193 4
identifies the results from the PTA2 of the 193× 4 matrix
X..ψ1 (i.e. an SVD), where ψ1 is the 1152-dimensional vec-
tor forming the Spatial component of PT -no-1. Therefore45

the associated PTs -no-3 and 4 have the same Spatial
component as tensor -no-1. Similarly, the rank-1 tensors
-no-6 and 7 are associated PTs along the Temporal com-
ponent of vs111. Note that Fig.2 displays only PTs with a
contribution exceeding 0.1% of the total sum of squares, as50

indicated in the bottom line in the figure. This means that we
show only the first two terms from each of the PTA2s associ-
ated with vs111, one of the associated PTs associated with

vs222, and no associated PTs for vs333. The other terms

Figure 2. Summary of the PTA3 decomposition for the data table
of NPP simulations for the 4 LSMs for the studied region and pe-
riod. Each line of the table corresponds to a rank-1 tensor part of
the decomposition; the variability (sum of squares) in X it explains
is given by the square of its singular value, SingVal, and this is
expressed as a percentage of the variability in the ssPT % column.

in the rows of Fig.2 are the singular values associated with 55

each PT (SingVal) and the percentage of the variability in
X explained by each of the PTs (ssPT %). The variability
explained is given by the square of the singular value. Ten-
sors -no- 2, 5 and 8 are missing as they are repeats of al-
ready listed rank-1 tensors. This arises from the way the code 60

implements equation (3); see Leibovici (2010) for further de-
tails.

The contribution by the main PTs decreases from vs111,
vs222, vs333, etc. Each of the associated tensors makes a
smaller contribution than its main PT but this may be larger 65

than the next main PT, e.g. tensor -no-3 captures more vari-
ability than tensor -no-11. There is no particular ordering
in the tensors associated with different components, between
-no-3 which is associated with the Spatial component and
-no-6 which is associated with the Temporal component, 70

but the PTs associated with a given component are ordered
since they derive from the same PTA2 (i.e. SVD), e.g. -no-3
precedes -no-4. Fig.2 then allows one to select the PTs or
associated PTs that successively capture the variability in X .

It is helpful to visualise the first PT, whose components 75

are displayed in Fig.3, as an optimal approximation to the
initial 1152×193×4 data table in which each of the 4 layers
is the same 2-D spatio-temporal “map”, but scaled by the
weight for a particular LSM, given by φ1. The spatial pattern
at each time is the same (ψ1, as in Fig.3(a)), but with a weight 80

appropriate to that particular time. Similarly, the time series
at each spatial location is the same (ϕ1, shown as Fig.3(b)),
but with a weight appropriate to that location. To recover the
NPP from this approximation at a particular position, time
and for a given LSM, the corresponding values in ψ1, ϕ1 and 85

φ1 are multiplied together and then multiplied by its singular
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Table 2. Mean NPP (kg m−2 s−1) and sum of squares of NPP (SS) for the original aggregated and individual LSMs, together with the SS
explained by each PT from the PTA3 analysis, and the cumulative approximations (in brackets) to the overall SS and the SS of each LSM.

OR_MICT OR_HL CLM5 JULES overall

mean NPP (×10−8) 1.63 1.93 1.73 1.99 1.82
SS (×10−10) 1.70 2.33 2.12 2.09 8.23
mean NPP in PT -no-1 (×10−8) 1.69 1.92 1.84 1.88 1.83

PT -no-1 ssPT % (cumul %) 92.00 (92.00) 86.50 (86.50) 87.30 (87.30) 93.10 (93.10) 89.50 (89.50)
PT -no-6 ssPT % (cumul %) 0.62 (92.62) 9.36 (95.86) 2.32 (89.62) 1.35 (94.45) 3.72 (93.22)
PT -no-3 ssPT % (cumul %) 0.68 (93.30) 0.00 (95.86) 4.20 (93.82) 1.95 (96.40) 1.72 (94.94)
PT -no-9 ssPT % (cumul %) 1.42 (94.72) 1.33 (97.19) 1.35 (95.17) 1.43 (97.83) 1.38 (96.32)
PT -no-7 ssPT % (cumul %) 2.90 (97.62) 0.04 (97.23) 0.91 (96.08) 0.05 (97.88) 0.86 (97.18)
PT -no-11 ssPT % (cumul %) 0.00 (97.62) 0.05 (97.28) 1.05 (97.13) 0.50 (98.38) 0.42 (97.60)
PT -no-4 ssPT % (cumul %) 1.09 (98.71) 0.27 (97.55) 0.01 (97.14) 0.14 (98.52) 0.34 (97.94)
PT -no-10 ssPT % (cumul %) 0.18 (98.89) 0.17 (97.72) 0.17 (97.31) 0.19 (98.71) 0.18 (98.12)
PT -no-21 ssPT % (cumul %) 0.01 (98.90) 0.39 (98.11) 0.03 (97.34) 0.21 (98.92) 0.17 (98.29)
PT -no-16 ssPT % (cumul %) 0.01 (98.91) 0.24 (98.35) 0.01 (97.35) 0.11 (99.03) 0.10 (98.39)

Table 3. Deciles (q) of the reference NPP distribution given by Fig.1 and the percentage of NPP values in each decile observed for each LSM.
An LSM whose NPP values had a distribution similar to the reference would have 10% in each decile; entries in bold indicate departures of
more than 2% from 10%.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
q -1.25e-09 -5.15e-11 4.58e-11 1.30e-09 5.67e-09 1.53e-08 2.65e-08 4.14e-08 5.80e-08 1.11e-07

OR_MICT 5.2 22.0 8.0 5.6 10.0 14.0 9.7 8.9 7.2 9.4
OR_HL 0.0 4.2 21.0 12.0 12.0 11.0 11.0 9.5 8.0 11.0
CLM5 35.0 6.2 2.1 3.0 5.8 5.6 10.0 11.0 11.0 9.9
JULES 0.2 7.4 8.6 19.0 12.0 10.0 9.5 10.0 13.0 9.7

value, σ1. Exactly the same construction applies to each of
the rank-1 tensors in the decomposition.

