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Abstract

This response letter contains numbered figures and references to these figures. To
prevent confusion, the figures embedded within this response letter are called illustra-
tions. Finally, the following convention is applied to denote modification in the original
manuscript: new text.
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1 Reviewer 1

Reviewer 1 Comment 1

This review focuses mainly on the design and evaluation of the UHasselt Ecotron
Experiment, as was requested by the editor. However, I did read through the entire
manuscript.

Response

We thank Reviewer 1 for his/her review of the study and the UHasselt Ecotron Experiment
and the important issues raised. We understand the confusion on the main objective of
this paper, which is not describing the UHasselt Ecotron experiment, but to depict a new
methodology to provide climate forcing to ecosystem experiments. To this extent, the UHas-
selt ecotron experiment serves as an example application of the new methodology. We now
clarified the objectives in the manuscript:

In this paper, we present a protocol for creating realistic climate forcing for
manipulation experiments.

[...]
In our methodology, variability and co-variance between variables is pre-

served by selecting the best performing RCM simulation and subsequently ex-
tract the required variables from the grid cell covering the location of the ex-
periment. By extracting a single grid cell of a single RCM simulation, climate
extremes are not smoothed and the climate variability inherent to the model is
fully preserved.

Below, we carefully address every comment and explain the corresponding changes in the
manuscript.

Reviewer 1 Comment 2

I am unclear about the three compartments that the authors refer to when describing
their ecotron facility. They cite Rineau et al (in review) which apparently describes
these, and other essential details (e.g., like which ecosystem processes will be mea-
sured and how they will be measured). I have no access to this paper.

The Rineau et al. (2019) paper appeared after this review in Nature Climate Change. The
reference to this paper is updated throughout the manuscript. We also added the Rineau et
al. paper and its supplementary material as an appendix to this authors’ response. While this
study includes a more detailed description of the facility, we summarise the most important
features in our current study.

We updated figure 2 in our manuscript to include a schematic overview on the three different
compartments (dome, chamber and lysimeter, illustration 1).

The ecosystem processes which will be measured are listed in figure S4 of the supplementary
material of Rineau et al. (2019), and we copy the table here below for reference (illustration
6). We now added some examples of which ecosystem processes will be measured in the
manuscript:
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The aim of the UHasselt Ecotron experiment is to study the ecological and soci-
etal impacts of climate change, by manipulating climatic variables alone or in
combination and, across a wide range of predicted values, while monitoring
as many soil biota and processes as possible and to translate them into socio-
economic values using heathland as a case study (Rineau et al., 2019). Exam-
ples of measured ecosystem processes are evapotranspiration, net ecosystem ex-
change, CH4 and N2O emissions.
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Illustration 1: The UHasselt Ecotron experiment (a; picture: Liesbeth Driessen), scheme of a
unit with the three compartments and the lysimeter compartment in detail (b), and overview
map with location of the infrastructure and reference weather observation stations (c).
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Illustration 2: Controlled and measured parameters in one macrocosm. The asterix marked
variables are both controlled and measured, the others only monitored. Directly taken from
Rineau et al. (2019), supplementary materials.
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Reviewer 1 Comment 3

Regardless, there is sufficient information in the methods of the manuscript to give me
pause and concern. With 12 ecotron units, and what looks to be 12 individual treat-
ment combinations, it appears that only one macrocosm will be used per treatment
combination, with no experimental replication. This looks like a so-called "regression
design". These designs are fine. However, the absence of spatial replication makes
it essential to obtain robust baseline ecosystem response conditions under "control"
conditions (i.e. the conditions under which the control macrocosm in the spatially-
unreplicated experiment will be maintained). A robust baseline for a multi-year study
would require using the first year of the study to obtain/quantify the particular "be-
havioral personalities" of each individual (each of the 12) macrocosm. Then, only once
each "personality" has been measured, can a rigorous assessment of treatments be re-
liably measured in the following 4-5 years. Without such a pre-assessment, it will
be impossible to know whether treatment responsesâevaluated against a single "con-
trol" macrocosmâare due to the treatment(s) or to an anomalous "control macrocosm"
(analogous to a random "crazy personality"). This is a really critical need, and critical
shortfall in the study design, as I understand it, and should be addressed.

Response

The experiment set-up follows indeed a "regression design". Like the reviewer commented,
small initial differences in small-scale soil heterogeneity between different units can increase
to the point that the unit becomes statistically different from the others (Rineau et al., 2019).
As the reviewer correctly points out, this can prevent interpreting results from individual
units like robust baseline ecosystem responses, as there is no replication of the experiment.
Therefore, a cluster analysis has been conducted, which quantifies the natural variation of
the 14 measured variables between the Ecotron units during 11 months prior to the experi-
ment (illustration 3, from Rineau et al. (2019) supplementary material). Based on this analy-
sis, the units are distributed in two gradient classes, minimizing the natural variance (noise).
The resulting unit distribution over the two gradients is illustrated in Rineau et al. (2019) by
figure 1 (see illustration 4 below).

We thank the reviewer for pointing out that our manuscript is lacking this information. To
accommodate this, we updated the manuscript as follows:

The climatology of the unit forced by +1◦can thereby be directly compared to
the unit driven by the ICOS station and thus representing the present-day ob-
served conditions. In this regression design, there is no experiment replication.
To minimize the noise in initial ecosystem responses, the units are allocated to
the two gradient experiments based on a cluster analysis of the variance of the 14
variables measured during a test period of 11 months (Rineau et al., 2019).
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Illustration 3: Cluster analysis of the ecotron units and explanation, directly taken from
Rineau et al. (2019), supplementary materials, figure S2.
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Illustration 4: Distribution of the ecotron units over the two gradients. Figure taken from
Rineau et al. (2019)



1. Reviewer 1 9

Reviewer 1 Comment 4

Perhaps I missed this, but I also did not see any description of how the empirical data
collected from the 12-ecotron experiment would be statistically analyzed, nor did I see
any specific research questions or hypotheses articulated.

Response

The measurements of the ecotron experiment will be analysed by a broad interdisciplinary
framework, ranging from plant ecologists, mathematicians, hydrologists, microbial and fauna
ecologists to ecosystem ecologists and environmental economists (Rineau et al., 2019). Exam-
ples of where the Ecotron facility will contribute are the development of numerical models
to describe water movement in one ecotron unit, calibration and prediction of a soil-carbon
model by the carbon cycling measurements, investigation of soil organisms and their role in
the soil bio-geochemistry, water quality regulation, carbon sequestration and quantification
of ecosystem services by measurements of soil abiotic parameters (see illustration 5 for an
overview of the integration of the different scientific disciplines). Rineau et al. (2019) also in-
cluded some hypotheses on the possible outcomes and listed them in supplementary figure
3, here included as illustration 6.

We modified the manuscript to highlight the main research questions of the experiment, but
did not elaborate this as this is not the main objective of this paper (see reviewer 2).

The aim of the UHasselt Ecotron experiment is to study the ecological and soci-
etal impacts of climate change, by manipulating climatic variables alone or in
combination and, across a wide range of predicted values, while monitoring
as many soil biota and processes as possible and to translate them into socio-
economic values using heathland as a case study (Rineau et al., 2019). The main
research questions of this multi-disciplinary experiment are how climate change
will affect the transitioning of the heathland ecosystem to alternative stable states
like pine forest or acid grassland and what the consequences are for ecosystem
services (Rineau et al., 2019).
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Illustration 5: Overview of hypotheses and integration of scientific disciplines, directly taken
from Rineau et al. (2019).

Illustration 6: Rationale and hypotheses of the UHasselt Ecotron Experiment, directly taken
from Rineau et al. (2019).
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Reviewer 1 Comment 5

I’m wondering whether the problem of the lack of spatial replication could be ad-
dressed by reducing the number of treatment combinations to six, so that there would
be at least two replicate ecotron units per treatment combination.

Response

The scientific consortium of the UHasselt Ecotron experiment decided to run 2 types of gra-
dients, each existing of 6 ecotron units: a precipitation regime gradient and a global mean
warming gradient. As mentioned above, the issue of spatial replication has been partially
addressed by comparing soil and plant measurements from all units exposed to the same
climate conditions, and statistically cluster those in two homogeneous blocks of 6 units. Re-
ducing the number of treatment combinations to six could indeed be a good compromise
to increase statistical power, but is unfortunately practically not possible as two parallel ex-
periments have been foreseen, each occupying 6 units (Rineau et al., 2019). One approach
(six units) measures the effect of an altered single factor (here, precipitation regime), while
maintaining the natural variation of other abiotic factors, and the other approach (six units)
manipulates climate by jointly simulating all co-varying parameters, representing increas-
ingly intense climate change. The second approach is the one described in this paper.

Reviewer 1 Comment 6

I do appreciate the approach of using data from downscaled climate models to guide
which experimental treatments to include. I also like the use of real-time ICOS data to
incorporate realistic climate variability to some of the treatments. It is my understand-
ing that these models deliver daily (24 h means or sums) resolution data, that would
not be suitable to understand sub-daily/diel climate/weather variability. Is that what
the ICOS data will be used for? It would certainly be important to retain diel air T,
RH, and precipitation patterns in the experiment.

Response

The precipitation gradient experiment uses the ICOS data directly to force all variables ex-
cept precipitation as this is altered. We clarified the time resolution of the ICOS data coupling
with the Ecotron infrastructure in the manuscript:

The ecotron infrastructure is linked with an Integrated Carbon Observation Sys-
tem (ICOS) ecosystem station, which provides real-time information on local
weather and soil conditions. These data are used to simulate the current weather
conditions within the ecotron units with a frequency of at least once every 30
minutes (Rineau et al., 2019).

For the RCM data however, the highest temporal resolution available is used, which is 3-
hourly. In this way the sub-daily weather variability is accounted for, which is crucial for
providing realistic climate forcing. The 3-hourly data is interpolated to the 30-minute reso-
lution to force the ecotrons. The detailed treatment of the different variables is described in
the third paragraph of section 3.2.1.
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To clarify this more, we adjusted the third paragraph of section 3.1.

In the remaining six units, atmospheric conditions along the GMT anomaly gra-
dient will be simulated as described in section 2. The 3-hourly RCM output is
linearly interpolated to a 30-minute time resolution to force the ecotron units. For
soil temperature and soil water tension however, the 30-min ICOS data is used.
This is because leaving the lysimeter uncontrolled would lead to (i) an overesti-
mation of soil temperature variability as the lysimeter is exposed to air tempera-
tures in the chamber (despite being thermically insulated), and (ii) accumulation
of water at the bottom of the lysimeter, hence considerably overestimating soil
water level, as soil water movements are mimicked by suction from the bottom.

Reviewer 1 Comment 7

Taken together, the paper on its own left me with many unanswered questions. These
may be covered in the Rineau et al. manuscript. I would recommend placing the
essentials of that paper in the next version of this paper, particularly items that address
the questions and the issues I have identified above. Thus, based mainly on the section
of the manuscript on which I was asked to focus, I feel compelled to rate the decision
as "reject" at this stage of the manuscript. I would encourage improving the ms. and
resubmitting, with the managing editor’s approval.

