S1. Data materials

Publications in this study; (1) Ball et al., 2007; (2) Brumme et al., 1999; (3) Christiansen et al., 2012; (4) Danevčič et al., 2010; (5) Eickenscheidt et al., 2014; (6) Ernfors et al., 2011; (7) Glenn et al., 1993; (8) Holz et al., 2016; (9) Huttunen et al., 2003a; (10) Klemedtsson et al., 2010; (11) Komulainen et al., 1998; (12) Korkiakoski et al., 2017;

- (13) Lohila et al., 2007; (14) Lohila et al., 2011; (15) Lupikis and Lazdins 2017; (16) Maljanen et al., 2003a; (17) Maljanen et al., 2003b; (18) Maljanen et al., 2006; (19) Maljanen et al., 2010b; (20) Maljanen et al., 2012; (21) Maljanen et al., 2014; (22) Mander et al., 2008; (23) Martikainen et al., 1992; (24) Martikainen et al., 1993; (25) Martikainen et al., 1995b; (26) McNamara et al., 2008; (27) Meyer et al., 2013; (28) Minkkinen and Laine 1998b; (29) Minkkinen and Laine 2006; (30) Minkkinen et al., 1999; (31) Minkkinen et al., 2007b; (32) Moilanen et al.,
- 2012; (33) Mustamo et al., 2016; (34) Mäkiranta et al., 2007; (35) Nykänen et al., 1998; (36) Ojanen et al., 2010; (37) Ojanen et al., 2013; (38) Pihlatie et al., 2004; (39) Pitkänen et al., 2013; (40) Regina et al., 1998; (41) Saari et al., 2009; (42) Salm et al., 2012; (43) Sikström et al., 2009; (44) Silvola et al., 1996; (45) Simola et al., 2012; (46) Uri et al., 2017; (47) Weslien et al., 2009; (48) von Arnold et al., 2005a; (49) Väisänen et al., 2013; (50) Yamulki et al., 2013; (51) Komulainen et al., 1999; (52) von Arnold et al. 2005b

15

20

Table S1. Publications having data with high potential for quantification of annual soil CO₂ balance (CO₂ and CO_{2eq}) for drained organic forest soils in boreal and temperate climate regions. 'Method' identifies whether flux monitoring was implemented by soil inventory methods, eddy covariance method, or chamber methods. The numbers I–IV next to 'CH' in this column denote for chamber methods the C-flux sources included in typical data collection setups shown in Fig. 2. 'C-measures in monitoring' lists the variables included in data collection by eddy covariance method and dark and light chamber methods that can be used for forming an annual soil CO₂ balance estimate. 'Additional requirements for forming annual soil CO₂ balance estimate' lists the extra measurements and data needs for forming the estimate.

Climate region	Method	C-measures in monitoring	Additional requirements for forming annual soil CO ₂ balance estimate	Notes	Reference / (reference number in this study)
Temperate	CH (II)	TOT _{Grs}	Subtracting tree root respiration. Subtracting ground vegetation dark respiration. Subtracting above- and belowground litter production rates.	Annual flux estimate is based on median values. Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Whole year flux monitoring.	Salm et al., 2012 / (42)
Temperate	CH (II)	TOT _{Grs}	Subtracting tree root respiration. Subtracting ground vegetation dark respiration. Subtracting above- and belowground litter production rates.	Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Whole year flux monitoring.	Sikström et al., 2009 / (43)
Temperate	CH (IV)	S _{rs} ; L _{in/t.o} ; FR _{in/t.o} ; Di		Trenched plots. Estimates annualized in the publication.	Uri et al., 2017 / (46)

Temperate	CH (II)	TOT _{Grs} ; NPP _{tr}	Subtracting above- and belowground litter production rates.	Forest floor vegetation contributions assumed to be negligible. Value from literature is used the for the tree root respiration contributions. Some of the values in reporting are available with a higher precision in von Arnold et al. 2005c. Whole year flux monitoring.	von Arnold et al., 2005b / (52)
Temperate	CH (II)	TOT _{Grs} ; NPP _{tr}	Subtracting ground vegetation dark respiration. Subtracting above- and belowground litter production rates.	Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Value from literature is used for the tree root respiration contributions. Whole year flux monitoring.	von Arnold et al., 2005a / (48)
Temperate	CH (II)	TOT _{Grs} ; Di	Subtracting tree root respiration. Subtracting ground vegetation dark respiration. Subtracting above- and belowground litter production rates.	Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Whole year flux monitoring.	Yamulki et al., 2013 / (50)
Temperate	CH (II)	TOT _{Grs}	Subtracting ground vegetation dark respiration. Subtracting above- and belowground litter production rates.	Value from literature is used for the tree root respiration contributions. Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Whole year flux monitoring.	Klemedtsson et al., 2010 / (10)
Temperate	CH (II)	TOT _{Grs}	Subtracting above- and belowground litter production rates.	Annual flux estimate is based on median values (data in all other publications are average values). Autotrophic respiration contributions are based on literature values. Ground vegetation contributions in the flux and to the soil C-stock change are not considered in the estimate. Gas sampling procedures unclear.	Mander et al., 2008 / (22)
Temperate	CH (I)	TOT _{Grs} ; Di	Subtracting tree root respiration.	Ground vegetation is assumed to be absent in closed canopy sites. Study includes also automated chamber data collection. Estimate annualized in the publication.	Ball et al., 2007 / (1)
Temperate	EC, CH (IV)	NEE; NPP _{tr} ; G _{rs} ; S _{rs} ; L _{Ars} ; Di		Trenched plots included. Two calculus approaches in the publication.	Meyer et al., 2013 / (27)

				Assumed equal annual	
				production and	
				decomposition of litter	
				from both leaves and	
				roots. Whole year flux	
				monitoring.	
Temperate	INV		-	-	Lupikis and
					Lazdins 2017
	-				/(15)
Boreal	CH (IV)	P _{rs} ; L _{in/to} ; Di		Multiple values from	Väisänen et
				literature are used in the	al., 2013 /
				estimate. Whole year flux	(49)
				monitoring.	
Boreal	CH (II,	$A_{GV}; GV_{rs};$	Annualization	Trenched plots.	Komulainen
	111, IV)	Dı	needed.	Transparent and dark	et al., 1999 /
				chambers.	(51)
Boreal	CH (III)	S _{rs} ; Di	Incorporating	Trenched plots. Whole	Minkkinen et
			above- and	year flux monitoring.	al., 2007b7
			belowground litter		(31)
			production and		
			decomposition		
Dec. 1		C.D.	rates.	The second second states and states and second seco	M. 1.
Boreal	СН (Ш)	$S_{rs}; D_1$	Incorporating	I renched plots. Whole	Moilanen et
			above- and	year flux monitoring.	al., 2012 /
			belowground litter		(32)
			production and		
			decomposition		
D 1		C D	rates.		
Boreal	СН (Ш)	G _{rs} ; D1	Subtracting tree	-	Mustamo et
			root respiration.		al., 2010 /
			Annualization		(33)
Boreal	СН (П	$TOT - \cdot S \cdot$	needed.	Trenched and non	Oignon et al
Doleal		$101_{Grs}, S_{rs},$		tranched plots Estimate	2010 / (26)
	IIII, I v)	KSprop, DI		annualized in the	20107 (30)
				nublication	
Boreal	СН	Lin/t o	Data from Oianen	-	Oianen et al
		$FR_{in/t,o}$; Di	et al., 2010		2013 / (37)
Boreal	CH (I)	G _{rs} ; L _{Ars} ; Di	Subtracting tree	Whole year flux	Silvola et al.,
			root respiration.	monitoring.	1996 / (44)
Boreal	CH (III)	S _{rs} ; Di	Incorporating	Trenched plots. Whole	Mäkiranta et
	. ,		above- and	year flux monitoring.	al., 2007 /
			belowground litter		(34)
			production and		
			decomposition		
			rates.		
Boreal	EC	NEE;	-	Whole year flux	Lohila et al.,
		$TOT_{Ers};$		monitoring.	2011 / (14)
		NPP _{tr} ; Di		_	
Boreal	EC, (CH)	NEE; NPP _{tr} ;	-	Peat heterotrophic	Lohila et al.,
		S _{rs} ;Di		emission value for the site	2007 / (13)
				from Mäkiranta et al.	
				2007. Whole year flux	
				monitoring.	
Boreal	INV		-	-	Minkkinen
					and Laine
					1998b / (28)
Boreal	INV		-	-	Minkkinen et
					al., 1999 /
					(30)