The Spatial effect (Fig.3(a)), which is always positive,
places higher weights in Sweden, the Baltic states and north-
west Russia, and lower values in Norway and northern Fin-
land, with values varying between 22% and 138% of a uni-5

form Spatialweighting (i.e. equal weights of 1/
√
1152). For

display, the Temporal component, a vector of length 193
(December 1997 to December 2013), has been split into an-
nual segments which express the monthly weights over the
16 year period (Fig.3(b)). As expected, there is a strong sea-10

sonal effect, with the summer months (June to August) hav-
ing large positive weights, while values are very small from
November to March and include negative values from De-
cember to February in nearly all years. Two other groups of
months can be distinguished: October paired with April as15

just before or after winter, and May with September as just
before and after the seasonal peak of production. The months
from May to September all display significant upward trends
in NPP over the 16 years, with average increases of 1.48%,
0.80%, 0.63%, 0.67% and 0.51% per annum respectively.20

The other months show no significant trends. April, May,
June and August have more inter-annual variability than
the other months, and April, May and June all show peaks

in 2002. Over the 16 years, the maximum is in July 2013
and is 217% greater than for uniform temporal weighting 25

(1/
√
193), while the minimum in winter (December 2006)

represents −8% of uniform weighting.
Since these spatial and temporal patterns are the same

for all the LSMs, the difference between them is ex-
pressed by the LSM weights (Fig.3(c)). For identical 30

LSM simulations, the weights would be 1/2, since each
vector in the decomposition is normalised to unity (i.e.√
φ211 +φ212 +φ213 +φ214) =

√
4φ211 = 1), but the weights

lie between 0.460 and 0.523, with JULES and OR_HL re-
spectively giving values 3% and 5% higher than for equal 35

weights, and OR_MICT giving a value 8% lower. Hence
there is only a weak dependence on the LSM in this first PT.
The proportion of the variability in the first PT due to each
LSM is given by the squares of the LSM weights, i.e. 21.2%,
27.4%, 25.1% and 26.3% for OR_MICT, OR_HL, CLM5 40

and JULES, respectively. Multiplying these values by σ2
1

gives the sum of squares of NPP in the spatio-temporal maps
for vs111 for each LSM (see Table.2). Several points should
be noted about the approximation to X given by vs111:

1. The squares of the LSM weights are in the ratio 1 : 1.29 45

: 1.19 : 1.24, while the values of the original sum of
squares of NPP (see Table 2) are in the ratio 1 : 1.37
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(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 3. Plots of the components of PT -no-1 of the PTA3 decomposition in Fig.2 representing 89.5% of the variability.

: 1.25 : 1.29. Hence the first PT correctly picks up the
ordering of the variability amongst the LSMs, but not
its full value, since it is effectively a smoothing of the
dataset.

2. The spatio-temporal maps for the individual LSMs cap-
ture 92.0%, 86.5%, 87.3% and 93.1% of the original5

variability of OR_MICT, OR_HL, CLM5 and JULES,
respectively. Hence each one is a reasonable approxi-
mation to the original LSM simulation, particularly for
OR_MICT and JULES.

3. The mean NPP represented by vs111 is 1.834× 10−810

kg m−2 s−1, which is very close to that of the mean
of X (1.824× 10−8 kg m−2 s−1), though the individ-

ual NPP spatio-temporal maps for each LSM track the
original mean NPP less closely (+3.6%, -0.7%, +6.3%
and -5.6% for OR_MICT, OR_HL, CLM5 and JULES 15

respectively; see Table 2).

As noted above, recovering the NPP at a particular po-
sition, time and for a given LSM in vs111 requires multi-
plying together the corresponding weights in the Spatial,
Temporal and LSM dimensions and then multiplying by 20

the singular value. So, for example, the maximum value of
NPP in the first PT over the whole time-period is in July
2013, in the darkest red cell of Fig.3(a) and for OR_HL,
the LSM with maximum weight. Since σ1 = 2.7147× 10−5

and in this cell the Spatial, Temporal and LSM weights 25

are 0.040, 0.156 and 0.523, respectively, this yields a max-
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imum NPP of 8.9×10−8 kg m−2 s−1. There are small neg-
ative Temporal weights from December to February, lead-
ing to negative values of NPP and an overall minimum NPP
of -1.44 ×10−8 kg m−2 s−1 in December 2006, which will
again occur for OR_HL and at the same position as the over-
all maximum NPP.5

Results from Table 2 and this first PT makes the important
point that a single spatio-temporal pattern does well at cap-
turing the NPP from the four LSMs. Whilst this expresses a
common trend between the LSM, their weights similarity is
up to 14% differences, showing a variation in intensity from10

one to another. Despite similar photosynthesis modules in
most LSMs, parameter settings, such as the choice of PFTs
together with different climate datasets (GCM, see Table 1)
and settings in other modules induce these variations. The
subsequent PTs provide a series of corrections to this com-15

mon pattern, expressing LSM specificities, such as how the
PFTs are parameterised.