Response

We understand that some essential details on describing the experiment were missing in the
manuscript. As stated above, we added information to address the reviewers comments. In
this way, we strive to make the manuscript more self-containing. We thank the reviewer for
the critical and constructive review of the experiment.
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2 Reviewer 2

Reviewer 2 Comment 1

Dear Dr. Vanderkelen,
it has been extremely difficult to find reviewers for your manuscript, so to make some
progress at this point I have decided to provide a review myself.

For several decades controlled environment facilities have been a key approach
for studying effects of climate change on plants and small stature ecosystems, and
since the 1990ies ecotrons and their application have been repeatedly described (e.g.
Lawton et al. 1993 and 1996, Griffin et al. 1996).

There is no doubt that phytotrons and ecotrons are state-of-the-art tools, whose
technical capacities, including the controlled volume and the precision, have in-
creased tremendously during the past 15 years. Such infrastructures provide an
outstanding possibility to test for individual and interactive effects of multiple
global change drivers, and / or to simulate specific scenarios projected by climate
models, and there is no doubt that studies based an ecotrons will yield major novel
scientific insights. However, from my perspective there is only limited novelty in the
description of the facility itself. For this reason, such descriptions have previously
been included in the supplements of papers reporting on the actual outcome of the
climate manipulation experiments performed (e.g. Arnone et al. 2008, Roy et al. 2016).

From my own background I cannot judge the degree of novelty contained in your
new methodology for generating climate forcing using a single Regional Climate
Model Simulation, which is one of the reasons why I sent your manuscript out for
review. One of the experts on the topic, who I trust, declined my invitation to review
your manuscript with the comment "This paper does not look very interesting to me -
it merely describes the plan to regulate controlled environments following some very
specific climate change predictions.â

Taken together, I am therefore not convinced that your manuscript is advancing the
field to a sufficient extent to be acceptable for publication as a full paper in Biogeo-
sciences. I may nevertheless revise my opinion in case you manage to convince me
otherwise in your author responses.

Best regards,
Michael Bahn (Editor)

Response

We thank the editor for the extensive search for suited reviewers for this study and the re-
view provided. We acknowledge that the manuscript did not state clear enough its main
objective: providing a new methodology to select the most appropriate forcing data for a
specific region and research question from a large set of available climate simulations. Be-
low we describe why we believe this methodology is advancing the field, and which changes



14 Biogeosciences– Response to reviewers

we applied to the manuscript text to frame this more clearly. An overview of all changes
compared to the original manuscript is provided in the diff.pdf file attached to the resubmis-
sion.

There is a need for realistic climate change experiments to better understand ecosystem re-
sponses (Korell et al., 2019; Song et al., 2019). This is not only necessary, but is also appealing
and timely for more advanced controlled environment experiments, like the ecotron exper-
iments. Climate forcing that represents realistic future climate conditions is characterized
by a realistic co-variance of multiple variables, which are linked to each other by the syn-
optic condition and a realistic temporal sequence of weather events. In this way, we avoid
the simulation of unrealistic situations, e.g. dry conditions with a high relative humidity.
Additionally, it is important to correctly represent the evolution of future climate variability,
thereby well representing climate extremes. In this way, compound events, a combination of
meteorological drivers leading to an even more extreme event, are better represented, which
is key for measuring ecosystem responses (Zscheischler and Seneviratne, 2017; Rineau et al.,
2019). An example of such a compound event occurred in the summer of 2018: the combi-
nation of a drought and heatwave led to massive vegetation dieback in the macrocosms of
the UHasselt experiment, which were driven by the ICOS observations from the field. The
dieback in the ecotrons had the same extent as the vegetation in the field.

Classical climate change experiments do not consider this co-variance, as they alter one fac-
tor, while keeping everything else equal. While these experiments are useful and informa-
tive, they remain characterised by several limitations: first, ignoring this co-variance leads to
an unrealistic forcing, e.g. simulating a drought without accounting for a change in temper-
ature; while droughts and heatwaves often co-occur (Zscheischler and Seneviratne, 2017).
Second, events focused on short-term, hourly variability are not captured in mean clima-
tology or spatially averaged values. Third, it is important to account for potential future
changes in climate variability to have a realistic representation of extremes, coherent with
future climate projections. Finally, in many experiments the applied temperature, CO2 or
precipitation perturbation is derived from coarse resolution (global) climate models, limit-
ing their representativity for a given site (Thompson et al., 2013; Roy et al., 2016; Korell et al.,
2019).

Our new methodology overcomes these four shortcomings by sampling forcing data from
state-of-the-art regional climate simulations, which are more refined and better in solving
meso-scale circulation (Kotlarski et al., 2014; Dosio et al., 2015). By using 3-hourly data for
a range of variables from a single regional climate simulation, we strive to provide the most
sound forcing possible. Furthermore, we verify that this simulation is representative for
the multi-model mean in future simulations, ensuring a realistic temperature sensitivity to
future increases in greenhouse gases. The resulting experiment is a prime example of inter-
disciplinary collaboration between experimentalists (providing the research questions and
controlled environment facility) and climate modellers (providing forcing data) described
by Rineau et al. (2019) and recently highlighted by Muller et al. (2019).

To better represent these arguments, we now substantially reworked the introduction:

Altering only one or a limited number of climate change drivers allows for
a straightforward analysis of the observed responses and has provided a wealth
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of mechanistic insights in ecosystem responses to environmental changes (e.g.
Hovenden et al., 2014; Karlowsky et al., 2018; Terrer et al., 2018). However, the
resulting multivariate combination of climate variables may be physically unre-
alistic and may miss key aspects related to natural climate variability and the
co-variance of multiple variables, linked to each other by synoptic conditions.
This is particularly important for representing compound events, where a the
combination of non extreme drivers can lead to extreme events (Rineau et al.,
2019; Zscheischler and Seneviratne, 2017; Zscheischler et al., 2018).

Until recently, it was not possible to simulate realistic future climates in ecosys-
tem climate change experiments (Korell et al., 2019), as these experiments require
accurate manipulation of environmental variables to represent current and future
climate conditions. Controlled environment facilities meet these requirements by
providing systems to simultaneously manipulate as well as measure multiple pa-
rameters (e.g. Lawton, 1996; Stewart et al., 2013; Clobert et al., 2018), especially in
combination with an observation station in the field providing real time observa-
tions of most of those parameters (Rineau et al., 2019). This approach is powerful
especially when combined with a measurement station in the field providing
real time observations of most of these required parameters (Rineau et al., 2019).
In such facilities, climate change experiments can be informed by meteorologi-
cal forcing representing both present and future climatic conditions in a holistic
manner. For instance this forcing can include both realistic changes of climate
variability as well as important drivers of changes in the frequency, intensity and
duration of meteorological extremes. This potential is especially interesting in
gradient experiments covering a range of global warming levels, as this combi-
nation allows for the detection of non-linearities, thresholds and possible tipping
points in ecosystem responses to increasing climate change forcing under the
most realistic conditions currently feasible (Rineau et al., 2019; Kreyling et al.,
2018).

[...]
In this paper, we present a protocol for creating realistic climate forcing for

manipulation experiments.

We also updated section 2 describing the new methodology:

In our methodology, variability and co-variance between variables is preserved
by selecting the best performing RCM simulation and subsequently extract the
required variables from the grid cell covering the location of the experiment. By
extracting a single grid cell of a single RCM simulation, climate extremes are not
smoothed and the climate variability inherent to the model is fully preserved.
The in the ecosystem climate change experiments follow a gradient of increasing
Global Mean Temperature (GMT) anomalies.

Finally, we also adapted the conclusions to better reflect the main objective of the study:

Ecosystem experiments investigating climate change responses require a holis-
tic, realistic climate forcing, reflecting not only the changes in the mean climate,
but also representing physically consistent co-variance between climate drivers,
natural variability, changes in extreme events. To this extent, we presented a new
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method for creating realistic climate forcing for manipulation experiments using
a single Regional Climate Model (RCM) simulation, and subsequently applied it
on the UHasselt Ecotron Experiment.

Our new methodology provides realistic climate forcing, accounting for co-
variances between climatic variables and their change in variability, well repre-
senting possible compound events. This is in particular interesting for controlled
environment facilities, as their setup allows to realistically simulate future cli-
mate by controlling and measuring multiple parameters. Other controlled envi-
ronment facilities could also benefit from the proposed methodology, depending
on the posed research questions. The protocol for selecting a suitable regional
climate simulation and extracting time series for the needed variables based on
the time window defined by a global mean temperature threshold, provides a
framework for different types of manipulation experiments aiming to investigate
ecosystem responses to a realistic future climate change, even without a gradient
approach.

We very much hope this response helps to show that this manuscript is worth to be consid-
ered for publication as full paper in Biogeosciences. If not, we are willing to propose the
current manuscript as a technical note.
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Abstract. Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of

ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the

field and projections for the future, preserving the co-variances between variables and the projected changes in variability.

Here we present a new experimental design for studying climate change impacts on terrestrial ecosystems
::::::
method

:::
for

:::::::
creating

::::::
realistic

:::::::
climate

::::::
forcing

:::
for

:::::::::::
manipulation

::::::::::
experiments and apply it to the UHasselt Ecotron Experiment. The new methodology5

:::
uses

::::
data

:::::::
derived

::::
from

:::
the

::::
best

::::::::
available

:::::::
regional

::::::
climate

::::::
model

::::::
(RCM)

:::::::::
projection

:::
and consists of generating climate forcing

along a gradient representative of increasingly high global mean temperature anomaliesand uses data derived from the best

available regional climate model (RCM) projection. We first identified the best performing regional climate model (RCM)

simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European Domain (EURO-

CORDEX) ensemble with a 0.11° (12.5 km) resolution based on two criteria: (i) highest skill of the simulations compared to10

observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. Our results

reveal that no single RCM simulation has the best score for all possible combinations of the four meteorological variables and

evaluation metrics considered. Out of the six best performing simulations, we selected the simulation with the lowest bias

for precipitation (CCLM4-8-17/EC-EARTH), as this variable is key to ecosystem functioning and model simulations deviated

the most for this variable, with values ranging up to double the observed values. The time window is subsequently selected15

from the RCM projection for each ecotron unit based on the global mean temperature of the driving Global Climate Model

(GCM). The ecotron units are forced with 3-hourly output from the RCM projections of the five-year period spanning the

year in which the global mean temperature crosses the predefined values. With the new approach, Ecotron facilities become

able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic

variables and their projection in variability, well representing possible compound events. The gradient approach will allow to20

1



identify possible threshold
::::::::
thresholds and tipping points.

::::
The

::::::::
presented

:::::::::::
methodology

:::
can

::::
also

::
be

::::::
applied

::
to

:::::
other

:::::::::::
manipulation

::::::::::
experiments,

::::::
aiming

::
at
:::::::::::
investigating

:::::::::
ecosystem

::::::::
responses

::
to

:::::::
realistic

:::::
future

:::::::
climate

::::::
change.

:

Copyright statement.

1 Introduction

Ecosystem climate change experiments are one of the key instruments to study the response of ecosystems to a change in5

climate. There are primarily four different factors that are altered in such experiments: temperature, precipitation, CO2 con-

centration, and nitrogen deposition (Curtis and Wang, 1998; Rustad et al., 2001; Lin et al., 2010; Wu et al., 2011; Knapp et al.,

2018). More recently multi-factor experiments have become more common
::
are

:::::::
starting

::
to

::::::
emerge. In those experiments, differ-

ent combinations of the four main drivers are altered (Kardol et al., 2012; Yue et al., 2017). What is common in the majority

of climate change experiments is that while the drivers of interest are being altered, all other variables are being held equal10

between the different treatment groups. Consequently, differences in the response can be related to the change in the main

driving factor (or multiple driving factors).

