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Abstract 

 

Spatial and temporal variations in atmospheric carbon dioxide (CO2) reflect large-scale net carbon 

exchange between the atmosphere and terrestrial ecosystems.  Soil heterotrophic respiration (HR) 

is one of the component fluxes that drive this net exchange but, given observational limitations, it 20 

is difficult to quantify this flux or to evaluate global-scale model simulations thereof. Here, we 

show that atmospheric CO2 can provide a useful constraint on large-scale patterns of soil 

heterotrophic respiration. We analyze three soil model configurations (CASA-CNP, MIMICS and 

CORPSE) that simulate HR fluxes within a biogeochemical testbed that provides each model with 

identical net primary productivity (NPP) and climate forcings. We subsequently quantify the 25 

effects of variation in simulated terrestrial carbon fluxes (NPP and HR from the three soil testbed 

models) on atmospheric CO2 distributions using a three-dimensional atmospheric tracer transport 

model. Our results show that atmospheric CO2 observations can be used to identify deficiencies in 

model simulations of the seasonal cycle and interannual variability in HR relative to NPP. In 

particular, the two models that explicitly simulated microbial processes (MIMICS and CORPSE) 30 

were more variable than observations at interannual timescales and showed a stronger than 

observed temperature sensitivity. Our results prompt future research directions to use atmospheric 

CO2, in combination with additional constraints on terrestrial productivity or soil carbon stocks, 

for evaluating HR fluxes. 

 35 
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1. Introduction 

Atmospheric CO2 observations reflect net exchange of carbon between the land and oceans with 

the atmosphere. Observations of atmospheric CO2 concentration have been collected in situ since 

the late 1950s (Keeling et al., 2011), and global satellite observations have become available within 40 

the last decade (Crisp et al., 2017; Yokota et al., 2009).  The high precision and accuracy of in situ 

observations and the fact that these measurements integrate information about ecosystem carbon 

fluxes over a large spatial footprint make atmospheric CO2 a strong constraint on model 

predictions of net carbon exchange (Keppel-Aleks et al., 2013). For example, at seasonal 

timescales, atmospheric CO2 can be used to evaluate the growing-season net flux, especially in the 45 

Northern Hemisphere (Yang et al., 2007). At interannual timescales, variations in the atmospheric 

CO2 growth rate are primarily driven by changes in terrestrial carbon fluxes in response to climate 

variability (Cox et al., 2013; Humphrey et al., 2018; Keppel-Aleks et al., 2014). Recent studies 

have hypothesized that soil carbon processes represent one of the key processes in driving these 

interannual variations (Cox et al., 2013; Wunch et al, 2013). Moreover, soil carbon processes 50 

represent one of the largest uncertainties in predicting future carbon-climate feedbacks, in part 

because non-permafrost soils contain an estimated 1500 to 2400 PgC (Bruhwiler et al., 2018), at 

least a factor of three larger than the pre-industrial atmospheric carbon reservoir.   

Soil heterotrophic respiration (HR), the combination of litter decay and microbial 

breakdown of organic matter, is the main pathway for CO2 release from soil carbon pools to the 55 

atmosphere. Currently, insights on HR rates and controls are mostly derived from local-scale 

observations. Ecosystem respiration, or the combination of autotrophic and heterotrophic 

respiration fluxes, can be backed out from eddy covariance net ecosystem exchange observations 

at spatial scales around 1 km2, but with substantial uncertainty (Baldocchi 2008; Barba et al., 2018; 

Lavigne et al., 1997). The bulk of ecosystem respiration fluxes comes from soils, but soil 60 

respiration fluxes from chamber measurements can exceed ecosystem respiration measurements 

from flux towers, highlighting uncertainties in integrating spatial and temporal variability in 

ecosystem and soil respiration measurements (Barba et al. 2018).  Further partitioning of soil 

respiration measurements into autotrophic and heterotrophic components to derive their 

appropriate environmental sensitivities remains challenging, but critical to determining net 65 

ecosystem exchange of CO2 with the atmosphere (Bond-Lamberty et al., 2004, 2011, 2018). 

Additionally, because fine-scale variations in environmental drivers such as soil type and soil 
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moisture affect rates of soil respiration, it is difficult to scale local respiration observations to 

regional or global levels (Zhao et al., 2017). Specifically, soil heterotrophic respiration (HR), the 

combination of litter decay and microbial breakdown of organic matter, is the main pathway for 70 

CO2 release from soil carbon pools to the atmosphere. Currently, insights on HR rates and controls 

are mostly derived from local-scale observations. Soil chamber observations can be used to 

measure soil respiration at spatial scales on the order of 100 cm2 (Davidson et al., 2002; Pumpanen 

et al., 2004; Ryan and Law, 2005).  

Local-scale observations reveal that HR is sensitive to numerous climate drivers, including 75 

temperature, moisture, and freeze-thaw state (Baldocchi, 2008; Barba et al., 2018; Lavigne et al., 

1997). Because of these links to climate, predicting the evolution of HR and soil carbon stocks 

within coupled Earth system models is necessary for climate predictions. Within prognostic 

models, heterotrophic respiration has been represented as a first-order decay process based on 

precipitation, temperature, and a linear relationship with available substrate (Jenkinson et al., 1990; 80 

Parton, 1996, Randerson et al., 1996). However, such representations may neglect key processes 

for the formation of soil and persistence of soil organic carbon (SOC) stocks (Lehmann and Kleber 

2015; Schmidt et al., 2011; Rasmussen et al., 2018). More recently, models have begun to 

explicitly represent microbial processes into global-scale simulations of the formation and turnover 

of litter and SOC (Sulman et al., 2014; Wieder et al., 2013) as well as to evaluate microbial trait-85 

based signatures on SOC dynamics (Wieder et al., 2015). These advances in the representation of 

SOC formation and turnover increase capacities to test emerging ideas about soil C persistence 

and vulnerabilities, but also increase the uncertainties in how to implement and parameterize these 

theories in models (Bradford et al., 2016; Sulman et al., 2018; Wieder et al., 2018).  

Given these uncertainties, developing methods to benchmark model representations of HR 90 

fluxes is an important research goal (Bond-Lamberty et al., 2018) as model predictions for soil 

carbon change over the 21st century are highly uncertain (Schuur et al., 2018; Todd-Brown et al., 

2014). A common method for model evaluation is to directly compare spatial or temporal 

variations in model properties (e.g., leaf area index) or processes (e.g., gross primary productivity) 

against observations (Randerson, 2009; Turner et al., 2006). Such comparisons assess model 95 

fidelity under present day climate, but may not ensure future predictivity of the model. The use of 

functional response metrics, which evaluate the relationship between a model process and an 

underlying driver, may ensure that the model captures the sensitivities required to predict future 
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evolution (Collier et al., 2018, Keppel-Aleks et al., 2018). A third benchmarking approach is to 

use hypothesis-driven approaches or experimental manipulations to evaluate processes (Medlyn et 100 

al., 2015). It is likely that these methods will have maximum utility when combined within a 

benchmarking framework (e.g., Collier et al., 2018; Hoffman et al., 2017) since they evaluate 

different aspects of model predictive capability.  