The second best PT in the decomposition, -no-6, is a
Temporal-associated PT, so has the same Temporal com-
ponent as vs111, and expresses 3.72% of the variability. Its20

Spatial component (Fig.4(a)) has positive (red) weights in
the north and west and negative (green) weights to the south
and east. The most striking feature of this tensor is in its
LSM component (Fig.4(c)) which shows a marked contrast
between OR_HL, with a large negative weight, and the other25

LSMs, for which the weights are significantly smaller and
positive. Hence, after multiplying the weights in the differ-
ent components, all the LSMs except OR_HL will see an in-
crease in NPP in the red areas in the summer months and
reduce it in the green areas, while the opposite effect occurs30

for OR_HL. When the Temporal weights are negative, as
occurs for most of the winter, these sign changes in NPP are
reversed. As can be seen from Table 2, including the contri-
bution from this PT increases the captured fraction of vari-
ability in OR_HL from 86.5% to 95.9%, with much smaller35

gains for the other LSMs. Therefore, PT -no-6, mostly con-
tributing to fitting OR_HL (9.36% of its variability), is high-
lighting a specificity relatively to the others. Without ground
truth, one cannot tell if this specificity is a bias or a better
modelling than the other LSMs and just expresses a well de-40

fined uncertainty.
Fig.5 shows the components of the third best PT, -no-3

which captures 1.72% of the variability and is associated
with the same positive Spatial pattern as PT -no-1. Here
the Temporal effect is positive for the months from August45

to October, close to zero for November and July, and neg-
ative for the other months, especially April to June which
show higher inter-annual variations around their trends than
the other months. CLM5 and JULES have large positive and
negative weights respectively while OR_MICT has a smaller50

negative weight and OR_HL has a weight which very close to
zero. Hence for CLM5 this tensor acts to increase NPP from
August to October and reduce it for all other months except
November and July, while for JULES and OR_MICT it does

the opposite. As expected from the weights, including this55

tensor mainly acts to improve the fit of CLM5 and JULES to
their original values (Table 2). There are more between year
variations for the months of May to July than post peak pro-
ductions months, September and October showing the most
stable year to year variations among the months contributing 60

to the tensor.
Principal tensor -no-9 is the fourth best in the decom-

position and captures 1.38% of total variability. Since it is
associated with the LSM component of PT -no-1 it is the
same for all LSMs. Its Spatial component Fig.6(a) exhibits 65

a strong latitudinal gradient with positive values in the north
and negative values in the south. The Temporal component
has positive weights in July and August and negative values
in April, May and June, while for other months the weights
are near zero. This is relatively constant over the 16 years pe- 70

riod, the year to year variations being smaller than the separa-
tion of the three groups of months, except in 2002 where June
joins the near zero group and July gets a significantly higher
value than August whilst getting a significantly lower weight
(close to the zero group) than August in 2012. Also, one must 75

notice in 2006 a relatively parallel shift from 2005 values for
all months having a contribution. The years 2002, 2006, 2011
and 2012, showing local temporal similarity for the growing
season, corresponds to extremes events mentioned in the lit-
erature (Høgda et al., 2013; Bjerke et al., 2014; Park et al., 80

2016). Hence, since the LSM weights are all positive, in July
and August this tensor acts to increase NPP in the north and
reduce it in the south, while in April to June it does the op-
posite. These effects will be slightly greater for OR_HL be-
cause of its greater weight. Though its contribution to the 85

overall sum of squares is only 1.38%, it provides improve-
ments for all LSMs (see Table 2).

None of the other PTs contributes more than 1% to the
overall variability and their components are not displayed,
although the contributions for all terms in Fig.2 are given in 90

Table 2. For example, the next best PT (-no-11), which de-
rives from the last line in equation (3), captures 0.42% of
the variability and principally improves the fit to the variabil-
ity captured by CLM5 and, to a lesser extent, JULES. The
summation of all 10 PTs that each represent at least 0.1% 95

of the variability captures 98.4% of the variability in X and
between 97.4% and 99.0% of the variablity in the individual
LSMs (last line of Table 2).

Overall, this analysis shows that a single optimal spatio-
temporal pattern, with slightly different weights for the four 100

LSMs (up to 14% maximum difference), provides a reason-
ably good approximation to all their estimates of NPP, cap-
turing between 87% and 93% of the variability in the in-
dividual models, as well as around 90% of the variability
in the combined LSM dataset. The next best adjustment to 105

this pattern is a spatial correction that principally applies to
OR_HL and significantly improves the fit of the approxi-
mation to this LSM, with only small improvements for the
other LSMs. The second best adjustment adds a temporal pat-
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(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 4. Plots of the components of PT -no-6 associated with PT -no-1 along its Temporal dimension, which is therefore identical to
Fig.3(b); it represents 3.72% of the variability.

tern that mainly affects CLM5 and JULES and improves the 110

fit to these LSMs, with less effect on OR_MICT and none
on OR_HL. The third best adjustment adds a new spatio-
temporal pattern whose spatial component is roughly the op-
posite of that in the first PT (i.e. it is spatially similar but with
opposite signs) but a quite different temporal component that5

is positive in the later summer months, negative in the late
spring and early summer months, and roughly zero at other
times. . The improvement in the overall fit from the next best
PT and all succeeding ones is less than 0.9%, and, although
in two instances the fits to individual models improve by over10

1%, in most cases the improvements are much smaller (see
Table 2).

Summing the 10 PTs whose individual contribution to the
overall variability exceeds 0.1% (Fig.2) provides an approx-
imation to the overall data table that captures 98.4% of the 15

overall variability and between 97.4% and 99.0% of the vari-
ability in the individual LSMs (Table 2). However, also of
interest is the point-wise goodness of fit of the approxima-
tion, not just the variability it captures. This is represented
by the table of residuals, i.e. the ε term in eq. (2). Around 20

75% of the absolute values of these residuals are less than
8.4% of the overall mean NPP, so in most cases there is a
good point-wise fit to the original data, but the maximum ab-
solute value of the residuals (4.83×10−8) is around the third
quartile of NPP (3.44× 10−8). Hence, in some cases the ap- 25
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(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 5. Plots for PT -no-3 associated with PT -no-1 along the Spatial dimension, which is therefore identical to Fig.3(a)); it represents
1.72% of the variability.

proximation may be significantly different from the correct
value despite the residuals contributing less than 1.62% to
the overall variability.