In most cases, climate change experiments apply step changes to the studied drivers, that is, one factor is increased/decreased

by a fixed amount. This makes it difficult to use the obtained results for model development, for which usually gradient15

responses need to be known. This insight has lead to the development of climate change experiments that alter the driving

factors along a gradient, as implemented for instance in the Spruce and Peatland Responses Under Climatic and Environmental

Change (SPRUCE, Krassovski et al., 2015) experiment. In SPRUCE spruce and peatland response to altered CO2 concentration

and temperature gradient are studied (no change, +4, +8, +12, and +16 degrees Fahrenheit). Implementing climate change

gradients substantially reduces the number of replica per treatment and can be analyzed by a regression approach instead of an20

ANOVA-type of approach (Kreyling et al., 2018).

Altering only one or a limited number of climate change drivers allows for a straightforward analysis of the observed re-

sponses and has provided a wealth of mechanistic insights in ecosystem responses to environmental changes
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Hovenden et al., 2014; Karlowsky et al., 2018; Terrer et al., 2018).

However, the resulting multivariate combination of climate variables may be physically unrealistic and may miss key aspects re-

lated to natural climate variability and driven by land-atmosphere feedbacks. For instance
:::
the

:::::::::
co-variance

::
of
::::::::
multiple

::::::::
variables,25

:::::
linked

::
to

:::::
each

:::::
other

::
by

::::::::
synoptic

:::::::::
conditions.

:::::
This

::
is

::::::::::
particularly

::::::::
important

:::
for

:::::::::::
representing

:::::::::
compound

::::::
events,

::::::
where

::
a

:::
the

::::::::::
combination

::
of

:::
non

:::::::
extreme

::::::
drivers

:::
can

::::
lead

::
to

:::::::
extreme

::::::
impacts

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rineau et al., 2019; Zscheischler and Seneviratne, 2017; Zscheischler et al., 2018).

:::
For

:::::::
example, droughts and heatwaves often co-occur (Zscheischler and Seneviratne, 2017) and, soil moisture conditions and

precipitation occurrence are linked (Guillod et al., 2015; Moon et al., 2019). Incorporating the covariability
::::::::::
co-variability

:
of

key climate drivers is also important for the studied responses. For instance, heatwaves characterized by similar extreme air30

temperatures can lead to different plant responses depending on the atmospheric conditions: under different shortwave radia-
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tion, relative humidity and surface wind conditions, the leaf temperature and the potential for heat stress varies a lot (De Boeck

et al., 2016).

By focusing primarily on changes in mean climate conditions, projected change in climate variability is not taken into

account in
::::
Until

::::::::
recently,

:
it
::::

was
:::
not

::::::::
possible

::
to

:::::::
simulate

:::::::
realistic

::::::
future

:::::::
climates

::
in
:::::::::

ecosystem
:

climate change experiments5

(Thompson et al., 2013). Changes in variability are important drivers of changes in the frequency, intensity and duration of

extremes, which in turn are important drivers of ecosystem responses such as changes in community dynamics (Gutschick and BassiriRad, 2003).

To capture the full range of changing climatic conditions, a holistic representation of the overall climate is necessary. This will

be especially interesting also in gradient experiments covering a range of global warming levels, allowing for detection of

non-linearities, thresholds and possible tipping points, as described in the novel approach by Rineau et al. (2019).10

Climate change experiments require both extensive monitoring of the ecosystem processes at various spatio-temporal scales

and
:::::::::::::::::
(Korell et al., 2019),

::
as

::::
these

::::::::::
experiments

::::::
require

:
accurate manipulation of environmental variables to represent current and

future climate conditions. Controlled environment facilities meet these requirements by providing systems to simultaneously

manipulate as well as measure multiple parameters (e.g. Lawton, 1993, 1996; Griffin et al., 1996; Stewart et al., 2013; Clobert

et al., 2018). They also allow to test the difference in response to an individual driver (e.g. one climate variable) and to15

simultaneous changes in multiple drivers, reflecting real-world conditions. Therefore, these types of infrastructures are very

useful to perform climate change experiments, as they allow the control of a variety of climate variables with high accuracy
:
,

::::::::
especially

::
in

:::::::::::
combination

::::
with

::
an

::::::::::
observation

::::::
station

::
in

:::
the

::::
field

::::::::
providing

:::
real

::::
time

:::::::::::
observations

::
of

:::::
most

::
of

::::
those

::::::::::
parameters

(Rineau et al., 2019). This implies that the experiments are driven by climate forcing that represents
::::::::
approach

::
is

::::::::
powerful

::::::::
especially

:::::
when

::::::::
combined

::::
with

::
a
:::::::::::
measurement

::::::
station

::
in

:::
the

::::
field

:::::::::
providing

:::
real

::::
time

:::::::::::
observations

::
of

:::::
most

::
of

::::
these

::::::::
required20

:::::::::
parameters

:::::::::::::::::
(Rineau et al., 2019).

:::
In

::::
such

::::::::
facilities,

:::::::
climate

::::::
change

:::::::::::
experiments

:::
can

:::
be

::::::::
informed

:::
by

::::::::::::
meteorological

:::::::
forcing

::::::::::
representing

:
both present and future climatic conditions in a realistic, holistic manner.

:::
For

:::::::
instance

:::
this

:::::::
forcing

:::
can

:::::::
include

::::
both

::::::
realistic

:::::::
changes

:::
of

::::::
climate

:::::::::
variability

::
as

::::
well

::
as

::::::::
important

::::::
drivers

:::
of

:::::::
changes

::
in

:::
the

::::::::
frequency,

::::::::
intensity

:::
and

::::::::
duration

::
of

::::::::::::
meteorological

::::::::
extremes.

::::
This

::::::::
potential

::
is

:::::::::
especially

:::::::::
interesting

::
in

:::::::
gradient

::::::::::
experiments

::::::::
covering

:
a
:::::
range

::
of

::::::
global

::::::::
warming

:::::
levels„

:::
as

:::
this

:::::::::::
combination

::::::
allows

:::
for

:::
the

::::::::
detection

:::
of

:::::::::::::
non-linearities,

::::::::
thresholds

::::
and

:::::::
possible

:::::::
tipping

:::::
points

:::
in

:::::::::
ecosystem25

::::::::
responses

::
to

:::::::::
increasing

::::::
climate

::::::
change

::::::
forcing

:::::::::::::::::::::::::::::::::::
(Rineau et al., 2019; Kreyling et al., 2018).

:

Sampling realistic climate information in a climate change context
:
is

::::::::::
challenging,

::::
but can be achieved by using climate

model output. Global Climate Models (GCMs) are generally used to assess the climate state and variability at global to con-

tinental scales with a resolution of 100 to 250 km. By dynamically downscaling GCMs, Regional Climate Models (RCMs)

typically resolve the climate on a regional scale with higher spatial resolutions of 1 to 50 km. As such, RCMs allow a more30

realistic representation of meso-scale atmospheric processes and processes related to orography and surface heterogeneities.

As climate models realistically simulate the atmospheric state under past, present and future climatic conditions with a high

temporal resolution, they are suited to provide a holistic and physically consistent climate forcing for ecosystem climate change

experiments. Generally, ensemble climate projections show a large spread for future climate conditions (Keuler et al., 2016),

especially for variables relevant for ecosystem experiments such as extreme temperatures, droughts and intense precipitation35
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(Sillmann et al., 2013; Orlowsky and Seneviratne, 2013; Greve et al., 2018; Rajczak and Schär, 2017). This spread is related to

(i) different climate sensitivities of the GCMs, (ii) structural differences between the models and (iii) natural variability within

the climate system. The Coordinated Regional Climate Downscaling Experiment in the European domain (EURO-CORDEX)

provides an ensemble of high resolution dynamically downscaled RCMs (Kotlarski et al., 2014) and is therefore highly suit-

able to serve as a base for the selection of representative climate forcing for climate change experiments. With a suite of5

GCM/RCM combinations available, a well-informed choice on the most adequate RCM/GCM simulation can be made based

on (i) the model skill in representing the observed climatology and (ii) the temperature sensitivity to future increases in green-

house gas concentrations.

So far,
:
statistically downscaled GCM output has only rarely been used as climate forcing in ecosystem experiments. Thomp-10

son et al. (2013) describe a process for generating temperature forcing for experiments in which they use daily temperature

output from a GCM (MIROC) and a stochastic weather generator to generate hourly weather. They validated their method

against statistical characteristics of temperature observations. Likewise, the Montpellier CNRS ecotron facility is driven by

multivariate statistically downscaled GCM projections (using the ARPEGEv4 model; Roy et al. (2016). They force their ex-

periment with climatic conditions of an average climatological year of the period 2040-2060. During the summer months,15

they artificially simulate an extreme event by including a drought and heatwave by reducing the irrigation amount to zero and

increasing the air temperature artificially. However, by using a climatological year, possible extreme events are dampened by

averaging. Both studies lack a thorough evaluation procedure for selecting the used climate model. Moreover, to the best of our

knowledge, no study accounts for the co-variance between climate variables.

20

In this paper, we present a new experimental design for studying climate change impacts on terrestrial ecosystems
::::
new

::::::
method

:::
for

:::::::
creating

:::::::
realistic

:::::::
climate

::::::
forcing

:::
for

::::::::::::
manipulation

::::::::::
experiments. From an ensemble of dynamically downscaled

climate model simulations, we select one simulation that well represents present-day climate conditions for four key variables

in the region of interest and is representative of the multi-model mean of these variables in future projections. In this way, the

new methodology accounts both for co-variance of climate parameters and for climate variability and naturally incorporates25

::::
while

::::::::
naturally

:::::::::::
incorporating

:
extreme events under present and future climate conditions. Furthermore, the method can be used

in
::::::::
combined

::::
with

:
a gradient approach. We apply the new methodology to generate climate forcing for the UHasselt Ecotron

Experiment, an infrastructure consisting of 12 climate-controlled units, each equipped with a lysimeter containing a dry heath-

land soil monolith extracted from the National Park Hoge Kempen in Belgium (Rineau et al., 2019). In this experiment, six

units are directly forced with regional climate model output along a Global Mean Temperature (GMT) gradient anomaly.30
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2 New methodology for generating climate forcing for ecosystem climate change experiments

In our methodology,
:::::::::
variability

:::
and

:::::::::
co-variance

::::::::
between

:::::::
variables

::
is

::::::::
preserved

::
by

::::::::
selecting

:::
the

:::
best

::::::::::
performing

::::
RCM

:::::::::
simulation

:::
and

:::::::::::
subsequently

::::::
extract

::
the

::::::::
required

:::::::
variables

::::
from

:::
the

::::
grid

:::
cell

::::::::
covering

::
the

:::::::
location

::
of

:::
the

::::::::::
experiment.

:::
By

::::::::
extracting

::
a

:::::
single

:::
grid

::::
cell

::
of

:
a
::::::

single
:::::
RCM

:::::::::
simulation,

:::::::
climate

::::::::
extremes

:::
are

:::
not

::::::::
smoothed

::::
and

:::
the

::::::
climate

:::::::::
variability

:::::::
inherent

::
to

:::
the

::::::
model

::
is

::::
fully

::::::::
preserved.

