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Abstract 

 

Spatial and temporal variations in atmospheric carbon dioxide (CO2) reflect large-scale net 

carbon exchange between the atmosphere and terrestrial ecosystems.  Soil heterotrophic 20 

respiration (HR) is one of the component fluxes that drive this net exchange but, given 

observational limitations, it is difficult to quantify this flux or to evaluate global-scale model 

simulations thereof. Here, we show that atmospheric CO2 can provide a useful constraint on 

large-scale patterns of soil heterotrophic respiration. We analyze three soil model configurations 

(CASA-CNP, MIMICS and CORPSE) that simulate HR fluxes within a biogeochemical testbed 25 

that provides each model with identical net primary productivity (NPP) and climate forcings. We 

subsequently quantify the effects of variation in simulated terrestrial carbon fluxes (NPP and HR 

from the three soil testbed models) on atmospheric CO2 distributions using a three-dimensional 

atmospheric tracer transport model. Our results show that atmospheric CO2 observations can be 

used to identify deficiencies in model simulations of the seasonal cycle and interannual 30 

variability in HR relative to NPP. In particular, the two models that explicitly simulated 

microbial processes (MIMICS and CORPSE) were more variable than observations at 

interannual timescales and showed a stronger than observed temperature sensitivity. Our results 

prompt future research directions to use atmospheric CO2, in combination with additional 

constraints on terrestrial productivity or soil carbon stocks, for evaluating HR fluxes. 35 
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1. Introduction 

Atmospheric CO2 observations reflect net exchange of carbon between the land and oceans with 

the atmosphere. Observations of atmospheric CO2 concentration have been collected in situ 40 

since the late 1950s (Keeling et al., 2011), and global satellite observations have become 

available within the last decade (Crisp et al., 2017; Yokota et al., 2009).  The high precision and 

accuracy of in situ observations and the fact that these measurements integrate information about 

ecosystem carbon fluxes over a large concentration footprint make atmospheric CO2 a strong 

constraint on model predictions of net carbon exchange (Keppel-Aleks et al., 2013). For 45 

example, at seasonal timescales, atmospheric CO2 can be used to evaluate the growing-season 

net flux, especially in the Northern Hemisphere (Yang et al., 2007). At interannual timescales, 

variations in the atmospheric CO2 growth rate are primarily driven by changes in terrestrial 

carbon fluxes in response to climate variability (Cox et al., 2013; Humphrey et al., 2018; Keppel-

Aleks et al., 2014). Recent studies have hypothesized that soil carbon processes represent one of 50 

the key processes in driving these interannual variations (Cox et al., 2013; Wunch et al, 2013). 

Moreover, soil carbon processes represent one of the largest uncertainties in predicting future 

carbon-climate feedbacks, in part because non-permafrost soils contain an estimated 1500 to 

2400 PgC (Bruhwiler et al., 2018), at least a factor of three larger than the pre-industrial 

atmospheric carbon reservoir.   55 

 

Soil heterotrophic respiration (HR), the combination of litter decay and microbial breakdown of 

organic matter, is the main pathway for CO2 release from soil carbon pools to the atmosphere. 

Currently, insights on HR rates and controls are mostly derived from local-scale observations. 

For example, soil chamber observations can be used to measure soil respiration (which includes 60 

root and heterotrophic respiration fluxes) at spatial scales on the order of 100 cm2 (Davidson et 

al., 2002; Pumpanen et al., 2004; Ryan and Law, 2005). Ecosystem respiration (combined 

autotrophic and heterotrophic respiration fluxes) can also be backed out from eddy covariance 

net ecosystem exchange observations at spatial scales around 1 km2, but with substantial 

uncertainty (Baldocchi 2008; Barba et al., 2018; Lavigne et al., 1997). Because fine-scale 65 

variations in environmental drivers such as soil type and soil moisture affect rates of HR, it is 

difficult to scale local respiration observations to zonal or global scales. Even with use of 

advanced techniques such as artificial neural networks, lack of information for remote or under-
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sampled zones contributes uncertainty to bottom-up HR estimates (Bond-Lamberty et al., 2018; 

Zhao et al, 2017). 70 

 

Local-scale observations reveal that HR is sensitive to numerous climate drivers, including 

temperature, moisture, and freeze-thaw state (Baldocchi 2008; Barba et al., 2018; Lavigne et al., 

1997). Because of these links to climate, predicting the evolution of HR and soil carbon stocks 

within coupled Earth system models is necessary for climate predictions. Within prognostic 75 

models, heterotrophic respiration has been represented as a first-order decay process based on 

precipitation, temperature, and a linear relationship with available substrate (Jenkinson et al., 

1990; Parton, 1993, Randerson et al., 1996). However, such representations may neglect key 

processes for the formation of soil and persistence of soil organic carbon (SOC) stocks 

(Lehmann and Kleber 2015; Schmidt et al. 2011; Rasmussen et al. 2018). More recently, models 80 

have begun to explicitly represent microbial processes into global-scale simulations of the 

formation and turnover of litter and SOC (Sulman et al., 2014; Wieder et al., 2013) as well as to 

evaluate microbial trait-based signatures on SOC dynamics (Wieder et al., 2015). These 

advances in the representation of SOC formation and turnover increase capacities to test 

emerging ideas about soil C persistence and vulnerabilities, but also increase the uncertainties in 85 

how to implement and parameterize these theories in models (Bradford et al. 2016; Sulman et al. 

2018; Wieder et al. 2018).  