Boreal	INV		-	-	Pitkänen et	
Borear	1111				al 2013 /	
					(39)	
Boreal	INV		-	-	Simola et al	
					2012 / (45)	
CH = flux m	onitoring by	dark and light c	hambers, EC = eddy co	ovariance method, INV = orga	anic soil	
inventory me	ethod.					
$TOT_{Grs} = het$	terotrophic re	espiration in soil	and litter, and autotrop	phic respiration contributions	from ground	
vegetation al	pove and bel	owground parts	and from tree roots (i.e	e. ground level total respiration	n).	
$TOT_{Ers} = het$	erotrophic re	espiration in soil	and litter, and autotrop	phic respiration contributions	from above	
and belowgr	ound parts of	f ground vegetat	ion and trees (i.e. ecosy	ystem level total respiration).		
$G_{rs} = Heteror$	trophic respi	ration in soil (ex	cluding recently depos	ited litter contribution) and a	ıtotrophic	
contributions	s from tree ro	oots.				
$S_{rs} = Heterot$	rophic respir	ration in soil (ex	cluding recently deposi	ted litter contribution).		
$L_{Ars} = Hetero$	otrophic resp	iration in litter c	on the soil surface.			
$RS_{prop} = Prop$	portion betw	een autotrophic	respiration from vegeta	tion (trees) and heterotrophic	respiration	
from soil dec	composition.					
$GV_{rs} = Grou$	nd vegetatio	n autotrophic re	spiration contributions	from above and belowground	parts.	
$TR_{rs} = Tree I$	root autotrop	hic respiration c	contributions.			
$L_{in/t,o}$ = Litter input and turnover on the soil surface.						
$FR_{in/t,o}$ = Fine root production and turnover by trees and ground vegetation.						
NEE = Net ecosystem CO_2 exchange.						
NPP = Net primary production in ecosystem.						
$NPP_{tr} = Net primary production in trees.$						
A_{GV} = Gross primary CO ₂ assimilation in ground vegetation.						
Di = Flux estimate takes into account diurnal temperature variation by data modelling or by diurnal flux						
monitoring.						

able S2. Publications allowing quantification of annual soil CH4 or N2O balance for drained organic forest soils								est soils in
poreal and temperate climate regions. All studies were conducted using the chamber method.								

GHG measured	Climate region	Additional requirements for forming annual soil GHG balance estimate, and	Reference / (reference number in this study)
		notes	
CH_4 , N_2O	Temperate	Diurnal. Estimates annualized in the	Ball et al., 2007 / (1)
		publication. Ground vegetation is assumed to	
		be absent in closed canopy sites.	
N ₂ O	Temperate	Whole year flux monitoring. Vegetation	Brumme et al., 1999 / (2)
		retained on the soil surface.	
CH_4 , N_2O	Temperate	Whole year flux monitoring. Vegetation	Christiansen et al., $2012 / (3)$
	-	likely retained on the soil surface.	
CH_4 , N_2O	Temperate	Whole year flux monitoring. Vegetation	Danevčič et al., 2010 / (4)
	-	removed from the soil surface.	
N ₂ O	Temperate	Whole year flux monitoring. Vegetation	Eickenscheidt et al., 2014 /
	-	retained on the soil surface.	(5)
N ₂ O	Temperate	Whole year flux monitoring. Vegetation	Ernfors et al., 2011 / (6)
	-	removed or partly removed, roots trenched or	
		roots and mycelia trenched in monitoring	
		setups.	
CH ₄	Temperate	Annualization needed. Vegetation likely	Glenn et al., 1993 / (7)
	1	retained on the soil surface.	
N ₂ O	Temperate	Whole year flux monitoring. Roots trenched	Holz et al., 2016 / (8)
	-	or roots and mycelia trenched, and ground	
		vegetation likely removed or partly removed	
		in monitoring setups.	
CH_4, N_2O	Temperate	Whole year flux monitoring. Vegetation	Klemedtsson et al., 2010 /
	·	likely retained on the soil surface.	(10)
CH_4, N_2O	Temperate	Whole year flux monitoring. Vegetation	Mander et al., 2008 / (22)
	÷	likely retained on the soil surface.	

CH ₄	Temperate	Whole year flux monitoring. VegetationMcNamara et al., 2likely retained on the soil surface.		
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Salm et al., 2012 / (42)	
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation retained on the soil surface.	Sikström et al., 2009 / (43)	
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation retained on the soil surface.	von Arnold et al., 2005a / (49)	
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation retained on the soil surface.	von Arnold et al., 2005b / (52)	
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Weslien et al., 2009 / (47)	
CH ₄ , N ₂ O	Temperate	Whole year flux monitoring. Vegetation retained on the soil surface.	Yamulki et al., 2013 / (50)	
CH ₄ , N ₂ O	Boreal	Annualization needed. Vegetation likely retained on the soil surface.	Huttunen et al., 2003 / (9)	
CH ₄	Boreal	Annualization needed. Ground vegetation retained or removed in monitoring setups.	Komulainen et al., 1998 / (11)	
CH ₄	Boreal	Whole year flux monitoring by automated chambers. Vegetation retained on the soil surface.	Korkiakoski et al., 2017 / (12)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Lohila et al., 2011 / (14)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface	Mäkiranta et al., 2007 / (34)	
CH ₄	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Maljanen et al., 2003a / (16)	
N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Maljanen et al., 2003b / (17)	
CH ₄ , N ₂ O	Boreal	Vegetation likely retained on the soil surface. Estimates annualized in the publication Maljanen et al., (2010c).	Maljanen et al., 2006 / (18)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Maljanen et al., 2010b / (19)	
N ₂ O	Boreal	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Maljanen et al., 2012 / (20)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Maljanen et al., 2014 / (21)	
CH ₄	Boreal	Annualization needed. Vegetation retained on the soil surface.	Martikainen et al., 1992 / (23)	
N ₂ O	Boreal	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Martikainen et al., 1993 / (24)	
CH ₄	Boreal	Whole year flux monitoring. Vegetation likely retained on the soil surface.	Martikainen et al., 1995b / (25)	
CH ₄ , N ₂ O	Boreal	Diurnal. Whole year flux monitoring. Vegetation removed from the soil surface.	Meyer et al., 2013 / (27)	
CH ₄	Boreal	Diurnal. Whole year flux monitoring. Vegetation retained on the soil surface.	Minkkinen and Laine, 2006 / (29)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Mustamo et al., 2016 / (33)	
CH ₄	Boreal	Annualization needed. Vegetation retained on the soil surface.	Nykänen et al., 1998 / (35)	
CH4, N2O	Boreal	Diurnal. Annualized in the publication. Vegetation retained on the soil surface	Ojanen et al., 2010 / (36); corrigendum Ojanen et al., 2018	
N ₂ O	Boreal	Annualized in the publication. Vegetation likely retained on the soil surface.	Pihlatie et al., 2004 / (38)	
N ₂ O	Boreal	Annualized in the publication. Vegetation retained on the soil surface.	Regina et al., 1998 / (40)	
CH ₄ , N ₂ O	Boreal	Whole year flux monitoring. Vegetation retained on the soil surface.	Saari et al., 2009 / (41)	

CH4, N2O	Boreal	Whole year flux monitoring. Vegetation	Väisänen et al., 2013 / (49)			
		retained on the soil surface.				
Diurnal = Flux estimate takes into account diurnal temperature variation, incorporated in the estimate by						
modelling or by diurnal flux data collection						
Annualization needed = Annualization coefficient should be applied to the seasonal flux estimate presented in						
the publication.						

Table S3. Publications quantifying C losses in drainage waters from drained organic forest soils in boreal and temperate regions

temperate regions.