::::
The

:
units in the ecosystem climate change experiments follow a gradient of increasing Global Mean Tempera-5

ture (GMT) anomalies. In this way, a given unit is forced with the climatic conditions consistent with e.g. a 2°C warmer world,

and the units represent conditions associated with increasingly warmer climates. With this approach, both the climatology and

variability corresponding to these warming levels are represented. To preserve variability and co-variance between variables,

we select the best performing RCM simulation and subsequently extract the required variables from the grid cell covering the

location of the experiment. By extracting a single grid cell of a single RCM simulation, climate extremes are not smoothed and10

the climate variability inherent to the model is fully preserved.

The methodology presented here is deployed in three steps. First, the best performing RCM projection needs to be selected

based on two criteria: (i) the simulation should have high skill in reproducing mean and extreme present-day climatic conditions

and (ii) the projected future temperature anomalies should be close to the multi-model mean, that is, the selected simulation15

should be representative of the future mean projection (Fig. 1, step 1). To this end, the model performance is evaluated for four

variables that are highly relevant for ecosystem climate change experiments: precipitation, temperature, relative humidity and

surface wind speed. Precipitation is considered one of the most important variables, as water availability is likely to constrain

plant growth the most.

20

Second, the time windows for the different units along the GMT anomaly gradient are defined based on the annual GMT

projection of the driving GCM of the chosen RCM simulation (Fig. 1, step 2). To span a large range of climate change sce-

narios, we use projections following the Representative Concentration Pathway (RCP) 8.5, a worst-case scenario following an

unabated greenhouse gas emissions pathway (Riahi et al., 2011). The experiments are running for 5 years. We choose time

windows corresponding to the experimental period and centred around the year in which the climatological GMT anomaly25

(averaged with a 30-year period) crossed the pre-defined thresholds for the first time. In the third step, the values of all neces-

sary variables are extracted from the chosen RCM projection based on the defined time windows for the grid cell covering the

experiment location (Fig. 1, step 3). These time series are then directly used to force the ecotron units, in the highest available

temporal resolution.

30
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Figure 1. Methodology for generating climate forcing along the GMT anomaly gradient.

3 Data and methods

3.1 The UHasselt Ecotron Experiment

The UHasselt Ecotron experiment is an ecotron infrastructure consisting of replicated experimental units in which ecosystems

are confined in enclosures. By allowing the simultaneous control of environmental conditions and the on-line measurement of

ecosystem processes, the ecotron units are suited for experiments with highly controlled climate change manipulation of large5

6



intact parts of the ecosystem. The infrastructure allows an intensive monitoring and control of key abiotic parameters on 12

large-scale ecosystem replicas, called “macrocosms”. These macrocosms had been extracted without disruption nor reconsti-

tution of the soil structure from the same dry 6 to 8 years old heathland plot in the National Park Hoge Kempen (50° 59’ 02.1"

N, 5° 37’ 40.0" E) in November 2016.

5

The infrastructure is a W-E oriented, 100 m by 10 m wide, and 6 m tall building (Fig. 2a). Only 12 of the 14 units are

used, excluding the outermost to avoid boundary effects. Each unit consists of three compartments in which the abiotic en-

vironmental variables are controlled: the dome, the macrocosm and the chamber. The dome is transparent for photosynthetic

active radiation (PAR), UVa and UVb. Here, wind and precipitation are measured and generated, and CO2 , N2, CH4, PAR

and Net Radiation (NR; i.e. the difference in incoming and outgoing short-and longwave radiation) are measured. The second10

compartment, the macrocosm, contains the extracted soil column (the ecosystem) enclosed in a lysimeter. In this compartment,

the soil water content, soil water tension, soil electrical conductivity and soil temperature are measured and controlled. The

chamber, the third compartment, the air pressure, temperature, relative humidity, and CO2 concentration are controlled (Rineau

et al., 2019). The ecotron infrastructure is linked with an Integrated Carbon Observation System (ICOS) ecosystem station,

which provides real-time information on local weather and soil conditions. These data are used to simulate the current weather15

conditions within the ecotron units with a frequency of at least once every 30 minutes (Rineau et al., 2019).

The aim of the UHasselt Ecotron experiment is to study the ecological and societal impacts of climate change, by manipu-

lating climatic variables alone or in combination and, across a wide range of predicted values, while monitoring as many soil

biota and processes as possible and to translate them into socio-economic values using heathland as a case study (Rineau et al.,20

2019).
::::::::
Examples

::
of

::::::::
measured

:::::::::
ecosystem

::::::::
processes

:::
are

::::::::::::::::
evapotranspiration,

:::
net

:::::::::
ecosystem

:::::::::
exchange,

::::
CH4

::
or

:::::
N2O

:::::::::
emissions.

The main research questions of this multi-disciplinary experiment are how climate change will affect the transitioning of the

heathland ecosystem to alternative stable states like pine forest or acid grassland and what the consequences are for ecosystem

services (Rineau et al., 2019). The experiment will run uninterrupted for a period of at least five years. Six units will be used

to simulate a gradient of increasing variability in precipitation regime. They are driven by the ICOS station and a perturbed25

precipitation time series following a gradient of increasingly long periods with no precipitation (2, 6, 11, 23, 45 and 90 days;

Rineau et al., 2019). In the remaining six units, atmospheric conditions along the GMT anomaly gradient will be simulated

as described in section 2. Likewise,
:::
The

::::::::
3-hourly

:::::
RCM

:::::
output

::
is
:::::::
linearly

::::::::::
interpolated

::
to

::
a

::::::::
30-minute

::::
time

:::::::::
resolution

::
to

:::::
force

::
the

:::::::
ecotron

:::::
units.

:::
For

::::
soil

::::::::::
temperature

:::
and

::::
soil

:::::
water

::::::
tension

::::::::
however,

:::
the

::::::
30-min

:::::
ICOS

::::
data

::
is

::::
used.

:::::
This

:
is
:::::::

because
:::::::
leaving

::
the

:::::::::
lysimeter

::::::::::
uncontrolled

::::::
would

::::
lead

::
to

:::
(i)

::
an

:::::::::::::
overestimation

::
of

::::
soil

::::::::::
temperature

:::::::::
variability

::
as

:::
the

::::::::
lysimeter

::
is
::::::::
exposed

::
to30

::
air

:::::::::::
temperatures

::
in
::::

the
:::::::
chamber

:::::::
(despite

::::::
being

:::::::::
thermically

:::::::::
insulated),

::::
and

:::
(ii)

::::::::::::
accumulation

::
of

:::::
water

:::
at

:::
the

::::::
bottom

:::
of

:::
the

::::::::
lysimeter,

:::::
hence

:::::::::::
considerably

:::::::::::::
overestimating

:::
soil

::::::
water

:::::
level,

::
as

::::
soil

:::::
water

::::::::::
movements

:::
are

:::::::::
mimicked

::
by

:::::::
suction

:::::
from

:::
the

::::::
bottom.

:::::::::
Following

:::
the

:::::::
gradient

::::::
design,

:
each ecotron unit represents the local climate conditions of a globally 0° (historical),

+1° (present day), +1.5° (Paris Agreement), +2°C, +3°C and +4°C warmer world. The climatology of the unit forced by +1°

can thereby be directly compared to the unit driven by the ICOS station and thus representing the present-day observed con-35
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Figure 2. The UHasselt Ecotron experiment (a; picture: Liesbeth Driessen),
::::::
scheme

::
of

:
a
:::
unit

::::
with

:::
the

::::
three

::::::::::
compartments and

:::
the

:::::::
lysimeter

:::::::::
compartment

::
in
:::::
detail

:::
(b),

:::
and overview map with location of the infrastructure and reference weather observation stations (b

:
c).

ditions.
::
In

::::
this

::::::::
regression

:::::::
design,

::::
there

::
is

::
no

::::::::::
experiment

:::::::::
replication.

:::
To

::::::::
minimize

:::
the

:::::
noise

::
in

:::::
initial

:::::::::
ecosystem

:::::::::
responses,

:::
the

::::
units

:::
are

::::::::
allocated

::
to

:::
the

::::
two

:::::::
gradient

::::::::::
experiments

::::::
based

::
on

::
a
::::::
cluster

:::::::
analysis

::
of

:::
the

::::::::
variance

::
of

:::
the

:::
14

:::::::
variables

:::::::::
measured

:::::
during

::
a

:::
test

:::::
period

:::
of

::
11

:::::::
months

:::::::::::::::::
(Rineau et al., 2019).
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3.2 Meteorological data

3.2.1 EURO-CORDEX

The best performing RCM simulation
:::::::
compared

:::
to

::::::::::
observations

:
is selected from the Coordinated Regional Climate Down-

scaling Experiment in the European Domain (EURO-CORDEX), an ensemble of high resolution dynamically downscaled

simulations available at a horizontal resolution of 12 km (Kotlarski et al., 2014; Jacob et al., 2014). The simulations, here-5

after referred to as GCM downscalings, cover the historical period (1951-2005) and the three RCP scenarios (RCP 2.6, 4.5

and 8.5, for the period 2006-2100) by using GCMs as initial and lateral boundary conditions. Additionally, for each RCM, a

reanalysis downscaling is provided in which the RCM is driven by the European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA-Interim as initial and lateral boundary conditions for the period 1990-2008 (hereafter referred to as reanalysis

downscalings). These reanalysis-driven simulations allow to evaluate the skill of the RCMs themselves by comparing them to10

observations (Kotlarski et al., 2014).

In this study, we use the variables for daily mean, minimum and maximum temperature, precipitation, mean surface wind

and relative humidity of all available simulations (Table 1). We consider the values of the 12 km by 12 km pixel covering the

location of the reference station providing the observations. As relative humidity is not directly available for all simulations, we15

converted specific humidity to relative humidity using the mean temperature and surface pressure for every simulation. Com-

paring the applied conversion with the simulations for which relative humidity is available proves this conversion is applicable.

Neither specific nor relative humidity are publicly available for the simulations with RegCM4-2 and ALARO-0 and the mean

surface wind speed variable is not available for ALADIN53 and ALARO-0; therefore we do not analyse these variables for the

respective simulations.20

Once the EURO-CORDEX ensemble member is selected, the relevant variables (precipitation, mean temperature, surface

pressure, surface up-welling latent heat flux and sensible heat flux, wind speed and relative humidity) are extracted from the 3

hourly RCP 8.5 simulation for the pixel covering the ecotron location for the time windows in which the GMT anomalies are

crossed for each dome. These three-hourly values (except for surface up-welling latent heat flux and sensible heat flux) are then25

linearly interpolated to 30 minute resolution and used to drive the climate controllers in the ecotron units. For precipitation,

one additional step was added where drizzle (precipitation of less than 1 mm) was postponed and accumulated until it reached

1 mm to start a rain event in the ecotron. The surface pressure is calculated from the mean sea level pressure using the altitude

of the ecotron facility (43 m a.s.l.) and assuming hydrostatic equilibrium. The concentrations of the controllable greenhouse

gases (CO2, CH4 and N2O) are determined based on the annual values calculated by van Vuuren et al. (2011) according to30

RCP8.5. These correspond to the prescribed concentrations of the RCM simulations.
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3.2.2 Weather station observations

Reference station data is obtained from the European Climate Assessment and Dataset (Klein Tank et al., 2002). The three

operational weather stations closest to the UHasselt Ecotron experiment are Maastricht Airport (11km), Aachen (37km) and

Heinsberg-Schleiden (29 km; Fig. 2b). These weather stations provide daily observations from the end of the 19th century

(Maastricht Airport and Aachen) or mid 20th century (Heinsberg-Schleiden) until the present-day, thereby covering both the5

EURO-CORDEX GCM and reanalysis downscaling periods. All stations record temperature [°C], precipitation [mm day-1],

relative humidity [%] and surface wind speed [m s-1] at daily resolution, except for the Heinsberg-Schleiden station where

there are no surface wind observations available.

