

1 **Decoupling of $\Delta\text{O}_2/\text{Ar}$ and particulate organic carbon**
2 **dynamics in near shore surface ocean waters**

3
4 Sarah Z. Rosengard¹, Robert W. Izett¹, William J. Burt², Nina Schuback³, and Philippe D.
5 Tortell^{1,4}

6
7 1. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia,
8 Vancouver, V6T 1Z4, Canada

9 2. College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, 99775,
10 USA

11 3. Institute of Geological Sciences and Oeschger Center for Climate Change Research,
12 University of Bern, Bern, Switzerland

13 4. Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada

14

15 *Correspondence to: Sarah Z. Rosengard (srosengard@eoas.ubc.ca)*

16 **Abstract.** We report results from two Lagrangian drifter surveys off the Oregon coast, using
17 continuous ship-board sensors to estimate mixed layer gross primary productivity (GPP),
18 community respiration (CR), and net community production (NCP) from variations in biological
19 oxygen saturation ($\Delta O_2/Ar$) and optically-derived particulate organic carbon (POC). At the first
20 drifter survey, conducted in a nearshore upwelling zone during the development of a
21 microplankton bloom, net changes in $\Delta O_2/Ar$ and [POC] were significantly decoupled.
22 Differences in GPP and NCP derived from $\Delta O_2/Ar$ ($NCPO_2/Ar$) and POC ($NCPOC$) time series
23 suggest the presence of large POC losses from the mixed layer. At this site, we utilized the
24 discrepancy between $NCPO_2/Ar$ and $NCPOC$, and additional constraints derived from surface
25 water excess nitrous oxide (N_2O), to evaluate POC loss through particle export, DOC production
26 and vertical mixing fluxes. At the second drifter survey, conducted in lower productivity,
27 density-stratified offshore waters, we also observed offsets between $\Delta O_2/Ar$ and POC-derived
28 GPP and CR rates. At this site, however, net [POC] and $\Delta O_2/Ar$ changes yielded closer
29 agreement in NCP estimates, suggesting a tighter relationship between production and
30 community respiration, and lower POC loss rates. These results provide insight into the
31 possibilities and limitations of estimating productivity from continuous underway POC and
32 $\Delta O_2/Ar$ data in contrasting oceanic waters. Our observations support the use of diel POC
33 measurements to estimate NCP in lower productivity waters with limited vertical carbon export,
34 and the potential utility of coupled O_2 and optical measurements to estimate the fate of POC in
35 high productivity regions with significant POC export.

36

37 **1 Introduction**

38

39 Marine primary productivity provides the main source of organic carbon to the ocean,
40 supporting the vast majority of marine ecosystem biomass. On short time scales, a large fraction
41 of this fixed organic carbon is converted back to CO_2 through community respiration (CR). The
42 difference between gross primary productivity (GPP) and CR – net community production
43 (NCP) – sets an upper limit on the quantity of particulate organic carbon that can be exported out
44 of the mixed layer as sinking particles, transferred to the dissolved organic carbon (DOC) pool,
45 or consumed by upper trophic levels. Accurate assessment of NCP is thus critical to
46 understanding trophic balance and the fate of organic carbon in the surface ocean. Traditional

47 incubation-based approaches to quantify GPP, net primary productivity (NPP) and CR are labor-
48 intensive and prone to sample containment artifacts (Gieskes et al., 1979; Fogg and Calvario-
49 Martinez, 1989; Marra, 2009; Quay et al., 2010), such that NCP remains challenging to quantify
50 on ecologically-relevant time and space scales.

51 In recent years, automated *in situ* measurements of seawater optical properties have been
52 increasingly used to estimate gross and net primary productivity from changes in optically-
53 derived surface water POC concentrations (e.g., Graff et al., 2016; Burt et al., 2018). This
54 approach is based on the relationship between POC concentrations and the particulate fraction of
55 the beam attenuation coefficient (c_p) (Siegel et al., 1989; Stramska and Dickey, 1992; Gardner et
56 al., 1993; Claustre et al., 1999; Gernez et al., 2011), which can be used to resolve diurnal
57 variations in POC. This diurnal variability results from the daytime accumulation of
58 photosynthetically-produced organic carbon, and nighttime loss of fixed carbon through
59 community respiration, and can thus be used to infer NCP on daily time-scales. The accuracy of
60 this approach depends on the key assumption that variations in c_p capture most of the variability
61 in POC concentration, and it has been shown that beam attenuation is most sensitive to particles
62 with a diameter range of 0.5–20 μm (Stramski and Kiefer 1991; Marra, 2002; Claustre et al.,
63 2008). To date, most efforts to calculate daily NCP from c_p variability have focused on low
64 productivity offshore regions, where particle sizes are small and POC losses through particle
65 export are limited (Claustre et al., 2008; White et al., 2017). These studies have reported good
66 agreement between optically-derived GPP estimates and independent estimates of NPP from ^{14}C
67 incubations (White et al., 2017), suggesting a tight coupling between primary productivity and
68 mixed layer POC dynamics over daily time scales.

69 Another approach to NCP quantification is based on autonomous measurements of
70 surface water dissolved oxygen to argon ratios (O_2/Ar). Argon normalization is used to correct
71 for any physically-induced changes in O_2 saturation, such that the derived saturation anomaly,
72 $\Delta\text{O}_2/\text{Ar}$, is a tracer of net biological O_2 production (Kaiser et al., 2005; Tortell, 2005; Cassar et
73 al., 2009). At steady-state, and in the absence of significant lateral advection and vertical mixing,
74 the sea-air flux of excess biologically-produced O_2 is equivalent to NCP. With the development
75 of automated ship-board mass spectrometers, there has been a significant expansion of surface
76 water O_2/Ar measurements. These data have been used to examine O_2 variability resulting from
77 diurnal variations of photosynthesis and respiration, and to infer NCP in a variety of oceanic

78 ecosystems (Reuer et al., 2007; Stanley et al., 2010; Tortell et al., 2011, 2014; Hamme et al.,
79 2012; Nicholson et al., 2015; Manning et al., 2017). Recent efforts have shown that NCP
80 estimates from $\Delta O_2/Ar$ measurements can be corrected for vertical mixing using water column
81 N_2O measurements as a tracer (Cassar et al. 2014; Izett et al. 2018), but application of this
82 methodology assumes that lateral advective fluxes of O_2 are negligible.

83 Combined measurement of mixed layer POC and O_2 dynamics holds the potential to
84 better constrain surface water carbon budgets in biogeochemically dynamic regions at high
85 spatial and temporal resolution. In net autotrophic systems, an increase in $\Delta O_2/Ar$ reflects the
86 accumulation of excess photosynthetic O_2 in the mixed layer, but provides no direct insight into
87 the fate of the resulting organic carbon. In the absence of particle export, grazing or DOC
88 production, an increase in $\Delta O_2/Ar$, corrected for air-sea exchange and vertical mixing, should be
89 matched by a parallel increase in POC accumulation measured by optical sensors. By
90 comparison, high POC export, DOC production or grazing coupled to vertical migrations would
91 act to decouple $\Delta O_2/Ar$ from optically-derived POC measurements in the mixed layer.

92 Previous authors have used simultaneous O_2 and c_p measurements on moorings to
93 describe mixed layer O_2 and POC dynamics in various marine environments (Stramska and
94 Dickey, 1992; Kinkade et al., 1999; Dickey and Chang, 2002). However, few studies to date
95 have compared estimates of primary productivity from simultaneous measurements on daily time
96 scales. Briggs et al. (2018) and Alkire et al. (2012) were the first to explicitly combine
97 concurrent measurements of O_2 and POC from *in situ* autonomous sensors to quantify mixed
98 layer productivity during a ~2-month Lagrangian study of the 2008 North Atlantic spring bloom.
99 Tracking daily changes in mixed layer O_2 and POC concentrations, Alkire et al. (2012)
100 constructed a detailed budget of surface ocean organic carbon throughout the course of the
101 bloom, using the difference between O_2 -based NCP and net POC accumulation to assess the
102 partitioning of NCP into different carbon pools (sinking particles, phytoplankton biomass, and
103 DOC). Building on this work, Briggs et al. (2018) examined the role of respiration, particle
104 export, and DOC production in decoupling O_2 and POC dynamics through different bloom
105 stages, demonstrating significant differences between GPP estimates derived from O_2 , beam
106 attenuation, and backscatter measurements. To our knowledge, such a detailed examination of O_2
107 and POC dynamics has not been reported for other marine systems.

108 Here, we present new results from a field study of diel variability in $\Delta\text{O}_2/\text{Ar}$ and optical
109 properties in two contrasting near-shore regions of the Subarctic North Pacific. Using ship-board
110 automated sensors deployed along a Lagrangian drifter track, we resolved fine-scale temporal
111 patterns in biological oxygen production and POC concentration in a high productivity coastal
112 upwelling zone over the continental slope and in lower productivity stratified waters offshore.
113 The biogeochemical differences between both sites provided a unique opportunity to compare
114 GPP, CR and NCP estimates derived from $\Delta\text{O}_2/\text{Ar}$ and POC in contrasting trophic regimes. We
115 expected to observe significant differences between $\Delta\text{O}_2/\text{Ar}$ and POC-derived GPP, CR, and
116 NCP estimates in the higher productivity site, reflecting greater carbon export capacity and DOC
117 production. By comparison, we hypothesized that discrepancies in these rates would be smaller
118 at the lower productivity site, reflecting a tighter coupling between O_2 and POC dynamics.

119 The results of this investigation extend the results from the 2008 North Atlantic bloom to
120 a high productivity coastal upwelling environment where vertical mixing fluxes significantly
121 influence the surface water mass balance. These dynamic systems play a disproportionately
122 important role in marine biogeochemical cycling, but they pose significant challenges for
123 interpreting time series of ecosystem metabolism. Furthermore, our study results further expand
124 applications of a recent field approach to correcting NCP for vertical mixing (Izett et al., 2018),
125 suggesting that this approach has significant merit in reconstructing productivity estimates from
126 a variety of mixed layer tracers. We discuss the implications of our coupled O_2 -POC
127 measurements for understanding biological carbon cycling in marine waters, and suggest some
128 approaches to improve the utility of these measurements for evaluating the fate of marine
129 primary productivity across marine trophic gradients.

130

131 **2 Methods**

132

133 **2.1 Field site and Lagrangian surveys**

134

135 Field studies were conducted on board the R/V *Oceanus* in August 2017, during a
136 transect through the Northeast Subarctic Pacific Ocean. Two Lagrangian drifters were deployed
137 off the Oregon coast, allowing us to track diurnal patterns in phytoplankton productivity and
138 particulate organic carbon cycling in two distinct water masses (Fig. 1). Underway temperature

139 and salinity measurements, collected by a Seabird SBE 45 thermosalinograph, as well as satellite
140 (Aqua MODIS) and ship-based chlorophyll-a (Chl-a) observations, were used to guide the
141 specific location and timing of the drifter deployments. Drifter 1 was deployed on 20 August
142 2017 (~9:30 PDT), ~40 km from the Oregon coast (44.54° N, 124.58° W), in the vicinity of an
143 upwelling feature detected based on low sea surface temperature, and elevated salinity and [Chl-
144 a]. The drifter, consisting of a beacon, GPS transmitter and 5 m drogue, was recovered at ~18:30
145 on 23 August 2017 (44.40° N, 124.55° W) for a total deployment of 3 days and 9 hours. Upon
146 recovery, the drogue was missing, implying the potential for some erratic sub-surface drifting
147 (discussed below). Drifter 2 was deployed approximately 200 km from shore (43.75° N, 126.50° W)
148 in a relatively warm and low salinity water mass, with low Chl-a concentrations. This
149 second drifter was deployed at ~07:45 on 24 August 2017, and was recovered after 2 days and
150 six hours at ~14:00 on 26 August 2017 at 43.80° N, 126.99° W. Because the *Oceanus* lacks a
151 dynamic positioning system, the ship was not always able to perfectly track the drifter locations.
152 To correct for these positional offsets, we discarded any observations obtained when the ship
153 was more than 1.5 km away from the drifter location. This filtered dataset resulted in underway
154 measurements (Sect. 2.2) every ~15 minutes during the two drifter deployments, yielding 325
155 and 218 quality-controlled underway observations for drifters 1 and 2, respectively.

156

157 **2.2 Underway measurements**

158

159 Continuous underway measurements of surface seawater optical properties were
160 collected using Seabird (formerly Wetlabs) ECO-BB3 and ac-s sensors, following the methods
161 outlined in detail by Burt et al. (2018). Water was collected from the ship's seawater supply
162 system with a nominal intake of 5 m depth. Our instrument package included fully automated
163 data collection, and hourly filtered blanks ($0.2\mu\text{m}$), which provided measurements of dissolved
164 seawater optical properties used to infer particulate absorption (a_p) and beam attenuation (c_p) at
165 82 wavelengths between 400 and ~735 nm, and backscatter (b_{bp}) at 470 nm, 532 nm, and 650
166 nm. The BB-3 and ac-s measurements were binned into 1-minute intervals. Prior to binning, the
167 absorption and beam attenuation data were first sub-sampled every 50 data acquisition cycles
168 (~12.5 seconds) to enable faster processing time. The optical measurements were accompanied
169 by continuous surface photosynthetically active radiation (PAR) and windspeed data obtained

170 from a Biospherical QSR-220 PAR sensor and Gill WindObserver II ultrasonic wind sensor
171 mounted on the ship's bow.

172 Chlorophyll-a (Chl-a) concentrations were derived from the particulate absorption line
173 height at 676 nm (a_{LH}) (Roesler and Barnard, 2013). Five-minute match-ups between underway
174 a_{LH} and discrete filtered [Chl-a] measurements from the entire cruise transect (Sect. 2.4) were
175 used to derive a best fit coefficient for the linear relationship between a_{LH} and [Chl-a] ($r^2=0.87$,
176 $n=58$, $p<0.01$). Particulate organic carbon (POC) concentrations ($\mu\text{g/L}$) were derived from
177 particulate beam attenuation at 660 nm ($c_p,660$), using the empirical model in Graff et al. (2015).
178 Similarly, phytoplankton organic carbon (C_{ph}) concentrations were calculated, using an empirical
179 relationship between particulate backscatter at 470 nm ($b_{bp,470}$) and $[C_{ph}]$ in $\mu\text{g/L}$ (Graff et al.,
180 2015). We used a limited set of 5m discrete measurements ($n=6$; Sect. 2.4) to evaluate the
181 relationship between POC concentrations and c_p at 660nm, and the applicability of the Graff et
182 al. (2015) model to our observations. As shown in Fig. S1, the POC measurements were
183 significantly correlated to c_p ($r^2=0.88$, $p<0.05$), with a slope and intercept of 391.6 ± 201.6 and
184 36.7 ± 79.1 , respectively. This slope was not significantly different from that of the Graff et al.
185 algorithm (419.8) although our y-intercept was higher. Notwithstanding the relatively small
186 number of discrete POC samples, and some scatter around the regression line, the similarity of
187 our POC- c_p calibration to that reported by Graff et al. (2015) suggests that our optically-derived
188 POC estimates are reasonably robust.

189 To obtain information on the particle size spectrum, we derived the wavelength-
190 dependent slope of particulate backscatter by fitting the three b_{bp} coefficients (470 nm, 532 nm,
191 650 nm) to an exponential equation (Stramska et al., 2003; Loisel et al., 2006; Kostadinov et al.,
192 2009). Finally, to assess interference of inorganic minerals on POC, and C_{ph} variability, we
193 calculated the wavelength-specific bulk refractive index (η_p) from backscatter/total scatter ratios
194 ($\frac{b_{bp}}{c_p - a_p}$) and the wavelength-dependent c_p slope, following the approach of Boss et al. (2001),
195 Twardowski et al. (2001) and Sullivan et al. (2005).