Climate region	Reported	Reference
Boreal	DOC, POC, TOC	Kolka et al., 1999
Boreal	TOC	Kortelainen et al., 1997
Boreal	TOC	Kortelainen et al., 2006
Boreal	TOC	Mattsson et al., 2003
Boreal	DOC	Nieminen et al., 2015
Boreal	TOC	Rantakari et al., 2010
Boreal	DOC	Sallantaus, 1993
Boreal	TOC	Sarkkola et al., 2009

35 Table S4. Examples of common reasons resulting in exclusion of a reviewed publication from the study.

Reason for exclusion	Reference
Ground vegetation autotrophic respiration from above- and/or below ground parts remains as unknown proportion of the monitored CO_2 flux.	Glenn et al., 1993; Coles and Yavitt, 2004; Badorek et al., 2011; Hommeltenberg et al., 2014
Soil inventory method is poorly described and the applied reference type in peat profile is currently considered unreliable for the purpose (e.g., Laiho and Pearson 2016).	Braekke, 1987; Braekke and Finér, 1991
A closed chamber technique using soda lime as CO ₂ absorbing agent is currently considered unreliable for field studies. Undrained forest.	Byrne and Farrell, 2005
Low number of monitoring events and several assumed parameter values are used (Hargreaves et al., 2003), or low number of flux monitoring events and information concerning the number of replicates on the site is missing (Maljanen et al., 2001).	Maljanen et al., 2001 ⁽¹⁾ ; Hargreaves et al., 2003
Flux monitoring setups focusing on immediate impacts of experimental ash addition on soil GHG fluxes (part of the data are excluded).	Klemedtsson et al., 2010; Moilanen et al., 2012
Another study based on inventory method (Minkkinen et al., 1999) includes the same sites and additional sites.	Krüger et al., 2016
Values are published in another publication, or data is from a model based on data published in other publications.	Martikainen et al., $1995b^{(1)}$; Laine et al., $1996^{(1)}$; von Arnold et al., $2005c$; Ernfors et al., 2008 ; Laurila et al., $2007^{(1)}$; Minkkinen et al., $2007a^{(1)}$
Undrained sites or site not specified to be on organic soil.	Moore and Knowles, 1990 ⁽¹⁾ ; Maljanen et al., 2010a ⁽¹⁾
Only means for daily fluxes on sites are presented.	Regina et al., 1996 ⁽¹⁾
⁽¹⁾ Publications included in the IPCC (2014) emission factor	database

S2. Soil GHG monitoring methods in a nutshell.

S2.1. Inventory methods

The most simple and direct method to estimate ecosystem / soil C loss or gain is to measure the C stocks twice and calculate the difference (e.g., Simola et al., 2012). To measure the peat C stock, one simply needs to take

- 40 volumetric soil samples from the peat surface down to the bottom of the peat basin, or to a clear and stable reference layer that can be found at consecutive sampling times, and that preferably lies below the layer in which changes may have occurred. Next, one determines the peat bulk density (dry mass per sample volume) and C concentration, and multiplying these yields the C stock in a defined soil column. Then why is this method not used more, if it is so simple and easy? The reason is that in drained organic forest soils under cool climate the annual changes are
- 45 very small compared to the total C stock (e.g., on average c. 0.1 kg C m⁻² yr⁻¹ soil stock change vs. 75 kg C m⁻² total soil stock in 273 plots studied in the boreal zone (Minkkinen and Laine, 1998b)), and thus relatively small errors in determining the stocks result in relatively large errors in the C stock change estimates. Errors can be caused firstly by uneven or poorly defined bottom; the method requires an even bottom and a sharp border between peat and the underlying soil. The relative significance of this error increases with decreasing depth of the peat
- deposit. Further errors may be caused by heterogeneity in the composition of peat, and disturbance caused by earlier sampling. Thus, decadal time series and many replicate samples are needed to reliably monitor the change. Different modifications of the inventory method have been used (A, B, C, and D below), often aiming at capturing the total impact of drainage and land-use change, but in some studies aiming to simply cover a change between time points. Reasoning behind different modifications may include, e.g., some missing data in the initial sampling,
 e.g., C concentration of the samples.
 - (A) Subsidence measurements combined with oxidation estimates. Subsidence is the term for a decline in peat surface elevation relative to an earlier state (e.g., Laiho and Pearson, 2016). Subsidence of the peat surface after drainage results first mainly from physical compaction (or collapse) of the soil matrix, and later mainly from soil organic matter decomposition and oxidation to CO₂. Thus, the measurement of subsidence can be used to estimate
- 60 the soil C balance, if it is monitored based on elevation-fixed bench marks, e.g. fixed poles reaching the mineral soil below the peat deposit, where the peat surface position at the onset of measurements has been marked (Hutchinson, 1980). Further, the share of mass loss due to oxidation in the change in bulk density causing the subsidence should be known. In temperate agricultural soils oxidation has been estimated to cause 70–80% of long-term subsidence, which is typically 1–2 cm yr⁻¹ (Oleszczuk et al., 2008), allowing rough estimation of soil C
- loss. Similar estimates have not been published for drained organic forest soils, and since the ecosystem dynamics and management are very different from agricultural lands, the same oxidation percentages cannot be assumed.
 (B) Combined estimation of subsidence and changes in peat bulk density and C concentration (e.g. Minkkinen and Laine, 1998a,b; Lupikis and Lazdins, 2017). The accuracy of this method is dependent on the accuracy of the subsidence measurement and the estimation of the pre-drainage/initial-sampling bulk density. The range of peat
- 70 bulk densities in undrained and forestry-drained conditions, c. 40–200 kg m⁻³ (e.g., Minkkinen and Laine, 1998a) equal to 0.4–2 kg C m⁻² in 1-cm peat layer. The subsidence estimate of Minkkinen and Laine (1998b) was based on measuring the peat depth in the same spots before and after drainage. The pre-drainage bulk density is often not available, and Minkkinen and Laine (1998b) used material from reference sites on undrained peatlands to estimate that. The reference sites represented the same vegetation types as the drained sites reportedly were before
- 75 drainage. However, some random variation is inevitably involved in the use of reference sites (e.g., Laiho and Pearson, 2016).

(C) Comparisons of peat C-stocks on drained and undrained sides of the same peatland over synchronous reference layers in the peat profile (Minkkinen et al., 1999; Krüger et al., 2016; Pitkänen et al., 2013 used the same approach but sampled the full peat deposit). The determination of the synchronous layer can be based on, e.g., pollen profiles

- 80 or synchronous layers of charcoal or tephra. If the reference layer is well-defined and located below the peat layer where drainage-induced changes may be expected to have taken place, and it can be verified that the areas on both sides of the ditch were similar before drainage, this method may result in the most reliable estimates of post-drainage C-stock changes among the different versions of the inventory method. If the time since drainage is known, the C-stock change may be transformed to an average change per year. It should be noted, however, that the difference between the undrained and drained parts depends, in addition to the drainage induced changes in
- 85 the difference between the undrained and drained parts depends, in addition to the drainage-induced changes in the drained side, also on the extent that C accumulation has taken place in the undrained side during the postdrainage period.

(D) Comparisons based on the proportions of ash or other elements versus C in peat layers of corresponding drained and undrained peatlands (e.g. Kareksela et al., 2015; Krüger et al., 2016). This method is based on the fact

- 90 that when peat decomposes, it loses C but the main constituent of ash, Si, as well as some other elements are retained. Thus, an increase in ash/C quotient in peat can be used to estimate the C loss. This method involves in practise several uncertainties that were recently reviewed by Laiho and Pearson (2016), who concluded that the results from this method for drained organic forest soils are highly suspect.
- The advantage of inventory methods is that they produce long-term averages, based on different years with different weather conditions, and should thus give robust estimates of soil C balance. Also, they involve all processes and C forms affecting the balance. At the same time they are, however, estimates of the past, and may not be applicable in the changing climate, or when forest structure changes due to aging or forest operations. Also, they add little knowledge on ecosystem processes and cannot be used for modelling C dynamics. Although the inventory methods are basically simple, they become complex and laborious when some data are missing, and
- have to be estimated from other data or models. For example, space for time comparisons between different sites (method types 'C' and 'D') assume that the sites were identical prior to draining, which can introduce some unknown and potentially large errors to those estimates (Laiho and Pearson, 2016). Consequently, the uncertainty of the estimates remains high. Thus a large number of sites / samples per site are needed to get reliable estimates. Various kinds of assumptions in these methods also introduce bias into the estimates, the quantity of which is difficult or impossible to determine.
- 105 difficult of impossible to determini

S2.2. Flux methods – Eddy covariance method

The EC method offers direct, area-integrating and continuous monitoring of the biosphere-atmosphere exchange of GHGs (Baldocchi, 2003; Foken et al., 2012). The method is based on a high-frequency monitoring of the studied gas concentration in the air, and simultaneous measurement of the vertical wind speed using a 3-D anemometer.