Although a lack of direct respiration observations remains a gap for model evaluation, 

indirect proxies for respiration may be obtained from atmospheric CO2, which reflects the balance 105 

of all carbon exchange processes between the atmosphere and biosphere. Previous work has shown 

that atmospheric CO2 observations are inherently sensitive to HR across a range of timescales. For 

example, at seasonal timescales, improving the parameterization for litterfall in the CASA model 

improved phasing – i.e., the timing of seasonal maxima, minima, and inflection points – for the 

simulated atmospheric CO2 annual cycle (Randerson et al., 1996). At interannual timescales, 110 

variations in the Northern Hemisphere CO2 seasonal minimum are hypothesized to arise from 

variations in respiration (Wunch et al., 2013) and variations in the growth rate have been linked to 

tropical respiration and its temperature sensitivity (Anderegg et al., 2015). Here, we hypothesize 

that atmospheric CO2 data can be used to evaluate simulations of soil heterotrophic respiration and 

differentiate between the chemical and microbial parameterizations used in state-of-the-art models. 115 

In this analysis, we simulate atmospheric CO2 distributions using three different soil model 

representations that are part of a soil biogeochemical testbed (Wieder et al., 2018). The three sets 

of HR fluxes, shown in Wieder et al., (2018) to have distinct patterns at seasonal timescales, are 

used as boundary conditions for a 3-dimensional atmospheric transport model. We evaluate 

temporal variability in the resulting CO2 simulations against observations, quantify the functional 120 

relationships between CO2 variability and temperature variability, and quantify the regional 

influences of land carbon fluxes on global CO2 variability. The methods and results are presented 

in section 2 and 3, and discussion of the implications for benchmarking and our understanding of 

drivers of atmospheric CO2 variability are presented in section 4.   

 125 

2. Data and Methods 

We used a combined biosphere-atmosphere modeling approach to diagnose the signatures of land 

fluxes on atmospheric CO2 (Fig. 1). At the heart of this approach is comparison of simulated 
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atmospheric CO2 owing to individual processes and regions to atmospheric CO2 observations.  The 

observations and models used are described below.    130 

 

2.1 Observations and timeseries analysis 

For this analysis we use reference CO2 measurements reported in parts per million (ppm) from 34 

marine boundary layer sites (MBL, Table S1) within the NOAA Earth System Research 

Laboratory sampling network (ESRL, Fig. 2; Dlugokencky et al., 2016). These sites were chosen 135 

to minimize the influence of local anthropogenic emissions and had at least 50% data coverage 

over the 29-year period between 1982 and 2010. Following the approach in Keppel-Aleks et al., 

2018, we aggregate site specific CO2 by averaging measurement timeseries across six latitude 

zones (Fig. 2, solid lines): Northern Hemisphere high latitudes (NHL: 61 to 90°N), midlatitudes 

(NML: 24 to 60°N), tropics (NT: 1 to 23°N), Southern Hemisphere tropics (ST: 0 to 23°S), and 140 

two Southern extratropics bands: the southern midlatitudes (SML, 24-60 S), and the southern high 

latitudes (SHL, 61-90 S). The global mean CO2 timeseries is constructed as an area-weighted 

average of these six atmospheric zones. 

We detrend all timeseries data using a third-order polynomial fit to remove the impact of 

annually increasing atmospheric concentration in our seasonal and interannual calculations (SFig. 145 

1). Using the detrended CO2 data, we calculate a period median annual cycle by averaging all 

observations for a given calendar month. To calculate CO2 interannual variability (CO2 IAV), the 

median annual cycle is subtracted from the detrended timeseries (SFig. 1). The magnitude of CO2 

IAV is calculated as one standard deviation on the detrended, deseasonalized timeseries, unless 

otherwise noted. Model simulated CO2 seasonality and interannual variability is calculated using 150 

the same methods. 

 

2.2 Soil testbed representations of heterotrophic respiration 

We used a soil biogeochemical testbed (Fig. 1; Wieder et al., 2018), which generates daily 

estimates of soil carbon stocks and fluxes at global scale without the computational burden of 155 

running a full land model. All testbed fluxes are output in grams of carbon per meter square at a 

daily temporal resolution and then converted to petagrams (Pg C, over a region). The testbed is a 

chain of model simulations where soil models with different structures can be run under the same 

forcing data, including the same gross primary productivity (GPP) fluxes, soil temperature, and 
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soil moisture. The testbed produces its own estimates of net primary production (NPP), the 160 

difference between GPP and autotrophic respiration (AR; Eqn. 1). Each testbed soil model in this 

analysis produces unique gridded heterotrophic respiration (HR) values based on its own 

underlying mechanism and soil C stocks. Currently, the testbed is run with a carbon-only 

configuration.  

For the simulations described in this paper, the chain starts with the Community Land 165 

Model 4.5 (CLM4.5; Oleson et al., 2013), run with satellite phenology with CRU-NCEP climate 

reanalysis as forcing data (Jones et al., 2013; Kalnay et al., 1996; Le Quéré et al., 2018). In this 

simplified formulation of CLM, a single plant functional type is assumed in each 2° by 2° gridcell. 

Daily values for gross primary productivity (GPP), soil moisture, soil temperature, and air 

temperature from CLM4.5 are passed to the Carnegie-Ames Stanford Approach terrestrial model 170 

(CASA-CNP; Potter et al., 1993; Randerson et al., 1996; Randerson et al., 1997; Wang et al., 

2010). The CASA-CNP plant model uses the data from CLM4.5 to calculate NPP and carbon 

allocation to roots, wood, and leaves. This module also determines the timing of litterfall. Finally, 

metabolic litter, structural litter, and decomposing coarse woody debris (CWD) are then passed to 

the soil biogeochemical models to simulate HR.   175 

From the testbed output we calculate the net ecosystem productivity (NEP; Eqn. 3). In the 

analysis presented here, CASA NPP was used across the testbed ensemble in the NEP calculation, 

thus highlighting differences in the timing and magnitude of HR fluxes from the individual soil 

models. From a land perspective (positive NEP fluxes into land), NEP is calculated as NPP – HR, 

where respiration release of CO2 decreases net carbon gains through photosynthesis. Here, we use 180 

an atmospheric perspective for NEP (positive NEP fluxes into the atmosphere) by reversing the 

sign on the NPP flux and taking HR as positive (Eqn. 3).  