196 In addition to optical measurements, the seawater biological oxygen saturation anomaly
197 ($\Delta\text{O}_2/\text{Ar}$) was measured at a ~20 second resolution using a membrane inlet mass spectrometer
198 connected to the ship's seawater intake. The seawater ratio of dissolved O_2 and Ar was
199 determined by diverting a continuous flow of water across a dimethylsilicone membrane
200 interfaced with a Hiden Analytical HAL20 triple filter quadropole mass spectrometer. The O_2/Ar

201 ratio of air-equilibrated standards ($[O_2/Ar]_{eq}$), incubated at ambient sea surface temperature, was
202 measured every two hours. Values of $\Delta O_2/Ar$ were thus calculated as the percent deviation of
203 seawater O_2/Ar measurements from the air-equilibrated ratio, using $\Delta O_2/Ar = 100\% *$
204 $([O_2/Ar]_{meas} / [O_2/Ar]_{eq} - 1)$ (Tortell, 2005; Tortell et al., 2011).

205

206 **2.3 Mixed layer depth**

207

208 Over the course of both drifter deployments, we conducted regular sampling casts (every
209 six to ten hours) to examine depth profiles of seawater hydrography and biogeochemical
210 variables. Temperature, salinity, dissolved O_2 concentrations and Chl-a fluorescence profile data
211 from the CTD casts were measured by a Seabird-SBE 38 temperature sensor, Seabird-SBE 4
212 conductivity sensor, SBE 43 dissolved O_2 sensor, and a Seabird ECO fluorometer, respectively,
213 and binned into 1 m intervals. Vertical profiles at the drifter 1 site showed relatively weak
214 density stratification, likely as a result of recent upwelling. For this reason, we estimated mixed
215 layer depths (z_{mld}) based on visible inflection points in the dissolved $[O_2]$, fluorescence and
216 density profiles, assuming that dissolved O_2 concentrations and fluorescence are relatively
217 uniform in the mixed layer. Within a single CTD cast, mixed layer depths varied by up to 28%
218 across all three profile measurements. The [Chl-a] fluorescence profiles had the most well-
219 defined inflection points, and we thus used these data to estimate z_{mld} at all casts. Excluding
220 fluorescence profiles from the first day (Sect. 3.1), and two casts at 6am and midnight on second
221 and third 24-hour intervals, respectively, which displayed relatively noisy density profiles, an
222 average z_{mld} value (19 ± 2 m) was derived and applied to all subsequent analyses.

223 In comparison to the drifter 1 site, CTD cast profiles during drifter deployment 2 showed
224 larger density gradients. We thus computed z_{mld} using a density difference criterion of 0.25
225 kg/m³ (Thomson et al., 2003; de Boyer Montégut et al., 2004) from median values within the
226 upper-most 4–6 m of the profile. We found that this critical density criterion was necessary to
227 capture the depth of inflection in O_2 and [Chl-a]. In all CTD casts except one, density difference-
228 based z_{mld} values were within 5 meters of the values derived from the inflection points on density
229 profiles. An average z_{mld} value estimated from the density-difference approach (22 ± 5 m) was
230 applied to all subsequent analyses.

231

232 **2.4 Discrete samples**

233

234 Concentrations of phosphate ($[PO_{43-}]$), dissolved silica ($[SiO_2]$), and nitrate and nitrite
235 ($[NO_3^- + NO_2^-]$, were measured in seawater samples collected from daily Niskin bottle casts.
236 Following collection, nutrient samples were filtered through 0.2 μ m pore polycarbonate
237 membranes and immediately frozen at -80°C on board the ship. These samples were stored at
238 -20°C until subsequent colorimetric laboratory analyses (Murphy and Riley, 1962; Riley, 1977)
239 with a Lachat QuikChem 8500 Series 2 Flow Injection Analysis System.

240 Concentrations of nitrous oxide (N_2O) were measured in discrete samples collected in
241 Niskin bottles during both drifter deployments (Fig. S2), following methods outlined in (Capelle
242 et al., 2015). These N_2O measurements were used to correct NCP estimates for vertical mixing
243 (see Sect. 2.6), following the approach described by Cassar et al. (2014) and Izett et al. (2018).
244 Profile samples from the first day of drifter deployment 1 (August 20) were omitted from
245 calculations, as underway surface temperature and salinity measurements indicated intrusion of
246 an external water mass (further discussed in Sect. 3.1) (Fig. S3). Three profiles collected from
247 12:00 (PDT) CTD casts during the following three days of the deployment (August 21, 22 and
248 23) were applied to the NCP mixing correction at drifter station 1 (Sect. 2.6.1).

249 Surface (~5 m) discrete seawater samples were collected either from Niskin bottles or
250 from the ship's surface seawater intake system for HPLC analysis of Chl-a concentrations and
251 other phytoplankton pigments. Single or duplicate samples were filtered onto 25 mm GF/F
252 filters, flash-frozen in liquid nitrogen, and stored at -80°C until analysis, following the
253 methodology described in Schuback et al. (2016). Additional samples were collected from the
254 seawater intake for size-fractionated Chl-a analysis (Zeng et al., 2018). These samples were
255 filtered through stacked 47 mm filters (0.2 μ m, 2 μ m and 20 μ m pore size) separated by a mesh
256 spacer. Filtered samples were extracted in 5 mL of 90% acetone at 4°C until analysis within 24–
257 48 hours using a Turner Trilogy Fluorometer on board the ship.

258 Discrete samples for POC analysis were collected at two depths from several CTD casts.
259 Surface samples were collected at both drifter sites from 5 m depth, while deeper samples were
260 collected at near the base of the euphotic zone (~1% PAR), corresponding to 40–60 m at drifter
261 site 1, and 100–120 m at drifter site 2. POC samples (~1–4 L) were filtered through a pre-
262 combusted (450 °C) Whatman GF/F filter (nominal pore size ~ 0.7 μ m), and stored at -80°C

263 until laboratory analysis. Prior to analysis, samples were thawed and dried at 50°C overnight,
264 fumigated with concentrated hydrochloric acid for 48 hours, and dried again at 50°C overnight.
265 POC concentrations in samples (and blank combusted filters treated as described above) were
266 quantified using an *Elementar* vario MICRO cube CHNS analyzer. Blank-corrected discrete
267 POC concentrations were used to validate application of the [POC] model in Graff et al. (2015)
268 to our underway c_p data (Sect. 2.2; Fig. S1).

269

270 **2.5 Net Primary Productivity**

271

272 Daily-integrated net primary productivity (NPP) was calculated in two ways. First,
273 carbon uptake was determined from 24-hour ^{14}C -incubations with 5 m triplicate seawater
274 samples collected from early morning CTD casts. Measurements were made on two different
275 mornings during drifter deployment 1 and on one morning during drifter deployment 2. The
276 measurements were conducted following the protocol outlined in Hoppe et al. (2017). Depth-
277 integrated NPP was calculated by multiplying the derived 24-hour volumetric carbon fixation
278 rate by the average mixed layer depth for the respective drifter period.

279 Second, daily-integrated net primary productivity was also estimated as a product of $[\text{C}_{\text{ph}}]$
280 values derived from b_{bp} , and phytoplankton growth rates according to the carbon-based
281 production model (CbPM) (Behrenfeld et al., 2005; Westberry et al., 2008; Graff et al., 2016;
282 Burt et al., 2018). In these calculations, daily-averaged $[\text{C}_{\text{ph}}]$, $[\text{Chl-a}]/[\text{C}_{\text{ph}}]$, and mixed layer
283 irradiance (E_g) calculated from the MODIS-derived surface PAR matched to drifter location
284 were used to calculate growth rates and NPP every 24 hours. Chlorophyll-a concentrations were
285 derived from absorption line height, $[\text{C}_{\text{ph}}]$ values from b_{bp} (Sect. 2.2), and light extinction
286 coefficients (K_d) obtained from $[\text{Chl-a}]$ to calculate E_g (Morel et al., 2007). An average mixed
287 layer depth for each drifter period was applied to estimate mixed layer NPP (Sect. 2.3).

288

289 **2.6 Quantification of GPP, CR and NCP**

290

291 Gross primary productivity (GPP), community respiration (CR) and net community
292 production (NCP) rates were calculated based on linear regressions of $\Delta\text{O}_2/\text{Ar}$ and POC against
293 time (dt in units of days) over subsequent day (D) and night (N) intervals during both drifter

294 deployments. Daytime was defined as the period during which PAR levels exceeded $20 \mu\text{mol}$
295 quanta $\text{m}^{-2}\text{s}^{-1}$. The average length of the day-time period was 13.6 ± 0.14 hours over the two
296 drifter deployments. In the following sections, t_d represents the day length normalized to 24
297 hours, and t_n analogously represents the fractional night length, equivalent to $1-t_d$. All daily rates
298 were integrated through the mixed layer using the average z_{mld} for each drifter period, as
299 described in Sect. 2.3.

300

301 **2.6.1 O₂/Ar-derived rates**

302

303 Quantification of $\text{GPP}_{\text{O}_2/\text{Ar}}$, $\text{CRO}_{\text{O}_2/\text{Ar}}$, and $\text{NCP}_{\text{O}_2/\text{Ar}}$ rates from diurnal cycles in $\Delta\text{O}_2/\text{Ar}$
304 (Ferrón et al., 2015) requires corrections for gas exchange and, potentially, vertical mixing
305 fluxes. For these calculations, we first computed the rate of change in $\Delta\text{O}_2/\text{Ar}$ ($d\text{O}_{2\text{Bio}}/dt$) using
306 linear regression analysis within successive day or night intervals. We then derived estimates for
307 the air-sea gas exchange (J_{ex}) and vertical mixing fluxes (F_{mix}) over the respective time interval
308 to isolate the NCP contribution to observed $\Delta\text{O}_2/\text{Ar}$ changes (Izett et al., 2018; Tortell et al.,
309 2014). A negative J_{ex} indicates net transfer of O_2 from the atmosphere to the mixed layer, while a
310 negative F_{mix} indicates vertical transfer of $\Delta\text{O}_2/\text{Ar}$ -depleted to the mixed layer, both in units of
311 $\text{mmol m}^{-2} \text{d}^{-1}$. Gross O_2 production rates were converted into carbon units using a photosynthetic
312 quotient (PQ) for new production of 1.4 for drifter period 1 calculations and a PQ for regenerated
313 production of 1.1 for drifter period 2 (Laws, 1991). Community respiration rates were converted
314 into carbon units using the same PQ values, and considered constant over each respective day
315 length period (i.e., $t_d + t_n$). This assumption of an equivalent respiratory quotient (RQ) and PQ
316 within each drifter period is reasonable given the wide range of respiration ratios reported in
317 prior studies across a range of oceanic environments (Anderson and Sarmiento, 1994; Robinson
318 and Williams, 1999; Robinson et al., 1999; Hedges et al., 2002; Robinson et al., 2002; Lønborg
319 et al., 2011; Daneri et al., 2012; Fernández-Urruzola et al., 2014). Moreover, Robinson and
320 Williams (1999) estimated lower RQ values at lower productivity stations in the Arabian Sea,
321 suggesting that it is reasonable to assume a lower RQ value (equivalent to $\text{PQ} = 1.1$) at drifter site
322 2.

323

324 $NCP_{\frac{O_2}{Ar}, D \text{ or } N} = z_{mld} \frac{dO_{2bio}}{dt} \Big|_{D \text{ or } N} + J_{ex} \Big|_{D \text{ or } N} - F_{mix}$ (1)

325

326 $GPP_{O_2/Ar} = \frac{t_d(NCP_{\frac{O_2}{Ar}, D} - NCP_{\frac{O_2}{Ar}, N})}{PQ(t_d + t_N)}$ (2a)

327 $CR_{O_2/Ar} = \frac{NCP_{\frac{O_2}{Ar}, N}}{PQ(t_d + t_N)}$ (2b)

328 $NCP_{\frac{O_2}{Ar}, 24hr} = \frac{t_d NCP_{\frac{O_2}{Ar}, D} + t_N NCP_{\frac{O_2}{Ar}, N}}{PQ(t_d + t_N)}$ (2c)

329

330 $O_{2bio} = \Delta \frac{O_2}{Ar} \frac{1}{100\%} O_{2eq}$ (3)

331

332 $J_{ex} = k_{o_2} O_{2bio}$ (4)

333

334 $F_{mix, O_2/Ar} = k_{mix} \frac{dO_{2bio}}{dz} = k_{N2O} N_2 O_{bio} \frac{dO_{2bio}}{dN2O_{bio}}$ (5)

335

336 $k_{mix} = k_{N2O} N_2 O_{bio} \left(\frac{dN2O_{bio}}{dz} \right)^{-1}$ (6)

337

338 $N_2 O_{bio} = N_2 O_{meas} - N_2 O_{eq} - N_2 O_{thermal}$ (7)

339

340 Equilibrium concentrations of O₂ and N₂O ([O₂]_{eq} and [N₂O]_{eq}) were calculated using the
 341 salinity and temperature-dependent equations of Garcia and Gordon (1992) and Weiss and Price
 342 (1980), respectively, and sea surface temperature and salinity from the ship's thermosalinograph.
 343 Estimates of surface excess N₂O saturation, [N₂O]_{bio}, included a heat flux correction to account
 344 for solubility changes (Keeling and Shertz, 1992; Jin et al., 2007; Izett et al., 2018). Non-
 345 weighted piston velocities (k_{O₂} and k_{N₂O}; units of m d⁻¹) were calculated using the diffusive air
 346 sea gas flux and Schmidt number parameterizations of Wanninkhof (2014) and Raymond et al.
 347 (2012), and ship-based wind speed data 10 m above the sea surface. Daytime and nighttime
 348 estimates for the gas exchange term, J_{ex}, were calculated using day/night average [O₂]_{eq}, ΔO₂/Ar,
 349 and k_{O₂} values. Vertical gas gradients ($\frac{dN2O_{bio}}{dz}$ and $\frac{dO_{2bio}}{dN2O_{bio}}$) were estimated from our discrete

350 N₂O measurements and Rosette O₂ profiles over the upper 100 m of the water column, following
351 Izett et al. (2018).

352 At drifter site 1, daily F_{mix} values were calculated using daily [N₂O]_{bio}, daily vertical
353 gradient and daily average k_{N2O} values, and converted to carbon units using a PQ of 1.4.
354 Denitrification should not have been a source of N₂O within the upper 100 m of the water
355 column because measured O₂ concentrations were consistently greater than the threshold value
356 of ~50 mmol m⁻³ (e.g., Hopkinson and Barbeau, 2007). Likewise, we assumed no lateral
357 advection of N₂O into drifter site 1, as there were little differences in the mixing ratio
358 [O₂]_{bio}/[N₂O]_{bio} across profile measurements (Fig. S2). While the August 22 CTD cast did
359 exhibit a more anomalous [O₂]_{bio}/[N₂O]_{bio} profile relative to the other two cast profiles, inclusion
360 of these data had little impact on the vertical mixing correction. At drifter site 2, we assumed that
361 vertical mixing was negligible due to the presence of strong density stratification, and therefore
362 did not calculate a mixing flux correction at this site. In any case, the presence of a sub-surface
363 O₂ maximum (Fig. S2) at this site would limit the application of the N₂O correction (Izett et al.,
364 2018).

365

366 2.6.2 Optically-derived rates

367

368 We used the approach of Claustre et al. (2008) and White et al. (2017) to calculate daily-
369 integrated GPP_{POC}, CR_{POC}, and NCP_{POC} from daytime and nighttime changes in POC (dPOC/dt),
370 derived from linear regressions of POC concentrations against time through day and night
371 intervals. In certain ocean environments, NCP_{POC} will not equate to NCP_{O₂/Ar} as a result of
372 additional POC sinks, including export, grazing and DOC production. Under these conditions,
373 CR_{POC} includes these loss terms, and therefore NCP_{POC} more accurately reflects net POC
374 accumulation, as will be discussed further in Sect. 4. Nonetheless, for consistency with previous
375 studies, we use the term NCP_{POC} to describe the quantities computed in Eq. 8.