The seasonal cycles of the observations for the different stations follow a similar annual course (Fig. 3). For temperature, the10

curves overlay and for precipitation they are similar. Relative humidity has a small offset between the three stations, possibly

owing to the differences in absolute height and local topography. The difference in surface wind speed between Maastricht-

Airport and Aachen is considerable, but is plausible considering the large spatial variability in wind speed. Given that the

model evaluation showed very little sensitivity to the choice of the reference station, we hereafter present the results with the

reference station closest to the ecotron facility (Maastricht-Airport).15
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Figure 3. Seasonal cycles of observed mean temperature (a), precipitation (b), relative humidity (c) and mean surface wind (d) in the weather

stations of Maastricht Airport, Aachen and Heinsberg-Schleiden (monthly averages based on daily data from 1963 to 2018). For Heinsberg-

Schleiden no surface wind observations are available. The curves for temperature are overlaying.

3.3 Metrics and diagnostics

The evaluation of the EURO-CORDEX ensemble members is performed using different metrics accounting for performance

of representing the climatic means, distributions and extremes.

A ranking is made of the reanalysis downscalings, ranging from 1-best performing model to 9-worst. First, the bias is calcu-5

lated as the difference between the averages of the daily modelled and observed variables. The second metric, the Perkins Skill

Score (PSS), is a quantitative measure of how well each simulation resembles the observed probability density functions by

measuring the common area between two probability density functions (Perkins et al., 2007). The mean absolute error (MAE)

is calculated by taking the means of the absolute differences between the modelled and observed seasonal cycles, calculated

based on the whole series. This is done for the whole series and to capture the potential errors in the extremes, also for the 1st,10

10th, 90th and 99th percentiles which are calculated based on the daily time series of both observed and modelled time series.

Next, the root mean square error (RMSE) is calculated by taking the root of the squared errors. The Spearman rank correlation

(hereafter referred to as Spearman) coefficient shows the correlation of the observed and modelled series, calculated based on

daily values. Finally, the Brier Skill Score (BSS) is calculated, which gives an indication of the improvement of the Brier Score

(an index to validate probability forecasts) compared to a background climatology in which each event has an equal occurrence15
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probability (Brier, 1950; Murphy, 1973). For the GCM downscalings, we use the same ranking method and scores, except

for the RMSE, Spearman rank correlation and BSS because the internal variability, inherent to individual simulations with a

coupled climate model, can not be predicted on multi-decal timescales, and can therefore not be compared to observations on

a day-by-day basis (Fischer et al., 2014; Meehl et al., 2014).

5

In addition to the performance metrics computed on the actual time series, the RCM performance is also evaluated based on

the bias in climatological diagnostics related to temperature and precipitation. To this extent, the average diurnal temperature

range (DTR [K]; the difference between the daily maximum and minimum temperature) is calculated for the whole year, for

the winter (December-January-February) and summer (June-July-August) season. Next, the number of wet days (defined as

days during the year for which precipitation is larger than 0.1 mm or larger than 1 mm) and the number of frost days (days10

with a minimum temperature below 0°C) are calculated. Furthermore, the monthly maximum 1-day precipitation (Rx1day

[mm day−1]) and the number of consecutive dry days (CDD [days]; the annual maximum number of days for which precipi-

tation is below 1 mm) and consecutive wet days (CWD [days]; the annual maximum number of days for which precipitation

is equal to or more than 1 mm) are included in the analysis. All indices are calculated for the simulated and observed time

series, and consequently the ranking is established based on the difference between the model and observed diagnostic. Next,15

the correlation between the different variables is evaluated by comparing them to the observed correlation. This is done both

on annual time scale and for the summer and winter seasonal averages, as correlations are expected to differ in sign and

magnitude between the two seasons (e.g. negative correlation between temperature and relative humidity in summer reflect-

ing heatwave conditions, and a positive correlation between wind speed and precipitation in winter reflecting storm conditions).

20

After choosing the best performing simulation based on the evaluation of both the reanalysis and GCM downscalings, the

climate change signals for this simulation are investigated by calculating changes in various climate change indices, based

on the Expert Team on Climate Change Detection and Indices (ETCCDI; see http://etccdi.pacificclimate.org/list_27_indices.

shtml) for the 5-year periods defined by the GMT anomalies relative to the reference period (1951-1955). These indices are

widely used for analyzing changes in extremes (e.g. Zhang et al., 2009; Orlowsky and Seneviratne, 2013; Sillmann et al.,25

2013). The temperature indices are (i) ∆T [°C], the mean daily temperature change, (ii) ∆TXx [°C], the difference in annual

maximum value of daily maximum temperature,(iii) ∆TNn [°C], the difference in annual minimum value of daily minimum

temperature, (iv) ∆ frost days, the difference in number of frost days (with a minimum temperature below 0°C), (v) ∆ summer

days, the difference in number of summer days (with the maximum temperature above 25°C), and finally (vi) ∆GSL [days],

the difference in growing season length, defined as the annual count between the first span of at least 6 days with a daily30

mean temperature higher than 5°C and the first span after July 1st of 6 days with a daily mean temperature lower than 5°C.

The precipitation indices are (i) ∆PRCPTOT [mm], the difference in annual accumulated precipitation (as simulated over

the five-year period), (ii) ∆Rx1day [mm] the difference in monthly maximum 1-day precipitation, (iii) ∆R10mm [days] the

difference in number of days per year with more than 10 mm precipitation, (iv) ∆CDD [days] the difference in the maximum

length of a dry spell (measured as the maximum number of consecutive days with less than 1 mm precipitation) and finally, (v)35
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∆CWD [days] the maximum length of a wet spell (measured as the maximum number of consecutive days with more than 1

mm precipitation).

3.4 Applying the new methodology for the UHasselt Ecotron experiment

The best performing RCM simulation is identified by elimination based on expert judgment based on the performance of the

two selection criteria. Next, we define the time windows for the different units along the gradient based on the 30-year aver-5

aged GMT anomaly of the driving GCM under RCP8.5 relative to 1951-1955 (Section 2, Fig. 1, table 2). Based on these time

windows, we extract the three-hourly data for all necessary variables from the simulation for the 11 km by 11 km grid cell

covering the location of the experiment.

4 Results10

4.1 Identification of the best performing model simulation

4.1.1 First criterion: skill in present-day climate

Overall, model skill strongly varies across RCMs (Fig. 4). While the annual temperature cycle is generally well represented

by all RCMs, biases may reach up to 2 degrees in individual months for some RCMs. The biases in precipitation are gen-

erally positive (up to factor 2.4) and vary across RCMs. Only CCLM4-8-17 simulates precipitation in the same range as the15

observed climatology (nearly no bias (100.22%) on annual mean precipitation amounts), while the other RCMs overestimate

the total precipitation amounts from 114% up to 182%. For relative humidity and surface wind speed, all RCMs generally

succeed in representing the seasonal cycle, but exhibit deviations in amplitude and absolute values (e.g. amplitude biases of

RCA4 (-37.8%), ALADIN53 (23.3%) and CCLM4-8-17 (+16.3%) for relative humidity, and annual mean biases for WRF331F

(+15.6%) and HIRHAM5 (-9.1%) for surface wind speed). Overall, these seasonal cycles indicate that for all simulations, the20

relative bias in precipitation is large compared to biases in other variables.

The rankings of the reanalysis downscalings for the four variables (Fig. 5) indicate that, overall, CCLM4-8-17, RACMO22E,

REMO2009 and HIRHAM5 are performing best. CCLM4-8-17 and RACMO22E show the highest relative skill for precipi-

tation, while REMO2009 and HIRHAM5 demonstrate high skill for temperature. CCLM4-8-17 is the best performing model25

based on the bias and total MAE metrics for temperature and precipitation, but is ranked in the mid range for the metrics

related to the shape of its temperature distribution (PSS and percentile MAE). This can be attributed to an overestimation of

the amplitude of the seasonal temperature cycle in this model (too cold in winters, too hot in summers; Fig. 4a, (Kotlarski

et al., 2014). For relative humidity and surface wind speed, RACMO22E generally demonstrates the highest skill. Considering

the climatological diagnostics (Fig. 7a), CCLM4-8-17 shows the highest relative skill for precipitation-related diagnostics (wet30

days, monthly maximum 1-day precipitation, length of dry and wet spells), while RACMO22E and RCA4 show higher relative
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Figure 4. Seasonal cycle of the reanalysis downscalings for mean temperature (a), precipitation (b), relative humidity (c) and mean surface

wind speed (d). (The RegCM4-2 and ALARO-0 simulations are not available for relative humidity and the ALADIN53 and ALARO-0

simulations are not available for surface wind speed.)

skill for the annual, winter and summer diurnal temperature range. While RCA4 is highly ranked for temperature-related diag-

nostics, it is one of the models with the lowest relative skill for precipitation-related diagnostics. The correlation ranking shows

a more scattered image, for the annual correlation as well as summer and winter correlations (see appendix Fig. A2). Overall,

as the reanalysis driven simulations with ALADIN53, RegCM4-2, WRF331F and ALARO-0 show the lowest skill compared

to the other RCMs, we take them out of consideration to serve as ecosystem forcing.5

Second, we evaluate the GCM downscalings for the period 1951-2005. The seasonal cycles of the temperature, precipitation,

relative humidity and surface wind speed show a similar pattern as the reanalysis downscalings, with again a strong wet bias

for precipitation in most models (see appendix Fig. A1). The rankings show a mixed pattern for the different variables: there

are no simulations which rank high for all considered variables ( Fig. 6). For precipitation, the simulations with CCLM4-8-17,10

RACMO22E have better relative skill compared to the other simulations, which is in line with the high ranking of these models

in the reanalysis downscalings. Furthermore, it is remarkable that the simulations which show a high skill for precipitation,

typically show lower skill for relative humidity and vice versa, e.g. CCLM4-8-17 driven by HadGEM2-ES (high ranking in

precipitation, lowest in relative humidity) and REMO2009 driven by MPI-ESM-LR (high ranking in relative humidity and

lower in precipitation). The three MPI-ESM-LR driven simulations appear to be better in reproducing the temperature clima-15

tology compared to the other simulations. For the climatological diagnostics, generally CCLM4-8-17 is scoring best for the
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Figure 5. Ranking of the reanalysis downscalings based on performance on temperature (a), precipitation (b), relative humidity (c) and

surface wind speed (d) compared to observations from Maastricht. The metrics shown are the Bias, Perkins Skill Score (PSS), Mean Absolute

Error (MAE) for the entire time series and the 1st, 10th, 90th and 99th percentiles, Root Mean Square Error (RMSE), Spearman rank

correlation (Spearman) and Brier Skill Score (BSS). Rankings are from 1-best to 9-worst. Grey colors indicate that the variable is not

available for the considered model.
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precipitation-related diagnostics, whereas simulations with RCA4 are ranked the best for DTR (annual, summer and winter).

