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Abstract. Predicting the response of forests to climate and land-use change depends on models that can simulate the time-

varying distribution of different tree-sizes within a forest - so-called forest demography models. A necessary condition for

such models to be trustworthy is that they are able to reproduce the tree-size distributions that are observed within existing

forests worldwide. In a previous study, we showed that Demographic Equilibrium Theory (DET) is able to fit tree-diameter

distributions for forests across North America, using a single site-specific fitting parameter (µ) which represents the ratio of5

the rate of mortality to growth for a tree of a reference size. We use a form of DET that assumes tree-size profiles are in a

steady-state resulting from the balance between a size-independent rate of tree-mortality and tree growth-rates that vary as a

power law of tree size (as measured by either trunk diameter or biomass). In this study, we test DET against ForestPlots data

for 124 sites across Amazonia, fitting, using Maximum Likelihood Estimation, to both directly measured trunk diameter data

and also biomass estimates derived from published allometric relationships. Again, we find that DET fits the observed tree-10

size distributions well, with best-fit values of the exponent relating growth-rate to tree mass giving a mean of φ= 0.71 (0.31

for trunk diameter). This is broadly consistent exponents of φ= 0.75 (φ= 1/3 for trunk diameter) predicted by Metabolic

Scaling Theory (MST) allometry. The fitted φ and µ parameters also show a clear relationship that is suggestive of life-history

trade-offs. When we fix to the MST value of φ= 0.75, we find that best-fit values of µ cluster around 0.25 for trunk diameter,

which is similar to the best fit value we found for North America of 0.22. This suggests an as yet unexplained preferred ratio15

of mortality-to-growth across forests of very different types and locations.

Copyright statement. TEXT

1 Introduction

The modelling of the abundances of various tree sizes in tropical forests is important in efforts to improve understanding of

land-climate feedbacks and hence anthropogenic climate change. Earth System models (ESMs) are used to model climate, but20

currently have a large range of uncertainty in the prediction of the land carbon sink, with as much as 500 GtC uncertainty by

2100 for 1% increase in CO2 emissions per year (Friedlingstein et al., 2014). This uncertainty feeds-through into estimates of
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how much emissions need to be reduced to keep global warming within a certain level. These issues have led to the development

of more advanced Dynamic Global Vegetation Models (DGVMs), used within ESMs, to more effectively represent vegetation

processes (Sitch et al., 2015; Fisher et al., 2018). One of the key advances has been the inclusion of tree size-distributions,

which allows better representation of land-use change and recovery from disturbance.

These recent DGVMs broadly consist of two different approaches to representing tree size, either based on individual-based5

models (Shugart et al., 2018) or using cohort-based ecosystem demography models (Moorcroft et al., 2001; Longo et al., 2019).

DGVMs also need to balance additional complexity against practical considerations of usability, and computer execution time

and memory usage. Key issues in the usability of complex numerical models are the understanding of the effect of many

model parameters and the dependence on initial conditions (Moore et al., 2018). To solve these issues we have been exploring

simplifications to the modelling of forest demography that are both parameter sparse and have steady-state solutions that can10

be solved for analytically (Moore et al., 2018; Argles et al., 2019).

We follow Demographic Equilibrium Theory (DET) (Muller-Landau et al., 2006b) in assuming that forests are in a steady-

state with size distributions completely determined by size-dependent functions of tree growth and mortality. Previously we

showed that DET was able to fit the large-scale size-distributions of forests in North America (Moore et al., 2018), even though

many of these forests are net carbon sinks (and therefore not in a precise steady-state). The current study uses the simplest15

reasonable form of DET that assumes growth is a power law of size and mortality is constant. This has been shown to be a

useful model of underlying demographic processes, with the model parameters correlating with observations (Muller-Landau

et al., 2006b; Lima et al., 2016), even though individual forest plots may deviate from the simplifying assumptions. While the

growth and mortality functions of a forest are often unknown, DET can provide useful indications of the patterns of the ratio

of mortality-to-growth based on observed tree-size distributions alone (Moore et al., 2018).20

Amazonia is one of the largest pools of land carbon on the planet (Feldpausch et al., 2012) and may be vulnerable to climate

change (Cox et al., 2000; Brienen et al., 2015). It is therefore vital that DGVMs are able to model this region well. We therefore

extend the analysis of Moore et al. (2018) by fitting DET model to tree trunk-diameter data for this key region, and also to tree

mass data derived from allometry, which is even more relevant for ESMs. As a baseline comparison we also fit the Metabolic

Scaling Theory of forest demography (MSTF), which assumes that trees of varying sizes fill space in such a way that the25

size-distribution scales with trunk diameter D as D−2 (West et al., 2009).

In Section 2 below we summarise the theoretical basis for DET and also MSTF, deriving analytical formulae for total forest

biomass in each case. Section 3 describes the Methods and data, and Section 4 describes the results. Finally discussion and

conclusions are in Sections 5 and 6.

2 Theory30

2.1 Demographic Equilibrium Theory (DET)

The distribution of tree sizes in a forest can be understood in terms of how the growth and mortality of the trees vary with

tree size (Kohyama et al., 2003; Coomes et al., 2003; Muller-Landau et al., 2006b). The amount of trees in a given size class
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(i.e. range of tree size) depends on the number of smaller trees growing into it and the number leaving it due to growing out

or dying. The balance of growth and mortality will determine whether the abundance of a size class is increasing, decreasing

or if it is in demographic equilibrium (Van Sickle, 1977). At the scale of a whole forest, there is a further balance between

the rate of seedling recruitment from seeds (lower boundary condition) and the whole forest mortality. Again this balance will

determine if the forest as a whole is gaining or losing both mass and/or abundance.5

The governing equation for this process is variously known as the one-dimensional drift or continuity equation (Van Sickle,

1977), the Kolmogorov forward or the Fokker-Planck equation with the second-order term omitted (Kohyama, 1991)

∂n(D,t)

∂t
+

∂

∂D
(n(D,t)g(D,t)) =−γ(D,t)n(D,t) (1)

where n is the size-distribution (tree density per size class) in Trees cm−1 ha−1 in terms of tree trunk diameter D in cm, trunk

diameter growth rate g in cm year−1, γ is the mortality rate per year and time t in years.10

It was shown (Kohyama et al., 2003) that for an unchanging, equilibrium size-distribution, this equation can be integrated as

follows

n∫
nL

dn

n
=

D∫
DL

1

g(D)

[
dg(D)

dD
+ γ(D)

]
dD (2)

where nL is the value of n at the lower boundary DL, which for forest inventory data is the minimum sampling size (in this

study 10 cm).15

This equation can be solved to give an exact solution, if simplifying assumptions of size-independent mortality γ(D) = γ

and power law growth rate g(D) are used. The growth rate g(D) in cm per year is then

g(D) = g1D
φ (3)

where g1 is a constant with the same value as the growth rate for a tree with trunk diameter of 1 cm. The solution (Muller-

Landau et al., 2006b; Lima et al., 2016; Moore et al., 2018) for the size distribution is then the Left-Truncated Weibull Distri-20

bution (LTWD)

n(D) = nL

(
D

DL

)−φ
exp

[
µ1

1−φ

(
D1−φ
L −D1−φ

)]
, φ 6= 1 (4)

where µ1 = γ/g1 is the mortality to growth ratio at D=1 cm (Note: the units of µ1 are cmφ−1 but as it is defined for the point

D =D1 = 1 cm can be assumed to be dimensionless if the size variable D is implicitly a ratio D/D1, which has the same

exact numerical value as D but is dimensionless).25
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This solution is also applicable for other size variables such as tree dry mass m in kg

n(m) = nL

(
m

mL

)−φm

exp

[
µm1

1−φ

(
m1−φm

L −m1−φm

)]
, φm 6= 1 (5)

where mL, µm1 and φm are the mass equivalents of DL, µ1 and φ.