 

𝑁𝑃𝑃 = 𝐺𝑃𝑃 − 𝐴𝑅                (1) 

𝑁𝐸𝑃 =  𝐻𝑅 + (−𝑁𝑃𝑃)      (2)  185 

 

The three soil models make distinct assumptions about microbial processes. More details 

regarding these formulations and their implementation in the testbed are found in Wieder et al. 

(2018), but we provide brief descriptions here. The CASA-CNP soil model computes first-order, 

linear decay rates modified by soil temperature and moisture, implicitly representing microbial 190 
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activity and soil carbon turnover through a cascade of organic matter pools (CASA: Randerson et 

al., 1997; CASA-CNP: CASA carbon cycling with additional nitrogen, and phosphorus cycling, 

Wang et al., 2010). These include metabolic and structural litter, as well as a fast, slow, and passive 

soil carbon pools. The Microbial-Mineralization Carbon Stabilization model (MIMICS; Wieder et 

al., 2014; Wieder et al., 2015) explicitly represents microbial activity with a temperature-sensitive 195 

reverse Michaelis-Menten kinetics (Buchkowski et al., 2017; Moorhead and Weintraub, 2018) but 

has no soil moisture controls. The decomposition pathway is set up with two litter pools (identical 

to those simulated by CASA-CNP), three soil organic matter pools (available, chemically and 

physically protected), and two microbial biomass pools for copiotrophic (fast) and oligotrophic 

(slow) microbial functional groups. The Carbon, Organisms, Rhizosphere, and Protection in the 200 

Soil Environment model (CORPSE) is also microbially explicit and uses reverse Michaelis-

Menten kinetics, but it assumes different microbial and soil carbon pools. Surface litter and soil C 

pools are considered separately, but only soil C has a parallel set of physically protected pools that 

are isolated from microbial decomposition. CORPSE includes a temperature dependent Maximum 

Reaction Velocity (Vmax) parameter, but also includes a term for the soil moisture controls on 205 

decomposition rates that uses volumetric liquid soil water content. For all three models, soil texture 

inputs were also derived from the CLM surface data set (Oleson et al., 2013). We acknowledge 

that one potential limitation of the approach is a lack of vertical resolution in terms of temperature 

or frozen fraction of soil moisture (Koven et al., 2013). Overall, while the testbed approach 

contains necessary simplifications, it provides the ability to query the role of model structure, 210 

including assumptions about the number of soil carbon pools, the role of microorganisms, and the 

sensitivity to environmental factors, in driving HR flux differences when NPP and environmental 

controls are held in common.  

The testbed fluxes are used in two ways: first, we analyze monthly-averaged, regional 

fluxes for net primary production (NPP) from CASA-CNP and HR simulated by CASA-CNP, 215 

CORPSE and MIMICS. Second, we use the raw daily fluxes as boundary conditions for global 

GEOS-Chem runs to simulate the influence of these fluxes on atmospheric CO2, as described in 

the following section.   

 

2.3 GEOS-Chem atmospheric transport modeling of CO2  220 
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We simulate the imprint of the testbed fluxes on atmospheric CO2 using GEOS-Chem, a 

3-D atmospheric transport model. We run the GEOS-Chem v12.0.0 CO2 simulation between 1980 

and 2010 at a resolution of 2.0° in latitude by 2.5° in longitude with 47 vertical levels. The model 

is driven by hourly meteorological data from the Modern-Era Retrospective analysis for Research 

and Application version 2 (MERRA2) reanalysis data (Gelaro et al., 2017; 225 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), with the dynamic timestep set to be 600 

seconds. The model is initialized with globally-uniform atmospheric CO2 mole fraction equal to 

350 ppm.  The testbed fluxes from 1980 to 2010 are used for land emissions to simulate the imprint 

of these different soil model configurations on atmospheric CO2 (Fig. 1). In our simulations, HR 

and NPP fluxes were separated into the five regions listed above (NHL, NML, NT, ST, SE) so that 230 

the influence of carbon fluxes originating from these individual regions on global atmospheric CO2 

mole fraction could be quantified. We initialized separate species of CO2 in the atmospheric model, 

one for each flux (HR or NPP) and region (NHL, NML, etc.). Since we considered four fluxes 

(CASA NPP and three types of HR) originating in five regions, we simulated a total of 20 species. 

These species were tracked throughout the simulation as their spatiotemporal distribution changed 235 

due to the combined influence of CO2 fluxes at the surface and atmospheric weather. Although 

these species are simulated individually, we can simply sum the regional atmospheric species for 

a given flux (e.g., CASA HR) to determine the atmospheric CO2 arising from all fluxes over the 

globe. We also simulated the fossil and ocean imprint on atmospheric CO2 using boundary 

conditions from CO2 CAMS inversion 17r1 240 

(https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-

1979-2017-v1_201807_v1-1.pdf). However, at the temporal scales of this analysis, ocean and 

fossil fuel fluxes had a much smaller influence on regional patterns of atmospheric CO2 than did 

land fluxes. Across the six latitude bands, the detrended CO2
NEP annual amplitude ranges from a 

factor of 1.5 (in the tropics) to an order of magnitude larger (at high latitudes) than CO2 from ocean 245 

fluxes and fossil fuel emissions. Likewise, the IAV from fossil and ocean-derived CO2 was at most 

25% that of NEP-derived CO2 at most latitude bands. These results are consistent with previous 

studies that have demonstrated that NEP drives most of the atmospheric CO2 seasonality (> 90%; 

Nevison et al., 2008; Randerson et al., 1997) and interannual variability (e.g., Rayner et al., 2008; 

Battle et al., 2000).  Given that patterns of IAV in ocean and fossil CO2 partially cancel each other 250 

and the large uncertainty in ocean fluxes, we choose to omit these CO2 species from our analysis. 

https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-1979-2017-v1_201807_v1-1.pdf
https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-1979-2017-v1_201807_v1-1.pdf
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We discard the first two years of the atmospheric simulations for model spin-up, and we 

analyze the monthly average model outputs for the period 1982–2010. We sample the gridded 

atmospheric simulation output at the 34 marine boundary layer (MBL) sites identified in section 

2.1, using the 3rd vertical level to minimize influence of land-atmosphere boundary layer dynamics. 255 

We then calculate the latitude zone average, median annual cycle and interannual variability using 

the methods described for CO2 observations (see section 2.1). Averaging CO2 from all sites within 

a latitude band is consistent with our hypothesis that atmospheric CO2 may provide constraints on 

large-scale patterns of heterotrophic respiration, but individual sites may be too heavily influenced 

by local characteristics not accounted for by the testbed fluxes. As such, averaging simulated and 260 

observed CO2 across latitude zones smooths local information while retaining information about 

regional scale fluxes.  