5 Analysing differences between the LSMs

Section 4 identified differences between the LSMs captured
by an optimal decomposition of the associated 3-way ta-5

ble. In this section we instead directly analyse the variabil-
ity in the differences between the LSMs, in order to lo-
calise where and when the LSMs disagree and thus to quan-

tify spatio-temporally the uncertainty in NPP associated with
the choice of a particular LSM. We in fact analyse LSM 10

differences normalised by the maximum value of NPP, i.e.
(NNP1−NPP2)/NPPmax, where NNP1 and NNP2 refer to
NPP values in two different LSMs and NPPmax is the maxi-
mum NPP over all 4 LSMs. Note that for each pair of LSMs
we have chosen arbitrarily whether to use (NPP1 - NPP2) or 15

(NPP2 - NPP1). This choice of sign does not affect the PTAk
optimisation since this is based on the sum of squares, but the
sign does matter when identifying which of a pair of LSMs
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(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 6. Plots for PT -no-9 associated with PT -no-1 along the LSM dimension, which is therefore identical to Fig.3(c)); it represents
1.38% of the variability.

gives higher NPP values. The sign convention used is indi-
cated on the relevant figures (Figs.9-11).

Fig.7 displays the histograms of (a) the absolute values of
normalised differences, which has a peak near zero but also
a fairly long right hand tail, and (b) the absolute values of
(NPP1 - NPP2)/(NPP1 + NPP2) which is fairly flat across5

most of the range, with a small peak near zero, but with a
large peak peak near 1. The latter indicates that for many
times and places the NPP values in one LSM are very small
relative to one of the other LSMs. This occurs much more
frequently in winter when CLM5 gives NPP values that are10

very small compared to those from the other LSMs. How-
ever, since NPP is small in winter, these large relative differ-
ences have little impact on overall annual production. Indeed

Table 2 shows that the mean annual NPP from CLM5 ex-
ceeds that from OR_MICT. 15

The results of the PTA3 for the 1152× 193× 6 table of
normalised NPP differences are shown in Fig.8. The first and
second PTs respectively extract 43.4% and 21.7% of the vari-
ation, both with well-structured patterns in their components.
The first, shown in Fig.9, has a spatial pattern with negative 20

(green) values areas to the south and east, and positive (red)
values in the north and west, as well as in south-west Fin-
land. The Temporal component is always positive and dis-
plays a seasonal effect (Fig.9(b)) with the same ordering of
the months as Fig.3. However, despite being very similar to 25

the temporal pattern in Fig.3, it shows more year to year vari-
ations and May profile differs from Sep with an increasing



D.G Leibovici et al.: Spatio-Temporal Variations in LSMs at High Latitudes 13

Figure 7. Histograms of (a) the absolute values of the 6 NPP differ-
ences normalised by NPPmax and (b) the normalised relative dif-
ferences.

trend. All the differences involving OR_HL have significant
weights but for the other differences they are close to zero.
Hence the effects of this principal vector essentially trans-
late into differences between OR_HL and the other LSMs.
Taking into account the signs of the Spatial, Temporal and
LSM weights (the last to be interpreted as an LSM differ-5

ence), this means that for this PT over the whole time period
CLM5 > JULES > OR_MICT > OR_HL in the red areas in
Fig.9(a) while these orderings are reversed in the green areas.
However, the small weights on the differences not involving
OR_HL indicate that the other LSMs all give similar NPP10

values.

Figure 8. Summary of the PTA3 decomposition for the data table
of the 6 normalised LSM differences.

The second best PT, Fig.10, expressing 21.7% of the vari-
ability, has a quite complex positive spatial pattern, with the
strongest effects in northern Finland and the weakest near
Lake Ladoga, Russia, in the south-east of the region. The15

temporal weights are positive in June, May and to a lesser

extent April, weakly positive for the winter months from De-
cember to March, nearly zero in July, variable but mainly
negative in November, and negative from August to October.
The weights for all differences involving JULES are nega- 20

tive but are positive for the other differences. This means
that for this PT in all locations and for all years JULES >
OR_MICT > OR_HL > CLM5 from April to June, but this
ordering is reversed from August to October. This is a persis-
tent monthly pattern but with much greater inter-annual vari- 25

ability from May to July than in the other months. So this
ordering of LSMs is more sensitive to year variations from
April to June than its reverse counterpart during post peak
production months from August to October.

The third and fourth most important PTs, -no-6 and 7, 30

are associated with the Temporal component of vs111 and
capture 10.94% and 4.85% of the variability, respectively.
Their Spatial and LSM components are depicted in Fig.11.
The first displays little spatial structure apart from significant
negative values along the east coast of Sweden. This may 35

be due to differences in data resolution before grid trans-
formation but also occurs where C3 grass is the dominant
PFT (all LSMs). All LSM differences have positive weights
except CLM5 – JULES, which is negative but small, and
all differences involving OR_MICT have significantly larger 40

weights than other combinations. Since the temporal compo-
nent is everywhere positive (Fig.9(b)), the net effect is that
OR_MICT > OR_HL > JULES > CLM5 in the red areas
(with a high value north of Lake Ladoga), and this order is
reversed in the green areas. However, the differences between 45

LSMs other than those involving OR_MICT are small.
The Spatial component of PT -no-7 (Fig.11(c)) is

weakly positive except for a very small area near Tromsö in
northern Norway. All the LSM differences involving JULES
have negative weights and have greater magnitude than the 50

other differences, which are all positive, meaning that JULES
> OR_HL > OR_MICT > CLM5 everywhere except near
Tromsö, where this ordering is reversed.