 

Given these uncertainties, developing methods to benchmark model representations of HR fluxes 

is an important research goal (Bond-Lamberty et al. 2018b) as model predictions for soil carbon 90 

change over the 21st century are highly uncertain (Schuur et al., 2018; Todd-Brown et al., 2014). 

A common method for model evaluation is to directly compare spatial or temporal variations in 

model properties (e.g., leaf area index) or processes (e.g., gross primary productivity) against 

observations (Randerson 2009; Turner et al., 2006). Such comparisons assess model fidelity 

under present day climate, but may not ensure future predictivity of the model. The use of 95 

functional response metrics, which evaluate the relationship between a model process and an 

underlying driver, may ensure that the model captures the sensitivities required to predict future 

evolution (Collier 2018, Keppel-Aleks et al., 2018). A third benchmarking approach is to use 

hypothesis-driven approaches or experimental manipulations to evaluate processes (Medlyn et 
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al., 2015). It is likely that these methods will have maximum utility when combined within a 100 

benchmarking framework (e.g., Collier, 2018; Hoffman et al., 2016) since they evaluate different 

aspects of model predictive capability.  

 

Here, we hypothesize that atmospheric CO2 data can be used to evaluate simulations of soil 

heterotrophic respiration and differentiate between the chemical and microbial parameterizations 105 

used in state-of-the-art models. Previous work has shown that atmospheric CO2 observations are 

inherently sensitive to HR across a range of timescales. For example, at seasonal timescales, 

improving the parameterization for litterfall in the CASA model improved its phasing of the 

simulated atmospheric CO2 annual cycle (Randerson et al., 1996). At interannual timescales, 

variations in the Northern Hemisphere CO2 seasonal minimum are hypothesized to arise from 110 

variations in respiration (Wunch et al., 2013) and variations in the growth rate have been linked 

to tropical respiration and its temperature sensitivity (Anderegg et al., 2015). In this analysis, we 

simulate atmospheric CO2 distributions using three different soil model representations that are 

part of a soil biogeochemical testbed (Wieder et al., 2018). The three sets of HR fluxes, were 

shown in Wieder et al., (2018) to have distinct patterns at seasonal timescales, are used as 115 

boundary conditions for a 3-dimensional atmospheric transport model. We evaluate temporal 

variability in the resulting CO2 simulations against observations, quantify the functional 

relationships between CO2 variability and temperature variability, and quantify the regional 

influences of land carbon fluxes on global CO2 variability. The methods and results are 

presented in Section 2 and 3, and discussion of the implications for benchmarking and our 120 

understanding of drivers of atmospheric CO2 variability are presented in Section 4.   

 

2. Data and Methods 

2.1 Observations and timeseries analysis 

For this analysis we use reference CO2 measurements from 34 marine boundary layer sites 125 

(MBL, Table S1) within the NOAA Earth System Research Laboratory sampling network 

(ESRL, Fig. 1; Dlugokencky et al., 2016). These sites were chosen to minimize the influence of 

local anthropogenic emissions and had at least 50% data coverage over the 29-year period 

between 1982 and 2010. We detrend all timeseries data using a third-order polynomial fit to 

remove the impact of annually increasing atmospheric concentration in our seasonal and 130 

4

https://doi.org/10.5194/bg-2019-256
Preprint. Discussion started: 15 July 2019
c© Author(s) 2019. CC BY 4.0 License.



interannual calculations (SFig. 1). Using the detrended CO2 data, we calculate a period median 

annual cycle by averaging all observations for a given calendar month. To calculate CO2 

interannual variability (CO2 IAV), the median annual cycle is subtracted from the detrended 

timeseries (SFig. 1, Fig. 4). We diagnose the magnitude of CO2 IAV using one standard 

deviation, unless otherwise noted. Model simulated CO2 seasonality and interannual variability 135 

is calculated using the same methods. 

 

Following the approach in Keppel-Aleks et al., 2018, we aggregate site specific CO2 by 

averaging measurement timeseries across six latitude zones (Fig.1, solid lines): Northern 

Hemisphere high latitudes (61 to 90°N), midlatitudes (24 to 60°N), tropics (1 to 23°N), Southern 140 

Hemisphere tropics (0 to 23°S), and extratropics (24 to 60°S and 61 S to 90 S). The global mean 

CO2 timeseries is constructed as an area-weighted average of these six atmospheric zones. 

 

2.2 Soil testbed representations of heterotrophic respiration 

We used a soil biogeochemical testbed (Wieder et al., 2018), which generates daily estimates of 145 

soil carbon stocks and fluxes at global scale without the computational burden of running a full 

land model. The testbed is a chain of model simulations where soil models with different 

structures can be run under the same forcing data, including the same net primary productivity 

(NPP) fluxes, soil temperature, and soil moisture. Each testbed soil model in this analysis 

produces unique gridded heterotrophic respiration (HR) values based on its own underlying 150 

mechanism and soil C stocks. Currently, we are running with a carbon-only configuration of the 

testbed. From the testbed output we calculate the net ecosystem productivity (NEP) as the 

difference between HR and NPP, specifically HR-NPP, to account for the opposite sign 

convention between the component fluxes. 

 155 

For the simulations described in this paper, the chain starts with the Community Land Model 4.5 

(CLM4.5; Oleson et al., 2013), run with satellite phenology with CRU-NCEP climate reanalysis 

as forcing data (Jones et al., 2013; Kalnay et al., 1996; Le Quéré et al., 2018). In this simplified 

formulation of CLM, a single plant functional type is assumed in each 2° by 2° gridcell. Daily 

values for gross primary productivity (GPP), soil moisture, soil temperature, and air temperature 160 

from CLM4.5 are passed to the Carnegie-Ames Stanford Approach terrestrial model (CASA-
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CNP; Potter et al. 1993; Randerson et al., 1996; Randerson et al., 1997; Wang et al., 2010). The 

CASA-CNP plant model uses the data from CLM4.5 to calculate NPP and carbon allocation to 

roots, wood, and leaves. This module also determines the timing of litterfall. Finally, metabolic 

litter, structural litter, and decomposing coarse woody debris (CWD) are then passed to the soil 165 

biogeochemical models.   