- 110 The flux is obtained as the covariance of these two variables typically averaged over a 30-min period. The method involves a requirement of horizontally homogeneous ground surface on the measurement area (of several hectares) (Munger et al., 2012). The measurements are conducted in the atmosphere above the ecosystem and the method provides an estimate of the net gas exchange between the atmosphere and the whole ecosystem. This net ecosystem exchange (NEE) includes thus the uptake and release from both soil and vegetation, i.e. trees in the case of forests.
- 115 However, by installing the instruments below the canopy, the EC system can also be used to study below-canopy exchange (Launiainen et al., 2005).

From the measured net ecosystem exchange, it is possible to estimate also the total ecosystem respiration (R_{tot}) and gross primary production (GPP) by employing simple response functions. Typically at least temperature (air or soil) and photosynthetically active radiation are utilized as explaining variables, but sometimes also water-table

- 120 level, relative humidity, and variables describing plant phenology are used (e.g., Aurela et al., 2002; Reichstein et al., 2005; Lohila et al., 2011). The partitioning is based on the fact that during the night-time when the photosynthetic apparatus is not active, NEE equals R_{tot} , which can then be parameterized using air or soil temperature. Then using this R_{tot} parameterisation during the day it is possible to derive GPP from the daytime NEE values (NEE = GPP R_{tot}).
- 125 Although the EC method produces continuous NEE data, gaps in the data are unavoidable in long data series and gap-filling based on, e.g., the response functions discussed above is needed. One important advantage in continuous gaseous flux monitoring by EC methods is the potential to detect short-term responses in the system to the environmental conditions, which at best form a detailed temporal description at both diurnal (day and night fluxes) and annual (all year round) timescales.
- To estimate annual soil CO₂ balance using EC data, in addition to the total annual NEE, annual increase in biomass (forest vegetation growth in above and below ground parts) is needed. These data are usually available at a much rougher scale than the gas exchange data. The annual increase in aboveground tree biomass C may be based on consecutive tallies of the tree diameters in sample plots representing the footprint area, application of general allometric functions for biomass fractions, and application of measured or average estimates for the C concentrations in the different biomass fractions. A similar procedure may be used for the coarse root system C,
 - if allometric functions are available.

S2.3 Flux methods – Chamber techniques

Closed chamber measurement techniques can be roughly divided into dark and transparent chamber methods. Dark chamber measurements capture the gas exchange between the soil and the atmosphere, and also ground vegetation and tree root respiration, if the vegetation or tree roots have not been removed. Transparent chambers also include ground vegetation CO₂ assimilation through photosynthesis, but trees, the main component of forest vegetation, usually do not fit into a chamber. Chamber methods are used because the equipment is relatively inexpensive and portable chambers enable extensive studies covering even dozens of study sites (e.g., Ojanen et al., 2010). On the negative side, the accuracy of chamber measured gas fluxes is not obvious: chamber and collar design, deployment time and flux calculation method may greatly and systematically affect the results (e.g., Pumpanen et al., 2004;

- Christiansen et al., 2011; Lai et al., 2012; Koskinen et al., 2014; Jovani-Sancho et al., 2017; Korkiakoski et al., 2017). Potential CO₂ flux sources included in the monitoring are multiple: heterotrophic respiration from decomposition in soil and in litter, including CO₂ from possible CH₄ production and oxidation processes in the soil, and autotrophic respiration of vegetation above and below ground. Thus, it is highly recommended to carefully
- 150 consider methodological issues before starting chamber measurements, so that at least the most obvious sources of bias can be avoided.

When estimation of annual soil CO_2 balance is aimed at, dark chambers are typically used to estimate the CO_2 efflux from the forest floor. If measurement plots are treated to include only heterotrophic respiration resulting from litter and SOM decomposition (as inOjanen et al., 2013; Uri et al., 2017), annual soil CO_2 balance can be

estimated by subtracting annualized heterotrophic CO₂ flux (R_{het}) from litter production (L), Eq. (1): Soil CO₂ balance = L - R_{het} . (1)

While this is a simple equation, it involves two problems: 1) to include only heterotrophic respiration, ground vegetation must be removed from the plot and the incoming tree roots cut by trenching. This is technically easy. However, trenching will cause firstly an additional CO_2 flux from the cut-off roots that start decomposing, and

- 160 may also cause priming of decomposition due to the extra input of organic matter that also involves labile C compounds as a readily exploitable energy source (Kuzyakov et al., 2000). Still further, the production of new belowground litter and root exudates stops and this can influence the decomposition activity over time (Subke et al., 2006), even though research into this impact has not found clear effects in peat soils (Basiliko et al., 2012; Linkosalmi et al., 2015). Also soil moisture can be affected as root water uptake is prevented by trenching. The
- exact magnitude of these artefacts is hard to estimate. 2) Aboveground litter production can be directly measured, but the estimation of belowground litter input depends on estimates of root and rhizome production or turnover that are currently highly uncertain (Ojanen et al., 2014; Bhuiyan et al., 2017).
 Both these problems related to Eq. (1) above could in principle be avoided by basing the estimation of soil CO₂ balance on forest floor respiration (R_{floor}) measured from untreated plots, i.e. total soil respiration (see Ojanen et al.)
- al., 2012), Eq. (2):
 Soil CO₂ balance = GPP_{trees} + GPP_{floor} R_{trees_above} R_{floor} ΔC_{biom}, (2)
 where GPP_{trees} is gross primary production of tree stand, GPP_{floor} is gross primary production of forest floor vegetation, R_{trees_above} is tree stand above ground respiration, and ΔC_{biom} is annual change in carbon stocks of biomass.
- 175 It is possible to directly measure all these components of gross primary production (GPP) and respiration (R). But in practice this leads to complicated modelling resulting in a vast amount of work and uncertain estimates even at a single study site (see Ojanen et al., 2012).

As there are a lot of published data on R_{floor} (or R_{floor} without ground vegetation) (see Supplement 1), it would be possible to extract R_{het} from these data by subtracting the autotrophic respiration of tree roots and ground vegetation (R_{aut}) from R_{floor} , Eq. (3):

$$R_{het} = R_{floor} - R_{aut}$$
.

180

However, to estimate R_{aut} , we are back at the complicated modelling of a poorly known flux. A shortcut would be to assume that R_{het} is a constant share A of R_{floor} (e.g., von Arnold et al., 2005a, b), Eq. (4):

(3)

(4)

$$R_{het} = A R_{floor}$$
.

- 185 This is again technically easy, and there are several publications where this proportion is estimated in drained organic forest soils (e.g., Silvola et al., 1996: Komulainen et al., 1999; Minkkinen et al., 2007b; Ojanen et al., 2010; Moilanen et al., 2012; Meyer et al., 2013), as well as a literature review for forests in different climate zones (Bond-Lamberty et al., 2004). But as R_{floor} from drained peat includes a varying amount of decomposition from pre-drainage peat and as this amount is not directly constrained by the productivity of current vegetation, any
- 190 constant proportion from literature applied to other study sites forms a source of uncertainty. So we are again back at Eq. (1).

Soil CO_2 flux measurements can also be performed using transparent chambers on vegetated surfaces. The system is operated in such way that a measurement session with transparent chamber is followed by a session with dark chamber, the latter by covering the transparent chamber by material impenetrable to light. This method produces

- 195 total daytime respiration and nighttime respiration of the soil and of the vegetation. The gross assimilation of the vegetation enclosed in the chamber can be quantified from the measurements if the proportion of heterotrophic emission from soil (R_{het}) is known and there are no other flux sources present (e.g., roots extending into chamber area from outside). In forests on drained organic soils, use of this method for estimating soil CO₂ balance is complicated because; i) emissions from soil decomposition processes must be quantified by a different monitoring
- 200 setup, ii) autotrophic respiration of tree roots must be excluded from monitored surfaces (e.g., by trenching), and iii) C-balance in belowground tree litter deposition and decomposition rates must be quantified by other ways –

all these issues (i–iii) are examined in the previous sections (see also Ojanen et al., 2012). The value of transparent chamber method in forests on organic soils is mainly in the potential to estimate ground vegetation C-balance.