As indicated by Fig.8, the next best PTs (not displayed) are
-no-13, associated with the Spatial component of vs222, 55

-no-9 and 10, associated with the LSM component of
vs111, and -no-19, associated with the LSM component
of vs222. Hence PT -no-13modulates the temporal pattern
of differences depicted in Fig.10 with a distinct temporal pat-
tern that has different positive weights for each of the LSM 60

differences (the contribution from OR_HL - CLM5 is almost
zero and OR_MI – JULES gets the larger positive weight. A
contrast between July (positive weights) and May (negative
weights) stands out clearly from the other months by the size
of its contribution to the variability, for reasons which are not 65

clear. In Fig.10, July and and OR_MI – JULES weights were
close to zero. Because PTs -no-9 and 10 are associated
with the LSM component of vs111, the spatio-temporal ta-
ble given by summing the Spatial x Temporal terms in all
three PTs can be analysed together; this would mainly reveal 70

spatio-temporal differences between OR_HL and the other



14 D.G Leibovici et al.: Spatio-Temporal Variations in LSMs at High Latitudes

(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 9. Best PT (vs111) of the PTA3 decomposition of the 6 normalised differences, representing 43.37% of the variability. In (c), the
labelling CLM5_JUL indicates the difference CLM5-JULES, and similarly for other LSM pairs.

LSMs (see Fig.9(c). However, this combined analysis can-
not be displayed as separate Spatial and Temporal plots.
With the same LSM weights as in Fig.10, PT-no-19 ex-
hibits a clear north-south gradient and a temporal pattern in
which June clearly contributes more to the variability than
the other months. This is similar to what is seen for July in5

PT -no-13, again for unknown reasons. All the rest of the
PTs cumulatively contribute only 10% to the overall variabil-
ity and individually less than 0.8%.

Also analysed was the variability in the quantity
|NPP1−NPP2 | / | NPP1+ NPP2 | but this is not displayed,10

since its main contribution is to show that the large peak near
1 seen in Fig.7 (plot (b)) can mainly be attributed to small
values of CLM5 relative to the other LSMs in winter in the
north of the region.

The analysis in this Section adds significantly to that in 15

Section 4 by providing specific information on the times and
places where the LSMs differ and by how much. However,
in this case no single spatio-temporal pattern strongly domi-
nates the variability so interpretation of the analysis requires
consideration of several such patterns. Nonetheless, the three 20

best PTs capture around 76% of the variability in the LSM
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(a) Spatial dimension

(b) Temporal dimension (c) LSM dimension

Figure 10. Second best PT (vs222) of the PTA3 decomposition of the 6 normalised differences, representing 21.7% of the variability.

differences. The first essentially tells us that over a well-
defined spatial pattern and a clearly ordered temporal pattern
that with a maximum in summer and a minimum in winter,
OR_HL gives different values from the other LSMs, which
are all similar. The second PT principally identifies times and
places where CLM5 differs from the other LSMs, while the5

third does the same for OR_MICT.

6 Climate forcing uncertainty

This section analyses the effects of different GCM drivers on
the NPP estimated by JULES, so is a partial answer to ques-

tion (i) in Section 1. Two global warming scenarios that sta-10

bilise at 1.5°C and 2.0°C above pre-industrial levels by year
2100 were used, with 34 GCMs as climate forcing in JULES
(Comyn-Platt et al., 2018). The ensemble of the GCMs is
taken to represent the uncertainty in climate prediction, from
which one can get an idea of the associated uncertainty in the 15

JULES estimates of NPP. Note however, that this commonly-
used approach to quantifying climate uncertainty is not en-
tirely satisfactory, since it identifies inter-GCM model vari-
ability with the internal uncertainty in climate prediction
(Hawkins and Sutton, 2009; Kay et al., 2015). 20
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(a) Spatial dimension (b) LSM dimension

(c) Spatial dimension (d) LSM dimension

Figure 11. Spatial and LSM components of PTs -no-6 and 7 associated with the Temporal component of vs111 in the PTA3 decom-
position of the 6 normalised differences, representing 10.94% and 4.85% of the variability, respectively.

For each scenario a PTA3 analysis was performed on
a Spatial×Temporal×GCM table. The decompositions
for both the 1.5°C and 2.0°C targets capture almost all
the variation in their first PT (99.15% and 99.16% respec-
tively), hence very similar spatio-temporal patterns of NPP
are produced whichever GCM is used. The spatial patterns5

are shown in Figs.12(a) and 13(a). The temporal and GCM
weights are given as a percentage relative deviation from uni-
form weighting, i.e. 100× (cp – unif)/unif, where cp indi-
cates the weight while unif = 1/

√
1200 for the Temporal

dimension and unif = 1/
√
34 for the GCMs.10

Over the 100 years, all months exhibit an initial increase,
which is sharper for the 2°C scenario, followed by a flatten-

ing out and minor decrease; this decrease sets in around 2070
for the 1.5°C scenario and slightly later for the 2.0°C sce-
nario. The maximum increase from 2000 (indicated on each 15

monthly curve in Figs. 12(b) and 13(b)) is higher in every
month for the 2.0°C scenario, e.g. 20% and 32% in July for
the 1.5°C and 2.0°C case, respectively. The differences be-
tween the GCMs are indicated by histograms of the relative
deviation of the GCM weights from uniform weighting (Figs. 20

12(c) and 13(c)). These differences are up to 7% for the 2.0°C
scenario and 4.5% for the 1.5°C scenario. For both scenar-
ios, the groups of GCMs giving lowest or highest difference
from equal weighting was the same, though the precise or-
dering was different (see Appendix C). If the singular value 25
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associated with this first PT are expressing the same amount
of variability, the latter is 10% higher for the 2.0°C case than
for 1.5°C, which simply expresses the sharper increase of
NPP values produced under a more intense warming.