Throughout the manuscript, we refer to CO2 originating from these NPP and HR 

component fluxes as CO2
NPP and CO2

HR, respectively. We use a sign convention for the fluxes 

whereby a positive value indicates a source of carbon to the atmosphere, which means we can 265 

combine the CO2 tracers from NPP and HR to calculate the expected atmospheric variation owing 

to NEP using (Eqn. 3): 

 

𝐶𝑂2
𝑁𝐸𝑃 = 𝐶𝑂2

𝐻𝑅 + 𝐶𝑂2
𝑁𝑃𝑃        (3) 

 270 

We note that the net CO2 response from the model (i.e., CO2
NEP) is approximately equivalent to 

observations in terms of seasonal and interannual variations, although we neglect ocean fluxes and 

emissions from fossil fuels, land use and land cover change, and disturbance. In the results below, 

the subscript notation will be used to denote the testbed ensemble sources. For example, CO2
HR 

simulated from CORPSE fluxes is defined as CO2
CORPSE HR, similarly for CO2

CORPSE NEP.  275 

 

2.4 Global temperature sensitivity and separation of regional influences 

For insight on a functional climate response, we investigate the global temperature 

sensitivity of the atmospheric CO2 growth rate and the testbed ensemble fluxes. Rates of change 

were derived from monthly and annual timeseries to calculate the temperature sensitivity of the 280 

testbed fluxes, the modeled CO2, and the observed CO2 values. The CO2 growth rate anomaly was 

calculated as the difference between timestep n and n-1 in both the monthly and annual CO2 IAV 
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timeseries. As a result of this technique, the monthly CO2 growth rate anomalies were centered on 

the first day of the corresponding months. To compare flux information with CO2 growth rate 

anomalies, daily testbed flux timeseries were averaged to monthly resolution and then interpolated 285 

by averaging between months to center values on the first day of each month. 

Following Arora et al. (2013), we calculate temperature sensitivity (γ) using an ordinary 

linear regression (OLR). We calculate OLR for the interannual variability timeseries of CASA-

CNP soil temperature (T IAV) against 1) atmospheric CO2 growth rate anomalies, and 2) land flux 

IAV (see section 2.2). For atmospheric CO2 growth rate anomalies, each timeseries was converted 290 

from ppm y-1 to PgC y-1 based on the global mass of atmospheric dry air. Thus, all global 

temperature sensitivity values are reported in units of PgC y-1 K-1. The global temperature 

sensitivity value for the observed CO2 growth rate anomaly was calculated for 1982 to 2010 using 

ESRL CO2 observations and the Climatic Research Unit’s gridded temperature product (CRU TS4; 

Jones et al., 2012), which is derived from interpolated ground station measurements. 295 

We also assess the influence of individual regions on the global mean signal for both 

component land fluxes (NPP, HR) and simulated atmospheric CO2 (CO2
NPP, CO2

HR, CO2
NEP). We 

first quantify the magnitude of variability in each region relative to the magnitude of global 

variability (σREL) as the ratio of regional IAV standard deviation to global IAV standard deviation. 

This ratio is calculated for monthly flux IAV from each of the five flux regions and for the global-300 

mean CO2 timeseries that arises from fluxes in each of the five flux regions (e.g., the global CO2 

response to NHL fluxes, or the global CO2 response to NML fluxes, etc.). The value of σREL has a 

lower bound of 0, which would indicate that a region contributes no IAV, but has no upper bound, 

since a value greater than 1 simply indicates that the fluxes in a given region are more variable 

than global fluxes. 305 

We note that the timing of IAV in a given region may be independent of IAV in other 

regions, and thus may or may not be temporally in-phase with global IAV. We therefore also 

calculate correlation coefficients (r) for the timeseries of regional flux IAV and CO2 IAV with the 

global signal. Thus, if an individual region were responsible for all observed global flux or CO2 

variability, it would have both σREL and r values equal to 1 in this comparison. The value for r will 310 

be small if a regional signal is not temporally coherent with the global signal, even if the magnitude 

of variability is high. 
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3. Results 

3.1 Seasonal imprint of heterotrophic respiration 315 

Our evaluation of CO2 simulated using testbed fluxes revealed that all testbed models 

overestimated the mean annual cycle amplitude of atmospheric CO2 observations. In the Northern 

Hemisphere, the bias was largest for MIMICS, as the CO2
MIMICS NEP amplitude was overestimated 

by up to 100% (Fig. 3). The mismatch was smallest in CO2
CORPSE NEP, which was within 70% of 

the observed annual cycle amplitude where CORPSE simulates the largest seasonal HR fluxes 320 

(Fig. 3a-c, Table 1). Within the modeled carbon dioxide concentrations resulting from land fluxes, 

CO2
NPP and CO2

HR, show largest seasonality in the NHL, with seasonal amplitudes decaying 

toward the tropics and Southern Hemisphere. In the NHL, the peak-to-trough amplitude of CO2
NPP 

is 39±2 ppm, with a seasonal maximum in April and a seasonal minimum in August (Fig. 4a; note, 

this CO2
NPP peak reflects the sign reversal in the driving NPP flux (section 2.3). The seasonal 325 

cycles for CO2
HR simulated from all testbed models are out of phase with that of CO2

NPP, and there 

are large amplitude differences in CO2
HR among the model ensemble members. Specifically, the 

NHL amplitude of CO2
CORPSE HR is 28±3 ppm, while the amplitudes for CO2

MIMICS HR and CO2
CASA-

CNP HR are only 17±1 ppm, accounting for about 40-70% of the amplitude from CO2
NPP (Table 1). 

However, in all latitude bands, the largest CO2
HR amplitude comes from the microbially explicit 330 

model – CORPSE for the Northern Hemisphere. In the Southern Hemisphere extratropics, the 

amplitudes for all components were less 3 ppm (Table 1).  