The LTWD distribution has been shown to be a good description of tree trunk diameter distributions in a variety of tropical

forests (Muller-Landau et al., 2006b; Lima et al., 2016) and in temperate forests in the US over larger scales (Moore et al.,5

2018). When these distributions are fitted to data then they can have both parameters φ and µ1 as fitting parameters or just fit

µ1 and fix φ to the values used in MST allometry (Niklas and Spatz, 2004; West et al., 2009) of φ= 1/3 and φm = 3/4.

2.2 Total Biomass Density for DET

The total biomass density (kg of dry tree mass per hectare) of the LTWD tree mass distribution can be obtained by integrating

Eq. (5) in terms of mass, between the lower boundary mL and infinity10

ML→∞ =

∞∫
mL

mn(m)dm= nLm
φm

L

exp(xµm1m
1/x
L )

µm1(xµm1)x
Γ(x+ 1,xµm1m

1/x
L ) (6)

where Γ is the upper incomplete Gamma Function, x= 1/(1−φm).

As real forests do not satisfy the assumption of infinite maximum size tree, this can lead to errors in the calculated biomass

density. A correction to this can be found, in terms of mmax the largest tree mass in the distribution

ML→max =

mmax∫
mL

mn(m)dm=

∞∫
mL

mn(m)dm−
∞∫

mmax

mn(m)dm (7)15

In cases where mmax is both large and much larger than mL then there will be little difference between Eq. (6) and Eq. (7).

mmax is a somewhat arbitrary function of the sample size, due to large trees being statistically rare, meaning the infinite upper

bound solution Eq. (6) is expected to be more accurate for larger sample sizes.

2.3 Metabolic Scaling Theory (MST)

Metabolic scaling theory is a theory of scaling of organisms with size, based on theories of metabolism, physics and chemistry20

(West, 1997; Muller-Landau et al., 2006a). This theory uses the predictions of the scaling of individuals to predict the larger

scale patterns and structure of populations and communities. For forests this is in the form of using the scaling of photosynthesis

of trees and the vascular structures that transport water to predict individual scaling. This is then combined with assumptions
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from self-thinning about how trees fill space to describe the expected forest size-distribution (Coomes et al., 2003; West et al.,

2009). This leads to a power law distribution for trunk diameter

n(D) = nL

(
D

DL

)−2
(8)

and for mass the distribution is almost identical

n(m) = nL

(
m

mL

)−11/8
(9)5

2.4 Total Biomass Density for MST

The MST equations also enable the calculation of biomass density (kg of dry tree mass per hectare). In this case only the

finite upper bound of mmax can be used as the solution goes to infinity as the upper bound goes to infinity.

ML→max =

mmax∫
mL

mn(m)dm=
8nLm

11/8
L

5

[
m5/8

max−m
5/8
L

]
(10)

3 Methods10

3.1 Forest inventory data

The tree census data used in this study is from the public access permanent sample plots of the RAINFOR (Peacock et al.,

2007) network. RAINFOR provides a systematic framework for long-term monitoring of the Amazon. The RAINFOR data

is stored on the ForestPlots database (https://www.forestplots.net). This database stores measurements (stem diameter, species

ID, recruitment, growth, and mortality) of individual trees from hundreds of locations, taken using standardised techniques to15

allow the behaviour of tropical forests to be measured, monitored and better understood (Lopez-Gonzalez et al., 2011).

We selected 124 open access forest plots (Fig. 1) classified as mixed forest (not monoculture) and old-growth to most closely

match the model assumptions of forests undisturbed by human interference and approximating to equilibrium demography.

The 124 selected plots all had a consistent lower cut-off in measurements at 10 cm trunk diameter. Two available upper

montane plots with very few measurements above 10 cm were not included in the 124 plots used, as they did not have enough20

measurements to allow a reliable fit.

3.2 Calculating Dry Tree Mass from Trunk Diameter

The open access plots of the Amazon RAINFOR dataset consists only of trunk diameter values. To estimate the tree mass, the

methodology developed by Feldpausch et al. (2012) was used. In that study two functional forms (with and without height)
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Figure 1. Amazonian Allometric Regions. Each region, shown by the coloured areas, is defined by geography, rainfall and soil substrate.

White circles show location of the forest plots used. The two western regions share common allometry but are split based on rainfall

seasonality for analysis purposes.
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were tested against destructively sampled mass data (trees carefully measured then cut down and weighed) to find ones which

best estimated mass from trunk diameter. It was found that mass estimation accuracy doubled when including height, even if

the height had in turn been estimated from trunk diameter. Out of three choices of height functional form (power law, Weibull-H

and exponential), Feldpausch et al. (2012) found the Weibull-H form Eq. (11) to be the best at estimating mass across multiple

size classes. The height H in metres is then5

H = ah(1− exp(−bhDch)) (11)

with the coefficients varying geographically between defined allometric regions (see Table S1 in Supplementary Material and

Figure 1).

The regions were defined by geography and substrate origin (Feldpausch et al., 2012). Western Amazonia (Columbia,

Ecuador and Peru) being recently weathered Andean deposits, the geologically old Brazilian Shield to the south (Bolivia10

and Brazil), Guyana Shield on the northern side of the Amazonia Basin (Guyana, French Guyana and Venezuela) and Eastern

Central Amazonia (Brazil) consisting of sedimentary substrates originating from the other regions. The western region from

Feldpausch et al. (2012) was split along latitude of -8 degrees based on rainfall seasonality (Fauset et al., 2015). These two

western regions still retain a common height allometry but are split for analysis.

The mass function (kg of tree dry mass), when height was included as one of the parameters used was15

M = ea(ρwD
2H)b (12)

where the parameters are universal across all regions with values a=−2.9205 and b= 0.9894. The function was from Feld-

pausch et al. (2011) and the parameters were estimated in Feldpausch et al. (2012).

The wood specific gravity ρw was obtained from the Dryad Global Wood Density Database https://doi.org/10.5061/dryad.234/1

(Chave et al., 2009; Zanne et al., 2009). For each tree measurement the ρw value used was for that species from the closest20

available region. Where the species data was unavailable or the species of the measurement had not been recorded then the ρw

value of the Genus was used, based on an average of all trees in the Dryad database in that Genus. Trees without Genus data

were estimated from Family data, and any remaining measurements where the ρw was still unknown were set to the average

ρw of the trees in that same forest plot with known ρw values.

3.3 Fitting methodology25

As in our previous study (Moore et al., 2018), Maximum Likelihood Estimation (MLE) was used to find the parameters that

give the best fit for both the Left-Truncated Weibull, derived from DET (DET-LTWD) and Metabolic Scaling Theory (MST)

distributions. MLE is an effective method for parameter fitting of forest size distributions (Taubert et al., 2013; White et al.,

2008).
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Maximising the log-likelihood L results in a more numerically tractable summation of terms rather than a product of terms

obtained from using the Likelihood directly. L in terms of the probability distribution function (pdf) f(D) is then

L=
∑
i

ln(f(Di)) (13)

where Di is tree trunk diameter measurement of stem i in the dataset.