7 Discussion and conclusion

This paper investigates the uncertainty associated with5

choosing a given LSM and GCM to predict the effects of
climate change on Net Primary Production in northern Eu-
rope. More precisely, it provides a spatio-temporal analysis
that captures the principal similarities and differences be-
tween LSM estimates of NPP, which need to be taken into10

account if these LSMs are to be used to provide scenarios for
applications. Its primary motivation is to provide information
relevant to studying Climate Sensitive Infections (CSIs), but
here the CSI context is used only to reduce the number of
LSMs to those that contain adequate descriptions of key high15

latitude processes. NPP was chosen as a representative, sub-
stantial output variable from any LSM. It is based on a multi-
way data science methodology that extends the SVD of a ma-
trix to a multi-table in order to analyse spatio-temporal vari-
ations between LSMs. This allows quantification of the sim-20

ilarities and differences between the LSMs structured into
spatio-temporal patterns that identify where, when and be-
tween which LSMs they occur, together with analysis of the
variability arising from using different climate forcing mod-
els (GCMs) by then reflecting on the arising uncertainties25

when estimating NP.
Detailed results of each multiway data analysis are given at

the end of each section and we focus here on integrating the
many highlighted aspects of uncertainties arising from com-
paring the 4 LSMs: OR_MICT, OR_HL, CLM5 and JULES.30

Global statistical differences were found between the
LSMs, with OR_MICT exhibiting significantly lower mean
NPP and variability than the other LSMs, and CLM5 produc-
ing a very high proportion of low values associated with the
winter season, particularly in the north of the CLINF region.35

However, all the LSMs tend to agree for higher NPP val-
ues (above the 70% decile), which mainly indicates that they
give similar values in summer. Despite these global differ-
ences, to a first approximation the spatio-temporal behaviour
of all the LSMs could be well-fitted by the tensor product40

of a single spatial and temporal pattern, in which the west
and north of the region exhibited lower NPP values than the
east and south, and there was a strong seasonal pattern. Dif-
ferences between LSMs for this single pattern were fairly
small, with weights lying between 92% and 105% of an uni-45

form weighting of 0.5 or 14% maximum difference between
them. This combined pattern captured around 90% of the
overall variability in simulations covering 16 years for the
whole Fenno-Scandinavian region. Across this time-period,
this first approximation displayed statistically significant in-50

creases in NPP from May to September, with the largest in-

crease in the earlier months. This is likely to be caused by the
growing season starting earlier and lasting longer.

The LSM requiring most adjustment to this first approxi-
mation for an improved fit was OR_HL; this adjustment is in 55

the spatial pattern, decreasing the spatial weights in Norway
and northern Finland and increasing them in Sweden and
southern Finland. The next adjustment, which has no effect
on OR_HL, is to modify the temporal pattern; this particu-
larly improves the fit to CLM5. The approximation achieved 60

with just these adjustments captures 95% of the overall vari-
ation and between 93% and 96% of the variation in the indi-
vidual models. It also has the advantage of being fairly sim-
ple to interpret because OR_HL dominates the first adjust-
ment while CLM5 (and to a lesser extent JULES) dominates 65

the second. Further terms in the approximation yield smaller
gains that tend to be spread more evenly across the LSMs.

While the first analysis provides information on temporal
and spatial patterns characterising the main common struc-
ture in the LSM estimates of NPP, together with how a sys- 70

tematic analysis of how different models diverge from this
pattern, more specific information on how they differ from
each other is gained by analysing their differences. Here no
single pattern dominates the overall variability between the
LSMs, but the three best PTs capture around 76% of the 75

variability in the LSM differences, and can be fairly well in-
terpreted in terms of how individual LSMs differ in space
and time from the others. Successively they show where
and when individually OR_HL, CLM5 and OR_MICT differ
from the other LSMs, and also where different LSMs agree. 80

Moreover, this analysis on differences enabled to add speci-
ficities (geographical and temporal differences) to each LSM,
e.g. OR_HL with a large difference in summer for NPP val-
ues with any other (with similar values) in most parts of Fin-
land and eastern Sweden, and, CLM5 with smaller NPP val- 85

ues than the others in May and June but higher from August
to October. Quantitatively the former representing 43.37% of
variability of the differences and the latter 21.7%.

Besides the main trend of increase of NPP over the 16
years (first analysis), 24% in May and down to 8% in 90

September (see Fig.3(b)), no other noticeable year to year
pattern were identified in both analysis based on compar-
ing the 4 LSMs and in the 100 years horizon analysis with
JULES. The year to year variations were less important than
intra-annual patterns, either seasonal or other months pat- 95

terns. In other words, the monthly patterns were relatively
steady over the 16 years period. However, within the monthly
patterns the between year variations could be very different,
illustrating either relatively steady monthly patterns with dif-
ferences among the LSMs (e.g. in Fig.3), or very variable in- 100

tensity from year to year of the monthly pattern expressed
by a principal tensor, some with similar variability across
months (e.g. Fig.9) or with different levels of uncertainty for
certain months (e.g. in Fig.5, and Fig.10). These various lev-
els of inter-annual variability linked to the effects (i.e. month 105
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(a) Spatial dimension 1.5°C

(b) Temporal dimension 1.5°C (c) GCM dimension 1.5°C

Figure 12. Components of the best principal tensor from the PTA3 analysis of NPP for JULES driven by 34 different GCMs (using IMOGEN)
under the +1.5°C target scenario. For the Temporal and GCM dimensions the percentage relative difference from uniform weighting, 100
× (cp – unif)/unif, of the component weights is plotted, where ‘cp’ and ’unif’ refer to component weights and uniform weighting respectively.
On the Temporal plot the increase for each month between 2000 and the maximum value is indicated as an absolute increase above the
2000 value. The GCM weights are shown as a histogram but individual weights are given in Appendix C.

pattern, spatial and LSM differences) already described are
to modulate the uncertainties associated with LSM choice.