The three soil carbon models in the testbed impart different fingerprints on atmospheric 

CO2 variability. Specifically, the phasing of CO2
HR is an important driver of the overall comparison 

between CO2
NEP and observed CO2 seasonality (Fig. 3). When the contributions of NPP and HR 335 

seasonality are considered together (i.e., CO2
HR + CO2

NPP), the simulated amplitude of CO2
NEP is 

larger than the observed CO2 across all latitude bands (Fig. 3). The largest mismatch is in the NHL 

zone, where the observed mean annual cycle is 15±0.9 ppm, while the peak-to-trough CO2
NEP 

ranges from 23±1.3 ppm for CORPSE to 33±1.4 ppm for MIMICS (Fig. 3a). The smaller CO2
NEP 

amplitude simulated by CORPSE is due to the large CO2
HR seasonality that counteracts the 340 

seasonality in NPP (Fig. 4a-b). Furthermore, CO2
MIMICS HR and CO2

CASA-CNP HR have similar 

amplitudes in the NHL (Fig. 4a; Table 1), but the CO2
NEP amplitude from these two models differs 

(33±1.2 ppm versus 26±1 ppm, respectively; Fig. 3a; Table 1). This occurs because CO2
MIMICS HR 

peaks one-month later than CO2
CASA-CNP HR, and has a zero-crossing that is more closely aligned 
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with the trough of CO2
NPP (Fig. 4a), leading to the larger amplitude in CO2

MIMICS NEP (Fig. 3a; 345 

Table 1). Although the amplitude mismatch decreases towards the south (Fig. 3b-f), the overall 

bias in the Northern Hemisphere suggests that either the seasonality of NPP is too large, or that all 

testbed models underestimate the seasonality of HR. Within the ST region, ensemble CO2
HR 

minima are opposite to that in CO2
NPP, leading to a small annual cycle in simulations, consistent 

in magnitude with that of the observations (Figs. 3d, 4d). 350 

 

3.2 Interannual imprint of heterotrophic respiration 

The testbed ensemble reasonably simulates the magnitude and timing of interannual 

variability (IAV) compared with CO2 observations (Fig. 5). Across the six latitude bands analyzed, 

simulated CO2
NEP IAV generally falls within one standard deviation of the median variation from 355 

observations for most of the study period (Fig. 5). Taking a closer look at the CO2 from the 

component fluxes (NPP and HR), across all six latitude bands, the CO2
NPP IAV standard deviation 

is between 0.9 and 1.1 ppm for component fluxes (Fig. 6b). CO2
CASA-CNP HR IAV shows similar 

standard deviation as CO2
NPP IAV, whereas the standard deviations of CO2

CORPSE HR and CO2
MIMICS 

HR range from 0.7-1.4 ppm and 0.5-1.1 ppm, respectively (Fig. 6b).  360 

Combining the CO2 responses from component fluxes to CO2
NEP reveals a latitudinal 

gradient in IAV standard deviation similar to that of ESRL observations, with largest standard 

deviation found in the northern extratropics (Fig. 6a). Among the three testbed models, the 

standard deviation of CO2
CASA NEP agrees best with observations across all latitude bands (CO2

CASA 

NEP: 0.5-0.9 ppm; ESRL: 0.6-1.0 ppm; Fig. 6a). CO2
CORPSE NEP overestimates IAV by up to 30% in 365 

NHL and NML, but agrees better with observations in the tropics and Southern Hemisphere. 

CO2
MIMICS NEP overestimates IAV standard deviations across all latitude bands (Fig. 6a). 

Interestingly, in the NHL, the overestimation is 20% even though CO2
MIMICS HR shows similar IAV 

as CO2
NPP (both 1.1 ppm; Fig. 6b). This suggests that the atmospheric CO2 diagnostic for IAV, 

like that for amplitude, is critically sensitive to the phasing of IAV in heterotrophic respiration 370 

relative to the IAV of NPP. 

Both global NPP and HR fluxes are sensitive to temperature variations at interannual 

timescales, with increased build-up of CO2 in the atmosphere at higher temperatures, in part 

because the rate of HR increases at higher temperature and in part because most latitude bands 

show a reduction in NPP at above-average temperatures. For CASA-CNP, the temperature 375 
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sensitivity (γ) for globally integrated NPP and HR fluxes is 2.5 PgC yr-1 K-1 and 1.7 PgC yr-1 K-1; 

respectively (Fig. 7b). The temperature sensitivity of HR was higher for the microbially explicit 

models: 2.1 PgC yr-1 K-1 for CORPSE and 4.2 PgC yr-1 K-1 for MIMICS (Fig. 7b). For any given 

testbed flux (NPP, HR, or NEP), the temperature sensitivity of the resulting global mean CO2 

growth rate anomaly is higher than that of the underlying flux IAV. For example, the temperature 380 

sensitivity of the globally integrated NPP flux IAV (γNPP) is 2.5 PgC yr-1 K-1 whereas γCO2
NPP is 

3.2 PgC yr-1 K-1. The apparent amplification of the temperature sensitivity was even larger for HR. 

For example, the temperature sensitivity of MIMICS HR IAV (γHRMIMICS) was 4.2 PgC yr-1 K-1, 

whereas γCO2
MIMICS HR was 7.7 PgC yr-1 K-1 (Fig. 7b). The simulated γCO2

NEP simulated by the 

testbed models all overestimate the temperature sensitivity of the observed atmospheric CO2 385 

growth rate anomaly (6.1±2.5 PgC yr-1 K-1; Fig. 7a). CASA-CNP and CORPSE have temperature 

sensitivities within the range of the observed sensitivity (5.16±0.9 PgC yr-1 K-1, Cox et al., 2013; 

6.5±1.8 PgC yr-1 K-1; Keppel-Aleks et al., 2018), but γCO2
MIMICS NEP is 80% larger than observed 

value (10.9 PgC yr-1 K-1; Fig. 7a). We note that the γHR and γCO2
HR are an emergent property that 

reflects both direct and indirect temperature influences, including the impact of temperature 390 

variability on NPP and litterfall (Table S3). Nevertheless, these results suggest that the direct 

temperature sensitivity of MIMICS HR is too high relative to observational constraints.  

 

3.3 Geographic origins of CO2 IAV 

The interannual variability (IAV) in global NPP and HR originate from different geographic 395 

regions. The IAV in global NPP fluxes are dominated by variations within the tropics (both NT 

and ST regions), with relative standard deviation σREL ~ 0.5 and correlation coefficient r ~ 0.6 

(Fig. 8a-b). The NML region also has a similar contribution to the NT in magnitude, but with a 

lower timing coherence (r = 0.44; Fig. 8a-b). In contrast to the dominance of the tropics in 

contributing to the interannual variability of global NPP, the NML region contributes most to IAV 400 

in global HR, with σREL ≥ 0.6 and r ~ 0.8 for all three testbed models (Fig. 8c-d). The NHL region 

is also important in driving global HR flux variability based on CORPSE model results (σREL = 

0.59 and r = 0.82; Fig. 8c-d). Despite high NPP variability in the tropics, the magnitude of tropical 

HR variability is only about 10-30% of global HR variability, and the timing coherence with the 

global signal is generally low (r < 0.45; Fig. 8a-b). MIMICS HR IAV is the exception for the ST 405 

measuring close to 40% of global HR IAV magnitude and relatively high correlation (r = 0.58; 