The data was fitted both by plot, by allometric region (an aggregated dataset of all plots in that region), by country (again5

aggregation of plots) and for all the data, from all 124 plots, grouped together as one large dataset. This allows both the study

of the individual plots and the larger scale patterns across South America.

3.4 Maximum Likelihood Estimation (MLE) for Demographic Equilibrium Theory (DET)

The probability density function (pdf) f(D) for the DET-LTWD, in terms of tree trunk diameter D and minimum tree size DL

is related to the number density distribution n(D) (Eq. 4)10

f(D) =
A

N
n(D) = µ1D

−φ exp

[
µ1

1−φ

(
D1−φ
L −D1−φ

)]
, for φ 6= 1 (14)

where N is the total number of trees in the dataset being fitted, φ is the growth scaling power from Eq. (3) and A the area of

the plots containing the trees sampled in the dataset. This equation is equivalent to the standard form of the LTWD

f(D) =
c

λ

(
D

λ

)c−1
exp

[(
DL

λ

)c
−
{
D

λ

}c]
(15)

where c= 1−φ is the shape parameter and λ=

[
c

µ1

]1/c
the scale parameter.15

We fit DET-LTWD twice, once with both parameters φ and µ1 allowed to vary as fitting parameters and secondly with the

growth scaling parameter φ fixed to the MST allometry values (φ= 1/3 and φm = 3/4, see Niklas and Spatz (2004) and West

et al. (2009)). Fixing φ means we have a DET-LTWD model following just one of the two assumptions of MST (the allometry)

and so acts as way of comparing the effect of the second MST assumption of space-filling when comparing DET-LTWD and

MST fits.20

3.4.1 One Parameter Fit

For this situation, where we are only aiming to find the parameter µ1 and φ is assumed, then MLE can be solved analytically

(Kizilersu et al., 2016)

µ1 =
c(

Dc−Dc
L

) (16)

where c= 1−φ. The equations are the same for tree mass, just with the symbols appropriately substituted (m for D etc).25
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3.4.2 Two Parameter Fit

For the two parameter case, where both φ and µ1 are fitted, then we calculate the Log-Likelihood L as follows

L=N

(
lnµ1 +µ1

Dc
L

c

)
− µ1

c

∑
i

Dc
i + (c− 1)

∑
i

lnDi (17)

Substituting Eq. (16) into Eq. (17) creates a function only of one fitting parameter φ. This allows minimisation of−L in terms

of φ by using Brent’s bounded algorithm (Brent, 1973). Once the optimum φ has been found then µ1 can be calculated from5

equation 16. As equation 16 is included in the minimisation of −L, then it means we are in fact solving for both parameters

at once and are finding the maxima of L. This algorithm was tested both with real data and data generated by computer

from known LTWD distributions, by plotting the L values against φ and µ1, to confirm the maxima was found correctly (see

Supplementary material Figures S31 and S32).

Once the parameters µ1 and φ are estimated, then this allows nL, the tree density per size class at DL, to be obtained from10

these parameters and the known quantities of the total number of treesN and the plot areaA. This can be derived by integrating

the equation for n (Eq. 4), to give

N

A
=

Dmax∫
DL

n(D)dD =
nL D

φ
L

µ1

[
1− exp

[µ1

c
(Dc

L−Dc
max)

]]
(18)

and noting that the observed number of trees is identical to the integral, we get

nL =

(
N

A

)
µ1

Dφ
L

1

1− exp
[
µ1

c (Dc
L−Dc

max)
] (19)15

where c= 1−φ and Dmax is the largest tree size in the dataset. For this study it was found that as Dmax >>DL for most cases

(and that c is never much larger than µ1), nL can be assumed to be

nL ≈
(
N

A

)
µ1

Dφ
L

(20)

Again, the equations are the same for tree mass, just with the symbols appropriately substituted (m for D etc).

3.5 Maximum Likelihood Estimation (MLE) for Metabolic Scaling Theory20

From the equation for number density n (Eq. 8) the pdf for MST is

f(D) = n(D)

(
A

N

)
=

DL[
1−

(
DL

Dmax

)]D−2 (21)
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where Dmax is the largest tree size in the dataset. As all the quantities are known then there are no free parameters to fit and all

that needs to be done is calculate nL, the tree density per size class at DL

nL =
(N/A)

DL

[
1−

(
DL

Dmax

)] (22)

Similarly the MST pdf for mass from Eq. (9) is

f(m) = n(m)

(
A

N

)
=

3m
3/8
L

8

[
1−

(
mL

mmax

)3/8]m−11/8 (23)5

and for nL

nL =
3(N/A)

8mL

[
1−

(
mL

mmax

)3/8] (24)

3.6 Estimating Plot and Regional Biomass Density

To test the biomass density equations, we used the results of the MLE fits to calculate the biomass density predicted by Eq.

(7) and Eq. (10). The biomass density predicted by these equations are then compared to the allometric biomass density (i.e.10

the sum of the mass of all trees in a dataset divided by the area of the plots). This comparison then provides a goodness of fit

measure that is relevant to climate.

We chose to measure the biomass density as a function of size in terms of the total mass per unit area from trees with masses

equal or greater than a given size. The main reason for this is that the forest plot data only sampled trees with a trunk diameter

equal to or greater than 10 cm. Therefore it makes little sense to measure the biomass density below a given size, as would be15

the case with a traditional cumulative distribution function. This approach has a second benefit that the mass of a forest above

a given size is a much more useful way of easily seeing the contribution of the dominant larger trees to total biomass (Bastin

et al., 2018).

A correction term is added to Eq. (7) and Eq. (10) to make sure the biomass density correctly evaluates at the upper boundary

(the mass of the largest tree mmax). This is because these equations only evaluate the mass up to but not including the trees20

with a mass equal to the largest value in the dataset. Therefore, to comply with the definition above it is necessary to add the

mass of the largest trees back into the total biomass.

As the large trees are so rare this correction will be equivalent to adding just one tree of the largest mass mmax in the dataset

divided by A, the total area of plots in the dataset.

ML→max = nrm
φm
r

exp(xµm1m
1/x
r )

µm1(xµm1)x

[
Γ(x+ 1,xµm1m

1/x
L )−Γ(x+ 1,xµm1m

1/x
max)

]
+
mmax

A
(25)25
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This Eq. (25) is used for all biomass density estimates where the upper bound of tree size is assumed finite (based on mmax),

while for the cases where the simplifying assumption of infinite tree size is used then Eq. (7) is used.

4 Results

4.1 Mass Distribution

When the mass data was estimated from the trunk diameter measurements using the methodology of Feldpausch et al. (2012),5

it was noticed that the mass size-distribution (for all regions and plots) had a peak, which was not present in the trunk diameter

distribution. We found this to be an artefact of the conversion from trunk diameter to mass in a distribution that was by definition

truncated already in trunk diameter.