Based on the ranking of the GCM downscalings, the following simulations are considered potential candidates to serve as

climate forcing: CCLM4-8-17 driven by CNRM-CM5, EC-EARTH and MPI-ESM-LR, HIRHAM5 driven by EC-EARTH

and HadGEM2-ES, and RACMO22E driven by HadGEM2-ES (Figs. 5,6 and 7). Since precipitation biases strongly differ5

among RCMs (table 1), and since precipitation is a critical variable for the ecosystem experiments (Van der Molen et al.,

2011; Vicca et al., 2014; Estiarte et al., 2016), we prioritize a minimum relative bias for precipitation over a lower bias for

temperature, relative humidity and surface wind speed. The precipitation biases for the considered simulations are +150 mm

year-1 for CCLM4-8-17 driven by CNRM-CM5, +8 mm year-1 for CCLM4-8-17 driven by EC-EARTH, +24 mm year-1 for

CCLM4-8-17 driven by MPI-ESM-LR, +323 mm year-1 for HIRHAM5 driven by EC-EARTH, 101 mm year-1 for HIRHAM510

driven by HadGEM2-ES and 35.51 mm year-1 for RACMO22E driven by HadGEM2-ES. Based on this, the CCLM4-8-17

EC-EARTH driven simulations has the best chance to be chosen as forcing, followed by the CCLM4-8-17 MPI-ESM-LR and

the RACMO22E HadGEM2-ES driven simulation.

4.1.2 Second criterion: Representativeness of multi-model mean in future projections15

To verify the second requirement we look at anomalies from the mean signal of the four variables for the future period of the

simulations under RCP 8.5. The EC-EARTH driven CCLM4-8-17 simulation is representative of the multi-model mean for

all four variables (Fig. 8), and even the median simulation for the mean temperature anomaly. For precipitation and relative

humidity however, the CCLM4-8-17 EC-EARTH simulation show decreasing anomalies after 2050. underestimates the multi-

model mean anomaly. The other selected simulations have a larger positive bias in precipitation for their GCM downscalings.20

A possible reason is that these simulations overestimate precipitation and simulate a more intensive hydrologic cycle, which

also implies stronger changes in the future.

The remaining five simulations from step 1 (CCLM4-8-17 driven by MPI-ESM-LR, HIRHAM5 and RACMO22E driven by

HadGEM2-ES) all systematically underestimate or overestimate other variables (Figs. A4,A5, A6, A7 and A8). For instance,25

the mean temperature anomaly of CCLM4-8-17 driven by MPI-ESM-LR simulation (1.46 °C) is lower than the 10th percentile

of all simulations (1.51 °C) and the temperature anomaly for CCLM4-8-17 driven by CNRM-CM5 is the 30th percentile (1.67

°C). HIRHAM5 driven by HadGEM2-ES overestimates relative humidity anomalies compared to the multi-model mean, with

a mean value (1.26 %) around the 80th percentile. Finally, the HadGEM2-ES driven RACMO22E simulation overestimates rel-

ative humidity and temperature anomalies, up to the 90th percentile for temperature. Overall, we conclude that the EC-EARTH30

driven CCLM4-8-17 simulation is the most appropriate candidate for serving as climate forcing for the UHasselt Ecotron ex-

periment.
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Table 1. Bias in annual precipitation (P bias) and rank based thereof (from 1-best to 18-worst) for the EURO-CORDEX GCM downscalings

for the period 1951-2005 over Maastricht-Airport.

RCM GCM P bias (mm/year) Rank

CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 145 8

CCLM4-8-17 ICHEC-EC-EARTH 8 1

CCLM4-8-17 MOHC-HadGEM2-ES -174 9

CCLM4-8-17 MPI-M-MPI-ESM-LR 24 2

ALADIN53 CNRM-CERFACS-CNRM-CM5 550 14

HIRHAM5 ICHEC-EC-EARTH 323 12

HIRHAM5 MOHC-HadGEM2-ES 101 6

HIRHAM5 NCC-NorESM1-M 571 16

WRF331F IPSL-IPSL-CM5A-MR 726 18

RACMO22E ICHEC-EC-EARTH 99 5

RACMO22E MOHC-HadGEM2-ES 36 3

REMO2009 MPI-M-MPI-ESM-LR 225 10

ALARO-0 CNRM-CERFACS-CNRM-CM5 560 15

RCA4 CNRM-CERFACS-CNRM-CM5 319 11

RCA4 ICHEC-EC-EARTH 386 13

RCA4 IPSL-IPSL-CM5A-MR 691 17

RCA4 MOHC-HadGEM2-ES 111 7

RCA4 MPI-M-MPI-ESM-LR 70 4
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Figure 6. Ranking of the GCM downscalings based on performance on temperature (a), precipitation (b), relative humidity (c) and surface

wind speed (d) compared to observations from Maastricht. The metrics showed are the bias, Perkins Skill Score (PSS), Mean Absolute Error

(MAE) for the total and 1st, 10th, 90th and 99th percentile. Rankings are from 1-best to 16, 17 or 18-worst for surface wind speed, relative

humidity, precipitation and temperature, respectively. Grey colors indicate that the variable is not available for the considered model.
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Figure 7. Ranking of the reanalysis (a) and GCM (b) downscalings for the historical period based on climatological diagnostics.

Diurnal temperature range (DTR) in summer (July-August) and winter (December-February), number of wet days defined as days with

precipitation > 0.1 mm and precipitation > 1 mm, number of frost days defined as days with mean temperature < 273.15 K, Monthly

maximum 1-day precipitation (Rx1day), consecutive dry days (CDD), the maximum length of a dry spell, and consecutive wet days (CWD),

the maximum length of a wet spell. Next to the diagnostic name its value as observed in Maastricht-Airport is shown. Rankings are from

1-best to 9 or 18-worst for the reanalysis and GCM downscalings, respectively.
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Figure 8. Anomalies for the CCLM4-8-17 EC-EARTH simulation following RCP 8.5 at the ecotron site for temperature (a), precipitation

(b), relative humidity (c) and surface wind speed (d). The reference period is 1977 to 2006, the anomalies of the CLM4-8-17 EC-EARTH

simulation are calculated compared to its own values in the reference period. In gray the envelope of all EURO-CORDEX RCP8.5 simulations

is showed.
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4.2 Characterization of the selected meteorological forcing

Based on the selection criteria we single out the EC-EARTH (ensemble member r12i1p1) driven CCLM4-8-17 simulation as

climate forcing for the UHasselt Ecotron experiment. The climatic conditions in the six units along the gradient represent an

increasing signal of climate change. The overall trend of the local temperature anomaly compared to the reference period (0°C)

increases monotonically with the corresponding GMT anomalies (Fig. 9a). No clear trends are visible for precipitation, relative5

humidity and surface wind speed anomalies, but very clear for the minimum and maximum temperature anomalies which are

both increasing (Fig. 9). The mean daily temperature is increasing at a similar rate compared to GMT anomaly, and minimum

and maximum temperature show a larger increase (table 2). None of the temperature indices show a linear increase, reflect-

ing the difference between global and local climatic conditions and the influence of decadal internal variability. The ecotron

unit representing a +4°C world is the most extreme case, with increases of TXx of +6.30 °C and an increase of TNn with10

+10.21°C (table 2). The number of frost days decreases with about -76.2, while the number of summer days with a temperature

above 25° C increases with about 36.6 days. The annual growing season length is extended with 80 days on average, leaving

only 59.4 days of the year not favourable for growth. The indices for precipitation show a less clear trend (table 2). The total

precipitation amount varies for the five units, without any trend and shows a substantial decadal variability in all seasons (see

Fig.9) . Rx1day has positive anomalies for the +1.5°C, +2°C and +3°C units (+0.35 mm day-1 +1.92 mm day-1 and +2.3415

mm day-1, respectively). These +2°C and +3°C units also knows an increase in R10mm (+3.2 and +3.6 days) compared to the

other units. Finally, there is no clear trend in CWD, but there is an increase in CDD up to +11.8 days for the +4°C unit. The

+1.5°C unit spans a drier time window, with an average CDD of +9.6 days. Figure 9 further shows a systematic decrease of

relative humidity during summer with increasing warming and a strong decadal variability of surface wind speed especially in

winter.20
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Figure 9. Annual cycles of the CCLM4-8-17 EC-EARTH ecotron unit forcing for the +1°C, +1.5°C, +2°C, +3°C and +4°C units com-

pared to the 0°C reference period. Curves were smoothed using Savitzky-Golay filtering (order = 2 frame = 301; Savitzky and Golay (1964)
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Figure 10. Annual anomalies per GMT anomaly for increasing time window lengths (ranging from a 1-year period to a 20-year

period) of the CCLM4-8-17 EC-EARTH simulation following RCP 8.5 for temperature indices: mean temperature anomaly (∆T ; a),

annual maximum temperature (∆TXx; b), annual minimum temperature (∆TNn; c); anomaly in annual number of summer days (d), frost

days (e) and the anomaly in growing season length (f). Note the different y-axis scales.
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Figure 11. Same as Fig. 10, but now for precipitation indices: the annual accumulated precipitation anomaly (∆PRCPTOT ; a), anomaly of

monthly maximum 1-day precipitation (∆Rx1day; b), anomaly of annual number of days with more than 10 mm precipitation (∆R10mm;

c), anomaly of annual maximum length of a dry spell (∆CDD; d) and anomaly of maximum length of a wet spell (∆CWD; e). Note the

different y-axis scales.
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Table 2. Extracted 5-year periods and temperature and precipitation indices based on ETCCDI for the CCLM4-8-17 EC-EARTH

simulation at the ecotron location. The 0°C column gives the absolute reference values. The periods are calculated based on the 30-year

averaged global mean temperature (GMT) anomaly calculated from EC-EARTH.

0 °C (ref value) +1 °C +1.5 °C +2 °C +3 °C +4 °C

1951 - 1955 2011 - 2015 2028 - 2032 2043 - 2047 2067 - 2071 2091 - 2095

∆T [°C] 8.17 +1.13 +1.14 +1.81 +3.15 +4.49

∆TXx [°C] 30.98 +0.82 +1.66 +1.34 +5.24 +6.30

∆TNn [°C] -12.73 +6.75 +3.34 +5.94 +8.27 +10.21

∆ Frost Days 103 -22 -14.8 -36.4 -59 -76.2

∆ Summer Days 11.4 +4 +12.2 +8.6 +26.2 +36.6

∆GSL [days] 225.6 +9.6 +20 +33.6 +45.8 +80

∆PRCPTOT [mm] 771.09 -81.32 -57.2 +25.12 -23.14 -136.05

∆Rx1day [mm] 14.38 -0.2 +0.35 +1.92 +2.34 +0.5

∆R10mm [days] 14.6 0 -1 +3.2 +3.6 -1.2

∆CDD [days] 17.2 +2.4 +9.6 +1.6 +7.2 +11.8

∆CWD [days] 9.6 -0.2 +1.2 +1.4 0 -1.8
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5 Discussion

The presented methodology exhibit some challenges, which are addressed in the following section.

We extract all climate variables from one grid cell of the RCM simulation to conserve a realistic, non smoothed signal.