376

$$377 NCP_{POC,D \text{ or } N} = z_{mld} \left. \frac{dPOC}{dt} \right|_{D \text{ or } N} - F_{mix(POC)} \quad (8)$$

378

$$379 GPP_{POC} = \frac{t_d(NCP_{POC,D} - NCP_{POC,N})}{t_d + t_N} \quad (9a)$$

380 $CR_{POC} = \frac{NCP_{POC,N}}{t_d + t_N}$ (9b)

381 $NCP_{POC,24hr} = \frac{t_d NCP_{POC,D} + t_N NCP_{POC,N}}{t_d + t_N}$ (9c)

382

383 The presence of significant upwelling at drifter site 1 provides additional complexity in the
 384 estimate of NCP from optically-derived POC measurements. In particular, vertical transport of
 385 particle-deficient seawater from below the mixed layer into the surface could dilute the c_p signal
 386 used to derive POC concentrations (Stramska and Dickey, 1994). To address this, we applied the
 387 vertical mixing term, k_{mix} , derived from Eq. (6) to estimate the average daily dilution effect on
 388 mixed layer POC concentrations through drifter period 1:

389

390 $F_{mix,POC} = k_{mix} \frac{dPOC}{dz}$ (10)

391

392 A negative $F_{mix,POC}$ indicates transfer of [POC]-deficient seawater into the mixed layer. The term
 393 $d[POC]/dz$ represents the vertical gradient in [POC], derived from daily average POC
 394 concentrations measured in Rosette samples at 5 m and near the base of the euphotic zone, below
 395 the mixed layer (40–60 m) (Sect. 2.4). The dz term was calculated as the difference between the
 396 average mixed layer depth from all CTD casts and the daily average shallowest depth of
 397 minimum particle concentrations based on beam transmission profiles. At drifter site 2, $F_{mix,POC}$
 398 was considered negligible (Sect. 2.6.1) due to the high density stratification of the water column.

399 In total, three sets of 24-hour GPP, CR and NCP values were calculated during the drifter
 400 1 deployment from the three pairs of consecutive day and night intervals, starting with the first
 401 night interval and ending with the last day interval. We excluded the first day-time interval from
 402 our calculations, due to the erratic salinity values observed during the first day of this drifter
 403 deployment (Sect. 3.1; Fig. S3). Because the drifter period was terminated prior to sunset, the
 404 last day interval was 1.6 hours shorter than the average daytime duration. For the second drifter
 405 deployment, two sets of GPP, R and NCP values were calculated from consecutive day and night
 406 intervals, starting with the first daytime interval and ending with the last nighttime interval. The
 407 initiation of the drifter period occurred after sunrise, so the first day interval was 1.1 hours
 408 shorter than the average daytime duration.

409

410 **2.6.3 Integration time scales**

411

412 The approach to calculating NCP on the basis of linear regressions utilizes the high
413 temporal resolution of our data set. We compared our results from Sects. 2.6.1 and 2.6.2 to NCP
414 values calculated using several of other integration time scales. Following studies that have
415 calculated daily NCP values from “instantaneous” rates of change (e.g., hourly rates in Hamme
416 et al. (2012) and Tortell et al. (2014)), we divided our NCP calculations into shorter increments.
417 Given that the average measurement interval was ~15 minutes (after removing values where the
418 ship was not sufficiently close to the drifter; Sect. 2.1), we calculated NCP within three-hour
419 intervals:

420

421
$$NCP_{O_2/Ar,3hr} = \frac{3}{24} \left[z_{mld} \left(\frac{dO_{2bio}}{dt} \right)_{3hr} + J_{ex,3hr} \right] / PQ \quad (11a)$$

422
$$NCP_{POC,3hr} = z_{mld} \left[\frac{3}{24} \left(\frac{dPOC}{dt} \right)_{3hr} \right] \quad (11b)$$

423

424 For each day of the drifter periods, eight consecutive three-hour NCP values were summed into a
425 24-hour period to yield daily NCP estimates. We then applied the vertical mixing correction to
426 these daily estimates (refer to Eqs. 5, 6, 10), since the correction was only available on a daily
427 basis given the lower sampling resolution of [N₂O] and [POC] profiles. We also calculated daily
428 NCP using the difference between ΔO₂/Ar or [POC] between two time points at the beginning
429 and end of each 24-hour period (similar to the approach in Alkire et al. (2012); and Barnes and
430 Antoine (2104)). Finally, we calculated a single daily NCP rate per drifter period using the linear
431 regression of ΔO₂/Ar and [POC] against time over the entire drifter deployment. For these latter
432 two approaches, the 24-hour average and drifter-period average of relevant terms in Eqs. 1-9
433 were used to calculate NCP, and a PQ was used to convert O₂ to carbon units.

434

435 **2.7 Error analysis**

436

437 Errors for all estimates of net primary productivity (CbPM-NPP, ¹⁴C-NPP) and net
438 community production (NCP_{O₂/Ar}, NCP_{POC}) were propagated from uncertainties associated with
439 all variables used for the computations. Error estimates for time-averaged variables were

440 generally represented by the standard deviation, as we assumed that this significantly exceeded
441 the error of the individual measurements prior to averaging. The uncertainty in z_{mld} , derived from
442 the standard deviation of mixed layer depths across individual CTD casts, was 2 m for drifter site
443 1 and 5 m for drifter site 2 (Sect. 2.3). Small uncertainties in t_D and t_N were calculated as the
444 standard deviations of all day or night lengths measured during both drifter periods (0.14 and
445 0.10 hours, respectively). Mean relative errors of [Chl-a] and [C_{ph}] from Burt et al. (2018), and
446 mean relative standard deviations in MODIS-derived daily surface PAR values were propagated
447 to calculate the error in CbPM-NPP. The standard deviations of triplicate 24-hour ^{14}C uptake
448 incubations were propagated to calculate the error in ^{14}C -NPP estimates. The uncertainties in
449 ^{14}C -NPP values are likely underestimated, as they do not account for bottle effects, as discussed
450 in Sect. 4.3.

451 For calculating error in NCP, uncertainties in $dO_{2\text{bio}}/dt$ and $d\text{POC}/dt$ were derived from
452 the confidence interval of the best-fit slope of linear regression of each variable against time.
453 Standard deviations of averaged $\Delta O_2/\text{Ar}$, k_{O_2} , and k_{N_2O} values, and the mean relative errors of
454 $[\text{N}_2\text{O}]_{\text{meas}}$, $[\text{N}_2\text{O}]_{\text{Eq}}$, $[\text{N}_2\text{O}]_{\text{thermal}}$, and $\frac{dO_{2\text{bio}}}{dN_2O_{\text{bio}}}$ reported in Izett et al. (2018), were propagated into
455 the mixing correction errors for $\text{NCP}_{\text{O}_2/\text{Ar}}$ and NCP_{POC} . The error in $\frac{dN_2O_{\text{bio}}}{dz}$ was calculated as the
456 confidence interval of the best fit slope extracted from a linear regression of pooled drifter 1
457 $[\text{N}_2\text{O}]_{\text{bio}}$ values against depth. In propagating the error associated with the $d\text{POC}/dz$ term in Eq.
458 10, we have included the standard deviation of the minimum transmissivity depth across daily
459 CTD casts and the standard deviation of POC measured in multiple blank combusted filters
460 (Sect. 2.4). Finally, to account for variability in the PQ and RQ, we assumed an uncertainty of
461 0.1, following the range reported Laws (1991).

462

463 **3 Results**

464

465 **3.1 Water mass properties**

466

467 Ship-board underway measurements revealed clear differences in hydrographic and
468 biogeochemical characteristics between the water masses sampled by the two drifters. Surface
469 water properties at drifter site 1 reflected the presence of a recently upwelled water mass that was

470 relatively cold (11.8 ± 0.4 °C), saline (32.6 ± 0.04 g/kg), and nutrient-rich (Figs. 1, S3, S4). The
471 Pacific Fisheries Environmental Laboratory's coastal upwelling index at 45°N, 125°W was
472 positive throughout drifter period 1. In contrast, the water mass tracked by the second drifter
473 deployment was warmer (17.5 ± 0.1 °C) and fresher (31.8 ± 0.05 g/kg), with lower average mixed
474 layer nutrient concentrations.

475 Examination of surface water hydrographic properties during the two drifter deployments
476 suggest that both drifters tracked a relatively homogenous water mass, excluding a period of
477 salinity variability during the first day of drifter deployment 1, and several transient temperature
478 and salinity excursions after the second night of this deployment (grey patches in Fig. S3). These
479 features indicate potential intrusion of external water masses, possibly a result of loss of the
480 drifter drogue (Sect. 2.1). Observations during these periods were thus removed from the data set
481 prior to analysis. Outside of these intervals, variability in salinity (drifter 1: 32.5–32.7 g/kg;
482 drifter 2: 31.8–31.9 g/kg) was small during both drifter deployments. Variability in sea surface
483 temperature was also limited (drifter 1: 11.2–13.0 °C, drifter 2: 17.3–17.7 °C), and largely
484 reflected a diurnal variation of warming and cooling, which was particularly evident for drifter
485 period 2.

486 Temporal differences in CTD cast profiles point to some variation in mixed layer depth
487 (z_{mld}) during both drifter deployments. In general, there were no multi-day trends or regular
488 diurnal patterns in z_{mld} through both periods, suggesting that transient shifts in water column
489 turbulence likely contributed to changes in the shape of temperature, salinity, dissolved oxygen
490 and fluorescence profiles. Average z_{mld} values, calculated over each drifter period, had relatively
491 low relative standard deviations (<25%) and were applied to all subsequent calculations (Sect.
492 2.3). A sensitivity analysis, not shown, indicated that the choice of mixed layer depth using
493 different criteria (i.e., fluorescence profiles, density profiles and the density difference criterion)
494 and different time scales of integration (i.e., daytime/nighttime, 24 hour, and multi-day) did not
495 significantly impact the results discussed below.

496 Average mixed layer nutrient concentrations fluctuated during both drifter deployments,
497 but did not exhibit regular diurnal cycles (Fig. S4). At drifter site 1, concentrations ranged from
498 0.74 to 0.85 µM phosphate, 7.8 to 9.0 µM nitrate and nitrite, and 9.2 to 11.1 µM dissolved silica,
499 excluding day 1 of the drifter deployment and anomalously high concentrations measured during
500 a noisy CTD cast at midnight on the last day of the deployment. Excluding these outliers, a

501 significant ($p < 0.05$) linear regression of each nutrient concentration against time revealed that
502 phosphate concentrations decreased by $\sim 0.07 \mu\text{M}$, $[\text{NO}_3^- + \text{NO}_2^-]$ decreased by $0.9 \mu\text{M}$, and
503 $[\text{SiO}_2]$ decreased by $1.2 \mu\text{M}$ over the three-day drifter period, roughly in Redfield ratio
504 proportions (Sect. 3.4). Nutrient concentrations varied less at site 2, from $0.08\text{--}0.10 \mu\text{M}$ $[\text{PO}_4^{3-}]$,
505 $0.29\text{--}0.61 \mu\text{M}$ $[\text{NO}_3^- + \text{NO}_2^-]$, and $1.2\text{--}1.7 \mu\text{M}$ $[\text{SiO}_2]$. While $[\text{PO}_4^{3-}]$ and $[\text{SiO}_2]$ increased
506 significantly ($p < 0.05$) by $0.015 \mu\text{M}$ and $0.48 \mu\text{M}$, respectively, these changes were small
507 compared to the nutrient drawdown observed during drifter period 1, and did not reflect Redfield
508 ratio proportions. It is possible that intrusions of an external water mass with slightly elevated
509 nutrient concentrations contributed to the small increase in $[\text{PO}_4^{3-}]$ and $[\text{SiO}_2]$ measured during
510 these CTD casts, even though we assume that such effects on our derived productivity estimates
511 are negligible based on inspection of underway temperature and salinity data (Fig. S3).

512

513 **3.2 Biogeochemical comparisons between drifter sites**

514

515 Elevated nutrient concentrations at the drifter 1 site supported high productivity and the
516 accumulation of phytoplankton biomass, as indicated by elevated chlorophyll-a ($[\text{Chl-a}] = 0.66\text{--}$
517 $1.5 \mu\text{g/L}$), phytoplankton carbon ($[\text{C}_{\text{ph}}] = 83\text{--}115 \mu\text{g/L}$) and particulate organic carbon
518 concentrations ($[\text{POC}] = 130\text{--}261 \mu\text{g/L}$) (Figs. 2a–c). We observed $[\text{C}_{\text{ph}}]/[\text{Chl-a}]$ ratios ranging
519 from $68\text{--}143 \text{ g/g}$, with a median value of 85 g/g (Fig. 2f). Using the carbon-based production
520 model (CbPM; Sect. 2.5) and daily-averaged mixed layer PAR derived from satellite values
521 matched to drifter location (within 5 km), these $[\text{C}_{\text{ph}}]/[\text{Chl-a}]$ ratios translate into phytoplankton
522 growth rates ranging from $0.75\text{--}0.94 \text{ d}^{-1}$. At the second drifter site, phytoplankton productivity
523 and biomass were significantly lower in the nutrient-poor waters ($[\text{Chl-a}] = 0.06\text{--}0.21 \mu\text{g/L}$,
524 $[\text{C}_{\text{ph}}] = 11\text{--}17 \mu\text{g/L}$, and $[\text{POC}] = 25\text{--}38 \mu\text{g/L}$). Ratios of $[\text{C}_{\text{ph}}]$ to $[\text{Chl-a}]$ at site 2 were
525 significantly higher ($p < 0.05$) than those observed at site 1, ranging from 69 g/g to 203 g/g , with a
526 median value of 108 g/g . The higher ratios may reflect reduced cellular $[\text{Chl-a}]$ associated with
527 greater nutrient limitation, higher daily-integrated PAR, and proportionally more picoplankton
528 than microplankton at drifter site 2 (Westberry et al., 2008; Hirata et al., 2011; Graff et al., 2016;
529 Burt et al., 2018). Median PAR levels were higher and less variable at site 2, in part contributing
530 to lower variability in CbPM-based growth rates, which ranged from 0.81 to 0.85 d^{-1} .

531 Several lines of evidence suggest that the phytoplankton assemblage at drifter site 1 was
532 enriched in large-celled phytoplankton, as compared to drifter site 2. The wavelength-dependent
533 slope of particulate backscatter (b_{bp}) was lower at site 1 (range: 1.4 to 1.6, median: 1.5) than at
534 site 2 (range: 1.9–2.3, median: 2.1) (Fig. 2d), suggesting proportionally larger particle sizes
535 (Stramska et al., 2003; Kostadinov et al., 2009). This observation is supported by size-
536 fractionated Chl-a measurements. During the drifter 1 deployment, the $>20\text{ }\mu\text{m}$ size fraction
537 (Sect. 2.4), increased from 21 % to 46 % of the total Chl-a pool, indicating the enrichment of
538 large phytoplankton in the assemblage. Pigment-based estimates of phytoplankton taxonomic
539 composition and size class (Hirata et al., 2011; Zeng et al., 2018) suggested that relative diatom
540 and microplankton abundances exceeded 50% on the final sampling time point. By comparison,
541 size-fractionated [Chl-a] and HPLC analyses from drifter 2 indicated a lower proportion of large-
542 celled phytoplankton, with 9–15% of total [Chl-a] in the $>20\text{ }\mu\text{m}$ size fraction, and diatoms and
543 micro-plankton estimated to account for 19–29% of the phytoplankton assemblage. The
544 proportion of picoplankton increased through time at drifter site 2 from 31–50% of total [Chl-a],
545 alongside a slight increase in b_{bp} slope, indicating accumulation of smaller particle sizes (Fig.
546 S3d). Finally, median bulk refractive index values across three wavelengths (470 nm, 532 nm,
547 650 nm) were higher at site 1 (1.08–1.11) than at site 2 (1.02–1.04) (Fig. S3e), which is
548 consistent with a greater proportion of diatom-derived silica in the particle pool (Lide, 1997;
549 Twardowski et al., 2001).