Fig. 2a shows the relationship between trunk diameter and tree mass for the whole dataset, illustrating that for any particular

trunk diameter there is a range of tree masses. This variation in tree mass is caused by the differences in wood density between10

species and the variation in height allometry between regions (see Eq. eqn:Height and supplementary Table S1). If instead the

dataset shown in Fig. 2a is truncated in mass rather than trunk diameter, then the truncation would instead follow the horizontal

dotted line and there would be data in the region between that line and the diagonal dotted line. So in effect there is “missing"

data for low mass trees, which is a result of the trunk diameter observations having a minimum sampling size (truncation point)

and there being a range of tree masses for trees with a given trunk diameter. This hypothesis is further confirmed by increasing15

the trunk diameter truncation point, as shown in Fig. 2b. As the truncation point is increased the “peak" moves to higher mass.

4.1.1 Eliminating the Mass Peak

When working with mass data the peak was eliminated from fitting by creating 40 bin edges (39 bins) in log-space (base e)

from the smallest to largest tree in the dataset. These edges define the range of each bin and the value of each bin was selected

as the midpoint in log-space. The data was then binned following these bins. Once the data was binned, the bin with the highest20

frequency was identified. The value of this bin was then used as the truncation point for the dataset when fitting to the dataset

distribution. The binning was purely used to identify the peak and for plotting the data and not used during the MLE fitting

process.
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Figure 2. The effect of truncating data measured in trunk diameter and then converting to mass using allometry. In a), the mass for each tree

is shown in terms of its trunk diameter. If the data had been truncated in mass there would be data in the triangle marked by the intersection

of the dotted lines. This truncation effectively leads to missing data in the mass distribution, as seen in b). The mass distribution should

constantly decrease with increasing mass but instead rises to a peak then decreases, and is due to incomplete data for the low mass end of

the distribution. This peak can be seen to be an artefact of the trunk diameter truncation point. When the trunk diameter truncation point is

increased the mass distribution peak moves with the truncation point.
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4.2 Trunk Diameter Results

Fitting the DET-LTWD and MST equations to the trunk diameter size distributions, showed a consistent pattern for all the

geographical aggregations of plot data. In all cases, except Guyana shield, the DET-LTWD solutions (both one and two pa-

rameter versions) more closely captured the curvature of the observed size-distribution than the MST solution (Fig. 3a and see

supplementary material Fig. S1 and S2). In particular the MST model deviated from the observed data at large trunk diameters.5

Guyana Shield region only had four small plots, totalling 819 trees, which may explain the reason it was hard to distinguish

visually the best fitting model (Supplementary Fig. S2).

The two parameter DET-LTWD fits gave a fitted value of the growth scaling power φ between 0.137 and 0.546 (Table 1) and

five of the twelve regions were within 0.05 of the theoretical value of 1/3 (i.e. φ in range 0.28-0.38).

Table 1. Results of fitting models of the trunk diameter size-distributions for the forest plot data aggregated to regions, countries and all plots

combined. This table presents the fitted parameters for each model. µ1 and φ are the model parameters from Eq. 3 fitted to the data by MLE.

The one parameter DET model has φ= 1/3, so only the fitted µ1 parameter is given in the table..

DET 1 Param DET 2 Param

Region No.Trees Area(ha) mean D (cm) µ1 µ1 φ

All S.America 63605 113.4 20.45 0.255 0.308 0.397

Brazil 12454 23.5 20.83 0.247 0.266 0.358

Bolivia 8963 16.0 20.11 0.265 0.491 0.546

Colombia 7288 13.2 19.68 0.273 0.314 0.382

Ecuador 4949 7.8 20.37 0.257 0.330 0.419

Peru 27080 44.5 20.38 0.256 0.281 0.366

Venezuela 2871 5.3 22.55 0.217 0.204 0.313

Amazonian Allometric Regions

N.Western 22642 37.8 20.21 0.261 0.325 0.409

S.Western 24690 42.5 20.58 0.252 0.263 0.348

Brazilian Shield 13412 24.5 20.10 0.264 0.399 0.476

Guyana Shield 819 1.5 22.74 0.214 0.120 0.137

Eastern-Central 2042 4.0 22.90 0.213 0.212 0.332

10

In general the one and two parameter DET-LTWD solutions were quite similar in terms of the appearance of the fit on

the distribution plots. This finding was confirmed using the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) (Table 2). Both the AIC and BIC are a way of determining from several models which has the best “goodness

of fit”, with a lower value indicating a better fit. Both criteria are calculated from the log likelihood and number of fitting
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Figure 3. Fit to the trunk diameter size-distribution for all South American RAINFOR Plots as one large dataset. The blue circles show the

binned data and the lines show the fitted distribution for each model.
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parameters with a difference of 10 being the threshold where the evidence is considered to be very strongly against the higher

scoring model (Kass and Raftery, 1995). BIC penalises a higher number of fitting parameters more than AIC.

It was only possible to distinguish the quality of the fits for four of the twelve geographical aggregations of forest plots. In

all four cases (All S.America, Bolivia, Brazilian Shield and N.Western) the two parameter DET-LTWD fit was favoured and

for the other eight it was not possible to say that the inclusion of the growth scaling power as a fitting parameter improved the5

fit.

Table 2. Model comparison for fits to trunk diameter size-distributions. This table shows the log Likelihood of each model’s fit and the

corresponding AIC and BIC model comparison criterion. The best model has the lowest AIC or BIC; here the difference is shown to the best

model, meaning the best model has a score of 0. Models other than the best are strongly rejected if they have a value greater than 10. Th best

model and those not rejected are shown in bold.

log Likelihood ∆ AIC ∆ BIC

Region MST DET DET MST DET DET MST DET DET

1 Param 2 Param 1 Param 2 Param 1 Param 2 Param

All S.America -218,530 -211,726 -211,699 13700.0 51.6 0.0 13600.0 42.5 0.0

Brazil -43,146 -41,934 -41,933 2420.0 0.0 0.404 2410.0 0.0 7.83

Bolivia -30,243 -29,433 -29,389 1710.0 87.3 0.0 1690.0 80.2 0.0

Colombia -24,577 -23,715 -23,714 1720.0 1.57 0.0 1720.0 0.0 5.32

Ecuador -16,889 -16,428 -16,424 927.0 5.82 0.0 915.0 0.0 0.682

Peru -93,037 -90,049 -90,046 5980.0 3.38 0.0 5970.0 0.0 4.83

Venezuela -10,289 -10,098 -10,098 379.0 0.0 1.67 373.0 0.0 7.63

Amazonian Allometric Regions

N.Western -77,148 -74,830 -74,817 4660.0 25.9 0.0 4640.0 17.8 0.0

S.Western -85,245 -82,584 -82,583 5320.0 0.0 0.883 5310.0 0.0 9.0

Brazilian Shield -45,391 -44,107 -44,077 2620.0 57.5 0.0 2610.0 50.0 0.0

Guyana Shield -2,901 -2,898 -2,895 7.41 4.76 0.0 0.0 2.06 2.01

Eastern-Central -7,370 -7,232 -7,232 274.0 0.0 2.0 268.0 0.0 7.62
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4.3 Trunk Diameter Results for Individual Plots