14 

 

Fig. 8c-d). Together, the tropics and NML contribute roughly equally to the magnitude of global 

NEP variability (σREL between 0.44-0.55; Fig. 8e). Although the NML and NT show relatively 

high timing coherence (0.41-0.55), the ST shows the strongest timing coherence with global NEP 

IAV (r > 0.7; Fig. 8f).   410 

 

Atmospheric transport modifies patterns of IAV in fluxes, emphasizing tropical flux patterns and 

de-emphasizing northern hemisphere flux patterns. For example, the role of ST in driving global 

CO2
NPP variability is amplified compared to the underlying fluxes, as the timing coherence with 

the global signal increases from r = 0.64 for flux IAV to r = 0.88 for CO2
NPP IAV for this region 415 

(Fig. 8b). Conversely, the role of NML is dampened, with timing coherence decreasing to r = 0.33 

for CO2
NPP IAV versus r = 0.44 for NPP IAV (Fig. 8b). Similarly, timing coherence for tropical 

CO2
HR IAV is substantially higher than that for HR fluxes in ST and NT (>0.7), although the 

atmospheric transport impact differs across the three testbed models (Fig. 8d). In contrast to closely 

aligned NML correlation values for CO2
HR and HR (r ~ 0.8-0.9), NML CO2

HR IAV shows σREL 420 

between 0.45 and 0.58, a decrease from the HR IAV contribution (NML HR IAV σREL range: 0.57 

to 0.74; Fig. 8c). For CO2
NEP IAV, the regional contribution is more consistent with similar σREL 

and r to flux IAV (Fig. 8e-f). These effects of numerical techniques should be considered when 

evaluating the underlying processes controlling modeled land fluxes. 

 425 

4. Discussion 

Modeled differences in heterotrophic respiration impart discernible signatures on atmospheric 

CO2, suggesting that atmospheric CO2 observations may be able to help evaluate broad differences 

in the timing and magnitude fluxes simulated by different vegetation and soil biogeochemical 

models. We used a 3-D atmospheric transport model to analyze the imprint of the atmospheric 430 

CO2 resulting from soil heterotrophic respiration and net ecosystem exchange fluxes from soil 

testbed ensemble with three representations of soil biogeochemistry (CASA-CNP, CORPSE, 

MIMICS). Results show that the phasing of heterotrophic respiration fluxes relative to NPP fluxes 

is an important source of bias in evaluating simulated CO2 against atmospheric observations at 

both seasonal and interannual timescales. Regional patterns of heterotrophic respiration variability 435 

provide non-negligible contributions to global CO2 variability. Here we discuss these findings in 
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more detail as well as implications for the use of CO2 observations for flux evaluation and model 

benchmarking. 

 

4.1 Impacts of heterotrophic respiration on seasonality 440 

Our evaluation of CO2 simulated using testbed fluxes revealed that all testbed models 

overestimated the mean annual cycle amplitude of atmospheric CO2 observations. In the Northern 

Hemisphere, the bias was largest for MIMICS, which had a CO2 amplitude from net ecosystem 

production that was overestimated by up to 100% (Fig. 3). The mismatch in the amplitude of the 

Northern Hemisphere NEP fluxes was smallest from CORPSE, despite CORPSE also simulating 445 

the largest seasonal amplitude in HR fluxes (Fig. 3a-c, Table 1). By contrast, in the Southern 

Hemisphere the simulated CO2 annual cycle amplitudes were similar across all three models, with 

small absolute mismatches (about 1 ppm) compared to observations (Fig. 3). We note that the 

differences in the amplitude of NEP fluxes across all three testbed formulations could be due to 

biases in the timing and magnitude of NPP and HR fluxes simulated by models in the testbed. 450 

However, an advantage of the testbed approach is that, because all of the models are driven by the 

same GPP and climate variables, the differences in the timing and magnitude of NEP fluxes are 

all related to differences in HR fluxes that are simulated by different soil models in the testbed. 

With future work we would like to consider forcing uncertainty that could be generated by using 

different inputs of productivity, temperature, and moisture from land model ensembles (e.g. 455 

TRENDY simulations, CMIP6 models, etc). From these results, however, it appears that the 

seasonal amplitude of atmospheric CO2 fluxes from net ecosystem production that are simulated 

in the Northern high- and mid-latitudes are higher than atmospheric observations for all of the 

models tested here, but especially MIMICS.  

One challenge in using atmospheric CO2 to evaluate HR representation in soil models is 460 

the influence of productivity (NPP) on both HR fluxes and atmospheric CO2 variations. The 

seasonal diagnostics we present are very sensitive to the phasing of HR fluxes relative to NPP. For 

example, in NHL a one-month lag in the seasonal maximum of CO2
HR between MIMICS and 

CASA-CNP (Fig. 4a) leads to a 7 ppm difference in the overall amplitude of CO2
NEP— this despite 

identical amplitudes of CO2
HR for the two models (Fig. 3a). Although the substantial impacts of 465 

subtle phase differences complicate benchmarking, the sensitivity reveals interesting and 

important differences related to model structural choices (i.e. first order versus microbially 
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explicit). Wieder et al., (2018) noted that the microbially explicit models in the testbed had 

seasonal HR fluxes that peaked in the fall, about a month later than the HR fluxes simulated by 

CASA-CNP. Annual phasing of HR is altered with the addition of microbial processes but also 470 

reflects NPP seasonality. The timing of CASA-CNP fluxes largely depend on soil temperature 

(highest HR flux when temperature is highest), whereas MIMICS and CORPSE have maximum 

HR fluxes set by trade-offs between the timing of maximal temperature and maximal microbial 

biomass, which is more tightly linked with litterfall (Fig. 7 from Wieder et al., 2018). Thus, phasing 

of HR is a sensitive diagnostic for benchmarking, especially if additional constraints on the 475 

magnitude and phasing of NPP are available.  