550

551 **3.3 Diurnal variability and primary production**

552

553 As shown in Fig. 3a, clear diurnal cycles in biological oxygen saturation ($\Delta\text{O}_2/\text{Ar}$) were
554 observed during both drifter deployments. Generally, values of $\Delta\text{O}_2/\text{Ar}$ increased from dawn to
555 dusk and decreased from dusk to dawn, yielding positive slopes of linear regressions of $\Delta\text{O}_2/\text{Ar}$
556 against time in the daytime, and negative slopes at night. During drifter deployment 1, this
557 diurnal cycle was superimposed on a longer-term increase in biological O₂ saturation as under-
558 saturated values returned toward atmospheric equilibrium. At least part of this increase is
559 attributable to gas exchange, which would act to erase O₂ under-saturation in the mixed layer
560 caused by recent upwelling. However, calculation of the sea-air O₂ flux shows that, except for
561 the first 24-hour period, only a small amount of the daily increase in $\Delta\text{O}_2/\text{Ar}$ can be explained by

562 gas exchange (absolute value of $J_{ex} < 10 \text{ mmol O}_2 \text{ m}^{-2} \text{ d}^{-1}$) (Table 1). Thus, the temporal change
563 in $\Delta\text{O}_2/\text{Ar}$ can be attributed to a primarily biological source. The magnitude of this increase is
564 further underestimated because of vertical upwelling of deep oxygen-poor waters, which would
565 act to dampen the increase in $\Delta\text{O}_2/\text{Ar}$ through time. After accounting for a mixing correction
566 ranging between 22 and 97 $\text{mmol m}^{-2} \text{ d}^{-1} \text{ O}_2$ (equivalent to 16 to 70 $\text{mmol m}^{-2} \text{ d}^{-1} \text{ C}$ when
567 assuming a photosynthetic quotient of 1.4), daily-integrated gross primary productivity
568 ($\text{GPP}_{\text{O}_2/\text{Ar}}$) ranged from 270 to 358 $\text{mmol C m}^{-2} \text{ d}^{-1}$, and community respiration ($\text{CR}_{\text{O}_2/\text{Ar}}$) rates
569 ranged from 74 to 172 $\text{mmol C m}^{-2} \text{ d}^{-1}$ (Table 1).

570 Examination of the diel variability in POC and Chl-a during drifter period 1 revealed
571 significant differences in the behavior of these variables as compared to $\Delta\text{O}_2/\text{Ar}$ (Fig. 3b, c). In
572 particular, while $\Delta\text{O}_2/\text{Ar}$ increased during the first drifter deployment, [POC] and [Chl-a] values
573 decreased. We estimated that vertical mixing ($F_{\text{mix,POC}}$), accounted for 12 to 68 $\text{mmol m}^{-2} \text{ d}^{-1} \text{ C}$ of
574 these daily changes in [POC], similar to the magnitude of the mixing correction for $\Delta\text{O}_2/\text{Ar}$
575 variability (Table 1). After taking mixing into account, daily-integrated GPP_{POC} decreased from
576 242 $\text{mmol m}^{-2} \text{ d}^{-1}$ on day 1 to 98 $\text{mmol m}^{-2} \text{ d}^{-1}$ on day 3, while CR_{POC} rates ranged from 77 to
577 147 $\text{mmol m}^{-2} \text{ d}^{-1}$.

578 Calculated daily averaged net primary productivity (NPP) were lower than $\text{GPP}_{\text{O}_2/\text{Ar}}$.
579 Rates derived from the CbPM model (Sect. 2.5), declined from 147 $\text{mmol C m}^{-2} \text{ d}^{-1}$ on day 1 of
580 drifter deployment 1 to 112 $\text{mmol C m}^{-2} \text{ d}^{-1}$ on day 3 (Table 1), reflecting the trend in Chl-a
581 concentrations used to derive NPP (Fig. 3c). The CbPM-derived NPP estimates were similar to
582 that obtained in ^{14}C incubations ($150 \pm 18 \text{ mmol C m}^{-2} \text{ d}^{-1}$) within the first 24 hours of drifter
583 deployment 1. However, ^{14}C -based NPP estimates on the third day of the deployment (49 ± 8
584 $\text{mmol C m}^{-2} \text{ d}^{-1}$) were about two-fold lower than those obtained from CbPM calculations.

585 Dissolved oxygen and POC dynamics at drifter site 2 differed significantly from those
586 observed at site 1. Compared to the drifter site 1, diel variability in $\Delta\text{O}_2/\text{Ar}$ and [POC] was more
587 tightly coupled during the second drifter deployment (Fig. 3a, b). Both O_2/Ar and [POC]
588 displayed regular diurnal variations, increasing in the daytime to a maximum around dusk and
589 decreasing at night to a minimum around dawn. Over the full drifter deployment, concentrations
590 of Chl-a and, to a lesser extent, POC, decreased, in contrast to $\Delta\text{O}_2/\text{Ar}$, which remained relatively
591 constant across days. Daily-integrated $\text{GPP}_{\text{O}_2/\text{Ar}}$ values ranged from 108 to 219 $\text{mmol C m}^{-2} \text{ d}^{-1}$
592 and $\text{CR}_{\text{O}_2/\text{Ar}}$ rates ranged from 82 to 186 $\text{m}^{-2} \text{ d}^{-1}$. POC-derived values were considerably lower

593 and less variable, from 41 to 38 for GPP_{POC} and 36 to 44 for CR_{POC} (Table 1). NPP derived from
594 CbPM calculations was 22 mmol C m⁻² d⁻¹ on the first day of the drifter period and 18 mmol C
595 m⁻² d⁻¹ on the second day, while NPP calculated from one ¹⁴C bottle incubation during the first
596 day of the drifter 2 deployment was 12 ± 4 mmol C m⁻² d⁻¹, showing good agreement with the
597 CbPM calculations.

598

599 **3.4 Net community production**

600

601 Daily net community production (NCP) rates were calculated using linear regressions of
602 $\Delta O_2/Ar$ and POC over day and night intervals, corrected for gas exchange and vertical mixing
603 (Sect. 2.6.1, 2.6.2). During drifter period 1, NCP_{O2/Ar} and NCP_{POC} exhibited contrasting trends, as
604 NCP_{O2/Ar} remained >100 mmol C m⁻² d⁻¹ throughout, while NCP_{POC} declined to negative values
605 on the second and third days (Table 1; Fig. 4). The transition to negative NCP_{POC} values over the
606 course of the drifter 1 deployment primarily reflected diminishing daytime rates of POC
607 accumulation (dPOC/dt term in Eq. 8). At drifter period 2, we observed closer agreement
608 between NCP values. $\Delta O_2/Ar$ -derived NCP ranged from -12 to 33 mmol C m⁻² d⁻¹ over two
609 consecutive 24 hour periods, while NCP_{POC} values ranged from -3 to 1 mmol C m⁻² d⁻¹. These
610 lower rates at drifter site 2 are consistent with the lower observed phytoplankton biomass and
611 nutrient concentrations.

612 Additional constraints on NCP during drifter period 1 can be derived from examining
613 nutrient drawdown. Because vertical upwelling of nutrient-replete waters would dampen the
614 magnitude of observed nutrient drawdown over time (Sect. 3.1; Fig. S4), we used the derived
615 k_{mix} from Eq. 6 and a best-fit vertical gradient in nutrient concentrations between the mixed layer
616 and 100 m (Sect. 2.4) to account for this mixing flux. This correction increases the cumulative
617 three-day nutrient drawdown by 2.1 to 2.6 times. Over the three-day drifter deployment, surface
618 Si, N and P concentrations declined in a ratio of 17: 13: 1, which is consistent with the
619 stoichiometry expected for organic matter produced by a diatom-rich assemblage (Brzezinski et
620 al., 1998; Turner et al., 1998; Brzezinski, 2004). Assuming that the observed decrease in SiO₂
621 concentrations over the three days is attributable to growth of diatoms in the mixed layer, and
622 applying a stoichiometric ratio of 106 C: 16 Si, we estimate an average C production rate of
623 ~ 128 mmol C m⁻² d⁻¹ for the drifter period. This value is consistent with NCP_{O2/Ar} rates, which

624 were 137 mmol C m⁻² d⁻¹ on average over three days, but significantly greater than NCP_{POC}
625 estimates (7 mmol C m⁻² d⁻¹ on average) (Table 2).

626 Table 2 summarizes comparisons among NCP values calculated using day/night linear
627 regressions of $\Delta O_2/Ar$ and POC against time, and other approaches described in Sect. 2.6.3. In
628 general, the different calculation methods did not significantly alter the results. NCP values
629 derived from one linear regression over each drifter period agreed well with the average of two
630 (drifter 2) to three (drifter 1) daily NCP values calculated via the other approaches. Small
631 differences between linear regression-based NCP values and both NCP calculated from either 3-
632 hour increments or two time points are likely due to the effect of lower signal to noise in $\Delta O_2/Ar$,
633 $[O_2]_{bio}$ and [POC] values utilized in these latter two approaches. The following discussion thus
634 focuses on productivity rates derived from day/night linear regressions (i.e., Eqs. 1 and 8), which
635 utilize all data points while minimizing uncertainty in the derived rates of change. The exception
636 is the NCP_{O2/Ar} value calculated for day 1 of drifter period 2 using the daytime/nighttime linear
637 regression method. By this approach, we calculated NCP_{O2/Ar} as 26 mmol C m⁻² d⁻¹, even though
638 the time series in Fig. 3a clearly indicates a net decrease in $\Delta O_2/Ar$ over the 24-hour period, and
639 all other $\Delta O_2/Ar$ -based NCP calculations (Sect. 2.6.3) yielded negative values. For the
640 discussion, Table 1 and Fig. 4, the NCP value derived from the integrated 3-hour increments
641 represents net community production during this particular interval.

642

643 **4 Discussion**

644

645 A number of previous studies have examined diurnal variation in upper ocean
646 phytoplankton and organic particle dynamics across a variety of productivity regimes, from
647 oligotrophic environments (Claustre et al., 1999, 2008; Wu et al., 2010; Gernez et al., 2011;
648 Kheireddine and Antoine, 2014; Thyssen et al., 2014; Nicholson et al., 2015; Ribalet et al., 2015;
649 White et al., 2017), to higher productivity waters and phytoplankton blooms (Brunet and Lizon,
650 2003; Wu et al., 2010; Gernez et al., 2011; Alkire et al., 2012; Dugenne et al., 2014; Kheireddine
651 and Antoine, 2014; Needham and Fuhrman, 2016; Briggs et al., 2018). In general, these studies
652 have shown that more productive environments exhibit higher amplitude diurnal variations in
653 beam attenuation, POC concentration, phytoplankton cell abundances, Chl-a, and metabolic
654 rates. These prior results are consistent with the differences we observed between the two

655 distinct Northeast Pacific trophic environments represented by drifter sites 1 and 2, respectively
656 (Sect. 3.2; Fig. 2).

657 Biogeochemical properties during the first Lagrangian survey suggested a dynamic,
658 highly productive phytoplankton community, influenced by upwelling and elevated mixed layer
659 nutrient concentrations (Figs. 1, S4). Several lines of evidence imply the presence of a
660 developing diatom bloom at this site (Sect. 3.2; Figs. 2, 3). Increasing mixed layer biological
661 oxygen saturation ($\Delta O_2/Ar$) was contrasted by a general decrease in particulate organic carbon
662 (POC) concentrations, suggesting a significant decoupling between O_2 and POC dynamics. This
663 was reflected in significant differences between $\Delta O_2/Ar$ -derived gross primary productivity
664 (GPP) and net community production (NCP) rates derived from $\Delta O_2/Ar$ and POC measurements
665 (Figs. 4, 5; Table 1). In contrast, biogeochemical properties during the second drifter deployment
666 were indicative of a lower productivity, nutrient-limited phytoplankton assemblage, with near-
667 zero $\Delta O_2/Ar$ values reflecting a close balance between water column photosynthesis and
668 respiration (Fig. 3a). Relative to the drifter 1 site, diurnal variations in $\Delta O_2/Ar$ and POC were
669 more closely coupled, while phytoplankton biomass (C_{ph}) and chlorophyll-a (Chl-a)
670 concentrations (dominated by smaller cells) varied little through time. Contrary to our
671 expectations, even though $NCPO_2/Ar$ and $NCPOC$ rates agreed well, we also observed significant
672 discrepancies between $GPP_{O_2/Ar}$ and GPP_{POC} and between $CR_{O_2/Ar}$ and CR_{POC} during drifter
673 period 2. The contrasting properties between the two drifter deployments enable us to examine
674 the coupling of O_2 and POC dynamics under different ecological states, with implications for the
675 use of $\Delta O_2/Ar$ and POC measurements as proxies for GPP and NCP.

676

677 **4.1 Decoupling of O_2 and POC dynamics in the mixed layer**

678

679 **4.1.1. Drifter 1.** In the absence of significant POC sinking and net loss to the dissolved
680 organic carbon (DOC) pool, POC-based productivity rates should approximate $\Delta O_2/Ar$ -based
681 rates (Claustre et al., 2008; White et al., 2017). However, at drifter station 1, both $GPP_{O_2/Ar}$ and
682 $NCPO_2/Ar$ greatly exceeded GPP_{POC} and $NCPOC$, respectively (Figs. 4, 5a; Table 1). Over the
683 three successive 24-hour periods of drifter deployment 1, the absolute difference between GPP
684 measures increased from 41 mmol C m⁻² d⁻¹ to 260 mmol C m⁻² d⁻¹, while the absolute difference
685 between NCP estimates increased from 42 mmol C m⁻² d⁻¹ to 193 mmol C m⁻² d⁻¹. This

686 discrepancy exceeded the propagated NCP uncertainties during the second and third days of the
687 deployment, and was apparent in all approaches used to calculate NCP (Sect. 2.6.3, Table 2).

688 While mixed layer $\Delta O_2/Ar$ primarily reflected O_2 accumulation from GPP and O_2 loss
689 from CR, diurnal variability in [POC] was likely affected by several additional loss factors,
690 which are discussed below. The variable difference between O_2 -based and POC-based NCP
691 measured over 3-hour increments (Eq. 11; Fig. S5) suggests that apparent POC loss rates were
692 variable throughout the drifter period, and lower at night relative to day. Thus, the higher
693 $NCP_{O_2/Ar}$ may be attributed more to differences in daytime accumulation of POC and O_2 rather
694 than differential POC and O_2 losses at night. Indeed, we found that differences between $CR_{O_2/Ar}$
695 and CR_{POC} were smaller than differences in NCP or GPP throughout drifter period 1, and $CR_{O_2/Ar}$
696 exceeded CR_{POC} during two of three nights (Fig. 5b).

697 In the dynamic, high productivity upwelling environment of drifter site 1, a number of
698 processes can account for variable POC loss rates on various time scales (Gardner et al., 1999;
699 White et al., 2017; Briggs et al., 2018). During a diatom bloom, enhanced aggregation of large
700 silica-rich particles and zooplankton fecal pellet production can stimulate POC export and
701 diatom cells out of the mixed layer (Buesseler, 1998; Guidi et al., 2009; Brzezinski et al., 2015;
702 Stukel et al., 2017), progressively decreasing NCP_{POC} relative to $NCP_{O_2/Ar}$. The discrepancy we
703 observed between NCP_{POC} and $NCP_{O_2/Ar}$ (up to 193 mmol C m⁻² d⁻¹) is in the upper range of
704 prior export estimates from various oceanic regions, including the Southern Ocean (~83 mmol C
705 m⁻² d⁻¹), North Atlantic spring bloom (96 mmol C m⁻² d⁻¹) and Southern California Current
706 system (~36 mmol C m⁻² d⁻¹) (Henson et al., 2012; Alkire et al., 2012; Stukel et al., 2017),
707 suggesting that POC export fluxes could comprise a significant fraction of the inferred POC loss
708 at drifter site 1. At the same time, sub-daily changes in particle sinking velocities and size
709 distributions could cause daytime export to exceed nighttime export (DuRand and Olson, 1998;
710 Waite and Nodder, 2001; Oubelkheir and Sciandra, 2008; Khierrediene and Antoine, 2014;
711 Ribalet et al., 2015; Briggs et al., 2018), leading to greater differences between $GPP_{O_2/Ar}$ and
712 GPP_{POC} than between $CR_{O_2/Ar}$ and CR_{POC} , as we observed.