 

The three soil models make distinct assumptions about microbial processes. More details 

regarding these formulations and their implementation in the testbed are found in Wieder et al. 

(2018), but we provide brief descriptions here. The CASA-CNP soil model computes first-order, 170 

linear decay rates modified by soil temperature and moisture, implicitly representing microbial 

activity and soil carbon turnover through a cascade of organic matter pools (CASA: Randerson et 

al., 1997; CASA-CNP: CASA carbon cycling with additional nitrogen, and phosphorus cycling, 

Wang et al. 2010). These include metabolic and structural litter, as well as a fast, slow, and 

passive soil carbon pools. The Microbial-Mineralization Carbon Stabilization model (MIMICS; 175 

Wieder et al., 2014; Wieder et al., 2015) explicitly represents microbial activity with a 

temperature-sensitive reverse Michaelis-Menten kinetics (Buchkowski et al., 2017; Moorhead 

and Weintraub, 2018) but has no soil moisture controls. The decomposition pathway is set up 

with two litter pools (identical to those simulated by CASA-CNP), three soil organic matter 

pools (available, chemically and physically protected), and two microbial biomass pools for 180 

copiotrophic (fast) and oligotrophic (slow) microbial functional groups. The Carbon, Organisms, 

Rhizosphere, and Protection in the Soil Environment model (CORPSE) is also microbially 

explicit and uses reverse Michaelis-Menten kinetics, but it assumes different microbial and soil 

carbon pools. Surface litter and soil C pools are considered separately, but only soil C has a 

parallel set of physically protected pools that are isolated from microbial decomposition. 185 

CORPSE includes a temperature dependent Maximum Reaction Velocity (Vmax) parameter, but 

also includes a term for the soil moisture controls on decomposition rates that uses volumetric 

liquid soil water content. For all three models, soil texture inputs were also derived from the 

CLM surface data set (Oleson et al., 2013). We acknowledge that one potential limitation of the 

approach is a lack of vertical resolution in terms of temperature or frozen fraction of soil 190 

moisture (Koven et al. 2013).  
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While this modeling approach contains necessary simplifications, it provides the ability to query 

the role of structure in driving differences in fluxes. Model output includes daily net primary 

production (NPP) from CASA-CNP and HR simulated by CASA-CNP, CORPSE and MIMICS. 195 

Daily fluxes between 1982 and 2010 are averaged to monthly values and masked into land 

regions that align with the CO2 sampling zones (section 2.1, Fig. 1, color fill): Northern 

Hemisphere high latitudes (NHL; 61 to 90°N), midlatitudes (NML; 24 to 60°N), tropics (NT; 1 

to 23°N), Southern Hemisphere tropics (ST; 0 to 23°S), and extratropics (SE; 24 to 90°S) – here 

the two Southern Hemisphere extratropical regions were combined into one flux area since 200 

Antarctic carbon fluxes are negligible. Land-area integrated flux timeseries are then used for 

seasonal and interannual calculations (method described in section 2.1). However, the raw daily 

fluxes between 1980 and 2010 are used as boundary conditions to an atmospheric transport 

model, again separated by latitude zones listed above, to simulate the imprint of these different 

soil model configurations on monthly atmospheric CO2. 205 

 

2.3 GEOS-Chem atmospheric transport modeling of CO2  

We simulate the imprint of the testbed fluxes on atmospheric CO2 using GEOS-Chem, a 3-D 

atmospheric transport model. We run the GEOS-Chem v12.0.0 CO2 simulation between 1980 

and 2010 at a resolution of 2.0° in latitude by 2.5° in longitude with 47 vertical levels. The model 210 

is driven by hourly meteorological fields from the Modern-Era Retrospective analysis for 

Research and Application version 2 (MERRA2) reanalysis data (Gelaro et al., 2017; 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), with the dynamic timestep set to be 600 

seconds. The model is initialized with a globally-uniform atmospheric CO2 mole fraction equal 

to 350 ppm. Results of the first two years (1980 and 1981) are reserved for model spin-up, and 215 

we analyze the monthly average outputs for the period 1982–2010. To minimize influence of 

land-atmosphere boundary layer dynamics and the influence of anthropogenic emissions, we 

sample the resulting GEOS-Chem simulations at the 3rd vertical level for grid cell points with 

latitude and longitude values closest to 34 marine boundary layer (MBL) sites within the NOAA 

ESRL network. We calculated the latitude zone averaging, median annual cycle and interannual 220 

variability calculations using the methods described for observed CO2 (see section 2.1). 

Aggregating CO2 from individual sites is consistent with our hypothesis that atmospheric CO2 

may provide constraints on large-scale, rather than local, patterns of heterotrophic respiration. As 
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such, averaging simulated and observed CO2 across latitude zones smooths local information 

while retaining information about regional scale fluxes. 225 

 

We isolate the imprint of NPP and three representations of HR on the spatial and temporal 

evolution of atmospheric CO2 by using daily testbed results as boundary conditions (section 2.2). 