In this study, determining the unique contribution from HR was possible since NPP was 

common among the three soil models used in the testbed, but the contribution of NPP will need to 

be resolved for model evaluation in other contexts. For example, long-term records of vegetation 

productivity at regional and global scales have been observed via satellite vegetation indices 480 

(Hicke et al., 2002; Meroni et al., 2009; Running et al., 2004), and more recently chlorophyll 

fluorescence (Frankenberg et al., 2011; Guan et al., 2016; Köhler et al., 2018; Li et al., 2018). Our 

study underscores the importance of developing methods to use these datasets together with 

atmospheric CO2 to inform the dynamics of carbon cycling and its component fluxes. Current 

benchmarks used to evaluate carbon cycle metrics in land models include globally gridded 485 

estimates of fluxes (GPP, NEE, ecosystem respiration) and C stocks (leaf area index, vegetation 

biomass, and soil C; Collier et al., 2018).  This is an excellent starting point, but provides a rather 

coarse estimate for the component fluxes we are trying to evaluate with this analysis.  Notably, 

current benchmarks but do not yet consider the other metrics like NPP, litterfall, or root turnover 

and exudation that are important drivers of ecosystem, soil, and heterotrophic respiration. Globally 490 

gridded estimates of annual soil respiration have been upscaled using machine learning techniques 

(Zhao et al., 2017), and we recognize the value in using this and similar data products to provide 

an independent benchmark to evaluate C fluxes that are simulated by models in the testbed or other 

model ensembles. These annual estimates are useful for looking at the spatial distribution of fluxes 

and infering information about simulated trends, but they will not help resolve differences in the 495 

timing of heterotrophic respiration fluxes (Fig. 4) that are driving differences in net ecosystem 

production in the testbed models (Fig. 3). Instead, additional work with databases of soil and 

heterotrophic respiration (e.g. Bond-Lamberty and Thomson, 2010; Schädel et al. 2019) will be 
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critical to evaluating the seasonal dynamics and environmental sensitivities of soil and heterotopic 

respiration fluxes.  500 

 

4.2 Impacts of heterotrophic respiration on interannual variability 

Capturing appropriate interannual variability is important to generating credible land C-

cycle representations (Cox et al., 2013; Piao et al., 2019). To a first approximation, all models in 

the testbed generated interannual variability in NEP fluxes that matched latitudinal distributions 505 

from atmospheric observations (Fig. 5). Similar to the analyses on seasonal cycles, the testbed 

ensemble simulations showed a higher interannual variability of CO2 fluxes associated with 

explicit microbial representation – especially for heterotrophic respiration fluxes with CORPSE in 

the Northern high-latitudes (Fig. 5a, 6).  

Interestingly, in the tropics and Southern extra-tropics, the interannual variability of 510 

heterotrophic respiration fluxes simulated by MIMICS is only slightly higher than CASA-CNP or 

CORPSE (Fig. 6b), but the interannual variability of NEP fluxes simulated by MIMICS was 20-

30% higher than that of other models (Fig. 6a). Further, in these regions the interannual variability 

of heterotrophic respiration fluxes simulated by MIMICS also shows an inverse, but highly 

correlated relationship with the interannual variability of NPP (R2 > 0.60, Table S3). This suggests 515 

that the large interannual variability of NEP fluxes simulated by MIMICS may result from 

differences in phasing between NPP and MIMICS HR fluxes, similar to phasing between MIMICS 

NPP and HR affecting the shape of the CO2
NEP annual cycle in Northern high-latitudes. In the 

Northern high-latitudes, all testbed models show interannual variability of heterotrophic 

respiration is correlated with the interannual variability of both NPP and temperature (R2 of 0.32 520 

to 0.77; Table S3). Additionally, the interannual variability NPP is sensitive to temperature 

variability (γ = 0.15, R2 = 0.43; Table S3). As in section 4.1, better diagnostics to partition the 

interannual variability of atmospheric CO2 measurements into environmental sensitivities of 

heterotrophic respiration and productivity are required, especially at high latitudes, but our results 

suggest that the carbon cycle simulated by the MIMICS model shows interannual variability of 525 

CO2 fluxes that are higher than atmospheric observations.  

This high interannual variability of NEP simulated by MIMICS is consistent with this 

model having the highest global temperature sensitivity, overestimating observed value by 80% 

(Fig. 7a). CORPSE, the other microbially explicit model, had a 30% higher temperature sensitivity 
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in CO2
NEP than observed globally (Fig. 7a). This large bias in temperature sensitivity demonstrates 530 

uncertainties in the model structure and parameterization that is associated with soil 

biogeochemical models (Sulman et al., 2018). And although the temperature sensitivity of 

microbial kinetics simulated in MIMICS was parameterized with observations from enzyme assays 

from laboratory experiments (German et al., 2012; Wieder et al., 2014, 2015). Additional factors, 

including substrate availability, exert important proximal controls over the ultimate temperature 535 

sensitivity of soil C decomposition (Conant et al., 2011; Dungait et al., 2012). Recently, Zhang 

and co-authors (2020) uses observations from >200 sites in Europe and China to calibrate 

parameters for MIMICS, but these parameters have not yet been tested globally. Future work 

should similarly leverage local observations for model calibration to develop parameters that can 

be applied in subsequent global-scale simulations. The work presented here establishes a 540 

framework that uses a top-down constraint of atmospheric CO2 observations to then evaluate, or 

benchmark, the CO2 fluxes that are simulated by the revised model(s). As with larger land models 

(Collier et al., 2018), we see this interplay of model parameterization, testing, and evaluation as 

critical to refining and improving confidence in projections from soil biogeochemical models 

(Bradford et al., 2016). 545 

 

4.3 Implications for model benchmarking using atmospheric CO2 

Our results provide useful insights for model benchmarking using atmospheric CO2. On a 

global scale, interannual variability of simulated atmospheric CO2 was shown to be affected by 

the variability in component fluxes (NPP, HR) from different land regions (Figs. 6-8). The tropics 550 

dominate the interannual variability in global NPP, while northern extratropics dominate the 

interannual variability in global heteroptophic respiration (Fig. 8a-d). Taken together, NEP 

variability reflects roughly equal contributions from northern hemisphere temperate ecosystems 

(NML) and tropical ecosystems (NT and ST; Fig. 8e-f). These results suggest that the interannual 

variability of atmospheric CO2 results from two different processes (respiration and productivity) 555 

across multiple ecoclimatological regions, whereas previous studies have mostly identified 

tropical (e.g. Cox et al., 2013; Wang et al., 2013) or subtropical, semi-arid regions (e.g. Ahlström 

et al., 2015; Poulter et al., 2014) as dominant controls on the global interannual variability of 

atmospheric CO2 observations. Additional analyses are needed to test the robustness of this finding 
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with different forcings and soil models, but these results emphasize the importance different 560 

processes and regions as sources of variability in the terrestrial carbon cycle. 

Our analysis underscores that patterns of variability in atmospheric CO2 are tied not only 

to variabilities in the underlying fluxes, but also to atmospheric transport. For example, we showed 

that the temperature sensitivity of CO2 growth rate anomalies was larger than the sensitivity 

estimated from the fluxes themselves (Fig. 7). The enhanced temperature sensitivity for CO2
HR 565 

was larger than for that of CO2
NPP, which suggests that the geographic origin of the fluxes relative 

to dominant patterns of transport affects the result (Fig. 7b). This transport enhancement of the 

apparent temperature sensitivity of CO2 growth rate anomalies is consistent with results from 

Keppel-Aleks et al. (2018). While these results may be tied to the choice of GEOS-Chem to 

simulate atmospheric transport, they do underscore that (1) atmospheric CO2 must be simulated 570 

from land fluxes to be use as a benchmark and (2) atmospheric observations should not be assumed 

to be a direct proxy for fluxes themselves. 