- Chamber methods typically involve CO2 efflux from several forest floor sources, and to form annual soil CO_2 balance estimates one needs to carefully consider which sources are involved. If the efflux includes decomposition of annual litter inputs, the amount of these inputs needs to be estimated. If litter is removed from the measurement plots, the rates of both the input and decomposition of litter need to be estimated. As big fluxes are subtracted from each other to achieve typically (in boreal-temperate conditions) an order of magnitude smaller balance, great care should be taken to accurately estimate these fluxes to avoid bias in the annual soil CO_2 balance (Ojanen et al.,
- 210 2012, 2014).

230

References

- Aurela, M., Laurila, T., and Tuovinen, J.-P.: Annual CO₂ balance of a subarctic fen in northern Europe: Importance of the wintertime efflux, J. Geophys. Res., 107(D21), 4607, <u>https://doi.org/10.1029/2002JD002055</u>, 2002.
 Badorek, T., Tuittila, E.-S., Ojanen, P., and Minkkinen, K.: Forest floor photosynthesis and respiration in a
- 215
 drained peatland forest in southern Finland. Plant Ecol. Divers., 4, 227–241,

 https://doi.org/10.1080/17550874.2011.644344, 2011.
 - Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biol., 9(4), 479–492, <u>https://doi.org/10.1046/j.1365-2486.2003.00629.x</u>, 2003.
- Ball, T., Smith, K. A., and Moncriff, J. B.: Effect of stand age on greenhouse gas fluxes from a Sitka spruce [*Picea sitchensis* (Bong.) Carr.] chronosequence on a peaty gley soil. Global Change Biol., 13, 2128–2142, https://doi.org/10.1111/j.1365-2486.2007.01427.x, 2007.
 - Basiliko, N., Stewart, H., Roulet N. T., and Moore, T. R.: Do Root Exudates Enhance Peat Decomposition? Geomicrobiol. J., 29(4), 374–378, https://doi.org/10.1080/01490451.2011.568272, 2012.
- 225 Bhuiyan, M. R., Minkkinen, K., Helmisaari, H.-S., Ojanen, P., Penttilä, T., and Laiho, R.: Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests. Plant Soil, 412(1-2), 299–316, https://doi.org/10.1007/s11104-016-3070-3, 2017.
 - Bond-Lamberty, B., Wang, C., and Gower, S. T.: A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10: 1756–1766, <u>https://doi.org/10.1111/j.1365-</u> 2486.2004.00816.x, 2004.
 - Braekke, F. H. and Finér L.: Fertilization effects on surface peat of pine bogs. Scand. J. For. Res., 6, 433–449, https://doi.org/10.1080/02827589109382681, 1991.
 - Braekke, F. H.: Nutrient relationships in forest stands: effects of drainage and fertilization on surface peat layers. Forest Ecol. Manag., 21, 269–284, <u>https://doi.org/10.1016/0378-1127(87)90048-X</u>, 1987.
- Brumme, R., Borker, W., and Finke, S.: Hierarchical control on nitrous oxide emissions in forest ecosystems.
 Global Biogeochem. Cyc., 13, 1137–1148, <u>https://doi.org/10.1029/1999GB900017</u>, 1999.
 - Byrne, K. A. and Farrell, E. P.: Carbon dioxide emissions in blanket peatland in Ireland. Forestry, 78, 217–227, https://doi.org/10.1093/forestry/cpi020, 2005.
 - Christiansen, J. R., Korhonen, J. F. J., Juszczak, R., and Giebels, M.: Assessing the effects of chamber placement,
- 240 manual sampling and headspace mixing on CH₄ fluxes in a laboratory experiment. Plant Soil, 343: 171–185, https://doi.org/10.1007/s11104-010-0701-y, 2011.

Christiansen, J. R., Vesterdal, L., and Gundersen, P.: Nitrous oxide and methane exchange in two small temperate forest catchments – effects of hydrological gradients and implications for global warming potentials of forest soils. Biogeochemistry, 107, 437–454, <u>https://doi.org/10.1007/s10533-010-9563-x</u>, 2012.

245 Coles, J. R. P. and Yavitt, J. B.: Linking Belowground Carbon Allocation to Anaerobic CH₄ and CO₂ production in a Forested Peatland, New York State. Geomicrobiol. J., 21, 445–455, https://doi.org/10.1080/01490450490505419, 2004.

Danevčič, T., Mandic-Mulec, I., Stres, B., Stopar, D., and Hacin, J.: Emissions of CO₂, CH₄ and N₂O from Southern European peatlands. Soil Biol. Biochem., 42, 1437–1446,

- 250 <u>https://doi.org/10.1016/j.soilbio.2010.05.004</u>, 2010.
 - Dise, N. B.: Winter fluxes of methane from Minnesota peatlands. Biogeochemistry, 17, 71–83, https://doi.org/10.1007/BF00002641, 1992.
 - Eickenscheidt, T., Heinichen, J., Augustin, J., Freibauer, A., and Drösler, M.: Nitrogen mineralization and gaseous nitrogen losses from waterlogged and drained organic soils in a black alder (*Alnus glutinosa* (L.)

255 Gaertn.) forest. Biogeosciences, 11, 2961–2976, <u>https://doi.org/10.5194/bg-11-2961-2014</u>, 2014.

- Ernfors, M., Rütting T, and Klemedtsson, L.: Increased nitrous oxide emissions from a drained organic forest soil after exclusion of ectomycorrhizal mycelia. Plant Soil, 343, 161–170, <u>https://doi.org/10.1007/s11104-010-0667-9</u>, 2011.
- Ernfors, M., von Arnold, K., Stendahl, J., Olsson, M., and Klemedtsson, L.: Nitrous oxide emissions from drained
 organic forest soils an up-scaling based on C:N ratios. Biogeochemistry, 89, 29–41, https://doi.org/10.1007/s10533-008-9190-y, 2008.
 - Foken T., Leuning R., Oncley, S. R., Mauder, M., and Aubinet M.: Corrections and data quality control. In: Aubinet, M., Vesala, T., and Papale, D. (eds.), Eddy covariance: A practical guide to measurement and data analysis, Springer Atmospheric Sciences, Springer, Dordrecht, Heidelberg, London, New York, pp. 85–131, <u>https://doi.org/10.1007/978-94-007-2351-1</u>, 2012.
 - Glenn, S., Heyes, A., and Moore, T.: Carbon dioxide and methane fluxes from drained peat soils, Southern Quebec. Global Biogeochem. Cy., 7, 247–257, <u>https://doi.org/10.1029/93GB00469</u>, 1993.
 - Hargreaves, K. J., Milne, R., and Cannell, M. G. R.: Carbon balance of afforested peatland in Scotland, Forestry, 76, 299–317, <u>https://doi.org/10.1093/forestry/76.3.299</u>, 2003.
- 270 Holz, M., Aurangojeb, M., Kasimir, Å., Boeckx, P., Kuzyakov, Y., Klemedtsson, L., and Rütting, T.: Gross Nitrogen Dynamics in the Mycorrhizosphere of an Organic Forest Soil. Ecosystems 19(2), 284–295, <u>https://doi.org/10.1007/s10021-015-9931-4</u>, 2016.
 - Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P.: Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? Biogeosciences, 11, 3477–3493, <u>https://doi.org/10.5194/bg-11-3477-</u>2014 2014
- **275** <u>2014</u>, 2014.

- Hutchinson, J. N.: The record of peat wastage in the east-Anglian fenlands at Holme post, 1848–1978 AD. J. Ecol., 68, 229–249, <u>https://doi.org/10.2307/2259253</u>, 1980.
- Huttunen, J. T., Nykänen, H., Martikainen, P. J., and Nieminen, M.: Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland. Plant Soil, 255, 457–462,
- 280 <u>https://doi.org/10.1023/A:1026035427891</u>, 2003.
 - IPCC: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., and Troxler, T. G. (eds). Published: IPCC, Switzerland. 353 p., <u>https://www.ipcc-nggip.iges.or.jp/public/wetlands/</u>, 2014.