713 Another likely POC loss is DOC production through cellular exudation, viral lysis and/or
714 grazing (Karl et al., 1998; Lochte et al., 1993; Claustre et al., 2008; Dall'Olmo et al., 2011;
715 Briggs et al., 2018). On daily time scales, this loss term would lower NCP_{POC} relative to
716 $NCP_{O_2/Ar}$, provided that DOC production exceeds DOC respiration. Further, higher daytime net

717 DOC production would cause $\text{GPP}_{\text{O}_2/\text{Ar}}$ to increase more than GPP_{POC} in the daytime, while a
718 decrease at night would cause $\text{CR}_{\text{O}_2/\text{Ar}}$ to exceed CR_{POC} (Karl et al., 1998). Light- and
719 productivity-dependent increases in DOC production in the daytime, could result, for example,
720 from the effects of photo-respiration and other mechanisms of dissipating excess light energy
721 (Schuback and Tortell, 2019). While we did not conduct direct measurements of DOC
722 concentrations during the cruise, previous work in a variety of ocean environments has shown
723 that DOC production can account for 3-37% of NCP in the Ross Sea, up to 10-40% in the
724 equatorial Pacific Ocean, up to 66% in the Sargasso Sea during the seasonal phytoplankton
725 bloom, and 22-40% during the North Atlantic bloom (Hansell and Carlson, 1998; Alkire et al.,
726 2012). In the eastern Subarctic Pacific, Bif and Hansell (2019) estimated springtime $\Delta\text{DOC}/\text{NCP}$
727 ratios of 0.05 – 0.54 and summertime ratios of 0 – 0.28 along the Line P transect (130 – 152
728 °W).

729 In addition, assuming that DOC exudation from phytoplankton cells is positively related
730 to growth in heterotrophic biomass (Fuhrman et al., 1985; Kuipers et al., 2000; Church et al.,
731 2004), variations in total bacterial biomass may have impacted c_p measurements at drifter site 1
732 (Oubelkheir and Sciandra, 2008; Gernez et al., 2011; Barnes and Antoine, 2014). If detected by
733 the ac-s sensor, bacteria could potentially account for some of the discrepancy between diel POC
734 and O_2 -derived variability. In particular, c_p decreases from phytoplankton exudation would
735 counter c_p increases from heterotrophic growth. At night, this would decrease CR rates derived
736 from c_p -based [POC], relative to O_2 -derived CR rates.

737 A final consideration involves diurnal variation of zooplankton abundances and grazing
738 rates, which could enhance POC loss without depleting $\Delta\text{O}_2/\text{Ar}$ (Dall'Olmo et al., 2011; White et
739 al., 2017; Briggs et al., 2018), assuming that biomass accumulation rates from grazing surpass
740 grazer respiration rates (Dagg et al., 1982). Further, once POC is assimilated into the body of a
741 grazer, it joins a larger particle size class that likely exceeds the size-dependent detection limits
742 of the beam attenuation coefficient (Stramski and Kiefer, 1991; Marra, 2002; Claustre et al.,
743 2008;), decreasing the c_p signal used to derive POC. During our expedition, we observed a strong
744 signature of diel migrating zooplankton based on increased nighttime signal spikes in surface
745 optical backscatter measurements (Burt and Tortell, 2018). These effects would enhance CR_{POC}
746 relative to $\text{CR}_{\text{O}_2/\text{Ar}}$, contrary to what we observed. We thus assume that grazing at drifter site 1 is
747 minimal relative to the effects of particle export and DOC production on GPP, CR and NCP.

748

749 **4.1.2 Drifter 2.** Relative to the drifter 1 site, drifter site 2 exhibited similar discrepancies
750 between $\text{GPP}_{\text{O}_2/\text{Ar}}$ and GPP_{POC} , and greater discrepancies between $\text{CR}_{\text{O}_2/\text{Ar}}$ and CR_{POC} (Fig. 5a-b;
751 Table 1). Irrespective of the time of day, the rate of $\Delta\text{O}_2/\text{Ar}$ change computed over 3-hour
752 intervals (Eq. 11) consistently exceeded POC-derived changes throughout the drifter period (Fig.
753 S5). The strong, positive relationship between these two 3-hour measures ($p<0.05$, $r^2=0.64$),
754 compared to the weaker correlation at drifter site 1 ($p<0.05$, $r^2=0.39$) (Figs. 5c-d), suggests that
755 despite large differences in the magnitude of $\Delta\text{O}_2/\text{Ar}$ -derived and POC-derived GPP and CR
756 rates, POC-based changes were a good relative indicator of O_2 -derived productivity rates at
757 drifter site 2.

758 Because daytime increases in both $\Delta\text{O}_2/\text{Ar}$ and [POC] were balanced by nighttime
759 decreases, absolute differences in $\text{NCP}_{\text{O}_2/\text{Ar}}$ and NCP_{POC} were smaller than at drifter site 1. This
760 result suggests a closer coupling between primary production and heterotrophic consumption, as
761 expected for this more oligotrophic ecosystem (Claustre et al., 2008; White et al., 2017). While
762 the NCP discrepancy was negligible over the first 24-hour period, it increased to 32 mmol C m-
763 2d^{-1} over the 24-hour period (Table 1; Fig. 4), exceeding the uncertainty of both NCP
764 calculations. This suggests low, but non-negligible, rates of particle export, grazing and/or net
765 DOC production at drifter site 2. Although we lack direct DOC measurements, this result is
766 consistent with several previous observations of low net DOC production in oligotrophic waters
767 (Bif et al., 2018; Hansell and Carlson, 1998), with values approaching ~30% of NCP in low
768 productivity offshore waters of the Subarctic Pacific (Bif and Hansell, 2019). Low particle
769 sinking rates could also explain the smaller absolute discrepancy between $\text{NCP}_{\text{O}_2/\text{Ar}}$ and NCP_{POC}
770 at drifter site 2. Low particle export is generally expected from phytoplankton assemblages
771 dominated by small particle sizes $<20\mu\text{m}$, as evident in higher b_{bp} slope values and Chl-a size
772 fractionation measurements at drifter site 2 (Sect. 3.2; Fig. 2) (Fowler and Knauer, 1986; Guidi
773 et al., 2008).

774 Prior studies have observed that the amplitude of diurnal variability in $\Delta\text{O}_2/\text{Ar}$ exceeds
775 the amplitude of diurnal variability in c_{p} -based [POC], as we observed at drifter site 2 (Kinkade
776 et al., 1999; Hamme et al., 2012; Briggs et al., 2018). For example, Briggs et al. (2018) observed
777 higher amplitude variations in O_2 relative to c_{p} -derived [POC] during the North Atlantic bloom,
778 leading to higher absolute O_2 -derived respiration and gross oxygen production (GOP) rates

779 compared to c_p -derived rates. In the Southern Ocean, Hamme et al. (2012) also observed high
780 ratios of underway $\Delta O_2/Ar$ -derived gross oxygen production to gross carbon production (i.e.,
781 GPP) based on photosynthesis-irradiance incubations. As discussed above for drifter site 1, these
782 offsets between $\Delta O_2/Ar$ and POC-based measures might result from the effects of bacteria on c_p
783 measurements, especially at a relatively low productivity site like drifter site 2 (Table 1; Fig. 2)
784 (Claustre et al. 2008; Oubelkheir and Sciandra, 2008; Barnes and Antoine, 2014). Bacterial c_p
785 variability would act to counter phytoplankton c_p variability, decreasing the magnitude of CR_{POC}
786 relative to the magnitude of CR_{O₂/Ar}. Indeed, the positive CR_{O₂/Ar} - CR_{POC} discrepancy at drifter
787 site 2 contributed to 58-82% of the differences between $\Delta O_2/Ar$ and POC-derived GPP rates. The
788 remaining difference may be attributed to greater daytime POC losses to the DOC pool and
789 through particle export.

790

791 **4.2 Other factors driving variability in NCP**

792

793 In interpreting our results, it is important to consider a number of methodological caveats
794 that could contribute to the apparent difference between NCP_{O₂/Ar} and NCP_{POC}. One important
795 variable in all of our comparisons of productivity rates is the O₂-to-POC conversion factor,
796 represented by the photosynthetic (PQ) and respiratory quotient (RQ). Given the relatively
797 narrow range of possible PQ values applicable to our study sites (~1.1-1.4) (Laws 1991),
798 variability in this term cannot account for the total discrepancy observed between $\Delta O_2/Ar$ and
799 POC-derived GPP, CR and NCP rates. By contrast, RQ values in the ocean are more variable
800 than PQ (Robinson and Williams, 1999; Robinson et al., 1999; Hedges et al., 2002). Therefore,
801 variability in RQ values at both drifter sites could introduce considerable uncertainty into
802 GPP_{O₂/Ar}, CR_{O₂/Ar} and NCP_{O₂/Ar} calculations unaccounted for in our error propagations (Sect.
803 2.7). However, we found that use of RQ values ranging between 1.0 – 1.4 (Anderson and
804 Sarmiento, 1994; Robinson and Williams, 1999; Hedges et al., 2002; Daneri et al., 2012) did not
805 greatly change calculated GPP_{O₂/Ar}, CR_{O₂/Ar}, and NCP_{O₂/Ar} relative to GPP_{POC}, CR_{POC}, and
806 NCP_{POC}. Therefore, it is unlikely that our selected RQ values, 1.4 and 1.1 for drifter sites 1 and
807 2, respectively, biased our main interpretations.

808 In our analysis, we interpret variations in particulate backscatter (b_{bp}) and beam
809 attenuation (c_p) in terms of phytoplankton and total particulate organic carbon concentrations,

810 assuming a negligible influence of inorganic suspended minerals from various sources, including
811 sediment resuspension and transport by the Columbia River plume (Thomas and Weatherbee,
812 2006). This assumption is supported by the salinity of waters we sampled at both drifter sites,
813 which was significantly higher than that expected for river-influenced regions, (below 30 g/kg;
814 Hickey et al., 1998). At the same time, the observed bulk refractive index of particles (η_p) at
815 drifter site 1 do not preclude the presence of mixing between POC and a small fraction of shelf-
816 derived inorganic particles. Estimates of η_p were generally below 1.12 for this near-shore site
817 (Sect. 2.2; Fig. S3e), as compared to values as high as 1.26 for inorganic minerals in seawater
818 (Lide, 1997; Twardowski et al., 2001). By comparison, calculated η_p values during the drifter 2
819 deployment were below 1.08, which is much closer to values expected for water-containing
820 predominantly non-diatom phytoplankton organic carbon.

821 Additional uncertainty in our analysis derives from the algorithms used to estimate POC
822 and phytoplankton carbon C_{ph} from optical measurements (Sect. 2.2). Because of particle size
823 limitations in the optical measurements, they may not fully capture all significant size classes of
824 the particulate pool, such as larger microplankton and zooplankton. Such a size bias in the c_p
825 signal at 660 nm, used to derive [POC], would cause an underestimate of larger POC particles
826 measured by beam attenuation (Claustre et al., 2008; Marra, 2002; Stramski and Kiefer, 1991),
827 and thereby contribute to the apparent discrepancy between diel changes in [POC] and diel
828 changes in $\Delta O_2/Ar$. Despite these potential caveats, recent work (Graff et al., 2016; Briggs et al.,
829 2018; Burt et al., 2018) has demonstrated that c_p and b_{bp} -based derivations of [POC] and [C_{ph}]
830 can indeed be robust in high biomass ocean regions, where productivity and the proportion of
831 large-celled phytoplankton is significant.

832 Equally important, changes in the c_p -to-[POC] relationship through time could also drive
833 apparent variability in optical [POC] estimates. The linear regression of [POC] against c_p at 660
834 nm measured across diverse marine environments is defined over a range of POC concentrations
835 from ~ 5 to ~ 175 $\mu g/L$ (Graff et al. 2015). At drifter site 2, POC concentrations fell within the
836 range of this fit, and particle properties that may influence POC/ c_p values (i.e., b_{bp} slope values,
837 phytoplankton community composition, particle size and bulk refractive index) were relatively
838 constant through time (Figs. S3d, e). By comparison, POC concentrations at drifter station 1
839 were 25% higher than the empirical limits of the c_p -based algorithm in Graff et al. (2015),
840 requiring extrapolation of the POC/ c_p relationship beyond its calibration range. In a limited

841 comparison with discrete POC samples, we found a POC– c_p slope that was similar to that of
842 Graff et al. (albeit with a different y intercept) (Fig. S1). Nonetheless, we cannot rule out changes
843 in the c_{p660} –[POC] relationship due to shifts in cell size and, to a lesser extent, bulk refractive
844 index resulting from diatom accumulation (Kheireddine and Antoine, 2014; Stramski and
845 Reynolds, 1993) (Fig. S3d–e). Indeed, Briggs et al. (2018) observed that the ratio of [POC] to c_p
846 decreased by ~20% during the rise of the North Atlantic bloom, while values increased by ~60%
847 during the bloom decline. If we assume a 20% decrease in POC/ c_{p660} values (from ~420 to ~340
848 mg m⁻²) associated with diatom growth (Briggs et al., 2018), our daily NCP_{POC} estimates would
849 be less positive during day 1 and less negative during days 2–3. This, in turn, would increase the
850 apparent decoupling between NCP_{POC} and NCP_{O₂/Ar} on days one (~27%) and three (~1%), and
851 bring the values slightly closer on day two (~8%). Overall, the value of these potential changes is
852 small relative to the differences we observed between NCP_{O₂/Ar} and NCP_{POC}, and we thus
853 conclude that variable POC/ c_{p660} ratios cannot explain the observed decoupling between POC,
854 C_{ph} and dissolved O₂ dynamics at the drifter 1 site.

855 There are a number of other potential caveats in our analysis of phytoplankton carbon
856 from b_{bp} and particle size distribution from b_{bp} slope. Previous studies have reported that daily
857 variations in b_{bp} do not always track daily variations in c_p , suggesting that b_{bp} dynamics do not
858 reflect phytoplankton carbon dynamics on diel time scales (Kheireddine and Antoine, 2014;
859 Briggs et al., 2018). We observed a similar decoupling between b_{bp} and c_p in this study; for
860 example, while c_p values at 660 nm steadily declined in the last 24 hours of drifter period 1, b_{bp}
861 at 470 nm stayed relatively constant. Nonetheless, [C_{ph}] estimates from b_{bp} (Fig. 2) remain useful
862 for comparisons between drifter sites, and differences in apparent phytoplankton biomass
863 concentration were consistent with a number of the other biogeochemical differences measured
864 between the two trophic regimes. Similarly, the relationship between b_{bp} slope and particle size
865 distribution has been challenged in previous literature (e.g., Zeng et al., 2018). While this limits
866 our interpretation of daily b_{bp} slope dynamics, we did find independent evidence for larger
867 particle sizes at drifter site 1 (as predicted by the b_{bp} slope), from size fractionated [Chl-a]
868 measurements and pigment analysis showing a greater fraction of microplankton (Sect. 3.2).
869

870 **4.3 Reconciling NCP and NPP**

871

872 During both drifter surveys, we estimated daily-integrated net primary productivity
873 (NPP) values using carbon-based production model (CbPM) calculations and ^{14}C bottle
874 incubations (Sect. 2.5). On several days, these two estimates of NPP were consistently lower
875 than NCPo_2/Ar integrated over the same time scales and mixed layer depths (Table 1). Similarly,
876 Briggs et al. (2018) and Alkire et al. (2012) also reported NCP values that were equal to or
877 greater than NPP values obtained from different methodologies during their Lagrangian study of
878 the North Atlantic Bloom.