Fitting the models to the individual forest plots (full results in supplementary material Tables S2 and S3 and Fig. S5 to S13)

again resulted in the DET-LTWD models generally fitting much more closely than MST. Table 3 shows the results of BIC

comparison of the models for the 124 forest plots. In every case, the best model is determined by the lowest BIC value. Inferior

models are only considered strongly rejected if their BIC is greater than the best model by 10 or more. This is represented by5

the columns in the table and shows the one parameter DET-LTWD was the model most commonly favoured by BIC score (81

plots). However, in none of those plots was it possible to strongly reject both the other models. The most common result (75

plots) was of the one parameter DET-LTWD being the best model, MST being rejected but the two parameter DET-LTWD also

so closely fitting the data that it cannot be rejected. The next most common result (17 plots) was the reverse with again MST

rejected but the two parameter DET-LTWD now narrowly better but not sufficient to strongly reject the one parameter DET-10

LTWD. The MST model was the best model for 15 plots and for 5 of those (ELD_01, ELD_02, RIO_01, RIO_02, TIP_03) the

two DET-LTWD models were both strongly rejected. Four of these plots though had a very low number of trees, so it would be

less likely to be able to pick a model with as much confidence from a distribution of only ∼100 trees. In fact the MST model

seemed more likely to have a favourable AIC or BIC score, compared to the other models, for plots with smaller sample sizes

and an increasingly unfavourable score for higher sample sizes (see Supplementary Fig. S30).15

Table 3. Shows the best and acceptable models for the 124 individual forest plots for trunk diameter. Models are labelled as (M) for MST, (1)

for one parameter DET-LTWD and (2) for two parameter DET-LTWD. Columns refer to best fitting model (lowest BIC score). Rows refer to

models that are so good a fit compared to the best that they cannot be rejected, as their BIC score is so close to the best model. For example

‘1M’ means the MST and one parameter models are not rejected but the two parameter model is rejected based on BIC. Then the columns in

this row show how many forest plots have either (1) or (M) model as best fit and the other also fitting closely.

Comparable Best Model Total

Models 1 2 M

1 0 - - 0

2 - 8 - 8

M - - 5 5

12 75 17 - 92

1M 0 - 2 2

2M - 1 1 2

12M 6 2 7 15

Total 81 28 15 124

Plotting just the φ results in a histogram (Fig. 4a), reveals an approximate bell-shaped distribution with a peak close to the

theoretical MST value. The median of the φ value for the plots is 0.34 (95% confidence interval 0.29-0.40) and the mean is 0.31

(95% confidence interval 0.26-0.36). These values are close to the theoretical value of 1/3, as suggested by the histogram. The
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histogram of µ1 (Fig. 4b) shows a skewed bell-shaped distribution with a peak around 0.3 for 2-parameter DET-LTWD and

a more symmetric bell curve centred around 0.25 for 1-parameter DET-LTWD. For 1-parameter DET-LTWD the the median

of µ1 for the plots is 0.25 (95% confidence interval 0.24-0.26) and the mean is 0.25 (95% confidence interval 0.24-0.26). For

2-parameter DET-LTWD the median of µ1 for the plots is 0.27 (95% confidence interval 0.22-0.31) and the mean is 0.31 (95%

confidence interval 0.26-0.35). The 1-parameter DET-LTWD mean and median µ1 are very close to the value of 0.22 found5

when 1-parameter DET-LTWD was fitted to US Forest Inventory data (Moore et al., 2018) (Note in that study the fitted value

of µ= 1.198 was obtained for D = 12.7cm, this has then be converted, by extrapolation, to the value at D = 1 cm to get µ1,

this value is 0.22).
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Figure 4. a) Results for the growth scaling power φ when fitting the two parameter DET-LTWD via MLE for trunk diameter data from all

124 individual forest plots. The vertical black dotted line shows the value φ= 1/3 predicted by MST allometry. b) Results for fitted mortality

to growth ratio µ1 for both the 1 and 2 parameter DET-LTWD via MLE for trunk diameter data from all 124 individual forest plots.

Fig. 5 shows the effect of fitting with the two parameter DET-LTWD model. There is a clear relationship between φ and µ1,

as all results follow a curve.10
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If it is assumed that for any fixed value of φ there is a µ1 value that gives the best fit for that (as can be seen in Fig. 3b) then

an equation can be derived (see supplementary material Section 2) in terms of the DET theory and the known global best fit

values φt and µt1 (ie the values fitted to all plots together)

µ1 =
1−φ(

exp(vL)

(xtµt1)y
Γ(y+ 1,vL)−D1−φ

L

) (26)

where xt = 1/(1−φt), y =
1−φ
1−φt

and vL = xtµt1D
1−φt

L .5

Equation 26 appears to fit the general trend of the fitted values well (Fig. 5) but as can be seen in Supplementary plots S31

and S32 the curves for all plots together and individual plots do not coincide so it is unclear whether this equation explains
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Figure 5. Results of the two parameter DET-LTWD MLE fits for trunk diameter data from all 124 individual forest plots. The fitted mortality

to growth ratio µ1 is shown as a function of the fitted growth scaling power φ. The results from the fits to the grouped datasets of the four

allometric regions are plotted as the dashed crosses of the corresponding colour. The vertical black line shows the φ value predicted by MST

allometry. The blue line represents the relationship derived from MLE equations for DET, showing the best fit µ1 for a given φ.
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the relationship or if it is coincidental. Whether the equation is the true description or not, the relationship between µ1 and φ

suggests that there is possibly a trade-off as a high µ1, high φ tree would have a superior growth:mortality ratio at smaller sizes

but an inferior growth:mortality ratio at larger sizes compared to a low µ1, high φ tree.

This trade-off would take place in each forest plot with the dominant strategy in each plot depending on local conditions

that are affecting growth and mortality. To test this, fitting parameters µ1 and φ were compared to forest plot properties such as5

sample size, geographical location, and mean plot height, trunk diameter, mass, wood density and basal area. The relationships

were generally weak with little correlation, suggesting a poor “signal to noise” ratio or that the metrics used above had little or

no correlation to the fitting parameters. So currently, it cannot be confirmed that the cause of the relationship is the suggested

trade-off but it remains an interesting possibility.
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4.4 Mass Results

All fitting was performed on mass data after trees smaller than mP had been excluded. mP was chosen based on the method-

ology in section 4.1.1. When fitting the DET-LTWD and MST equations to the mass size distributions, there was again a

consistent pattern for all the geographical aggregations of plot data. In all cases the DET-LTWD solutions (both one and two

parameter versions) fitted much more closely than the MST solution (Fig. 6 and see supplementary material Fig. S3 and S4).5

Again the MST model overestimated the number of large trees.
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Figure 6. Fit to the mass size-distribution for all South American RAINFOR Plots as one large dataset. The blue circles show the binned

data and the lines show the fitted distribution for each model. The peak in the distribution is clearly shown. The fitting is only performed on

trees with mass greater than the mass of the peak.
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The two parameter fits gave a fitted value of the growth scaling power φm between 0.635 and 0.794 (Table 4) which showed

that the growth allometry is close to the theoretical value of 0.75 (10 of 12 regions with φm in range 0.7-0.8). The table also

shows the truncation point mP used for each dataset, and all trees with mass less than this value were excluded. The value of

mP corresponds to the peak in distribution created by the conversion from trunk diameter to mass data. The allometric biomass

density agrees with the values found previously by Feldpausch et al. (2012), using the same biomass allometry. As this biomass5

density value is dry mass then it is a reasonable approximation (Chave et al., 2005; Martin and Thomas, 2011) to halve these

values to obtain the carbon biomass density, giving a range of 10-15 kg C m−2.