We employed several benchmarking approaches, including timeseries comparison and 

functional response to temperature, to evaluate if CO2 patterns reflect underlying representations 

of soil heterotrophic respiration. We found that soil heterotrophic respiration leaves non-negligible 575 

imprints on atmospheric CO2, leaving open the possibility of more explicitly accounting for 

respiration variability using atmospheric CO2 observations. Given that HR links to NPP, soil C 

pools, and temperature, we recommend synergistically using datasets that reflect these variables 

(instead of identifying metrics in isolation). This could provide better model process evaluation if 

implemented in a larger benchmarking framework, such as the International Land Model 580 

Benchmarking Project (ILAMB; Collier et al., 2018; Hoffman et al., 2017). Model development 

will be crucial in the next decade of carbon cycle research, but so will tools to test mechanistic 

understanding and elucidate a coherent picture of the land-atmosphere carbon response to a 

changing climate. 

 585 

 

 

 

Code and Data Availability 

NOAA Earth System Research Laboratory CO2 measurements (Dlugokencky et al., 2016; 590 

ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/) and the Climatic Research Unit’s 
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gridded temperature product (Jones et al., 2012; 

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_0c08abfc-f2d5-11e2-a948-

00163e251233) are publicly available online. CASA testbed information and fluxes have been 

previously published in Wieder et al., 2018. GEOSChem CO2 response data is available at the 595 

University of Michigan Library Deep Blue online repository (Basile et al., 2019; 

https://deepblue.lib.umich.edu/data/concern/data_sets/gt54kn02m). 
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Table 1 Atmospheric CO2 mean annual cycle amplitude (in ppm) simulated from heterotrophic 

respiration (HR), net primary productivity (NPP), and net ecosystem productivity (NEP). The 

median annual cycle amplitudes for observed CO2 (CO2
OBS) averaged over latitude bands are 

also reported. 

 61°-90°N 24°-60°N 0°-23°N 1°-23°S 24°-60°S 61°-90°S 

CO2
CASA-CNP HR 17.6 11.4 4.3 4.3 1.1 1.9 

CO2
CORPSE HR 28.2 16.6 6.4 4.9 1.4 2.2 

CO2
MIMICS HR 17.2 11.8 5.1 4.4 1.9 2.5  

CO2
CASA-CNP NPP 39.3 24.6 11.9 6.0 3.1 3.1 

CO2
CASA-CNP NEP 26.2 16.3 9.3 1.6 2.2  2.2 

CO2
CORPSE NEP 23.4 14.8 8.7 1.3 2.2 2.4 

CO2
MIMICS NEP 32.8 19.0 10.4 1.7 1.9 2.1 

CO2
OBS 15.3 10.6 6.1 0.9 0.8 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1: Flow chart depiction of the analysis process from soil model fluxes to simulated CO2 

concentration and comparison with NOAA observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2: Tagged flux regions and marine boundary layer CO2 observing sites used in our 

analysis. The 5 tagged flux regions are shown in color fill: Northern High Latitude (NHL), 

Northern Mid-Latitude (NML), Northern Tropics (NT), Southern Tropics (ST) and Southern 

Extratropics (SE). For sampling simulated CO2 consistent with the tagged flux regions, we 

aggregate marine boundary layer sites (filled circles) into 6 latitude bands defined by the black 

lines. 

  



 

Figure 3: Climatological annual cycle (median) of CO2 for observations (black) and global net 

ecosystem productivity flux (CO2
NEP, colors) between 1982 and 2010. Monthly climatology 

values were created after detrending the CO2 timeseries for atmospheric sampling bands in the 

(a-c) Northern Hemisphere (d-f) and Southern Hemisphere. Note the change in y-axis scale 

between the two hemispheres and the sign of CO2
NEP reflects the combination of CO2

NPP and 

CO2
HR (Eqn. 3). Shading on the observed line represents one standard deviation due to 

interannual variability in the seasonal cycle. 



 

Figure 4: Climatological annual cycle (median) of atmospheric CO2 simulated from land fluxes 

(CO2
NPP, CO2

HR) between 1982 and 2010. Monthly climatology values were created after 

detrending the CO2 timeseries for atmospheric sampling bands in the (a-c) Northern Hemisphere 

(d-f) and Southern Hemisphere. Note the change in y-axis scale between the two hemispheres 

and the sign of CO2
NPP reflects the sign reversal of the underlying NPP (positive flux to the 

atmosphere; Eqn. 2). 



 

Figure 5:  Interannual variability of CO2 from global net ecosystem productivity (CO2
NEP IAV) 

for testbed models (colors) and marine boundary layer observations from the NOAA ESRL 

network (black). Gray shading outlines one standard deviation of observed CO2 interannual 

variability. High-latitude, mid-latitude and tropical land belts are shown for the Northern 

Hemisphere (a-c) and Southern Hemisphere (d-f). 



 

Figure 6: Magnitude of CO2 interannual variability resulting from (a) individual flux components 

(CO2
NPP IAV, CO2

HR IAV) and (b) global net ecosystem productivity (CO2
NEP IAV). Observed 

CO2 IAV from NOAA ESRL network are shown with black bars whereas colors represent 

simulated data. Errorbars shown on the observed IAV represent two standard deviations, 

calculated as the median magnitude after removing a 12 month sliding window from the IAV 

timeseries. 



 

Figure 7: Temperature sensitivity (γ) calculated for interannual variability (IAV) of CASA-CNP 

air temperature and (a) flux IAV and corresponding CO2 growth rate anomalies, (b) NEP IAV 

and CO2
NEP growth rate anomalies. Reference sensitivity value (black) was calculated using 

NOAA ESRL CO2 and CRU TS4 air temperature. Sensitivity values were calculated as the 

ordinary linear regression coefficient between IAV timeseries for 1982 to 2010. Errorbars 

represent the 95% confidence interval for coefficient values.  



 

Figure 8: Comparison of regional and global interannual variability (IAV) from land fluxes and 

resulting atmospheric CO2 between 1982 and 2010. (a, c, e) Normalized ratio taken between 

regional IAV and global IAV magnitude. (b, d, f) Linear correlation between regional IAV and 

global IAV. The scatterplot shows a direct comparison of ratio and correlation values for land 

flux values (x-axes) and corresponding CO2 (y-axes). Shapes denote the source regions for both 

land fluxes and CO2 response.  
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