However, the extracted time series of the grid cell can differ a lot between different models and time periods, reflecting the5

natural climate variability. GCMs and RCMs provide robust signals when aggregated over a larger spatial area (Seneviratne

et al., 2016; Fischer and Knutti, 2015). By taking the spatial mean, a more robust estimate of the mean climate is obtained,

including robust signals of climate change. This explains the difference in local climate change signals (Fig. 8, table 2) and

non-linearities compared to the GMT anomaly obtained by global averaging (Seneviratne et al., 2016). It is however necessary

to use actual time series from a single grid cell to capture e.g. the extreme precipitation event occurring in the considered grid10

cell, but not in the neighbouring grid cells. The grid-cell values also reflect strong interannual to decadal variability which is of

high relevance for a realistic forcing of the ecosystem.

Climate model simulations are often biased, which is mostly related to structural model deficiencies (Flato et al., 2013).

Applying bias adjustment is a standard way to deal with biases (Gudmundsson et al., 2012; Vanderkelen et al., 2018), but15

such methods face several challenges and need to be chosen carefully to not increase biases in the co-variability of variables

(Zscheischler et al., 2019). In the proposed method we therefore directly use the ’raw’ model output, as such preserving cli-

mate variability and the physically-consistent co-variance of the different meteorological variables. In this way, the Ecotron

experiment will study ecosystem responses to multi-variate drivers as compound controls. For instance, it will provide a unique

opportunity to study the impact from realistic compound events (Zscheischler et al., 2018), e.g. events similar to the drought-20

heat event of 2018, which caused massive heather die-off both in the field and in the ecotrons, forced by conditions like they

happened in the field.

The gradient for the different ecotron units does not follow a monotonic trend for some of the key indicators (Fig. 9 and

table 2), due to the high local and inter-annual natural climate variability of the climate system. This issue could be alleviated25

by running the experiment for a longer period. Comparing different time frames, all extracted based on 30-year averaged GMT

anomaly thresholds, shows that choosing longer time windows of 10 or 20 years leads to more clear monotonic trends (Figs.

10 and 11), which is more pronounced for temperature-derived indices than for precipitation-derived indices. For shorter time

windows of 1 to 2 years, the inter-annual and local natural variability leads to larger variations in trend for the different GMT

anomaly levels. Therefore, the experiment would have to run for a long period, but the experimental time frame is constrained30

by the experimental setup and possible renewal. As a compromise, here we use a 5-year experimental period. Ideally, the entire

gradient should be replicated several times with different climate trajectories to average out the natural climate variability. This

approach is however constrained by the high cost of the experimental set-up.
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In the different ecotron units, we assume that the controlled variables (CO2 and CH4 concentration, temperature, precipi-

tation, atmospheric humidity, wind, ...) are in equilibrium with the warming level, by extracting the 5-year period in which

the GMT anomaly in the driving GCM is reached. While this is a reasonable assumption, several components in the climate

system will not yet be in equilibrium with the GMT anomaly at the time of simulation (e.g. glaciers, ice sheets, sea level;

Zekollari et al. (2019), Church et al. (2013). Therefore, we cannot rule out that changes in these slower components may still5

affect the meteorological conditions until these reach equilibrium too. For instance, a delayed melting of sea ice could alter the

polar circulation and thereby affecting the mid-latitude circulation (Coumou et al., 2018), whereas ice sheet melting may affect

oceanic pole-ward heat transport (Caesar et al., 2018). However, to select the time windows, we follow the same approach

as the Transient Response to Cumulative Emissions (TRCE) as presented in the Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (IPCC 2013, 2013). This concept describes the warming per unit of carbon emissions, which10

largely follows a linear relationship independent of the emission scenario (Knutti and Rogelj, 2015).

Finally, the
:::
The

:
set-up of the UHasselt Ecotron experiment implies that the incoming shortwave radiation will follow current

weather conditions and not the weather conditions as prescribed by the RCM forcing. It is thus possible to have, for instance,

clear-sky conditions and associated high incoming shortwave radiation in the field, while in the ecotron unit a heavy precip-15

itation event is simulated consistent with the RCM forcing. In this example, the system receives more incoming shortwave

radiation than in the simulated climate. Likewise, the surface fluxes will be higher, but the resulting temperature and moisture

is corrected within the ecotron unit by the controlling devices to fully follow the boundary layer conditions as they are pre-

scribed by the RCM.

20

The UHasselt Ecotron experiment allows to investigate ecosystem responses to different levels of climate change. This allows

to study subtle changes in ecosystem responses such as impacts of decreased frost frequency on plant mortality (Berendse

et al., 1994) and the interactions between the occurrence of mild droughts and plant acclimation for longer droughts (?).

Although climate variables are prescribed, ecosystem-climate feedbacks originating from interactions between the biosphere

and atmosphere can by partially diagnosed. For instance, heatwave reinforcements by occurring droughts (Seneviratne et al.,25

2010; Zscheischler and Seneviratne, 2017) as well as soil moisture effects on precipitation events (Guillod et al., 2015) may be

assessed by calculating imbalances in the energy budget.

6 Conclusions

Ecosystem experiments investigating climate change responses require a holistic, realistic climate forcing, reflecting not only

the changes in the mean climate, but also representing physically consistent natural variability and
:::::::::
co-variance

:::::::
between

:::::::
climate30

::::::
drivers,

::::::
natural

:::::::::
variability,

:
changes in extreme events. To this extent, we presented a new methodology for generating climate

forcing
::::::
method

::::
for

:::::::
creating

:::::::
realistic

::::::
climate

:::::::
forcing

:::
for

:::::::::::
manipulation

:::::::::::
experiments using a single Regional Climate Model

(RCM) simulation, and subsequently applied it on the UHasselt Ecotron Experiment. To account for co-variances between
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variables and to fully capture the climate variability including extreme events, we selected an RCM simulation from the

EURO-CORDEX ensemble based on the following criteria: (i) high skill in the local present-day climate and (ii) representative

of local changes in the multi-model mean.

Based on a thorough evaluation of four key variables (temperature, precipitation, relative humidity and wind speed), we5

found that there is no single RCM-GCM combination outperforming all others for all considered variables and metrics. We

made a selection of the six best performing simulations as potential candidates and verified whether they represent the multi-

model mean for the considered variables. As precipitation is considered the most important variable in ecosystem experiments,

and as most GCM downscalings have large bias for this variable, we use the precipitation bias as the decisive factor to single

out the simulation which will serve as forcing: CCLM4-8-17 driven by EC-EARTH.10

The ecotron units
::::
units

::
of

:::
the

::::::::
UHasselt

:::::::
Ecotron

:::::::::
Experiment

:
are forced with climate conditions along a Global Mean Tem-

perature (GMT) anomaly gradient, representing conditions of a 0°C (historical), +1°C (present-day), +1.5°C, +2°C, +3°C and

+4°C warmer world. Five-year time windows corresponding to these warming levels are defined based on when the 30-year

averaged GMT anomaly of EC-EARTH, the driving GCM, crosses these temperature thresholds. Subsequently, the ecotron15

forcing is extracted from the 3-hourly RCM simulation according to the time windows.

The UHasselt Ecotron experiment allows to quantify and assess the ecosystem responses on changing climatic conditions,

thereby accounting for the
:::
Our

::::
new

:::::::::::
methodology

::::::::
provides

:::::::
realistic

:::::::
climate

:::::::
forcing,

:::::::::
accounting

:::
for

:
co-variances between

climatic variables and their change in variability, well representing possible compound events. By applying a gradient approach,20

thresholds and possible tipping points can be identified
::::
This

::
is

:::::::::
particularly

:::::::::
interesting

:::
for

:::::::::
controlled

:::::::::::
environment

::::::::
facilities,

::
as

::::
their

::::
setup

::::::
allows

::
to
::::::::::
realistically

::::::::
simulate

:::::
future

::::::
climate

:::
by

:::::::::
controlling

::::
and

:::::::::
measuring

:::::::
multiple

::::::::::
parameters.

:::::
Other

:::::::::
controlled

::::::::::
environment

::::::::
facilities

:::::
could

::::
also

::::::
benefit

:::::
from

:::
the

::::::::
proposed

:::::::::::
methodology,

:::::::::
depending

:::
on

:::
the

::::::
posed

:::::::
research

:::::::::
questions.

::::
The

:::::::
protocol

:::
for

::::::::
selecting

:
a
:::::::

suitable
::::::::

regional
::::::
climate

::::::::::
simulation

:::
and

:::::::::
extracting

::::
time

::::::
series

:::
for

:::
the

:::::::
needed

::::::::
variables

:::::
based

:::
on

::
the

:::::
time

:::::::
window

::::::
defined

:::
by

:
a
::::::
global

:::::
mean

::::::::::
temperature

:::::::::
threshold,

:::::::
provides

::
a

:::::::::
framework

:::
for

:::::::
different

:::::
types

:::
of

:::::::::::
manipulation25

::::::::::
experiments

::::::
aiming

::
to

:::::::::
investigate

:::::::::
ecosystem

::::::::
responses

::
to

:
a
:::::::
realistic

::::::
future

::::::
climate

:::::::
change,

::::
even

::::::
without

::
a
:::::::
gradient

::::::::
approach.

Code and data availability. Reference station data of the European Climate Assessment and Dataset is publicly available at https://www.ecad.eu/.

The greenhouse gas concentrations as prescribed by RCP 8.5 are available at https://tntcat.iiasa.ac.at/RcpDb/. Data from the Coordinated Re-

gional Climate Downscaling Experiment (CORDEX) Africa framework is available at http://cordex.org/data-access/esgf/. The scripts used

in the analysis are available on github: https://github.com/VUB-HYDR/2020_Vanderkelen_etal_BG.30
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Figure A1. Seasonal cycle of the GCM downscalings for mean temperature (a), precipitation (b), relative humidity (c) and mean surface

wind speed (d).
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Figure A2. Correlations for the reanalysis downscalings (1990-2008): Annual correlations (a), correlations in June, July and August (JJA;

b) and correlations in December, January and February (DJF; c). T stands for temperature, P for precipitation and RH for relative humidity.

The values in the y-axis labels are the observed correlations, and the other values correlations between the simulated variables. Rankings are

from 1-best to 9-worst.
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Figure A3. Correlations for the GCM downscalings (1951-2005): Annual correlations (a), correlations in June, July and August (JJA; b) and

correlations in December, January and February (DJF; c). T stands for temperature, P for precipitation and RH for relative humidity. The

values in the y-axis labels are the observed correlations, and the other values correlations between the simulated variables. Rankings are from

1-best to 9-worst.
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Figure A4. Same as Fig. 8, but now for CCLM4-8-17 CNRM-CM5.

Figure A5. Same as Fig. 8, but now for CCLM4-8-17 MPI-ESM-LR.
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Figure A6. Same as Fig. 8, but now for HIRHAM5 EC-EARTH.

Figure A7. Same as Fig. 8, but now for HIRHAM5 HadGEM2-ES.
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Figure A8. Same as Fig. 8, but now for RACMO22E HadGEM2-ES.
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Climate change is expected to have an impact on ecosystem 
communities and ecosystem functioning1. Crop yields2, car-
bon sequestration in soil3 and pollination rate4 are generally 

predicted to decrease, while land evapotranspiration5 and tree mor-
tality, especially in the boreal region, are expected to increase6. At 
the same time, the redistribution of species will increase opportuni-
ties for pest and pathogen emergence1.