879 In theory, NCP cannot exceed NPP, as NCP includes additional respiration terms not
880 included in NPP, and must always be equal to or (more realistically) lower than NPP. Recent
881 work in the Northeast Pacific Ocean, has reported mean NCP/NPP ratios, based on $\Delta\text{O}_2/\text{Ar}$
882 measurements and CbPM calculations, ranging from 0.16 to 0.26 in offshore and coastal waters
883 (Burt et al., 2018). These values, determined from continuous observations along a moving ship-
884 track, are consistent with theoretical expectations. The observed high (>1) apparent NCP/NPP
885 values observed in our study and that of Briggs et al. (2018) and Alkire et al. (2012) highlight a
886 number of methodological limitations that could depress NPP estimates.

887 One possibility, which has been discussed at length by various authors (Gieskes et al.,
888 1979; Fogg and Calvário-Martinez, 1989; Marra, 2009), is that bottle containment effects limit
889 accurate estimates of ^{14}C uptake. This effect would have caused underestimates of ^{14}C -NPP
890 during both drifter surveys, relative to CbPM-NPP and NCPo_2/Ar , which do not require discrete
891 sample incubations. In addition, during the last ^{14}C -uptake experiment of drifter survey 2, the
892 incubator warmed (as the ship passed through warm SST water used to cool the tanks),
893 potentially creating heat stress on phytoplankton and depressing ^{14}C -NPP values.

894 A number of factors may also influence CbPM-based NPP estimates. While the model
895 applies a satellite-based relationship between $[\text{Chl-a}]/[\text{C}_{\text{ph}}]$ and daily mixed layer irradiance (E_g)
896 to calculate growth rate, these E_g values may not fully parametrize phytoplankton physiology for
897 mixed assemblages in the ocean (Westberry et al., 2008). Indeed, phytoplankton
898 photophysiology varies with other environmental conditions and phytoplankton composition
899 (Cloern et al., 1995; Geider et al., 1998; MacIntyre et al., 2002; Westberry et al., 2008). In
900 addition, the CbPM does not allow calculated growth rates to exceed 2 d⁻¹, which may not apply
901 to all ocean environments (Graff et al., 2016). These uncertainties could potentially impact the
902 applicability of the CbPM parameters to the specific ocean conditions at drifter sites 1 and 2. In

903 addition, a vertical mixing correction for ac-s and backscatter-derived [Chl-a] and [C_{ph}],
904 respectively, not feasible in the present data set, may improve CbPM-based estimates of NPP.

905

906 **5 Conclusions**

907

908 In the current study, biological oxygen saturation ($\Delta O_2/Ar$) and optically-derived
909 particulate organic carbon (POC) were measured continuously and simultaneously during two
910 Lagrangian drifter deployments. This dual measurement approach facilitated direct comparison
911 of O_2/Ar and POC-derived measures of gross primary productivity (GPP), community respiration
912 (CR), and net community production (NCP), from a mesotrophic upwelling-influenced system
913 and a more oligotrophic system further offshore. As hypothesized, the results show that O_2 and
914 POC-based measures of GPP and NCP diverge in mid-to-high productivity phytoplankton
915 communities, where daily fluctuations in $\Delta O_2/Ar$ are decoupled from POC cycling. Interestingly,
916 oxygen-based GPP and CR also exceeded POC-based GPP and CR rates at the lower
917 productivity site, though we found that net changes in POC scaled with $\Delta O_2/Ar$ -based
918 productivity estimates, suggesting a tighter coupling between O_2 and POC cycles.

919 These findings are generally consistent with current understanding of productivity
920 dynamics and mixed layer POC cycling in these two coastal Pacific environments, and
921 complement only one prior comparison of daily GPP and NCP estimates from simultaneous,
922 autonomous measurements of c_p and O_2 in the North Atlantic mixed layer (Alkire et al., 2012;
923 Briggs et al., 2018). Importantly, however, our results differ from earlier studies by providing
924 two examples of significant disagreement between $GPP_{O_2/Ar}$ and GPP_{POC} , and $CR_{O_2/Ar}$ and
925 CR_{POC} , likely resulting from sub-daily variations in particle export, net DOC production, and
926 bacterial growth over respiration. In such cases, assuming constant daily respiration rates by
927 extrapolating nighttime rates of change may pose challenges for comparing $\Delta O_2/Ar$ and POC-
928 based GPP and CR. We have further shown that for upwelling regions like drifter site 1, it is
929 important to account for vertical mixing of sub-surface waters into the mixed layer, and its effect
930 on not only $NCP_{O_2/Ar}$ calculations (Izett et al., 2018), but also on NCP_{POC} estimates through
931 dilution of the surface POC signature. Our study thus illustrates an application of the vertical
932 mixing coefficient, k_{mix} , derived from $[N_2O]$ profiles to more accurately estimate net changes in
933 POC and nutrient concentration in such environments.

Moving forward, the disparity between POC and O₂-based NCP estimates offers an opportunity to continuously track cumulative POC losses in the mixed layer using autonomous ship-board or in situ sensors. As it is labor intensive to measure POC export on short time scales with sediment traps and the ²³⁴Th-²³⁸U disequilibrium method (Buesseler et al., 2006; Savoye et al., 2006), simultaneous underway measurements of dissolved O₂, particulate beam attenuation and CDOM absorption and spectral slope over a range of wavelengths <400 nm (Del Vecchio and Blough, 2004; Grunert et al., 2018) may provide a valuable, first-order approximation of POC partitioning among living phytoplankton biomass, particle export and dissolved organic carbon (DOC) in the surface ocean on short time scales. At drifter site 1, for example, taking an upper bound of 40% of NCP as DOC production (close to the fraction estimated Alkire et al. (2012) during the North Atlantic spring bloom) yields a 3-day average DOC flux of 55 mmol C m⁻² d⁻¹ and residual export flux of 76 mmol C m⁻² d⁻¹. Being able to estimate such quantities with this approach is especially important in the California coastal upwelling regime and other similar ecosystems with high NCP and significant potential for carbon transfer to higher trophic levels.

For future work, we recommend a number of approaches to facilitate estimation of POC export from coupled O₂, POC, and DOC dynamics. First, it will be valuable to constrain particle size, and partitioning of POC into detrital and living (phytoplankton and heterotrophic bacteria) components to properly assess the size range captured by optically-derived POC and C_{ph} measurements. Second, independent estimates of POC export and DOC concentrations during each drifter deployment could validate POC export fluxes derived from coupled O₂ and POC measurements. Relatedly, depth-resolved backscatter profiles (Briggs et al., 2013, 2018) could be used as another autonomous approach to calculating export fluxes, as an independent check on surface-based estimates. Going forward, there is significant future potential to exploit coupled O₂ and c_p measurements on autonomous platforms, including various ocean moorings (e.g., the Optical Dynamics Experiment, the Biowatt II program, and the Bermuda Testbed Mooring program), and biogeochemical floats and gliders to resolve opportunistic, high-resolution POC export time series (Stramska and Dickey, 1992; Kinkade et al., 1999; Dickey and Chang, 2002). Deployment of such autonomous measurement systems across a range of oceanic regions will help to constrain POC and productivity dynamics on global scales.

963

964 **Data availability**

965
966 Discrete and underway optical measurements may be accessed at
967 <https://github.com/srosengard/rosengard-tortell-oc2017.git>
968
969 **Author contributions**
970
971 Sarah Rosengard, Philippe Tortell, and Nina Schuback collected the data in the field. Robert Izett
972 processed the CTD cast data and measured nitrous oxide concentrations in discrete samples.
973 Sarah Rosengard wrote the manuscript with significant input from the co-authors.
974
975 **Competing interests**
976
977 The authors declare that they have no conflict of interest.
978
979 **Acknowledgements**
980
981 Special thanks to Jessie Gwinn, Ross McCulloch, Chen Zeng, Melissa Beaulac, Chris Payne and
982 Maureen Soon for assistance in field collection and analysis of samples, and to two anonymous
983 reviewers for insightful suggestions on earlier versions of this manuscript. This project was
984 funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), and by
985 the US National Science Foundation (NSF project number 1436344).
986
987 **References**
988
989 Alkire, M. B., D'Asaro, E., Lee, C., Jane Perry, M., Gray, A., Cetinić, I., Briggs, N., Rehm, E.,
990 Kallin, E., Kaiser, J. and González-Posada, A.: Estimates of net community production and
991 export using high-resolution, Lagrangian measurements of O₂, NO₃–, and POC through the
992 evolution of a spring diatom bloom in the North Atlantic, Deep Sea Res. Part I Oceanogr. Res.
993 Pap., 64, 157–174, doi:10.1016/j.dsr.2012.01.012, 2012.
994 Anderson, L. A., and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient
995 data analysis, Global biogeochem. cycles, 8(1), 65-80, 1994.

996 Barnes, M., and Antoine, D.: Proxies of community production derived from the diel variability
997 of particulate attenuation and backscattering coefficients in the northwest Mediterranean
998 Sea, *Limnol. Oceanogr.*, 59(6), 2133-2149, 2014.

999 Behrenfeld, M. J., Boss, E., Siegel, D. A. and Shea, D. M.: Carbon-based ocean productivity and
1000 phytoplankton physiology from space, *Global Biogeochem. Cycles*, 19(1), 2005.

1001 Bif, M. B. and Hansell, D. A.: Seasonality of dissolved organic carbon in the upper Northeast
1002 Pacific Ocean, *Global Biogeochem. Cycles*, 2019.

1003 Bif, M. B., Hansell, D. A. and Popendorf, K. J.: Controls on the fate of dissolved organic carbon
1004 under contrasting upwelling conditions, *Front. Mar. Sci.*, 5, 463, 2018.

1005 Boss, E., Twardowski, M. S. and Herring, S.: Shape of the particulate beam attenuation spectrum
1006 and its inversion to obtain the shape of the particulate size distribution, *Appl. Opt.*, 40(27), 4885–
1007 4893, 2001.

1008 de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. and Iudicone, D.: Mixed layer depth
1009 over the global ocean: An examination of profile data and a profile-based climatology, *J.*
1010 *Geophys. Res.*, 109(C12), C12003, doi:10.1029/2004JC002378, 2004.

1011 Briggs, N., Guðmundsson, K., Cetinić, I., D’Asaro, E., Rehm, E., Lee, C. and Perry, M. J.: A
1012 multi-method autonomous assessment of primary productivity and export efficiency in the
1013 springtime North Atlantic, *Biogeosciences*, 15(14), 4515–4532, 2018.

1014 Briggs, N. T., Slade, W. H., Boss, E. and Perry, M. J.: Method for estimating mean particle size
1015 from high-frequency fluctuations in beam attenuation or scattering measurements, *Appl. Opt.*,
1016 52(27), 6710–6725, 2013.

1017 Brunet, C. and Lizon, F.: Tidal and diel periodicities of size-fractionated phytoplankton pigment
1018 signatures at an offshore station in the southeastern English Channel, *Estuar. Coast. Shelf Sci.*,
1019 56(3–4), 833–843, 2003.

1020 Brzezinski, M., Villareal, T. and Lipschultz, F.: Silica production and the contribution of diatoms
1021 to new and primary production in the central North Pacific, *Mar. Ecol. Prog. Ser.*, 167, 89–104,
1022 doi:10.3354/meps167089, 1998.

1023 Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of
1024 some environmental variables, *J. Phycol.*, 21(3), 347–357, doi:10.1111/j.0022-
1025 3646.1985.00347.x, 2004.

1026 Brzezinski, M. A., Krause, J. W., Bundy, R. M., Barbeau, K. A., Franks, P., Goericke, R.,

1027 Landry, M. R. and Stukel, M. R.: Enhanced silica ballasting from iron stress sustains carbon
1028 export in a frontal zone within the California Current, *J. Geophys. Res. Ocean.*, 120(7), 4654–
1029 4669, 2015.

1030 Buesseler, K. O.: The decoupling of production and particulate export in the surface ocean,
1031 *Global Biogeochem. Cycles*, 12(2), 297–310, 1998.

1032 Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette, M., Cochran, J. K.,
1033 Coppola, L., Fisher, N. S., Fowler, S. W. and Gardner, W. D.: An assessment of particulate
1034 organic carbon to thorium-234 ratios in the ocean and their impact on the application of 234Th as
1035 a POC flux proxy, *Mar. Chem.*, 100(3–4), 213–233, 2006.

1036 Burt, W. J. and Tortell, P. D.: Observations of Zooplankton Diel Vertical Migration From High-
1037 Resolution Surface Ocean Optical Measurements, *Geophys. Res. Lett.*, 45(24), 13–396, 2018.

1038 Burt, W. J., Westberry, T. K., Behrenfeld, M. J., Zeng, C., Izett, R. W. and Tortell, P. D.:
1039 Carbon: Chlorophyll Ratios and Net Primary Productivity of Subarctic Pacific Surface Waters
1040 Derived From Autonomous Shipboard Sensors, *Global Biogeochem. Cycles*, 32(2), 267–288,
1041 doi:10.1002/2017GB005783, 2018.

1042 Capelle, D. W., Dacey, J. W. and Tortell, P. D.: An automated, high through-put method for
1043 accurate and precise measurements of dissolved nitrous-oxide and methane concentrations in
1044 natural waters, *Limnol. Oceanogr. Methods*, 13(7), 345–355, 2015.

1045 Cassar, N., Barnett, B. A., Bender, M. L., Kaiser, J., Hamme, R. C. and Tilbrook, B.: Continuous
1046 high-frequency dissolved O₂/Ar measurements by equilibrator inlet mass spectrometry, *Anal.*
1047 *Chem.*, 81(5), 1855–1864, 2009.

1048 Cassar, N., Nevison, C. D. and Manizza, M.: Correcting oceanic O₂/Ar-net community
1049 production estimates for vertical mixing using N₂O observations, *Geophys. Res. Lett.*, 41(24),
1050 8961–8970, 2014.

1051 Church, M. J., Ducklow, H. W., and Karl, D. M.: Light dependence of [³H] leucine
1052 incorporation in the oligotrophic North Pacific Ocean, *Appl. Environ. Microbiol.*, 70(7), 4079–
1053 4087, 2004.

1054 Claustre, H., Morel, A., Babin, M., Cailliau, C., Marie, D., Marty, J., Tailliez, D. and Vault, D.:
1055 Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales,
1056 patterns, and biogeochemical implications, *J. Geophys. Res. Ocean.*, 104(C2), 3401–3422, 1999.

1057 Claustre, H., Huot, Y., Obernosterer, I., Gentili, B., Tailliez, D. and Lewis, M.: Gross community

1058 production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical
1059 method, *Biogeosciences*, 5, 463-474, 2008.

1060 Cloern, J. E., Grenz, C. and Vidergar-Lucas, L.: An empirical model of the phytoplankton
1061 chlorophyll: carbon ratio-the conversion factor between productivity and growth rate, *Limnol.*
1062 *Oceanogr.*, 40(7), 1313–1321, 1995.

1063 Dagg, M. J., Vidal, J., Whitledge, T. E., Iverson, R. L. and Goering, J. J.: The feeding,
1064 respiration, and excretion of zooplankton in the Bering Sea during a spring bloom, *Deep Sea*
1065 *Res. Part A. Oceanogr. Res. Pap.*, 29(1), 45–63, 1982.