We also separately tag CO2 originating from the five flux zones delineated in the previous 

section (Fig. 1). Overall, we track 20 CO2 tracers in total (4 sets of fluxes and 5 flux regions) 230 

within the GEOS-Chem model. Throughout the manuscript, we refer to CO2 originating from 

these NPP and HR component fluxes as CO2
NPP and CO2

HR, respectively. For the atmospheric 

CO2 simulations, we used the sign convention that a positive flux indicates a flux into the 

atmosphere. Therefore, CO2
NEP, indicating CO2 from net ecosystem production (NEP), is 

calculated from the addition of CO2
NPP and CO2

HR. The same notation will be used to denote the 235 

testbed ensemble sources. For example, CO2
HR simulated from CORPSE fluxes is defined as 

CO2
CORPSE HR, similarly for CO2

CORPSE NEP. We note that the net CO2 response from the model 

(i.e., CO2
NEP) is approximately equivalent to observations in terms of seasonal and interannual 

variations, although we neglect ocean fluxes and emissions from fossil fuels, land use and land 

cover change, and fire. Previous studies have demonstrated that NEP drives most of the 240 

atmospheric CO2 seasonality (> 90%; Nevison et al., 2008; Randerson et al., 1997) and 

interannual variability (e.g., Rayner et al. 2008; Battel et al. 2000).  

 

2.4 Global temperature sensitivity and separation of regional influences 

For insight on a functional climate response, we investigate the global temperature sensitivity of 245 

the atmospheric CO2 growth rate and the testbed ensemble fluxes. Variability in the CO2 growth 

rate anomaly was calculated as the difference between timestep n and n-1 for the monthly and 

annual interannual variability (IAV) timeseries. Testbed flux timeseries were averaged to 

monthly resolution and interpolated (averaged between months) to match the monthly initiation 

of each corresponding CO2 growth rate anomaly timeseries. Following Arora et al. (2013), we 250 

calculate temperature sensitivity (γ) using an ordinary linear regression for the timeseries of 

temperature interannual variability (T IAV) with 1) atmospheric CO2 growth rate anomalies, and 

2) land flux IAV (see section 2.2). For atmospheric CO2 growth rate anomalies, each timeseries 

was converted from ppm y-1 to PgC y-1 based on the global mass of atmospheric dry air. Thus, all 
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global sensitivity values are reported in units of PgC y-1 K-1. A reference global temperature 255 

sensitivity value for the CO2 growth rate was calculated for 1982 to 2010 using ESRL CO2 

observations and the Climatic Research Unit’s gridded temperature product (CRU TS4; Jones et 

al., 2012). The CRU TS4 historical product was used because it consists of directly interpolated 

station data. 

 260 

We also assess the influence of individual regions on the global mean signal for both component 

land fluxes (NPP, HR) and simulated atmospheric CO2 (CO2
NPP, CO2

HR, CO2
NEP). To quantify 

each region’s contribution to global variability we calculate the ratio of regional IAV magnitude 

to global IAV magnitude, which we define as relative standard deviation (σREL). For each flux 

and CO2 region (NHL, NML, NT, ST, SE), this ratio is calculated from the standard deviation of 265 

each monthly IAV timeseries. However, for the regional values of simulated CO2 IAV, we 

identify the global mean response to a single region’s fluxes. That is, the CO2 IAV averaged 

across all six CO2 regions but sourced only from testbed fluxes in the NHL, or NML, etc., 

without influence from the other flux regions. We then take the standard deviation of this 

regionally-selected global mean IAV for the ratio to total global CO2 IAV magnitude (derived 270 

from all global fluxes). To measure the strength of each region’s impact on global values, we use 

the same regional-global partitioning to calculate correlation coefficients (r) for the timeseries of 

component flux IAV and CO2 IAV. Thus, if an individual region were responsible for all 

observed global flux or CO2 variability, it would have both σREL and r values equal to 1 in this 

comparison. The value for σREL decreases with the magnitude of regional variability, and r 275 

decreases if the variability is not coherent with the global signal, even if the magnitude of 

variability is high. 

 

3. Results 

3.1 Seasonal imprint of heterotrophic respiration 280 

The three soil carbon models in the testbed impart different fingerprints on atmospheric CO2 

variability. Both CO2
NPP and CO2

HR show largest seasonality in the NHL, with seasonal 

amplitudes decaying toward the tropics and Southern Hemisphere. In the NHL, the peak-to-

trough amplitude of CO2
NPP is 39±2 ppm, with a seasonal maximum in April and a seasonal 

minimum in August (Fig. 2a). The seasonal cycles for CO2
HR simulated from all testbed models 285 
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are out of phase with that of CO2
NPP, and there are large amplitude differences in CO2

HR among 

the model ensemble members. Specifically, the NHL amplitude of CO2
CORPSE HR is 28±3 ppm, 

while the amplitudes for CO2
MIMICS HR and CO2

CASA-CNP HR are only 17±1 ppm, accounting for 

about 40-70% of the amplitude from CO2
NPP (Table 1). However, in all latitude bands, the 

largest CO2
HR amplitude comes from the microbially explicit models – CORPSE for the 290 

Northern Hemisphere and MIMICS for the Southern Hemisphere (Table 1). The amplitudes of 

CO2
NPP and CO2

HR decrease further south, but the amplitude ratio of CO2
HR to CO2

NPP in NML 

and NT remains about 0.4-0.7 (Fig. 2b-c; Table 1). In the Southern Hemisphere tropics, the 

amplitude of CO2
NPP was smaller than that the Northern Hemisphere, however amplitude of 

CO2
HR was similar to the NT values (Table 1). In the Southern Hemisphere extratropics, the 295 

amplitudes for all components were less 3 ppm (Table 1).  