Jovani-Sancho, J., Cummins, A., and Byrne, K. A.: Collar insertion depth effects on soil respiration in afforested peatlands. Biol. Fert. Soils, 53, 677–689, https://doi.org/10.1007/s00374-017-1210-4, 2017.

Kareksela, S., Haapalehto, T., Juutinen, R., Matilainen, R., Tahvanainen, T., and Kotiaho, J.: Fighting carbon loss of degraded peatlands by jump-starting ecosystem functioning with ecological restoration. Sci. Total Environ., 537, 268–270, <u>https://doi.org/10.1016/j.scitotenv.2015.07.094</u>, 2015.

285

300

315

- Klemedtsson, L., Ernfors, M., Björk, R. G., Weslien, P., Rütting, T., Crill, P., and Sikström, U.: Reduction of greenhouse gas emissions by wood ash application to a *Picea abies* (L.) Karst. forest on a drained organic soil. Eur. J. Soil Sci., 61, 734–744, <u>https://doi.org/10.1111/j.1365-2389.2010.01279.x</u>, 2010.
 - Kolka, R. K., Grogal, D. F., Verry, E. S., and Nater, E. A.: Mercury and organic carbon relationships in steams draining forested upland/peatland watersheds. J. Environ. Qual., 28, 766–775, <u>https://doi.org/10.2134/jeq1999.00472425002800030006x</u>, 1999.
- 295 Komulainen, V.-M., Nykänen, H., and Martikainen, P. J., Laine, J.: Short-term effect of restoration on vegetation change and methane emissions from peatlands drained for forestry in southern Finland. Can. J. Forest Res., 28(3), 402–411, <u>https://doi.org/10.1139/x98-011</u>, 1998.
 - Komulainen, V.-M., Tuittila, E.-S., Vasander, H., and Laine, J.: Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO₂ balance. J. Appl. Ecol., 36, 634–648, <u>https://doi.org/10.1046/j.1365-2664.1999.00430.x</u>, 1999.
 - Korkiakoski, M., Tuovinen, J-.P., Aurela, M., Koskinen, M., Minkkinen, K., Ojanen, P., Penttilä, T., Rainne, J., Laurila, T., and Lohila, A.: Methane exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small fluxes. Biogeosciences, 14, 1947–1967, <u>https://doi.org/10.5194/bg-14-1947-2017</u>, 2017.
- 305 Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., and Sallantaus, T.: Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat. Sci., 68, 453–468, <u>https://doi.org/10.1007/s00027-006-0833-6</u>, 2006.
 - Kortelainen, P., Saukkonen, S., and Mattsson, T.: Leaching of nitrogen from forested catchments in Finland. Global Biogeochem. Cy., 11, 627–638, <u>https://doi.org/10.1029/97GB01961</u>, 1997.
- 310 Koskinen, M., Minkkinen, K., Ojanen, P., Kamarainen, M., Laurila, T., and Lohila, A.: Measurements of CO₂ exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil. Biogeosciences, 11, 347–363, <u>https://doi.org/10.5194/bg-11-347-2014</u>, 2014.
 - Krüger, J. P., Alewell, C., Minkkinen, K., Szidat, S., and Leifeld, J.: Calculating carbon changes in peat soils drained for forestry with four different profile-based methods. Forest Ecol. Manag., 381, 29–36, <u>https://doi.org/10.1016/j.foreco.2016.09.006</u>, 2016.
 - Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and quantification of priming effects. Soil Biol. Biochem., 32, 1485–1498, <u>https://doi.org/10.1016/S0038-0717(00)00084-5</u>, 2000.
 - Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R., and Dalva, M.: The effect of atmospheric turbulence and chamber deployment period on autochamber CO₂ and CH₄ flux measurements in an ombrotrophic peatland. Biogeosciences, 9, 3305–3322, <u>https://doi.org/10.5194/bg-9-3305-2012</u>, 2012.
 - Laiho, R. and Pearson, M.: Surface peat and its dynamics following drainage do they facilitate estimation of carbon losses with the C/ash method? Mires Peat, 17, Article 08, 1–19, <u>https://doi.org/10.19189/MaP.2016.OMB.247</u>, 2016.
 - Laine, J., Minkkinen, K., Sinisalo, J., Savolainen, I., and Martikainen, P. J.: Greenhouse impact of a mire after
- drainage for forestry. In: Northern Forested Wetlands, Ecology and Management, (eds) C. C. Trettin, M. F.

Jurgensen, D. F. Grigal, M. R. Gale, and J. K. Jeglum, Boca Raton, FL, USA: CRC Lewis Publishers., pp. 437–447, https://doi.org/10.1201/9780203745380-31, 1996.

Launiainen, S., Rinne, J., Pumpanen, J., Kulmala, L., Kolari, P., Keronen, P., Siivola, E., Pohja, T., Hari, P., and Vesala, T.: Eddy covariance measurements of CO₂ and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ. Res., 10, 569–588, <u>www.borenv.net/BER/pdfs/ber10/ber10-569.pdf</u>, 2005.

330

- Laurila, T., Lohila, A., Aurela, M., Tuovinen, J.-P., Thum, T., Aro, L., Laine, J., Penttilä, T., Minkkinen, K., Riutta, T., Rinne, J., Pihlatie, M., and Vesala, T.: Ecosystem-level carbon sink measurements on forested peatlands. In: Greenhouse Impacts of the Use of Peat and Peatlands in Finland. S. Sarkkola (ed.), Ministry of Agriculture and Forestry 11a/2007, pp. 38–40, http://urn.fi/URN:978-952-453394-2, 2007.
- Linkosalmi, M., Pumpanen, J., Biasi, C., Heinonsalo, J., Laiho, R., Lindén, A., Palonen, V., Laurila, T., and Lohila,
 A.: Studying the impact of living roots on the decomposition of soil organic matter in two different forestrydrained peatlands. Plant Soil, 396(1-2), 59–72, <u>https://doi.org/10.1007/s11104-015-2584-4</u>, 2015.
- Lohila A., Laurila T., Aro L., Aurela, M., Tuovinen J.-P., Laine J., Kolari P., and Minkkinen K.: Carbon dioxide
 exchange above a 30-year-old Scots pine plantation established on organic-soil cropland. Boreal Environ. Res., 12, 141–157, <u>www.borenv.net/BER/pdfs/ber12/ber12-141.pdf</u>, 2007.
 - Lohila, A., Minkkinen, K., Aurela, M., Tuovinen, J.-P., Penttilä, T., and Laurila, T.: Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences, 8, 3203–3218, https://doi.org/10.5194/bg-8-3203-2011, 2011.
- 345 Lupikis, A. and Lazdins, A.: Soil carbon stock changes in transitional mire drained for Forestry in Latvia: a case study. Res. Rural Dev., 1, 55–61, <u>https://doi.org/10.22616/rrd.23.2017.008</u>, 2017.
- Mäkiranta, P., Hytönen, J., Aro, L., Maljanen, M., Pihlatie, M., Potila, H., Shurpali, N. J., Laine, J., Lohila, A., Martikainen, P. J., and Minkkinen, K.: Soil greenhouse gas emissions from afforested organic soil croplands and peat extraction peatlands. Boreal Environ. Res., 12, 159–175, <u>www.borenv.net/BER/pdfs/ber12/ber12-</u>
 <u>159.pdf</u>, 2007.
 - Maljanen, M., Alm, J., Martikainen, P. J., and Repo, T.: Prolongation of soil frost resulting from reduced snow cover increases nitrous oxide emissions from boreal forest soil. Boreal Environ. Res., 15, 34–42, <u>www.borenv.net/BER/pdfs/ber15/ber15-034.pdf</u>, 2010a.
- Maljanen, M., Hytönen, J., and Martikainen, P. J.: Cold-season nitrous oxide dynamics in a drained boreal
 peatland differ depending on land-use practice. Can. J. Forest Res., 40, 565–572, <u>https://doi.org/10.1139/X10-004</u>, 2010b.
 - Maljanen, M., Hytönen, J., and Martikainen, P. J.: Fluxes of N₂O, CH₄ and CO₂ on afforested boreal agricultural soils. Plant Soil, 231, 113–121, <u>https://doi.org/10.1023/A:1010372914805</u>, 2001.
- Maljanen, M., Liikanen, A., Silvola, J., and Martikainen, P. J.: Nitrous oxide emissions from boreal organic soil
 under different land-use. Soil Biol. Biochem., 35, 689–700, <u>https://doi.org/10.1016/S0038-0717(03)00085-3</u>, 2003b.
 - Maljanen, M., Liikanen, A., Silvola, J., and Martikainen, P. J.: Methane fluxes on agricultural and forested boreal organic soils. Soil Use Manage., 19, 73–79, <u>https://doi.org/10.1111/j.1475-2743.2003.tb00282.x</u>, 2003a.
- 365 Maljanen, M., Liimatainen, M., Hytönen, J., Martikainen, P. J.: The effect of granulated wood-ash fertilization on soil properties and greenhouse gas (GHG) emissions in boreal peatland forests. Boreal Environ. Res., 19, 295–309, <u>www.borenv.net/BER/pdfs/ber19/ber19-295.pdf</u>, 2014.