Table 4. Results of fitting the models of the mass size-distributions for the forest plot data aggregated to regions, countries and all plots

combined. Shown are the fitted parameters for each model. mP refers to the point which all data with smaller mass was excluded to remove

the allometry conversion artefact. Biomass is the tree dry mass density of all trees with dry mass above mP .

DET 1 Param DET 2 Param

No.Trees Area mP Biomass µm1 µm1 φm

Region ha kg kg m−2

All S.America 56702 113.36 46.4 22.2 0.198 0.189 0.741

Brazil 10719 23.48 45.6 22.1 0.193 0.212 0.768

Bolivia 7892 16.00 40.6 21.7 0.199 0.225 0.773

Colombia 6167 13.21 55.5 19.0 0.216 0.188 0.724

Ecuador 4159 7.80 54.5 23.1 0.208 0.240 0.777

Peru 22414 44.50 57.3 23.5 0.204 0.194 0.741

Venezuela 2437 5.27 64.9 30.6 0.167 0.115 0.684

Amazonian Allometric Regions

N.Western 20016 37.78 51.5 22.9 0.203 0.187 0.735

S.Western 20375 42.50 57.3 22.6 0.205 0.204 0.749

Brazilian Shield 11460 24.48 40.6 20.2 0.204 0.249 0.789

Guyana Shield 765 1.50 59.1 38.8 0.148 0.083 0.648

Eastern-Central 1773 4.00 51.8 32.7 0.157 0.147 0.737

As with the trunk diameter, fits for the two DET-LTWD solutions were, in general, quite similar in terms of the appearance

on the mass distribution plots. Again the AIC and BIC fitting metrics were barely able to distinguish which DET-LTWD model

best fit the data (Table 5). For nine of the geographical aggregations (All S.America, Brazil, Bolivia, Colombia, Ecuador, Peru,10

N.Western, Guyana Shield and Eastern Central) it was not possible to distinguish between the DET-LTWD fits with either

AIC or BIC. For Venezuela AIC indicated that the two parameter fit may be slightly better but BIC was not able to show any

difference. The S.Western allometric region was the only one showing the one parameter fit as being better but only for BIC.
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The only region to have both AIC and BIC favouring one of the fits was the Brazilian Shield region, where both AIC and BIC

favoured the two parameter fit.

Table 5. Model comparison for fits to mass size-distributions. This table shows the log Likelihood of each model’s fit and the corresponding

AIC and BIC model comparison criterion. The best model has the lowest AIC or BIC; here the difference is shown to the best model, meaning

the best model has a score of 0. Models other than the best are strongly rejected if they have a value greater than 10. Best model and those

not rejected are shown in bold.

log Likelihood ∆ AIC ∆ BIC

Region MST DET DET MST DET DET MST DET DET

1 Param 2 Param 1 Param 2 Param 1 Param 2 Param

All S.America -378,596 -371,541 -371,538 14100.0 3.68 0.0 14100.0 0.0 5.38

Brazil -71,653 -70,609 -70,607 2090.0 2.54 0.0 2080.0 0.0 4.89

Bolivia -51,899 -51,009 -51,006 1780.0 3.58 0.0 1770.0 0.0 3.52

Colombia -41,118 -40,122 -40,119 1990.0 2.21 0.0 1980.0 0.0 4.69

Ecuador -27,700 -27,241 -27,240 917.0 1.24 0.0 909.0 0.0 5.26

Peru -151,615 -148,379 -148,378 6470.0 0.0 0.004 6460.0 0.0 8.21

Venezuela -17,382 -17,204 -17,198 364.0 10.8 0.0 352.0 4.83 0.0

Amazonian Allometric Regions

N.Western -134,204 -131,530 -131,528 5350.0 3.13 0.0 5340.0 0.0 4.89

S.Western -137,602 -134,629 -134,629 5940.0 0.0 1.97 5940.0 0.0 10.1

Brazilian Shield -74,940 -73,604 -73,592 2690.0 20.8 0.0 2680.0 13.3 0.0

Guyana Shield -5,545 -5,547 -5,541 3.39 8.46 0.0 0.0 9.78 6.03

Eastern-Central -12,577 -12,487 -12,487 178.0 0.0 1.58 172.0 0.0 7.2
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4.5 Mass Results for Individual Plots

Fitting the models to the individual forest plots (full results in supplementary material Tables S3 and S4 and Fig. S14 to S22)

again resulted in the DET-LTWD models often fitting much more closely than MST. All fitting was performed on mass data

after trees smaller than mP had been excluded. mP was chosen, for each plot, based on the methodology in section 4.1.1.

Table 6 shows the results of BIC comparison of the models for the 124 forest plots. In every case, the best model is determined5

by the lowest BIC value. Inferior models are only considered strongly rejected if their BIC is greater than the best model by

10 or more. This is represented by the columns in the table and shows the one parameter DET-LTWD was the best model by

far the most (80 plots). However, in none of those plots was it possible to strongly reject both the other models. The most

common result (74 plots) was of the one parameter DET-LTWD being the best choice model (according to BIC), MST being

rejected but the two parameter DET-LTWD also so closely fitting the data it cannot be rejected. The next most common result10

(14 plots) was the reverse with again MST rejected but the two parameter DET-LTWD narrowly better but not sufficient to

strongly reject the one parameter DET-LTWD. The MST model was the best model for 15 plots and for 5 of those (ELD_01,

ELD_02, RIO_01, SUC_03, TIP_03) the two DET-LTWD models were both strongly rejected. Three of these plots though had

very low number of trees so it would be less expected to be able to accurately pick a model from a distribution of only ∼100

trees.15

Table 6. Shows the best and acceptable models for the 124 individual forest plots for mass. Models are labelled as (M) for MST, (1) for one

parameter DET-LTWD and (2) for two parameter DET-LTWD. Columns refer to best fitting model (lowest BIC score). Rows refer to models

that are so good a fit compared to the best that they cannot be rejected, as their BIC score is so close to the best model. For example ‘1M’

means the MST and one parameter models are not rejected but two parameter model is rejected based on BIC. Then the columns in this row

show how many forest plots have either (1) or (M) model as best fit and the other also fitting closely.

Comparable Best Model Total

Models 1 2 M

1 0 - - 0

2 - 11 - 11

M - - 5 5

12 74 14 - 88

1M 0 - 2 2

2M - 3 2 5

12M 6 1 6 13

Total 80 29 15 124

Fig. 7 shows the effect of fitting with the two parameter DET-LTWD model. There is to be a clear relationship between φm

and µm1, as all results follow a curve. Equation 26 can be modified to apply to mass and again fits the general trend of the

fitted µm1 and φm well.
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Plotting just the φ results in a histogram (Fig. 8a), reveals an approximate bell-shaped distribution with a peak close to the

theoretical MST value. The median of the φm value for the plots is 0.72 (95% confidence interval 0.71-0.75) and the mean is

0.71 (95% confidence interval 0.69-0.73). These values are close to the theoretical value of 0.75, as suggested by the histogram.