 

The phasing of CO2
HR is an important driver of the overall comparison between CO2

NEP and 

observed CO2 seasonality (Fig. 3). When the contributions of NPP and HR seasonality are 

considered together (i.e., CO2
HR + CO2

NPP), the simulated amplitude of CO2
NEP is larger than the 300 

observed CO2 across all latitude bands (Fig. 3). The largest mismatch is in the NHL zone, where 

the observed mean annual cycle is 15±0.9 ppm, while the peak-to-trough CO2
NEP ranges from 

23±1.3 ppm for CORPSE to 33±1.4 ppm for MIMICS (Fig. 3a). The smaller CO2
NEP amplitude 

simulated by CORPSE is due to the large CO2
HR seasonality that counteracts the seasonality in 

NPP (Fig. 2a-b). Furthermore, CO2
MIMICS HR and CO2

CASA-CNP HR have similar amplitudes in the 305 

NHL (Fig. 2a; Table 1), but the CO2
NEP amplitude from these two models differs (33±1.2 ppm 

versus 26±1 ppm, respectively; Fig. 3a; Table 1). This occurs because CO2
MIMICS HR peaks one-

month later than CO2
CASA-CNP HR, and has a zero-crossing that is more closely aligned with the 

trough of CO2
NPP (Fig. 2a), leading to the larger amplitude in CO2

MIMICS NEP (Fig. 3a; Table 1). 

Although the amplitude mismatch decreases towards the south (Fig. 3b-f), the overall bias in the 310 

Northern Hemisphere suggests that either the seasonality of NPP is too large, or that all testbed 

models underestimate the seasonality of HR. Within the ST region, ensemble CO2
HR minima are 

opposite to that in CO2
NPP, leading to a small annual cycle in simulations whereas the double 

peak in the ESRL observations may reflect fluxes not accounted for in our framework (Figs. 2d, 

3d). 315 
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3.2 Interannual imprint of heterotrophic respiration 

The testbed ensemble reasonably simulates the magnitude and timing of interannual variability 

(IAV) compared with CO2 observations (Fig. 4). Across the six latitude bands analyzed, 

simulated CO2
NEP IAV generally falls within one standard deviation of the median variation 320 

from observations for most of the study period (Fig. 4). Taking a closer look at the CO2 from the 

component fluxes (NPP and HR), across all six latitude bands, the CO2
NPP IAV standard 

deviation is between 0.9 and 1.1 ppm for component fluxes (Fig. 5a). CO2
CASA-CNP HR IAV shows 

similar standard deviation as CO2
NPP IAV, whereas the standard deviations of CO2

CORPSE HR and 

CO2
MIMICS HR range from 0.7-1.4 ppm and 0.5-1.1 ppm, respectively (Fig. 5a). Combining the 325 

CO2 responses from component fluxes to CO2
NEP reveals a latitudinal gradient in IAV standard 

deviation similar to that of ESRL observations, with largest standard deviation found in the 

northern extratropics (Fig. 5b). Among the three testbed models, the standard deviation of 

CO2
CASA NEP agrees best with observations across all latitude bands (CO2

CASA NEP: 0.5-0.9 ppm; 

ESRL: 0.6-1.0 ppm; Fig. 5b). CO2
CORPSE NEP overestimates IAV by up to 30% in NHL and NML, 330 

but agrees better with observations in the tropics and Southern Hemisphere. CO2
MIMICS NEP 

overestimates IAV standard deviations across all latitude bands (Fig. 5b). Interestingly, in the 

NHL, the overestimation is 20% even though CO2
MIMICS HR shows similar IAVs as CO2

NPP (both 

1.1 ppm; Fig.5). This suggests that the phasing of CO2
MIMICS HR IAV relative to CO2

NPP 

contributes to CO2
MIMICS NEP bias. 335 

 

Both global NPP and HR fluxes are sensitive to temperature variations at interannual timescales, 

with increased build-up of CO2 in the atmosphere at higher temperatures. Since these 

temperature sensitivities cannot be directly constrained from observations, we calculate 

temperature sensitivities for the CO2 resulting from these component fluxes as well as from 340 

NEP. For CASA-CNP, the temperature sensitivity (γ) for globally integrated NPP and HR fluxes 

is 2.5 PgC yr-1 K-1 and 1.7 PgC yr-1 K-1; respectively (Fig. 6a). The temperature sensitivity of HR 

was higher for the microbially explicit models: 2.1 PgC yr-1 K-1 for CORPSE and 4.2 PgC yr-1 K-

1 for MIMICS (Fig. 6a). For any given testbed flux (NPP, HR, or NEP), the temperature 

sensitivity of the resulting global mean CO2 growth rate anomaly is higher than that of the 345 

underlying flux IAV. For example, the temperature sensitivity of the globally integrated NPP 

flux IAV (γNPP) is 2.5 PgC yr-1 K-1 whereas γCO2
NPP is 3.2 PgC yr-1 K-1. The apparent 
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amplification of the temperature sensitivity was even larger for HR. For example, the 

temperature sensitivity of MIMICS HR IAV (γHRMIMICS) was 4.2 PgC yr-1 K-1, whereas 

γCO2
MIMICS HR was 7.7 PgC yr-1 K-1 (Fig. 6a). The resulting testbed CO2

NEP overestimates the 350 

temperature sensitivity of the observed atmospheric CO2 growth rate anomaly (6.1±2.5 PgC yr-1 

K-1; Fig. 6b). CASA-CNP and CORPSE have temperature sensitivities within the range of the 

observed sensitivity, but γCO2
MIMICS NEP is 80% larger than observed value (10.9 PgC yr-1 K-1; 

Fig. 6b). We note that the γHR and γCO2
HR is an emergent property that reflects both direct and 

indirect temperature influences, including the impact of temperature variability on NPP and 355 

litterfall (Table S3).   