Maljanen, M., Nykänen, H., Moilanen, M., and Martikainen, P. J.: Greenhouse gas fluxes of coniferous forest floors affected by wood ash fertilization. For. Ecol. Man., 237, 143–149,

370 <u>https://doi.org/10.1111/10.1016/j.foreco.2006.09.039</u>, 2006.

- Maljanen, M., Shurpali, N., Hytönen, J., Mäkiranta, P., Aro, L., Potila, H., Laine, J., Li, C., and Martikainen, P.
 J.: Afforestation does not necessarily reduce nitrous oxide emissions from managed boreal peat soils.
 Biogeochemistry, 108, 199–218, <u>https://doi.org/10.1007/s10533-011-9591-1</u>, 2012.
- Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T., and Martikainen, P. J.:
- Greenhouse gas balances of managed peatlands in the Nordic countries present knowledge and gaps.
 Biogeosciences, 7, 2711–2738, <u>https://doi.org/10.5194/bg-7-2711-2010</u>, 2010c.
 - Mander, Û., Lõhmus, K., Teiter, S., Uri, V., and Augustin, J.: Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Environ. Res., 13, 231–241, <u>www.borenv.net/BER/pdfs/ber13/ber13-231.pdf</u>, 2008.
- Martikainen, P. J., Nykänen, H., Alm, J., and Silvola, J.: Change in fluxes of carbon dioxide, methane and
 nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil, 168, 571–577, https://doi.org/10.1007/BF00029370, 1995a.
 - Martikainen, P. J., Nykänen, H., Crill, P., and Silvola, J.: Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366, 51–53, <u>https://doi.org/10.1038/366051a0</u>, 1993.
 - Martikainen, P. J., Nykänen, H., Crill, P., and Silvola, J.: The effect of changing water table on methane fluxes at two Finnish mire sites. Suo, 43, 237–240, <u>http://www.suo.fi/article/9712</u>, 1992.
 - Martikainen, P. J., Nykänen, H., Regina, K., Lehtonen, M., and Silvola, J.: Methane fluxes in a drained and forested peatland treated with different nitrogen compounds, in: Northern Peatlands in Global Climatic Change. Laiho, R., Laine, J. and Vasander, H. (eds). Proceedings of the International Workshop Held in Hyytiälä, Finland. Helsinki, pp. 105–109, 1995b.
- 390 Mattsson, T., Finér, L., Kortelainen, P., and Sallantaus, T.: Brookwater quality and background leaching from unmanaged forested catchments in Finland. Water Air Soil Poll., 147, 275–297, <u>https://doi.org/10.1023/A:1024525328220</u>, 2003.
 - McNamara, N. P., Black, H. I. J., Piearce, T. G., Reay, D. S., and Ineson, P.: The influence of afforestation and tree species on soil methane fluxes from shallow organic soils at the UK Gisburn Forest Experiment. Soil
- 395 Use Manage., 24, 1–7, <u>https://doi.org/10.1111/j.1475-2743.2008.00147.x</u>, 2008.
 - Meyer, A., Tarvainen, L., Nousratpour, A., Björk, R. G., Ernfors, M., Grelle, A., Kasimir Klemedtsson, Å., Lindroth, A., Räntfors, M., Rütting, T., Wallin, G., Weslien, P., and Klemedtsson, L.: A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences, 10, 7739–7758, <u>https://doi.org/10.5194/bg-10-7739-2013</u>, 2013.
- 400 Minkkinen, K. and Laine, J.: Effect of forest drainage on the peat bulk density of pine mires in Finland. Can. J. For. Res., 28, 178–186, <u>https://doi.org/10.1139/x97-206</u>, 1998a.
 - Minkkinen, K. and Laine, J.: Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can. J. For. Res., 28, 1267–1275, <u>https://doi.org/10.1139/x98-104</u>, 1998b.
 - Minkkinen, K. and Laine, J.: Vegetation heterogeneity and ditches create spatial variability in methane fluxes
- 405 from peatlands drained for forestry. Plant Soil, 285, 289–304, <u>https://doi.org/10.1007/s11104-006-9016-4</u>, 2006.
 - Minkkinen, K., Laine, J., Shurpali, N. J., Mäkiranta, P., Alm, J., and Penttilä, T.: Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ. Res., 12, 115–126, <u>www.borenv.net/BER/pdfs/ber12/ber12-115.pdf</u>, 2007b.

- Minkkinen, K., Penttilä, T., and Laine, J.: Tree stand volume as a scalar for methane fluxes in forestry-drained peatlands in Finland. Boreal Environ. Res., 12, 127–132, <u>www.borenv.net/BER/pdfs/ber12/ber12-127.pdf</u>, 2007a.
 - Minkkinen, K., Vasander, H., Jauhiainen, S., Karsisto, M., and Laine, J.: Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil, 207, 107–120, https://doi.org/10.1023/A:1004466330076, 1999.
 - Moilanen, M., Hytönen, J., and Leppälä, M.: Application of wood ash accelerates soil respiration and tree growth on drained peatland. Eur. J. Soil Sci., 63, 467–475, <u>https://doi.org/10.1111/j.1365-2389.2012.01467.x</u>, 2012.
 - Moore, T.R. and Knowles, R.: Methane emissions from fen, bog and swamp peatlands in Quebec.
- 420 Biogeochemistry, 11, 45–61, <u>https://doi.org/10.1007/BF00000851</u>, 1990.