The histogram of µm1 (Fig. 8b) shows a bell-shaped distribution with a peak around 0.19 for both 1-parameter and 2-parameter

DET-LTWD. For 1-parameter DET-LTWD the the median of µm1 for the plots is 0.199 (95% confidence interval 0.196-0.205)5

and the mean is 0.198 (95% confidence interval 0.192-0.203). For 2-parameter DET-LTWD the median of µm1 for the plots

is 0.177 (95% confidence interval 0.159-0.205) and the mean is 0.194 (95% confidence interval 0.174-0.214). It is interesting

that for the mass distributions all measures of central tendency cluster fairly closely to 0.19, for both 1 and 2-parameter fits.
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Figure 7. Results of the two parameter DET-LTWD MLE fits for mass data from all 124 individual forest plots. The fitted mortality to growth

ratio µm1, for each plot, is shown as a function of the fitted growth scaling power φm. The results from the fits to the grouped datasets of the

four allometric regions are plotted as the dashed crosses of corresponding colour. The vertical black line shows the φm value predicted by

MST allometry. The blue line represents the relationship derived from MLE equations for DET, showing the best fit µm1 for a given φm.
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Figure 8. a) Results for the growth scaling power φm when fitting the two parameter DET-LTWD via MLE for mass data from all 124

individual forest plots. The vertical black line shows the value φm = 0.75 predicted by MST allometry. b) Results for fitted mortality to

growth ratio µm1 for both the 1 and 2 parameter DET-LTWD via MLE for mass data from all 124 individual forest plots.
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4.6 Biomass Results

The biomass density equations Eq. (6), Eq. (7) and Eq. (10) were tested against the allometric biomass density (summed tree

mass data), as can be seen in Table 7. The biomass density equation parameters were obtained from the fits in Table 4. For

the DET-LTWD solutions the biomass density was calculated for both the cases where the upper bound was infinity and the

maximum tree mass in the dataset. For each of those cases, the one and two parameter DET-LTWD solutions were calculated.5

The value of mP was used for the lower bound for calculating the predicted biomass in equations Eq. (6), Eq. (7) and Eq.

(10). The same values of mP were used to truncate the data when finding the biomass density. So, comparisons between the

theory and the mass obtained directly from a combination of observation and allometry were always using the same lower

truncation point for each dataset but varied between datasets. The values of mP used are given in Table 4 and the methodology

used to estimate mP is in section 4.1.1.10

It is apparent that the MST biomass density equation is inferior to DET-LTWD derived biomass density equation from the

DET theory. For all aggregations the biomass density was overestimated by MST, and in many cases by a considerable margin.

The comparison of the different DET-LTWD biomass density equations was found to favour the two parameter fit using the

finite upper bound (6 regions out of 12). Four areas had better estimates with the two parameter fit using the infinite upper

bound (All S.America, Bolivia, Peru and Guyana Shield).15

Interestingly, two regions (S.Western and Ecuador) had a worse fit for two parameter DET-LTWD. The S.Western region

though, fits the biomass within 2% regardless of the choice of upper bound or DET model, so the very slight difference in the

biomass density prediction is almost certainly not significant for this region. When the reverse cumulative biomass density,

defined as biomass density of all trees above a given tree mass, is plotted for Ecuador (see supplementary material Figures S27

and S28) the error comes from the shape of the tail of the distribution, which is much flatter than theory. This could be due to20

it being a region with a smaller number of trees (4159) or could be due to higher mortality for large trees in this region.
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Table 7. Model Biomass Comparison. Table shows the percentage difference between each model of the biomass density predicted by the

parameters obtained from fitting the mass distribution using MLE, and the allometric mass in the dataset. This comparison is only for data

where the tree mass is greater than the peak in the mass distribution mP . Bold indicates the model that is the closest fit to the allometric

value.

mP allometric % Difference to allometric Biomass Density

Biomass LTWD mP to ∞ LTWD mP to mmax MST

kg kg m−2 DET 1 Param DET 2 Param DET 1 Param DET 2 Param

All S.America 46.4 22.2 1.62% -0.09% 0.67% -0.77% 389.9%

Brazil 45.6 22.1 -1.67% 2.21% -3.79% -1.34% 253.5%

Bolivia 40.6 21.7 -4.62% 0.30% -4.50% -0.68% 355.7%

Colombia 55.5 19.0 2.01% -1.69% 2.88% -0.41% 439.6%

Ecuador 54.5 23.1 1.97% 7.10% -0.54% 2.10% 226.5%

Peru 57.3 23.5 1.17% -0.31% 0.67% -0.58% 407.4%

Venezuela 64.9 30.6 16.09% 2.70% 8.45% 1.62% 170.6%

Amazonian Allometric Regions

N.Western 51.5 22.9 5.13% 2.43% 4.37% 2.12% 394.7%

S.Western 57.3 22.6 -1.12% -1.32% -1.51% -1.68% 402.4%

Brazilian Shield 40.6 20.2 -7.04% 1.33% -7.10% -0.72% 364.4%

Guyana Shield 59.1 38.8 29.40% 4.58% -8.53% -8.25% 28.7%

Eastern-Central 51.8 32.7 8.76% 5.30% 1.72% 0.25% 143.7%
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4.7 Biomass Results for Individual Plots

To look deeper at the relationship between model choice and predicted biomass density the analysis was repeated for the

individual forest plots. In Fig. 9, the results of the biomass density predicted by the models is shown as a function of the actual

allometric biomass density. It can be observed that correcting for the largest tree size in each plot is much better than assuming

an infinite maximum tree size and that the one parameter model performs less well for finite maximum tree size case.5

This finding is supported by looking at the relative root mean squared error (root mean squared error divided by allometric

biomass density) for each model, as shown in Table 8.

Table 8. The relative root mean squared error (RMSE) of the biomass density prediction of the 124 forest plots using the parameters fitted

via MLE to the mass size-distribution. The table compares the results from the different DET-LTWD models and the MST model. The range

column indicates the integration limits of the biomass density calculation. The DET-LTWD model assumes no maximum size and by default

integrates out to infinity. This can be corrected in terms of the largest tree mass mmax in the dataset.

Model Range Relative RMSE

1 Parameter DET-LTWD mP to ∞ 0.236

2 Parameter DET-LTWD mP to ∞ 0.295

1 Parameter DET-LTWD mP to mmax 0.098

2 Parameter DET-LTWD mP to mmax 0.069

MST mP to mmax 1.387

For the small individual forest plots, finite maximum tree size has a larger effect on accuracy than using the two parameter

DET-LTWD over the one parameter version.
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Figure 9. Comparison of the biomass density prediction based on the size-distribution fits to the mass data, to the allometric biomass density

in each of the 124 forest plots. Results are plotted for both the one and two parameter fits and for both the assumption of infinite and finite

maximum tree size. The finite tree size case is limited to the largest tree mass mmax in each forest plot. The red dotted line shows illustrates

the line of a perfect one to-to-one relationship (i.e. theory matching the data perfectly).
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5 Discussion

In this paper we show that the Left-Truncated Weibull (LWTD), which is consistent with the Demographic Equilibrium Theory

(DET) when the mortality is size independent and the growth is a power-law of tree size, fits the observed tree-size distributions

for 124 forest plots across Amazonia. Our fitting was undertaken with either two free parameters or with one free parameter

and the growth scaling power φ constrained to that specified in Metabolic Scaling Theory (1/3 for trunk diameter and 3/45

for mass, see West et al. 2009; Niklas and Spatz 2004). We also compared the performance of DET-LTWD to that of the

Metabolic Scaling Theory for forest demography (MSTF, West et al. 2009). Our analyses were carried out for both trunk

diameter measurements and for trunk diameter converted allometrically to mass (Feldpausch et al., 2012).