 

3.3 Geographic origins of CO2 IAV 

The interannual variability (IAV) in global NPP and HR originate from different geographic 

regions. The IAV in global NPP fluxes are dominated by variations within the NT and ST 360 

regions, with relative standard deviation σREL ~ 0.5 and correlation coefficient r ~ 0.6 (Fig. 7a-

b). The NML region also has a similar contribution to the NT in magnitude, but with a lower 

timing coherence (r = 0.44; Fig. 7a-b). In contrast to the dominance of the tropics in IAV of 

global NPP, the NML region contributes most to IAV in global HR, with σREL ≥ 0.6 and r ~ 0.8 

for all three testbed models (Fig. 7c-d). The NHL region is also important in driving global HR 365 

flux variability based on CORPSE model results (σREL = 0.59 and r = 0.82; Fig. 7c-d). Despite 

high NPP variability in the tropics, the magnitude of tropical HR variability is only about 10-

30% of global HR variability, and the timing coherence with the global signal is generally low (r 

< 0.45; Fig. 7a-b). MIMICS HR IAV is the exception for the ST measuring close to 40% of 

global HR IAV magnitude and relatively high correlation (r = 0.58; Fig. 7a-b). Together, the 370 

tropics and NML contribute roughly equally to the magnitude of global NEP variability (σREL 

between 0.44-0.55; Fig. 7e). Although the NML and NT show relatively high timing coherence 

(0.41-0.55), the ST shows the strongest timing coherence with global NEP IAV (r > 0.7; Fig. 7f).   

 

Atmospheric transport modifies patterns of IAV in fluxes, emphasizing tropical flux patterns and 375 

de-emphasizing northern hemisphere flux patterns. For example, the role of ST in driving global 

CO2
NPP variability is amplified compared to the underlying fluxes, as the timing coherence with 

the global signal increases from r = 0.64 for flux IAV to r = 0.88 for CO2
NPP IAV for this region 
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(Fig. 7b). Conversely, the role of NML is dampened, with timing coherence decreasing to r = 

0.33 for CO2
NPP IAV versus r = 0.44 for NPP IAV (Fig. 7b). Similarly, timing coherence for 380 

tropical CO2
HR IAV is substantially higher than that for HR fluxes in ST and NT (>0.7), 

although the atmospheric transport impact differs across the three testbed models (Fig. 7d). In 

contrast to closely aligned NML correlation values for CO2
HR and HR (r ~ 0.8-0.9), NML CO2

HR 

IAV shows σREL between 0.45 and 0.58, a decrease from the HR IAV contribution (NML HR 

IAV σREL range: 0.57 to 0.74; Fig. 7c). For CO2
NEP IAV, the regional contribution is more 385 

consistent with similar σREL and r to flux IAV (Fig. 7e-f).  

 

4. Discussion 

Modeled differences in heterotrophic respiration impart discernible signatures on atmospheric 

CO2. We analyzed the atmospheric CO2 response to soil heterotrophic respiration (HR) using a 390 

soil testbed ensemble with three plausible representations of HR (CASA-CNP, CORPSE, 

MIMICS) and a 3-D atmospheric transport model. Results show that HR phasing is important for 

ecosystem carbon flux (NEP) at both seasonal and interannual timescales. Regional patterns of 

HR variability provide non-negligible contributions to global CO2 variability. Here we discuss 

these findings in more detail as well as implications for the use of CO2 observations for flux 395 

evaluation and model benchmarking. 

 

4.1 Impacts of heterotrophic respiration on seasonality 

Our evaluation of CO2 simulated using testbed fluxes revealed that all testbed models 

overestimated the mean annual cycle amplitude of atmospheric CO2 observations. In the 400 

Northern Hemisphere, the bias was largest for MIMICS, as the CO2
MIMICS NEP amplitude was 

overestimated by up to 100% (Fig. 3). The mismatch was smallest in CO2
CORPSE NEP, which was 

within 70% of the observed annual cycle amplitude where CORPSE simulates the largest 

seasonal HR fluxes (Fig. 3a-c, Table1). We note that the mismatch across all three testbed 

formulations could be due to overestimation of the NPP flux used by all three testbed models, or 405 

underestimation of HR seasonality. However, an advantage of the testbed approach is that, 

because all of the models are driven by the same NPP and climate variables, the differences in 

the HR flux amplitudes arise from structural differences in the testbed. In the Southern 

Hemisphere, in contrast to the large differences found in the Northern Hemisphere, the simulated 
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CO2 annual cycle amplitudes were similar across all three models, with small absolute 410 

mismatches (about 1 ppm) compared to observations.   

 

One challenge in using atmospheric CO2 to evaluate HR representation in soil models is the 

influence of productivity (NPP) on both HR fluxes and atmospheric CO2 variations. The 

seasonal diagnostics we present are very sensitive to the phasing of HR fluxes relative to NPP. 415 

For example, in NHL a one-month lag in the seasonal maximum of CO2
HR between MIMICS 

and CASA-CNP (Fig. 2) leads to a 7 ppm difference in the overall amplitude of CO2
NEP— this 

despite identical amplitudes of CO2
HR for the two models (Fig. 3). Although the substantial 

impacts of subtle phase differences complicate benchmarking, the sensitivity reveals interesting 

and important differences related to model structural choices (i.e. first order versus microbially 420 

explicit). Wieder et al., (2018) noted that the microbially explicit models in the testbed had 

seasonal HR fluxes that peaked in the fall, about a month later than the HR fluxes simulated by 

CASA-CNP. The timing of CASA-CNP fluxes largely depend on soil temperature (highest HR 

flux when temperature is highest), whereas MIMICS and CORPSE have maximum HR fluxes set 

by trade-offs between the timing of maximal temperature and maximal microbial biomass, which 425 

is more tightly linked with litterfall (Fig. 7 from Wieder et al., 2018). Thus, phasing of HR is a 

sensitive diagnostic for benchmarking, especially if additional constraints on the magnitude and 

phasing of NPP are available. 