1066 Dall'Olmo, G., Boss, E., Behrenfeld, M. J., Westberry, T. K., Courties, C., Prieur, L., Pujo-Pay,
1067 M., Hardman-Mountford, N. and Moutin, T.: Inferring phytoplankton carbon and eco-
1068 physiological rates from diel cycles of spectral particulate beam-attenuation coefficient,
1069 *Biogeosciences*, 8(11), 3423–3439, 2011.

1070 Daneri, G., Lizárraga, L., Montero, P., González, H. E., and Tapia, F. J.: Wind forcing and short-
1071 term variability of phytoplankton and heterotrophic bacterioplankton in the coastal zone of the
1072 Concepción upwelling system (Central Chile), *Prog. Oceanogr.*, 92, 92-96, 2012.

1073 Del Vecchio, R., and Blough, N. V.: Spatial and seasonal distribution of chromophoric dissolved
1074 organic matter and dissolved organic carbon in the Middle Atlantic Bight, *Mar. Chem.*, 89(1-4),
1075 169-187, 2004.

1076 Dickey, T. D. and Chang, G. C.: Recent advances and future visions: temporal variability of
1077 optical and bio-optical properties of the ocean, *Oceanogr. DC-OCEANOGRAPHY Soc.*, 14(3),
1078 15–29, 2002.

1079 Dugenne, M., Thyssen, M., Nerini, D., Mante, C., Poggiale, J.-C., Garcia, N., Garcia, F. and
1080 Grégori, G. J.: Consequence of a sudden wind event on the dynamics of a coastal phytoplankton
1081 community: an insight into specific population growth rates using a single cell high frequency
1082 approach, *Front. Microbiol.*, 5, 485, 2014.

1083 Durand, M. D., and Olson, R. J.: Diel patterns in optical properties of the chlorophyte
1084 *Nannochloris* sp.: Relating individual-cell to bulk measurements, *Limnol. Oceanogr.*, 43(6),
1085 1107-1118, 1998.

1086 Fernández-Urruzola, I., Osma, N., Packard, T. T., Gómez, M., and Postel, L.: Distribution of
1087 zooplankton biomass and potential metabolic activities across the northern Benguela upwelling
1088 system, *J Marine Syst*, 140, 138-149, 2014.

1089 Ferrón, S., Wilson, S. T., Martínez-García, S., Quay, P. D., and Karl, D. M.: Metabolic balance
1090 in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in O₂/Ar saturation
1091 ratios, *Geophys. Res. Lett.*, 42(9), 3421–3430, 2015.

1092 Fogg, G. E. and Calvário-Martinez, O.: Effects of bottle size in determinations of primary
1093 productivity by phytoplankton, *Hydrobiologia*, 173(2), 89–94, doi:10.1007/BF00015518, 1989.

1094 Fowler, S. W. and Knauer, G. A.: Role of large particles in the transport of elements and organic
1095 compounds through the oceanic water column, *Prog. Oceanogr.*, 16(3), 147–194,
1096 doi:10.1016/0079-6611(86)90032-7, 1986.

1097 Fuhrman, J. A., Eppley, R. W., Hagström, Å., and Azam, F.: Diel variations in bacterioplankton,
1098 phytoplankton, and related parameters in the Southern California Bight, *Mar. Ecol. Prog. Ser.*, 27,
1099 9–20, 1985.

1100 Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better fitting equations, *Limnol.*
1101 *Oceanogr.*, 37(6), 1307–1312, 1992.

1102 Gardner, W. D., Walsh, I. D. and Richardson, M. J.: Biophysical forcing of particle production
1103 and distribution during a spring bloom in the North Atlantic, *Deep Sea Res. Part II Top. Stud.*
1104 *Oceanogr.*, 40(1–2), 171–195, 1993.

1105 Geider, R. J., Maclntyre, H. L. and Kana, T. M.: A dynamic regulatory model of phytoplanktonic
1106 acclimation to light, nutrients, and temperature, *Limnol. Oceanogr.*, 43(4), 679–694, 1998.

1107 Gernez, P., Antoine, D. and Huot, Y.: Diel cycles of the particulate beam attenuation coefficient
1108 under varying trophic conditions in the northwestern Mediterranean Sea: Observations and
1109 modeling, *Limnol. Oceanogr.*, 56(1), 17–36, 2011.

1110 Gieskes, W. W. C., Kraay, G. W. and Baars, M. A.: Current ¹⁴C methods for measuring primary
1111 production: Gross underestimates in oceanic waters, *Netherlands J. Sea Res.*, 13(1), 58–78,
1112 doi:10.1016/0077-7579(79)90033-4, 1979.

1113 Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Dall'Olmo, G., Dongen-Vogels, V.
1114 van, Reifel, K. M. and Behrenfeld, M. J.: Analytical phytoplankton carbon measurements
1115 spanning diverse ecosystems, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 102, 16–25,
1116 doi:10.1016/J.DSR.2015.04.006, 2015.

1117 Graff, J. R., Westberry, T. K., Milligan, A. J., Brown, M. B., Olmo, G. D., Reifel, K. M. and
1118 Behrenfeld, M. J.: Photoacclimation of natural phytoplankton communities, *Mar. Ecol. Prog. Ser.*,
1119 542, 51–62, 2016.

1120 Grunert, B. K., Mouw, C. B., and Ciochetto, A. B.: Characterizing CDOM spectral variability
1121 across diverse regions and spectral ranges, *Global Biogeochem. Cycles*, 32(1), 57-77, 2018.

1122 Guidi, L., Jackson, G. A., Stemmann, L., Carlos Miquel, J., Picheral, M. and Gorsky, G.:
1123 Author's personal copy Relationship between particle size distribution and flux in the
1124 mesopelagic zone, , doi:10.1016/j.dsr.2008.05.014, 2008.

1125 Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M. and
1126 Gorsky, G.: Effects of phytoplankton community on production, size, and export of large
1127 aggregates: A world-ocean analysis, *Limnol. Oceanogr.*, 54(6), 1951–1963, 2009.

1128 Hamme, R. C., Cassar, N., Lance, V. P., Vaillancourt, R. D., Bender, M. L., Strutton, P. G.,
1129 Moore, T. S., DeGrandpre, M. D., Sabine, C. L. and Ho, D. T.: Dissolved O₂/Ar and other
1130 methods reveal rapid changes in productivity during a Lagrangian experiment in the Southern
1131 Ocean, *J. Geophys. Res. Ocean.*, 117(C4), 2012.

1132 Hansell, D. A. and Carlson, C. A.: Net community production of dissolved organic carbon,
1133 *Global Biogeochem. Cycles*, 12(3), 443–453, 1998.

1134 Hedges, J. I., Baldock, J. A., Gélinas, Y., Lee, C., Peterson, M. L., and Wakeham, S. G.: The
1135 biochemical and elemental compositions of marine plankton: A NMR perspective, *Mar.*
1136 *Chem.*, 78(1), 47-63, 2002.

1137 Henson, S. A., Sanders, R. and Madsen, E.: Global patterns in efficiency of particulate organic
1138 carbon export and transfer to the deep ocean, *Global Biogeochem. Cycles*, 26(1), 2012.

1139 Hickey, B. M., Pietrafesa, L. J., Jay, D. A. and Boicourt, W. C.: The Columbia River plume
1140 study: Subtidal variability in the velocity and salinity fields, *J. Geophys. Res. Ocean.*, 103(C5),
1141 10339–10368, 1998.

1142 Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada,
1143 T., Howell, E., Hashioka, T. and Noguchi-Aita, M.: Synoptic relationships between surface
1144 Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,
1145 *Biogeosciences*, 8(2), 311–327, 2011.

1146 Hopkinson, B. M., and Barbeau, K.A.: Organic and redox speciation of iron in the eastern
1147 tropical North Pacific suboxic zone, *Mar. Chem.*, 106(1-2), 2-17, 2007.

1148 Hoppe, C. J. M., Schuback, N., Semeniuk, D. M., Maldonado, M. T. and Rost, B.: Functional
1149 Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean
1150 Acidification and High Irradiance , *Front. Mar. Sci.* , 4, 229 [online] Available from:

1151 <https://www.frontiersin.org/article/10.3389/fmars.2017.00229>, 2017.

1152 Izett, R. W., Manning, C. C., Hamme, R. C. and Tortell, P. D.: Refined estimates of net
1153 community production in the Subarctic Northeast Pacific derived from Δ O₂/Ar measurements
1154 with N₂O-based corrections for vertical mixing, *Global Biogeochem. Cycles*, 32(3), 326–350,
1155 2018.

1156 Jin, X., Najjar, R. G., Louanchi, F. and Doney, S. C.: A modeling study of the seasonal oxygen
1157 budget of the global ocean, *J. Geophys. Res. Ocean.*, 112(C5), 2007.

1158 Kaiser, J., Reuer, M. K., Barnett, B. and Bender, M. L.: Marine productivity estimates from
1159 continuous O₂/Ar ratio measurements by membrane inlet mass spectrometry, *Geophys. Res.*
1160 *Lett.*, 32(19), 2005.

1161 Karl, D. M., Hebel, D. V., Björkman, K., and Letelier, R. M.: The role of dissolved organic
1162 matter release in the productivity of the oligotrophic North Pacific Ocean, *Limnol.*
1163 *Oceanogr.*, 43(6), 1270-1286, 1998.

1164 Keeling, R. F. and Shertz, S. R.: Seasonal and interannual variations in atmospheric oxygen and
1165 implications for the global carbon cycle, *Nature*, 358(6389), 723, 1992.

1166 Kheireddine, M. and Antoine, D.: Diel variability of the beam attenuation and backscattering
1167 coefficients in the northwestern Mediterranean Sea (BOUSSOLE site), *J. Geophys. Res. Ocean.*,
1168 119(8), 5465–5482, 2014.

1169 Kinkade, C. S., Marra, J., Dickey, T. D., Langdon, C., Sigurdson, D. E. and Weller, R.: Diel bio-
1170 optical variability observed from moored sensors in the Arabian Sea, *Deep sea Res. Part II Top.*
1171 *Stud. Oceanogr.*, 46(8–9), 1813–1831, 1999.

1172 Kostadinov, T. S., Siegel, D. A. and Maritorena, S.: Retrieval of the particle size distribution
1173 from satellite ocean color observations, *J. Geophys. Res.*, 114(C9), C09015,
1174 doi:10.1029/2009JC005303, 2009.

1175 Kuipers, B., van Noort, G. J., Vosjan, J., and Herndl, G. J.: Diel periodicity of bacterioplankton
1176 in the euphotic zone of the subtropical Atlantic Ocean, *Mar. Ecol. Prog. Ser.*, 201, 13-25, 2000.

1177 Laws, E. A.: Photosynthetic quotients, new production and net community production in the
1178 open ocean, *Deep Sea Res. Part A. Oceanogr. Res. Pap.*, 38(1), 143–167, 1991.

1179 Lide, D. R.: Physical and optical properties of minerals, *CRC Handb. Chem. Phys.*, 4–130, 1997.

1180 Lochte, K., Ducklow, H. W., Fasham, M. J. R. and Stienen, C.: Plankton succession and carbon
1181 cycling at 47 N 20 W during the JGOFS North Atlantic Bloom Experiment, *Deep Sea Res. Part*

1182 II Top. Stud. Oceanogr., 40(1–2), 91–114, 1993.

1183 Loisel, H., Nicolas, J.-M., Sciandra, A., Stramski, D. and Poteau, A.: Spectral dependency of
1184 optical backscattering by marine particles from satellite remote sensing of the global ocean, J.
1185 Geophys. Res., 111(C9), C09024, doi:10.1029/2005JC003367, 2006.

1186 Lønborg, C., Martínez-García, S., Teira, E., and Álvarez-Salgado, X. A.: Bacterial carbon
1187 demand and growth efficiency in a coastal upwelling system, Aquat. Microb. Ecol., 63(2), 183–
1188 191, 2011.

1189 MacIntyre, H. L., Kana, T. M., Anning, T. and Geider, R. J.: Photoacclimation of irradiance
1190 response curves and photosynthetic pigments in microalgae and cyanobacteria, J. Phycol., 38(1),
1191 17–38, doi:10.1046/j.1529-8817.2002.00094.x, 2002.

1192 Manning, C. C., Stanley, R. H. R., Nicholson, D. P., Smith, J. M., Pennington, J. T., Fewings, M.
1193 R., Squibb, M. E. and Chavez, F. P.: Impact of recently upwelled water on productivity
1194 investigated using in situ and incubation-based methods in Monterey Bay, J. Geophys. Res.
1195 Ocean., 122(3), 1901–1926, 2017.

1196 Marra, J.: Approaches to the measurement of plankton production, Phytoplankt. Product. Carbon
1197 Assim. Mar. Freshw. Ecosyst., 78–108, 2002.

1198 Marra, J.: Net and gross productivity: weighing in with ^{14}C , Aquat. Microb. Ecol., 56(2–3),
1199 123–131, doi:10.3354/ame01306, 2009.

1200 Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B. and Franz, B. A.: Examining the
1201 consistency of products derived from various ocean color sensors in open ocean (Case 1) waters
1202 in the perspective of a multi-sensor approach, Remote Sens. Environ., 111(1), 69–88, 2007.

1203 Murphy, J. and Riley, J. P.: A modified single solution method for the determination of
1204 phosphate in natural waters, Anal. Chim. Acta, 27, 31–36, 1962.

1205 Needham, D. M. and Fuhrman, J. A.: Pronounced daily succession of phytoplankton, archaea
1206 and bacteria following a spring bloom, Nat. Microbiol., 1(4), 16005, 2016.

1207 Nicholson, D. P., Wilson, S. T., Doney, S. C. and Karl, D. M.: Quantifying subtropical North
1208 Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles,
1209 Geophys. Res. Lett., 42(10), 4032–4039, 2015.

1210 Oubelkheir, K., and Sciandra, A.: Diel variations in particle stocks in the oligotrophic waters of
1211 the Ionian Sea (Mediterranean), J. Marine Syst., 74(1-2), 364-371, 2008.

1212 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,

1213 McDowell, W. H. and Newbold, D.: Scaling the gas transfer velocity and hydraulic geometry in
1214 streams and small rivers, *Limnol. Oceanogr. Fluids Environ.*, 2(1), 41–53, 2012.

1215 Reuer, M. K., Barnett, B. A., Bender, M. L., Falkowski, P. G. and Hendricks, M. B.: New
1216 estimates of Southern Ocean biological production rates from O₂/Ar ratios and the triple isotope
1217 composition of O₂, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 54(6), 951–974, 2007.

1218 Ribalet, F., Swalwell, J., Clayton, S., Jiménez, V., Sudek, S., Lin, Y., Johnson, Z. I., Worden, A.
1219 Z. and Armbrust, E. V.: Light-driven synchrony of Prochlorococcus growth and mortality in the
1220 subtropical Pacific gyre, *Proc. Natl. Acad. Sci.*, 112(26), 8008–8012, 2015.

1221 Riley, J. P.: Grasshoff, K. [Ed.] 1976. Methods of seawater analysis. Verlag Chemie, Weinheim
1222 and New York, xv+ 317 p. \$43.60., 1977.

1223 Robinson, C., and Williams, P. J. L. B.: Plankton net community production and dark
1224 respiration in the Arabian Sea during September 1994, *Deep Sea Res. Part II Top. Stud.*
1225 *Oceanogr.*, 46(3-4), 745-765, 1999.

1226 Robinson, C., Archer, S. D., and Williams, P. J. L. B.: Microbial dynamics in coastal waters of
1227 East Antarctica: plankton production and respiration, *Mar. Ecol. Prog. Ser.*, 180, 23-36, 1999.

1228 Robinson, C., Serret, P., Tilstone, G., Teira, E., Zubkov, M. V., Rees, A. P., and Woodward, E.
1229 M. S.: Plankton respiration in the eastern Atlantic Ocean, *Deep Sea Res. Part I Oceanogr. Res.*
1230 *Pap.*, 49(5), 787-813, 2002.