Our analysis of the impact of the choice of GCM on the
simulations of NPP was restricted to runs with JULES out to
2100 driven by 34 different GCMs. This showed that a single
spatio-temporal pattern captured over 99% of the variability5

of NPP in the combined dataset for climate change scenarios
leading to either 1.5°C or 2.0°C atmospheric warming, and

that none of the GCM weightings differed by more than 3%
from uniform weighting (maximum difference of 6%). The
temporal pattern showed increases of NPP up to the 2070s, 10

with small decreases thereafter. Although this analysis was
only carried out for JULES, there is no reason to expect sig-
nificantly different findings for the other LSMs, since they
all use a form of the Farquhar photosynthesis model to de-
rive Gross Primary Production, of which some fraction is al- 15
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(a) Spatial dimension 2°C

(b) Temporal dimension 2°C (c) GCM dimension 2°C

Figure 13. Components of the best principal tensor from the PTA3 analysis of NPP for JULES driven by 34 different GCMs (using IMOGEN)
under the +2°C target scenario. For the Temporal and GCM dimensions the percentage relative difference from uniform weighting, 100 x
(cp – unif)/unif, of the component weights is plotted, where ‘cp’ and ’unif’ refer to component weights and uniform weighting respectively.
On the Temporal plot the increase for each month between 2000 and the maximum value is indicated as an absolute increase above the
2000 value. The GCM weights are shown as a histogram but individual weights are given in Appendix C.

located to NPP. Moreover, this single PT expressing 99% of
variability, highlights a strong effect correlated temporally to
the findings of the first analysis with the 4 LSMs (Fig. 3).
Hence the insensitivity of the simulated NPP to the choice of
GCM is likely to be repeated in the other LSMs.

Returning to the three key questions posed in Section 1:5

(i) How does the choice of the GCM affect the CSI-
relevant outputs of a given LSM?

(ii) For a given GCM, how different are the CSI-relevant
outputs of the different LSMs?

(iii) How do the joint effects of GCM and LSM differences 10

translate into variability in predictions of CSI-relevant
quantities?

The analysis in this paper suggests that, at least for NPP,
we can neglect the effect of different GCMs and need only
deal with question (ii). Quantitative answers are provided to 15
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this question both in terms of spatio-temporal patterns and
differences and similarities of LSMs. However, we have only
considered one of the six variables listed at the start of Sec-
tion 2 that are considered to be of major importance for Cli-
mate Sensitive Infections (CSIs), and may find different be-
haviour for the others. In particular, initial investigation in-5

dicates very different representations of land cover between
the four LSMs and how land cover will evolve under cli-
mate change in the 21st century. This variable is likely to
be the one showing most differences between the LSMs be-
cause it is very much controlled by the PFTs used, how they10

are parametrised, and the rules by which PFTs compete over
time.

Of significant interest would be analysis of multiple vari-
ables and their co-variation. We intended to address this is-
sue in a future paper using the PTAk method used here, since15

this can be readily extended to multiple variables. While this
does not present any methodological difficulties, it will only
become clear how useful this is when we find how easy it is
to interpret the outputs of the analysis.

The next major step is to couple the findings from this pa-20

per (and its extension to other variables) to ecological mod-
els for CSI vectors and statistical epidemiological models in
order to establish the sensitivity of predicted CSI behaviour
under climate change to the choice of GCM and LSM. Cur-
rently only a small number of CSIs have well-developed pre-25

dictive models (notably tularemia (Rydén et al., 2012; An-
dersen and Davis, 2017; Desvars-Larrive et al., 2017); Lyme
disease (Simon et al., 2014; Li et al., 2016)) and these will
provide the basis for such a study. However, CLINF is in pro-
cess of developing more comprehensive statistical CSI mod-30

els at high latitudes, which will lend themselves readily to
combination with the approach adopted in this paper. Be-
sides understanding better the variations from one LSM to
another, geographically and temporally which are important
aspects in CSI models, the methodology developed in this pa-35

per allows some controls on the predictive uncertainty arising
from choosing one LSM. In particular, the variations in CSI
prediction due to the use of different LSMs can be system-
atically analysed as the result of a sequence of progressively
less important deviations from an overall common pattern,40

for NPP as predictor in this paper.

Code and data availability. The analyses were performed using
the R package PTAk (https://CRAN.R-project.org/package=PTAk).
The multi-way data tables used in the paper can be requested
from the first author. CLM5.0 is publicly available through the45

Community Terrestrial System Model (CTSM) git repository
(https://github.com/ESCOMP/ctsm); all model data are archived
and publicly available at the UCAR/NCAR Climate Data Gateway,
https://doi.org/10.5065/d6154fwh.