 

In this study, determining the unique contribution from HR was possible since NPP was common 430 

among the three soil models used in the testbed, but the contribution of NPP will need to be 

resolved for model evaluation in other contexts. Long-term records of vegetation productivity at 

regional and global scales have been observed via satellite vegetation indices (Hicke et al., 2002; 

Meroni et al., 2009; Running et al., 2004), and more recently chlorophyll fluorescence 

(Frankenberg et al., 2011; Guan et al., 2016; Kohler et al., 2018; Li et al., 2018). Our study 435 

underscores the importance of developing methods to use these datasets together with 

atmospheric CO2 to inform the dynamics of carbon cycling and its component fluxes.   

 

4.2 Impacts of heterotrophic respiration on interannual variability 
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Similar to the analyses on seasonal cycles, the testbed ensemble simulations showed a higher 440 

CO2 IAV associated with explicit microbial representation (Fig. 5). This is especially true for 

CO2
CORPSE in the NHL and NML (Fig. 5a). Interestingly, in the tropics and SE, CO2

MIMICS HR 

IAV is only slightly higher than that of CO2
CASA-CNP HR or CO2

CORPSE HR, but IAV of CO2
MIMICS 

NEP was 20-30% higher than that of other models. Further, in these regions MIMICS HR IAV 

also shows an inverse, but highly correlated relationship with NPP IAV (R2 > 0.60, Table S3). 445 

This suggests that the large IAV of CO2
MIMICS NEP may result from differences in phasing 

between NPP and MIMICS HR fluxes, similar to phasing between MIMICS NPP and HR 

affecting the shape of the CO2
NEP annual cycle in NHL. In the NHL, all testbed models show HR 

IAV is correlated with both NPP IAV and temperature IAV (R2 of 0.32 to 0.77; Table S3). 

Additionally, NPP IAV is sensitive to temperature variability (γ = 0.15, R2 = 0.43; Table S3). 450 

Thus better diagnostics for atmospheric CO2 IAV owing to HR requires additional constraints on 

NPP fluxes, especially at high latitudes.  

 

The high IAV in CO2
MIMICS NEP is consistent with this model having the highest global 

temperature sensitivity overestimating observed value by 80% (Fig. 6b). CORPSE, the other 455 

microbially explicit model, had a 30% higher temperature sensitivity in CO2
NEP than observed 

globally (Fig. 6b). This large bias in temperature sensitivity demonstrates the structural 

uncertainty associated with current HR parameterization, and highlights the need for continued 

investigation of model microbial representation to improve the functional relationship with 

temperature in soil models. 460 

 

4.3 Implications for model benchmarking using atmospheric CO2 

Our results provide useful insights for model benchmarking using atmospheric CO2. On a global 

scale, interannual variability (IAV) of simulated atmospheric CO2 was shown to be affected by 

the variability in component fluxes (NPP, HR) from different land regions (Figs. 5-7). The 465 

tropics dominate IAV in global NPP, while northern extratropics dominate the IAV in global HR 

(Fig. 7a-d). Taken together, NEP variability reflects roughly equal contributions from northern 

hemisphere temperate ecosystems (NML) and tropical ecosystems (NT and ST; Fig. 7e-f). These 

results suggest that the interannual variability of atmospheric CO2 results from two different 

processes (respiration and productivity) across multiple ecoclimate regions, whereas previous 470 
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studies have mostly identified tropical (e.g. Cox et al., 2013; Wang et al., 2013) or subtropical, 

semi-arid regions (e.g. Ahlstorm et al., 2015; Poulter et al., 2014) as dominant controls on the 

global CO2 IAV. 

 

Our analysis underscores that patterns of variability in atmospheric CO2 are tied not only to 475 

variabilities in the underlying fluxes, but also to atmospheric transport. For example, we showed 

that the temperature sensitivity of CO2 growth rate anomalies was larger than the sensitivity 

estimated from the fluxes themselves (Fig. 6). The enhanced temperature sensitivity for CO2
HR 

was larger than for that of CO2
NPP, which suggests that the geographic origin of the fluxes 

relative to dominant patterns of transport affects the result (Fig. 6a). This transport enhancement 480 

of the apparent temperature sensitivity of CO2 growth rate anomalies is consistent with results 

from Keppel-Aleks et al. (2018). While these results may be tied to the choice of GEOS-Chem to 

simulate atmospheric transport, they do underscore that (1) atmospheric CO2 must be simulated 

from land fluxes to be use as a benchmark and (2) atmospheric observations should not be 

assumed to be a direct proxy for fluxes themselves. 485 

 

We employed several benchmarking approaches, including timeseries comparison and functional 

response to temperature, to evaluate if CO2 patterns reflect underlying representations of soil 

heterotrophic respiration. We found that soil heterotrophic respiration leaves non-negligible 

imprints on atmospheric CO2, leaving open the possibility of more explicitly accounting for 490 

respiration variability using atmospheric CO2 observations. Given that HR links to NPP, soil C 

pools, and temperature, we recommend synergistically using datasets that reflect these variables 

(instead of identifying metrics in isolation). This could provide better model process evaluation if 

implemented in a larger benchmarking framework, such as the International Land Model 

Benchmarking Project (ILAMB; Collier, 2018; Hoffman et al., 2016). Model development will 495 

be crucial in the next decade of carbon cycle research, but so will tools to test mechanistic 

understanding and elucidate a coherent picture of the land-atmosphere carbon response to a 

changing climate. 