We found that this conversion of trunk diameter to mass introduces a peak in the mass distribution that is purely an artefact

of the conversion. The peak is due to the variation in mass of trees of a given trunk diameter, due to height and wood density10

variation leading to some small mass trees being in effect “missing” from the mass distribution. If the diameter to mass

relationship was purely one-to-one, then the artefact peak would not occur. This has implications for anyone using mass

size-distributions converted from trunk diameter data. Our solution was to fit only to trees with mass greater than the mass

distribution peak.

The model fitting shows that Amazon size-distributions are generally better fit by the DET-LTWD based models than MSTF.15

The 2 and 1-parameter DET-LTWD fits were often not significantly different enough from each other for comparison by AIC

or BIC (which balance the quality of the fit against the number of unknown parameters) to choose which is the best description

of the size-distributions. The few plots and regions (including all plots combined) where one model was found to have a

significantly better AIC or BIC score all favoured the 2-parameter model.

The best-fit growth-scaling exponent φ varied between plots and regions, but the mean value of φ across all 124 plots fell20

close to the values predicted by MST. For the 1-parameter DET-LTWD best-fit values of µ1 for trunk diameter cluster tightly

around 0.25 (and around µm1 = 0.19 for mass). This is close to the mean value of µ1 = 0.22 that we found for North American

forests (Moore et al., 2018), hinting at a preferred value of the ratio of mortality to growth across different regions and forest

types.

The clustering of φ results close to the value predicted by MST allometry (Niklas and Spatz, 2004; West et al., 2009) suggest25

two possibilities. Either that the clustering represents an underlying “basin of attraction” that is modified by local conditions

(Price et al., 2007) or that plots do not meet the model assumptions of growth, mortality and equilibrium and this in turn

somehow leads to this clustering. We cannot say for certain why the plots cluster close to the MST values but it does lead to

intriguing future avenues of study.

It was suggested (Coomes and Allen, 2009; Coomes et al., 2011) that light competition should modify the MST scaling of30

growth with size. This would mean that for trunk diameter the growth scaling power would vary with size and be greater than

the predicted MST value of 1/3. For our regional fits the fitted power was slightly larger than the MST value of 1/3 in most

cases but for the individual forest plots, the value was very close to MST with no clear bias. So our results cannot be taken as

conclusive evidence of light competition modifying the growth scaling but neither are they completely inconsistent with it.
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We find the fitted 2-parameter DET-LTWD φ values for both mass and trunk diameter also have a well defined relationship

to the fitted mortality : growth ratio µ1. This relationship does not appear to be a fitting artefact, as if artificial data is generated

with known µ1 and φ values off the observed curve the fitting process correctly fits it to the generated values, not the curve seen

in this study. This relationship suggests an interesting but as yet unknown property of the Amazon forests but may represent

life-history trade-offs (Uriarte et al., 2012). Trees have different strategies such as live-fast die-young pioneer species versus5

grow-slow live-long canopy species. This is one possible explanation of the relationship between µ1 and φ, as when both

are high the early growth at small size will be slower but keep increasing, while when φ and mu1 are both low the early

growth will be higher but more quickly level off. Interestingly no plots had low phi, with high µ1, which would correspond to

uncompetitive low growth at all sizes. As these results are at the plot level rather than per tree basis, it would suggest that each

site has a dominance of one life-history strategy. As there is no correlation of µ1 or φ with plot metrics such as height or wood10

density, this hypothesis remains unconfirmed.

MSTF was rarely a good fit at plot, regional or all plots level for either trunk diameter or mass distributions, and significantly

overestimated total biomass density, so we reject the MSTF model as a good model of forest size-distributions. This rejection

is consistent with the recent study by Zhou and Lin (2018) that showed the MSTF model failed to account for the effect of size-

dependent growth rate on how fast a tree transitions through a given size class. This observation explains that the assumptions15

of MSTF of the size distribution scaling D−2 is inconsistent with the assumption of individual tree resource use scaling as

D2. Here, we have confirmed the D−2 (and m−11/8) size-distribution model should be rejected for South American tropical

forests. Furthermore, for most plots we can reject a general power law distribution, as the distributions observed are rarely

linear when plotted in log-log space.

There was a strong correlation between sample size and how likely MSTF was to be considered either the best or a acceptable20

model, with small sample sizes favouring MSTF. This suggests that small sample sizes may lead to difficulty identifying the

best model or even wrongly choose the best model, most likely as rarer large trees are more likely to be absent from a small

sample. Meaning, where practical, larger forest plots of at least a 1000 stems are desirable when analysing size-distributions.

All three models of size distribution were used to predict total biomass density by the integration of the analytical form of

their respective mass distributions. One interesting implication of the resulting equations for DET is that mortality and growth25

only ever appear in the form of the ratio µ1 and never independently. The ratio of mortality to growth therefore determines

the equilibrium state of a forest, while the absolute magnitudes of the individual mortality and growth terms determine the

transient effects away from a steady state.

When considering how well the models predicted total biomass density from the fitted size-distribution, the biggest source

of error at the plot scale is the model assumption of infinite maximum tree size. However, this can be corrected for and allows30

the 1-parameter DET-LTWD to estimate biomass density with relative root mean square error of 10% over the 124 forest plots

and 2-parameter DET-LTWD within 6%. Conversely, the MST model consistently overestimated the biomass density, often

by a considerable margin. The regional scale, which has larger sample size, showed much better prediction of the biomass

density and the 2-parameter DET-LTWD with finite upper bound had the smallest error in biomass density. This suggests the
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DET-LTWD model is a useful model of biomass for large-scale applications such as being used to initialise a DGVM based on

the continuity equation equation (Argles et al., 2019) or as a climate relevant measure of goodness of fit.

One of our priorities for further work is to investigate whether the commonality found in the values of µ1 and the relationship

between µ1 and φ is indicative of some form of optimality operating at the forest scale.
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6 Conclusions

This study demonstrates that demographic equilibrium theory (DET) is able to fit measured tree size-distributions in Amazonian

forests. The fitted growth scaling parameter φ was clustered for both trunk diameter (0.31 ± 0.02) and mass diameter (0.71 ±
0.01) distributions close to the values predicted by Metabolic Scaling Theory (MST). The small bias seen could be indicative

of deviations from MST allometry due to light competition. The fitted mortality: growth ratio parameter µ1 was clearly related5

to the fitted φ parameter suggesting a possible life-history trade-off in the forest plots. If the DET φ is constrained to the

MST value then the fit is often as good as the 2-parameter fit and with one less fitting parameter is preferred by the Bayesian

Information Citerion and µ1 clusters with a value (0.25 for trunk diameter) close to that of 0.22 previously reported for US

forests. We therefore find evidence that the 1-parameter DET is useful in modelling forests on the global scale, particularly for

applications where parameter sparsity is important (Argles et al., 2019). Further support for such applications comes from the10

model’s ability to replicate forest biomass density over large scales, when compared to the data. The relationship between the

2-parameter DET µ1 and φ and a common value of the 1-parameter DET µ1 between the US and Amazon may indicate some

optimality principle is in play.
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