Appendix A: Contraction operator and orthogonal50

projector

A1 Contraction

For X and Y two multi-way data tables n×p×q, their inner
product is defined as <X,Y >=

∑
ijkXijkYijk. The con-

traction operation .. is the extension to tensors of the linear 55

combination of the columns or rows of a matrix to give a vec-
tor. If X is a tensor of order 3, equivalent to a table n×p×q,
then with the variables (u,v,w), vectors of length n, p and
q, respectively, the contraction X..u is a p× q matrix with
(X..u)jk =

∑
iXijkui, the contraction X..v is a n× q ma- 60

trix with (X..v)ik =
∑
jXijkvj , and X..w is a n× p matrix

with (X..w)ij =
∑
kXijkwk. Contacting X successively by

two vectors gives for example (X..u)..v =
∑
ijXijkuivj =∑

ijXijk(u⊗v)ij =X..(u⊗v) andX..(u⊗v⊗w) is equiv-
alent to the inner product for the multi-way data tables. 65

A2 Orthogonal projector

Without loss of generality let u, v andw be unit vectors of di-
mensions n, p and q respectively. IfX is a tensor represented
by an n× p× q array, one can write X = (a⊗ b⊗ c)β+ ε=
P(a⊗b⊗c)X+P(a⊗b⊗c)⊥X , where Pa⊗b⊗c = (a⊗ b⊗ c)β is 70

the linear orthogonal projection of X onto a⊗ b⊗ c and
P(a⊗b⊗c)⊥X =X−(a⊗b⊗c)β. From the orthogonality con-
strains, β =X..(a⊗b⊗c), so Pa⊗b⊗cX = (a⊗b⊗c)X..(a⊗
b⊗ c).

Moreover, if X = (x⊗ y⊗ z) then Pa⊗b⊗cX = Pax⊗ 75

Pby⊗Pcz. This property extends easily to any subspace ofE,
F , and G, i.e PE1

⊗PF1
⊗PG1

is equivalent to PE1⊗F1⊗G1
.

Appendix B: List of plant functional types (PFTs) used
in the LSMs

This appendix lists the PFTs for the versions of the 80

LSMs used in this paper (see section 1.2). JULES,
ORCHIDEE_MICT (OR_MICT), ORCHIDEE-HL-Veg
(OR_HL) and CLM5 have 14, 13, 16 and 15 PFT PFTs,
respectively. The version of JULES used for the 34 simula-
tions over 100 years used 10 PFTs (where C3 or C4 crops or 85

pastures are set as C3 or C4 grass).

Appendix C: GCM’s Weightings from the analysis in
section 6

The acronyms of the 34 GCM are derived from the infor-
mation given in "Table SI.1 CMIP5 Models considered for 90

inclusion in the IMOGEN ensemble" in the supplementary
information of the paper Comyn-Platt et al. (2018).
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Table B1. Table of plant functional types relevant in high latitude
calculations for each LSM

PFTs & other
tiles
bor=boreal
tem=temperate

JULES OR_
MICT

OR_HL CLM5

Bare ground 1 1 1 1

Broadleaf
Deciduous

1 1 tem, 1
bor

1 tem, 1
bor

1

Temperate
Broadleaf
Evergreen

1 1 1 1

Needleleaf
Deciduous

1 1 1 1

Needleleaf
Evergreen

1 1 1 1

Deciduous
Shrubs

1 1 1 bor,
broadleaf)

1 bor, 1
tem

Evergreen
Shrubs

1 0 1 bor
broadleaf

1 tem

C3 grass 1 1 1 1

C4 grass 1 1 1 1

C4 pasture 1 1 1 1

Urban (tile) 1 1 1 1

Inland water
(tile)

1 1 1 1

Land ice (tile) 1 1 1 1

C3 Arctic
grass

0 0 1 1

Non-vascular
plants

0 0 1 0

signed the methodologies, performed the analyses and drafted the 95
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Table C1. Rounded GCM component weights relative to uniform
weighting from Fig.12 and Fig.13

GCM acronym 1.5° 2°

CEN_CMCC_MOD_CMCC-CMS -2 -3
CEN_CSIRO-QCCCE_MOD_CSIRO-Mk3-6-0 -2 -2
CEN_IPSL_MOD_IPSL-CM5A-MR -2 -3
CEN_MPI-M_MOD_MPI-ESM-LR -2 -2
CEN_MPI-M_MOD_MPI-ESM-MR -2 -3
CEN_BCC_MOD_bcc-csm1-1 -1 -1
CEN_CNRM-CERFACS_MOD_CNRM-CM5 -1 -2
CEN_INM_MOD_inmcm4 -1 0
CEN_MIROC_MOD_MIROC-ESM-CHEM -1 -1
CEN_MIROC_MOD_MIROC-ESM -1 -1
CEN_NASA-GISS_MOD_GISS-E2-R-CC -1 0
CEN_NASA-GISS_MOD_GISS-E2-R -1 0
CEN_NCAR_MOD_CCSM4 -1 -2
CEN_NSF-DOE-NCAR_MOD_CESM1-BGC -1 -1
CEN_BCC_MOD_bcc-csm1-1-m 0 -1
CEN_BNU_MOD_BNU-ESM 0 0
CEN_CCCma_MOD_CanESM2 0 -1
CEN_IPSL_MOD_IPSL-CM5A-LR 0 -1
CEN_MRI_MOD_MRI-CGCM3 0 1
CEN_NASA-GISS_MOD_GISS-E2-H 0 0
CEN_CSIRO-BOM_MOD_ACCESS1-0 1 1
CEN_CSIRO-BOM_MOD_ACCESS1-3 1 1
CEN_MOHC_MOD_HadGEM2-CC 1 1
CEN_MOHC_MOD_HadGEM2-ES 1 1
CEN_NASA-GISS_MOD_GISS-E2-H-CC 1 1
CEN_NOAA-GFDL_MOD_GFDL-CM3 1 1
CEN_NOAA-GFDL_MOD_GFDL-ESM2M 1 1
CEN_NSF-DOE-NCAR_MOD_CESM1-CAM5 1 1
CEN_NSF-DOE-NCAR_MOD_CESM1-WACCM 1 1
CEN_IPSL_MOD_IPSL-CM5B-LR 2 2
CEN_MIROC_MOD_MIROC5 2 3
CEN_NCC_MOD_NorESM1-M 2 3
CEN_NCC_MOD_NorESM1-ME 2 3
CEN_NOAA-GFDL_MOD_GFDL-ESM2G 2 3

by the Leverhulme Trust through a Leverhulme Research Centre
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