 
 500 
 
 

16

https://doi.org/10.5194/bg-2019-256
Preprint. Discussion started: 15 July 2019
c© Author(s) 2019. CC BY 4.0 License.



Code and Data Availability 

NOAA Earth System Research Laboratory CO2 measurements (Dlugokencky et al., 2016; 

ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/) and the Climatic Research Unit’s 505 

gridded temperature product (Jones et al., 2012; 

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_0c08abfc-f2d5-11e2-a948-

00163e251233) are publicly available online. CASA testbed information and fluxes have been 

previously published in Wieder et al., 2018. GEOSChem CO2 response data is available at the 

University of Michigan Library Deep Blue online repository (Basile et al., 2019; 510 

https://deepblue.lib.umich.edu/data/concern/data_sets/gt54kn02m). 
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Table 1 Atmospheric CO2 mean annual cycle amplitude (in ppm) simulated from heterotrophic 
respiration (HR), net primary productivity (NPP), and net ecosystem productivity (NEP). The 
median annual cycle amplitudes for observed CO2 (CO2

OBS) averaged over latitude bands are 
also reported. 

 NHL 
61°-90°N 

NML 
24°-60°N 

NT 
0°-23°N 

ST 
1°-23°S 

SE 
24°-60°S 

SE 
61°-90°S 

CO2
CASA-CNP HR 17.6 11.4 4.3 4.3 1.1 1.9 

CO2
CORPSE HR 28.2 16.6 6.4 4.9 1.4 2.2 

CO2
MIMICS HR 17.2 11.8 5.1 4.4 1.9 2.5  

CO2
CASA-CNP NPP 39.3 24.6 11.9 6.0 3.1 3.1 

CO2
CASA-CNP NEP 26.2 16.3 9.3 1.6 2.2  2.2 

CO2
CORPSE NEP 23.4 14.8 8.7 1.3 2.2 2.4 

CO2
MIMICS NEP 32.8 19.0 10.4 1.7 1.9 2.1 

CO2
OBS 15.3 10.6 6.1 0.9 0.8 1.4 
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Figure 1. Tagged flux regions and marine boundary layer CO2 observing sites used in our 
analysis. The 5 tagged flux regions are shown in color fill: Northern High Latitude (NHL), 
Northern Mid-Latitude (NML), Northern Tropics (NT), Southern Tropics (ST) and Southern 
Extratropics (SE). For sampling simulated CO2 consistent with the tagged flux regions, we 
aggregate marine boundary layer sites (filled circles) into 6 latitude bands defined by the black 
lines. 
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Figure 2: Climatological annual cycle (median) of atmospheric CO2 simulated from 
individual flux components (CO2NPP, CO2HR) between 1982 and 2010 for atmospheric 
sampling bands in the Northern Hemisphere (a-c) and Southern Hemisphere (d-f). Note the 
change in y-axis scale between the two hemispheres. 
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Figure 3. Climatological annual cycle (median) of CO2 for observations (black) and global net 
ecosystem productivity flux (CO2

NEP, colors) between 1982 and 2010 for six atmospheric 
sampling bands in the Northern Hemisphere (a-c) and Southern Hemisphere (d-f). Note the 
change in y-axis scale between the two hemispheres.  Shading on the observed line represents 
one standard deviation due to interannual variability in the seasonal cycle. 
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Figure 4.  Interannual variability of CO2 from global net ecosystem productivity (CO2
NEP IAV) 

for testbed models (colors) and marine boundary layer observations from the NOAA ESRL 
network (black). Gray shading outlines one standard deviation of observed CO2 interannual 
variability. High-latitude, mid-latitude and tropical land belts are shown for the Northern 
Hemisphere (a-c) and Southern Hemisphere (d-f). 
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Figure 5: Magnitude of CO2 interannual variability resulting from (a) individual flux 
components (CO2

NPP IAV, CO2
HR IAV) and (b) global net ecosystem productivity (CO2

NEP 
IAV). Observed CO2 IAV from NOAA ESRL network are shown with black bars whereas 
colors represent simulated data. Errorbars shown on the observed IAV represent two standard 
deviations, calculated as the median magnitude after removing a 12 month sliding window from 
the IAV timeseries. 
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Figure 6: Temperature sensitivity (γ) calculated for interannual variability (IAV) of CASA-
CNP air temperature and (a) flux IAV and corresponding CO2 growth rate anomalies, (b) NEP 
IAV and CO2

NEP growth rate anomalies. Reference sensitivity value (black) was calculated using 
NOAA ESRL CO2 and CRU TS4 air temperature. Sensitivity values were calculated as the 
ordinary linear regression coefficient between IAV timeseries for 1982 to 2010. Errorbars 
represent the 95% confidence interval for coefficient values.  
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Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c, e) Normalized ratio taken 
between regional IAV and global IAV magnitude. (b, d, f) Linear correlation between regional 
IAV and global IAV. The scatterplot shows a direct comparison of ratio and correlation values 
for land flux values (x-axes) and corresponding CO2 (y-axes). Shapes denote the source regions 
for both land fluxes and CO2 response.  
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