435

- Munger, J. W., Loescher, H. W., and Luo, H.: Measurement, Tower, and Site Design Considerations. In: Eddy Covariance - A Practical Guide to Measurement and Data Analysis. Aubinet, M., Vesala, T., and Papale, D. (eds). Springer, Dordrecht. pp. 21–58, <u>https://doi.org/10.1007/978-94-007-2351-1</u>, 2012.
 - Mustamo, P., Maljanen, M., Hyvärinen, M., Ronkainen, A.-K., and Kløve, B.: Respiration and emissions of
- 425methane and nitrous oxide from a boreal peatland complex comprising different land-use types. Boreal
Environ. Res., 12, 405–426, www.borenv.net/BER/pdfs/ber21/ber21-405.pdf, 2016.
 - Nieminen, M., Koskinen, M., Sarkkola, S., Laurén, A., Kaila, A., Kiikkilä, O., Nieminen, T.M., and Ukonmaanaho, L.: Dissolved organic carbon export from harvested peatland forests with differing site characteristics. Water Air Soil Poll., 225, 181, <u>https://doi.org/10.1007/s11270-015-2444-0</u>, 2015.
- 430 Nykänen, H., Alm, J., Silvola, J., Tolonen, K., and Martikainen, P. J.: Methane fluxes on boreal peatlands of different fertility and the effect of long term experimental lowering of the water table on flux rates. Global Biogeochem. Cy., 12, 53–69, <u>https://doi.org/10.1029/97GB02732</u>, 1998.
 - Ojanen, P., Lehtonen, A., Heikkinen, J., Penttilä, T., and Minkkinen, K.: Soil CO₂ balance and its uncertainty in forestry-drained peatlands in Finland. Forest Ecol. Manag., 325, 60–73, <u>https://doi.org/10.1016/j.foreco.2014.03.049</u>, 2014.
 - Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Corrigendum to "Soil–atmosphere CO₂, CH₄ and N₂O fluxes in boreal forestry-drained peatlands" [For. Ecol. Manage., 260, 411–421, 2010], <u>https://doi.org/10.1016/j.foreco.2018.01.020</u>, 2018.
- Ojanen, P., Minkkinen, K., Alm, J., and Penttilä, T.: Soil atmosphere CO₂, CH₄ and N₂O fluxes in boreal forestry drained peatlands. Forest Ecol. Manag., 260, 411–421, <u>https://doi.org/10.1016/j.foreco.2010.04.036</u>, 2010.
 - Ojanen, P., Minkkinen, K., and Penttilä, T.: The current greenhouse gas impact of forestry-drained boreal peatlands. Forest Ecol. Manag., 289, 201–208, <u>https://doi.org/10.1016/j.foreco.2012.10.008</u>, 2013.
 - Ojanen, P., Minkkinen, K., Lohila, A., Badorek, T., and Penttilä, T.: Chamber measured soil respiration: A useful tool for estimating the carbon balance of peatland forest soils? Forest Ecol. Manag., 277, 132–140. https://doi.org/10.1016/j.foreco.2012.04.027, 2012.
 - Oleszczuk, R., Regina, K., Szajdak, L., Höper, H., and Maryganova, V.: Impacts of agricultural utilization of peat soils on the greenhouse gas balance. In: Strack, M. (ed.), Peatlands and Climate Change. Saarijärven Offset Oy, Finland. pp. 70–97, <u>http://www.peatsociety.org/peatlands-and-peat/peatlands-and-climate-change</u>, 2008.
- 450 Pihlatie, M., Rinne, J., Lohila, A., Laurila, T., Aro, L., and Vesala, T.: Nitrous oxide emissions from an afforested peat field using eddy covariance and enclosure techniques. In: J. Päivänen et al. (eds.),

Proceedings of 12th International Peat Congress, Tampere, Finland 6–11 Jun 2004, Vol 2, pp. 1010–1014, 2004.

Pitkänen, A., Turunen, J., Tahvanainen, T., and Simola, H.: Carbon storage change in a partially forestry-drained boreal mire determined through peat column inventories. Boreal Environ. Res., 18, 223–234, www.borenv.net/BER/pdfs/ber18/ber18-223.pdf, 2013.

455

470

- Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero,
 M., Pihlatie, M., Janssens, I., Yuste, J. C., Grünzweig, J. M., Reth, S., Subke, J. A., Savage, K., Kutsch, W.,
 Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., and Hari, P.: Comparison of different chamber techniques
- 460 for measuring soil CO₂ efflux. Agr. Forest Meteorol., 123, 159–176, https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
 - Rantakari, M., Mattsson, T., Kortelainen, P., Piirainen, S., Finér, L., and Ahtiainen, M.: Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Sci. Total Environ., 408, 1649–1658, <u>https://doi.org/10.1016/j.scitotenv.2009.12.025</u>, 2010.
- 465 Regina, K., Nykänen, H., Maljanen, M., Silvola, J., and Martikainen, P. J.: Emissions of N₂O and NO and net nitrogen mineralization in a boreal forested peatland treated with different nitrogen compounds. Can. J. For. Res., 28, 132–140, <u>https://doi.org/10.1139/x97-198</u>, 1998.
 - Regina, K., Nykänen, H., Silvola, J., and Martikainen, P. J.: Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35, 401–418, <u>https://doi.org/10.1007/BF02183033</u>, 1996.
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., and Granier, A.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol., 11, 1424–1439, <u>https://doi.org/10.1111/j.1365-2486.2005.001002.x</u>, 2005.
- 475 Saari, P., Saarnio, S., Kukkonen, J. V. K., Akkanen, J., Heinonen, J., Saari, V., and Alm, J.: DOC and N₂O dynamics in upland and peatland forest soils after clear-cutting and soil preparation. Biogeochemistry, 94, 217–231, <u>https://doi.org/10.1007/s10533-009-9320-1</u>, 2009.

Sallantaus, T.: Leaching in the material balance of peatlands – preliminary results. Suo, 43, 253–258, http://www.suo.fi/article/9716, 1993.

Salm, J.-O., Maddison, M., Tammik, S., Soosaar, K., Truu, J., and Mander, Ü.: Emissions of CO₂, CH₄ and N₂O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia, 692: 41–55, https://doi.org/10.1007/s10750-011-0934-7, 2012.

Sarkkola, S., Koivusalo, H., Laurén, A. Kortelainen, P., Mattsson, T., Palviainen, M., Piirainen, S., Starr, M., and Finér, L.: Trends in hydrometeorological conditions and stream water organic carbon in boreal forested

- catchments. Sci. Total Environ., 408, 92–101, <u>https://doi.org/10.1016/j.scitotenv.2009.09.008</u>, 2009.
 Sikström, U., Björk, R. G., Ring, E., Ernfors, M., Jacobson, S., Nilsson, M., and Klemedtsson, L.: Tillförsel av aska i skog på dikad torvmark i södra Sverige. Effekter på skogsproduktion, flöden av växthusgaser, torvegenskaper, markvegetation och grundvattenkemi. VÄRMEFORSK Service AB, Stockholm, 75 pp., 2009.
- 490 Silvola, J., Alm, J., Ahlholm, U., Nykänen, H., and Martikainen, P. J.: CO₂ fluxes from peat in boreal mires under varying temperature and moisture conditions. J. Ecol., 84, 219–228, 1996.

- Simola, H., Pitkänen, A., and Turunen, J.: Carbon loss in drained forestry peatlands in Finland, estimated by resampling peatlands surveyed in the 1980s. Eur. J. Soil Sci., 63, 798–807, <u>https://doi.org/10.1111/j.1365-2389.2012.01499.x</u>, 2012.
- Subke, J.-A., Inglima, I., and Cotrufo, M. F.: Trends and methodological impacts in soil CO₂ efflux partitioning: A meta-analytical review. Global Change Biol., 12, 921–943, <u>https://doi.org/10.1111/j.1365-2486.2006.01117.x</u>, 2006.
 - Uri, V., Kukumägi, M., Aosaar, J., Varik, M., Becker, H., Morozov, G., and Karoles, K.: Ecosystems carbon budgets of differently aged downy birch stands growing on well-drained peatlands. Forest Ecol. Manag., 399, 82–93, https://doi.org/10.1016/j.foreco.2017.05.023, 2017.
 - Väisänen, S. E., Silvan, N. R., Ihalainen, A. V. J., and Soukka, R. M.: Peat production in high-emission level peatlands – key to reduce climatic impacts? Energ. Environ., 24, 757–778, <u>https://doi.org/10.1260/0958-305X.24.5.757</u>, 2013.

- von Arnold, K., Hånell, B., Stendahl, J., and Klemedtsson, L.: Greenhouse gas fluxes from drained organic
- forestland in Sweden. Scand. J. For. Res., 20, 400–411, <u>https://doi.org/10.1080/02827580500281975</u>, 2005c.
 von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson, L.: Fluxes of CO₂, CH₄ and N₂O from drained organic soils in deciduous forests. Soil Biol. Biochem., 37, 1059–1071, <u>https://doi.org/10.1016/j.soilbio.2004.11.004</u>, 2005a.
- von Arnold, K., Weslien, P., Nilsson, M., Svensson, B. H., and Klemedtsson, L.: Fluxes of CO₂, CH₄ and N₂O
 from drained coniferous forests on organic soils. Forest Ecol. Manage., 210, 239–254, https://doi.org/10.1016/j.foreco.2005.02.031, 2005b.
 - Weslien, P., Kasimir Klemedtsson, Å., Börjesson, G., and Klemedtsson, L.: Strong pH influence on N₂O and CH₄ fluxes from forested organic soils. Eur. J. Soil Sci., 60, 311–320, <u>https://doi.org/10.1111/j.1365-2389.2009.01123.x</u>, 2009.
- 515 Yamulki, S., Anderson, R., Peace, A., and Morison, J. I. L.: Soil CO₂, CH₄ and N₂O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration. Biogeosciences, 10, 1051– 1065, <u>https://doi.org/10.5194/bg-10-1051-2013</u>, 2013.