1231 Roesler, C. S. and Barnard, A. H.: Optical proxy for phytoplankton biomass in the absence of
1232 photophysiology: Rethinking the absorption line height, *Methods Oceanogr.*, 7, 79–94, 2013.

1233 Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M., Buesseler, K. O.,
1234 Jackson, G. A., Roy-Barman, M., Schmidt, S. and Elskens, M.: 234Th sorption and export
1235 models in the water column: a review, *Mar. Chem.*, 100(3–4), 234–249, 2006.

1236 Schuback, N., and Tortell, P. D.: Diurnal regulation of photosynthetic light absorption, electron
1237 transport and carbon fixation in two contrasting oceanic environments, *Biogeosciences*, 16(7),
1238 1381-1399, 2019.

1239 Schuback, N., Flecken, M., Maldonado, M. T. and Tortell, P. D.: Diurnal variation in the
1240 coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton
1241 in the NE subarctic Pacific, *Biogeosciences*, 13, 1019–1035, doi:10.5194/bg-13-1019-2016,
1242 2016.

1243 Siegel, D. A., Dickey, T. D., Washburn, L., Hamilton, M. K. and Mitchell, B. G.: Optical

1244 determination of particulate abundance and production variations in the oligotrophic ocean, Deep
1245 Sea Res. Part A. Oceanogr. Res. Pap., 36(2), 211–222, 1989.

1246 Stanley, R. H. R., Kirkpatrick, J. B., Cassar, N., Barnett, B. A. and Bender, M. L.: Net
1247 community production and gross primary production rates in the western equatorial Pacific,
1248 Global Biogeochem. Cycles, 24(4), 2010.

1249 Stramska, M. and Dickey, T. D.: Short-term variations of the bio-optical properties of the ocean
1250 in response to cloud-induced irradiance fluctuations, J. Geophys. Res. Ocean., 97(C4), 5713–
1251 5721, 1992.

1252 Stramska, M. and Dickey, T. D.: Modeling phytoplankton dynamics in the northeast Atlantic
1253 during the initiation of the spring bloom, J. Geophys. Res. Ocean., 99(C5), 10241–10253, 1994.

1254 Stramska, M., Stramski, D., Hapter, R., Kaczmarek, S. and Ston', J. S.: Bio-optical relationships
1255 and ocean color algorithms for the north polar region of the Atlantic, J. Geophys. Res., 108(C5),
1256 3143, doi:10.1029/2001JC001195, 2003.

1257 Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the open ocean, Prog.
1258 Oceanogr., 28(4), 343–383, doi:10.1016/0079-6611(91)90032-H, 1991.

1259 Stramski, D. and Reynolds, R. A.: Diel variations in the optical properties of a marine diatom,
1260 Limnol. Oceanogr., 38(7), 1347–1364, 1993.

1261 Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke, R., Miller, A. J.,
1262 Ohman, M. D., Ruacho, A., Song, H. and Stephens, B. M.: Mesoscale ocean fronts enhance
1263 carbon export due to gravitational sinking and subduction, Proc. Natl. Acad. Sci., 114(6), 1252–
1264 1257, 2017.

1265 Sullivan, J. M., Twardowski, M. S., Donaghay, P. L. and Freeman, S. A.: Use of optical
1266 scattering to discriminate particle types in coastal waters, Appl. Opt., 44(9), 1667,
1267 doi:10.1364/AO.44.001667, 2005.

1268 Thomas, A. C. and Weatherbee, R. A.: Satellite-measured temporal variability of the Columbia
1269 River plume, Remote Sens. Environ., 100(2), 167–178, doi:10.1016/J.RSE.2005.10.018, 2006.

1270 Thomson, R. E., and Fine, I. V.: Estimating Mixed Layer Depth from Oceanic Profile Data, J.
1271 Atmos. Ocean. Technol., 20(2), 319–329, doi:10.1175/1520-
1272 0426(2003)020<0319:EMLDFO>2.0.CO;2, 2003.

1273 Thyssen, M., Grégoire, G. J., Grisoni, J.-M., Pedrotti, M. L., Mousseau, L., Artigas, L. F., Marro,
1274 S., Garcia, N., Passafiume, O. and Denis, M. J.: Onset of the spring bloom in the northwestern

1275 Mediterranean Sea: influence of environmental pulse events on the in situ hourly-scale dynamics
1276 of the phytoplankton community structure, *Front. Microbiol.*, 5, 387, 2014.

1277 Tortell, P. D.: Dissolved gas measurements in oceanic waters made by membrane inlet mass
1278 spectrometry, *Limnol. Oceanogr. Methods*, 3(1), 24–37, 2005.

1279 Tortell, P. D., Guéguen, C., Long, M. C., Payne, C. D., Lee, P. and DiTullio, G. R.: Spatial
1280 variability and temporal dynamics of surface water pCO_2 , $\Delta\text{O}_2/\text{Ar}$ and dimethylsulfide in the
1281 Ross Sea, Antarctica, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 58(3), 241–259, 2011.

1282 Tortell, P. D., Asher, E. C., Ducklow, H. W., Goldman, J. A. L., Dacey, J. W. H., Grzymski, J.
1283 J., Young, J. N., Kranz, S. A., Bernard, K. S. and Morel, F. M. M.: Metabolic balance of coastal
1284 Antarctic waters revealed by autonomous pCO_2 and $\Delta\text{O}_2/\text{Ar}$ measurements, *Geophys. Res.*
1285 *Lett.*, 41(19), 6803–6810, 2014.

1286 Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q., Justic, D., Shaw, R. F. and Cope, J.:
1287 Fluctuating silicate: nitrate ratios and coastal plankton food webs, *Proc. Natl. Acad. Sci.*, 95(22),
1288 13048–13051, 1998.

1289 Twardowski, M. S., Boss, E., Macdonald, J. B., Pegau, W. S., Barnard, A. H. and Zaneveld, J. R.
1290 V.: A model for estimating bulk refractive index from the optical backscattering ratio and the
1291 implications for understanding particle composition in case I and case II waters, *J. Geophys. Res.*
1292 *Ocean.*, 106(C7), 14129–14142, doi:10.1029/2000JC000404, 2001.

1293 Waite, A. M., and Nodder, S. D.: The effect of in situ iron addition on the sinking rates and
1294 export flux of Southern Ocean diatoms, *Deep Sea Res. Part II Top. Stud. Oceanogr.*, 48(11-12),
1295 2635–2654, 2001.

1296 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
1297 *Limnol. Oceanogr. Methods*, 12(6), 351–362, 2014.

1298 Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and seawater, *Mar. Chem.*, 8(4),
1299 347–359, 1980.

1300 Westberry, T., Behrenfeld, M. J., Siegel, D. A. and Boss, E.: Carbon-based primary productivity
1301 modeling with vertically resolved photoacclimation, *Global Biogeochem. Cycles*, 22(2), 2008.

1302 White, A. E., Barone, B., Letelier, R. M. and Karl, D. M.: Productivity diagnosed from the diel
1303 cycle of particulate carbon in the North Pacific Subtropical Gyre, *Geophys. Res. Lett.*, 44(8),
1304 3752–3760, 2017.

1305 Wu, C.-J., Chiang, K.-P. and Liu, H.: Diel feeding pattern and prey selection of

1306 mesozooplankton on microplankton community, *J. Exp. Mar. Bio. Ecol.*, 390(2), 134–142, 2010.
1307 Zeng, C., Rosengard, S. Z., Burt, W., Peña, M. A., Nemcek, N., Zeng, T., Arrigo, K. R. and
1308 Tortell, P. D.: Optically-derived estimates of phytoplankton size class and taxonomic group
1309 biomass in the Eastern Subarctic Pacific Ocean, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 136,
1310 107–118, 2018.
1311
1312

1313 **Table 1:** Daily-integrated mixed layer net primary production (NPP) and net community
 1314 production (NCP), including all components used to calculate NCP from $\Delta\text{O}_2/\text{Ar}$ or POC time
 1315 series, as indicated: gross primary productivity (GPP), respiration (CR), vertical mixing (Mix),
 1316 and gas exchange (J_{ex}). All units here are in mmol C m⁻² d⁻¹. Note that CbPM is the Carbon-
 1317 Based Production Model (Behrenfeld et al., 2005; Westberry et al., 2008; Graff et al., 2016)
 1318 (Sect. 2.5).

1319

	Drifter 1:			Drifter 2:	
	Day 1	Day 2	Day 3	Day 1	Day 2
NPP (CbPM)	147 ± 61	137 ± 51	112 ± 40	22 ± 9	18 ± 7
NPP (¹⁴C)	150 ± 18	-	49 ± 8	12 ± 4	-
GPP ($\Delta\text{O}_2/\text{Ar}$)	284 ± 75	270 ± 178	358 ± 198	108 ± 101	219 ± 211
GPP (POC)	242 ± 51	106 ± 26	98 ± 35	41 ± 8	38 ± 7
R ($\Delta\text{O}_2/\text{Ar}$)	-73 ± 65	-150 ± 88	-172 ± 56	-83 ± 35	-186 ± 64
R (POC)	-77 ± 55	-147 ± 28	-104 ± 40	-44 ± 12	-36 ± 9
Mix (N₂O)	-70 ± 29	-16 ± 81	-19 ± 42	0	0
Mix (POC)	-67 ± 47	-12 ± 16	-20 ± 16	0	0
J_{ex} (daily)	-62 ± 11	-7 ± 4	-6 ± 3	12 ± 5	17 ± 7
NCP_{O2/Ar}	140 ± 45	104 ± 84	167 ± 52	-12 ± 44*	33 ± 20
NCP_{POC}	97 ± 49	-53 ± 24	-25 ± 31	-2 ± 3	1 ± 2

1320

1321 *Calculated using summed three-hour increments of NCP_{O2/Ar} (refer to Table 2 and Sect. 2.6.3).
 1322 All other NCP values reported here were computed using day/night linear regressions of [POC]
 1323 and [O₂]_{bio} against time (Sects. 2.6.1, 2.6.2).

1324

1325

1326

1327 **Table 2:** Comparisons of NCP calculated using four different time scales of integration: (rows 1-
1328 2) day/night linear regressions, (rows 3-4) summed linear regressions over 3-hour increments,
1329 (rows 5-6) the difference between two time points every 24 hours, and (rows 7-8) a single linear
1330 regression over the entire drifter period. Refer to Sect. 2.6.3 for further details. For every
1331 calculation approach, “Export + DOC” is the average difference between $\text{NCP}_{\text{O}_2/\text{Ar}}$ and NCP_{POC}
1332 values ± 1 S.D. or \pm the propagated error. All units here are in $\text{mmol C m}^{-2} \text{ d}^{-1}$.

1333

	Drifter 1:				Export + DOC	Drifter 2:			
	Day 1	Day 2	Day 3	Mean \pm S.D.		Day 1	Day 2	Mean \pm S.D.	Export + DOC
$\text{NCP}_{\text{O}_2/\text{Ar}}$	140 \pm 45	104 \pm 84	167 \pm 52	137 \pm 32		26 \pm 18	33 \pm 20	29 \pm 5	
NCP_{POC}	97 \pm 49	-53 \pm 24	-25 \pm 31	7 \pm 80	131 \pm 79	-2 \pm 3	1 \pm 2	-0.8 \pm 3	30 \pm 2.4
$\text{NCP}_{\text{O}_2/\text{Ar}} \text{ (3 hr)}$	177 \pm 121	129 \pm 102	122 \pm 157	143 \pm 30		-12 \pm 44	25 \pm 75	6 \pm 26	
$\text{NCP}_{\text{POC}} \text{ (3 hr)}$	119 \pm 66	-86 \pm 64	53 \pm 140	28 \pm 105	115 \pm 88	-8 \pm 10	-6 \pm 5	-7 \pm 1	14 \pm 25
$\text{NCP}_{\text{O}_2/\text{Ar}} \text{ (time points)}$	180 \pm 54	128 \pm 84	78 \pm 43	129 \pm 51		-4 \pm 13	26 \pm 11	11 \pm 21	
$\text{NCP}_{\text{POC}} \text{ (time points)}$	99 \pm 48	-73 \pm 21	-14 \pm 19	4 \pm 87	125 \pm 66	-6 \pm 17	-2 \pm 11	-4 \pm 3	15 \pm 18
$\text{NCP}_{\text{O}_2/\text{Ar}} \text{ (whole drifter trend)}$				103 \pm 56				13 \pm 9	
$\text{NCP}_{\text{POC}} \text{ (drifter trend)}$				-21 \pm 28	123 \pm 62			-4 \pm 2	17 \pm 9

1334

1335
1336

1337 **Figure 1:** (a) Map of AQUA MODIS-derived 8-day composite sea surface temperature (11 μ m,
1338 nighttime) from 21-28 August 2017, overlapping with the duration of both drifter deployments.
1339 The two hollow boxes on the map denote location of drifter tracks, with the red diamonds
1340 indicating the location of the initial release. Gray bathymetry contours represent 0, 500, 1000,
1341 1500 and 2000 m depths. Panels (b and c) show a detailed view of the two drifter tracks (cross
1342 symbol), with the ship's track shown in a light grey line and open circles denoting times when
1343 the ship was <1.5 km away from the drifter position. Only measurements taken at these cross-
1344 over locations were used for analysis.

1345

1346

1347 **Figure 2:** Comparison of average surface water properties between the two drifter deployments:

1348 (a) chlorophyll-a concentration (Chl-a), (b) phytoplankton carbon concentration (C_{ph}), (c)
 1349 particulate organic carbon (POC) concentration, (d) the wavelength-dependent slope of
 1350 particulate backscatter (b_{bp}), (e) biological oxygen saturation anomaly ($\Delta\text{O}_2/\text{Ar}$), and (f) the
 1351 [C_{ph}]/[Chl-a] ratio. Boxes represent the median (center line) and 25 and 75 percentiles (box
 1352 edges). Outliers are indicated as black “+” marks.

1353

1354

1355

1356 **Figure 3:** Time-series of (a) biological oxygen saturation ($\Delta O_2/Ar$), (b) particulate organic
 1357 carbon (POC) concentration, and (c) chlorophyll-a (Chl-a) concentration during the two drifter
 1358 deployments (left and right panels, respectively). For each daytime (non-shaded) and nighttime
 1359 (shaded) interval, the best fit linear regression line is plotted. Significant regressions ($p < 0.05$) are
 1360 plotted as thick dashed lines, while non-significant regressions ($p \geq 0.05$) are plotted as thin dotted
 1361 lines. Grey lines show all measurements while thicker black line shows observations collected
 1362 when the ship was within 1.5 km of the drifter location.

1363

1364
1365
1366 **Figure 4:** Daily net community production (NCP) during successive days of the two drifter
1367 deployments derived from diurnal variations of biological oxygen saturation ($\Delta O_2/Ar$) and
1368 particulate organic carbon (POC) concentration. Each set of bars is for one 24-hour period, with
1369 approximate starting times on the x-axis. Note that the negative NCP O_2/Ar value for the first day
1370 of drifter period 2 was computed by integrating NCP O_2/Ar values over eight consecutive three-
1371 hour increments (refer to Table 2).

Figure 5: The left panels show comparisons between $\Delta\text{O}_2/\text{Ar}$ -derived and POC-derived (a) GPP and (b) CR over the five days of both drifter deployments. The right panels show $\Delta\text{O}_2/\text{Ar}$ -derived NCP ($\text{NCP}_{\text{O}_2/\text{Ar}}$) as a function of POC-derived NCP (NCP_{POC}) over three-hour increments during (c) drifter period 1 and (d) drifter period 2. The vertical dashed lines in (a) and (b) indicate the break between drifter periods 1 and 2. Thin black lines in (c) and (d) represent the 1:1 line, while thicker grey lines are the best-fit from linear regressions and correspond to the indicated slope and r^2 values.