Ecosystem functions are crucial for human well-being, and 
impacts on them will have important consequences for society7. 
However, refining the estimations of societal cost remains a chal-
lenge, partly because of large gaps in our knowledge of the ampli-
tude and dynamics of these responses that make it difficult to plan 
for climate adaptation. Specifically designed climate change experi-
ments are necessary to address these issues.

The goal of this Perspective is fourfold. First, while acknowledg-
ing the great advances achieved so far by experiments on ecosystem 

responses to climate change, we identify the challenges that many 
of them currently face: high complexity of climate change in terms 
of environmental variables, constraints in the number and ampli-
tude of climate treatment levels, and the limited scope with regard 
to responses and interactions covered. Second, to overcome these 
challenges, we propose an experimental design that can make use 
of improvements in computational and technological capabilities 
to capture more accurately the complexity of climate change in 
experiments; increase the number and range of climate treatment 
levels; and use an interdisciplinary approach to broaden the range 
of responses and interactions covered. Third, we outline an experi-
ment that applies these design recommendations to demonstrate 
how it can enhance our capacity to understand and predict ecosys-
tem responses to climate change. We describe the technical infra-
structure used in this experiment, the climate manipulations, and 
the analysis pathway all the way to the evaluation of the changes in 
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ecosystem services. Fourth, this design is placed within the larger 
context of climate change experiments, and we pinpoint its comple-
mentarity to other designs.

Challenges of climate change experiments
Climate change experiments face three types of challenge: limita-
tions in addressing the complexity of climate change in terms of 
control of environmental variables; constraints in the number and 
range of climate level treatments; and restrictions in scope.

Complexity of climate change. The complex manner in which 
global climate change will affect local weather presents challenges 
for research into ecosystem responses. To mimic a future climate, 
factors such as air temperature, atmospheric CO2 and precipita-
tion need to be manipulated in combination, and this can be both 
conceptually and technologically challenging8. Therefore, a high 
proportion of climate change experiments have focused on mea-
suring the effects of specific combinations of climate factors (such 
as warming plus drought), manipulated using technology that was 
available or affordable at that time (such as passive night-time 
warming and rain exclusion curtains)9. Although these experiments 
have led to many invaluable outcomes, such approaches cannot fully 
cover the complexity of climate projections or the covariance of 
meteorological variables. As such, they may, for example, under- or 
overestimate the effects on ecosystem functioning of changes in the 
frequencies of frosts and heatwaves, drought–heatwave reinforce-
ments10, interactions between soil moisture conditions and sub-
sequent precipitation occurrence11, increased frequencies of mild 
droughts (including in spring and autumn) and increased frequency 
of heavy precipitation events12. These climate alterations can have a 
strong influence on ecosystem functioning: for example, decreased 
frost frequency may have a considerable impact on plant mortal-
ity13, and more frequent mild droughts can trigger plant acclimation 
and hence resistance to drought stress14.

Many climate change experiments did not simulate an extreme 
event instead of a change in the mean for a given single factor; 
regimes of events instead of a single event for a given single factor; 
or complex coupling between multiple factors. This lack of refine-
ment in climate manipulations is likely to have compromised the 
reliability of the estimation of ecosystem responses. Some steps 
have already been taken to address this, by applying treatments of 
precipitation regime or heatwaves as observed in the field15,16 and 
by using translocation experiments, in which macrocosms are dis-
placed across geographical gradients to expose them to other cli-
mates that match possible future conditions at the location of origin 
(the ‘space for time’ approach)17. However, such an issue cannot be 
solved by modelling alone, because it requires testing of too many 
possible interactions between factors, as well as changing regimes 
of single factors.

Number and range of climate treatment levels. The cost of special-
ized infrastructure often limits the number of experimental units 
that scientists can set up within a given experiment. Hence, climate 
factors are often applied at only two levels: ambient, and future pro-
jections9. This provides useful estimations of the direction of eco-
system responses but does not provide insights into the shape of the 
responses to these factors or how far away current conditions are 
from potential tipping points to alternative stable states18. Moreover, 
ecosystem responses to multifactor drivers of global change are reg-
ulated by complex, nonlinear processes19, which makes modelling 
difficult with experimental data that come only from the two-level 
manipulation of environmental factors20.

Also stemming from high equipment costs is the narrow range 
of climate treatments. Most experiments have kept this range within 
conservative boundaries21, presumably because more extreme 
(although realistic) climate treatments may have a catastrophic 

impact on a studied ecosystem, potentially leading to the loss of 
expensively equipped replicates. The truncation of more extreme 
climate conditions has, in turn, led to a lack of evidence of their 
effects on ecosystem functioning.

Finally, low temporal resolution is an issue. A substantial pro-
portion of climate change experiments have only measured the 
ecosystem dynamics or trajectories annually or seasonally. Such 
experiments may fail to detect short-term dynamics of ecosystem 
responses22 or trajectories leading to a transition to an alternative 
stable state23,24. However, trends related to ecosystem dynamics 
often appear on decadal timescales, because of the time needed to 
alter biogeochemical cycles and the properties of soil organic mat-
ter. Therefore, the duration of the monitoring should be prioritized 
over its frequency if the set-up does not allow good coverage of both.

Integration among disciplines. The very nature of climate change 
and its impacts is discipline-spanning and therefore requires an 
integrated approach25. Although the number of interdisciplinary 
studies related to climate change is increasing steadily26, there are 
still many challenges. These include establishing common termi-
nology, concepts and metrics25,27,28, a consistently lower funding 
success for interdisciplinary research projects29 and a general lack of 
interdisciplinary research positions25. The barriers depend largely 
on the purpose, forms and extent of knowledge integration, and 
their combination30. Although climate change research developed 
from multidisciplinarity to interdisciplinarity, and further to trans-
disciplinarity31, most collaborative work in environmental research 
is small-scale rather than large-scale interdisciplinary work30. Small-
scale integration refers to collaborations between similar partners 
(for example, different natural science disciplines), whereas large-
scale integration crosses broader boundaries (such as between natu-
ral and social science)30. Currently, ecosystem services studies are 
mostly limited to either the natural science aspects or the socio-eco-
nomic science aspects and rarely cover the entire ecosystem services 
cascade32. This lack of large-scale knowledge integration results in 
errors along this cascade, both when moving from biodiversity and 
ecosystem functions to ecosystem services, and when moving from 
ecosystem services to societal values.

Recommendations
Here we present potential ways to address these challenges: improv-
ing computational and technological capabilities, increasing the 
number and range of climate treatment levels, and using an inter-
disciplinary approach.

Using climate model outputs and technology to refine treat-
ments. A first option to prescribe changes in weather dynamics is 
to alter one environmental parameter in line with future predictions 
(such as drought duration or heatwave intensity), while keeping 
other climatic variables identical between treatments using high-
frequency data of ambient weather conditions. The advantage of 
this method is that atmospheric conditions can be modified with 
high-quality field data instead of relying on less-precise regional cli-
mate model (RCM) outputs with lower spatial and temporal resolu-
tion. Moreover, if used to manipulate one climate factor at a time, 
such an approach aids a mechanistic understanding of ecosystem 
responses that can be further extrapolated through modelling. This 
design may combine two or more factors to provide information 
about interactions between climate parameters.

Incorporating the complexity of projected changes can also 
be achieved by using outputs of state-of-the-art climate models. 
Because of model biases, the appropriate model must be selected 
very carefully. Global climate models (GCMs) are useful tools for 
assessing climate variability and change on global to continental 
scales, typically with a spatial resolution of 100−250 km. To esti-
mate climate variability at more local scales, GCMs are dynamically 
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downscaled using RCMs, which resolve the climate at higher resolu-
tions (typically 10−50 km). The GCM/RCM combinations can then 
be chosen on the basis of how well models perform against local cli-
mate and weather characteristics in the studied ecosystem, and how 
representative future projections are of the multimodel mean. In 
this case, one can simulate an ecosystem response to a given climate 
set-up with higher accuracy. However, unlike with a full factorial 
experiment, it is not possible to attribute an ecosystem response to a 
given climate factor. Nevertheless, the model-output approach does 
aid the application of increasingly high warming levels by using 
a global mean temperature gradient (see section on the Hasselt 
University ecotron experiment below). It also addresses the issues 
of covarying variables, and it can be directly linked with a scenario 
from the Intergovernmental Panel on Climate Change, which would 
represent a major step towards bridging the gap between climate 
and ecosystem science.

To implement these options, however, it is necessary to control 
climate conditions and atmospheric composition with high fre-
quency and high accuracy. This can be achieved only with dedicated 
and advanced equipment. Ecotron infrastructures, which consist of 
a set of replicated experimental units in which environmental con-
ditions are tightly controlled and multiple ecosystem processes are 
automatically monitored, are well suited to fulfil these needs33. Such 
infrastructures have been historically limited to a handful across 
the world9 but are becoming increasingly widespread34–36. They also 
offer the opportunity to monitor ecosystem responses at sub-hourly 
frequencies, making it possible to discriminate between short- and 
long-term ecosystem responses.

Increasing the number and range of climate treatment levels. A 
gradient design, in which one or several climate factors are applied 
at increasing levels, can substantially increase the resolution of a 
climate change experiment. This is better suited to quantitatively 
describing the relationship between a response variable and a con-
tinuous climate factor than the more traditional approach of testing 
ambient versus a single future projection, and it allows the collection 
of quantitative data for ecological models37. It also makes it possible 
to detect nonlinearity, thresholds and tipping points, and to interpo-
late and extrapolate ecosystem responses18. Although such gradient 
designs should ideally be replicated, unreplicated regression designs 
can be a statistically powerful way of detecting response patterns 
to continuous and interacting environmental drivers, provided that 
the number of levels in the gradient is large enough37.

To ensure appraisal of the largest possible range of ecosystem 
responses, the gradient should be as long as possible, even extend-
ing beyond the most extreme conditions expected. Broader treat-
ment modalities can also inform us where a specific ecosystem 
response is situated relative to its upper or lower tolerance limit. 
In addition, the levels of the gradient may be spread nonlinearly 
to achieve the highest resolution in the range where the strongest 
ecosystem responses are expected.

Using an interdisciplinary approach to capture responses and 
interactions. We argue that an overarching objective of climate 
change experiments is to contribute to the understanding of the 
impacts that climate change has on nature and society, as well as to 
enlarge our potential for adaptation. However, as outlined above, 
the lack of large-scale knowledge integration can result in errors 
along the ecosystem services cascade, first in the step from biodi-
versity and ecosystem functions to ecosystem services, and second 
from ecosystem services to societal values.

Regarding the first step, thorough quantification of ecosystem 
services should be based on specific data on how the ecosystem 
is functioning. Many studies take land use as an indicator of eco-
system service delivery32, but land-use classification often can-
not capture differences between abiotic conditions and ecological  

processes that explain differences in service delivery38. Therefore, 
using land use as a simple indicator will result in inappropriate 
management decisions38.

Regarding the second step, economists need to be involved early 
in the process. There are many ways in which ecosystem function 
changes can affect the provision of ecosystem services to society39, 
but budget constraints necessitate the selection of those functions 
and services that are considered most important. A common selec-
tion approach is to consider the potential impact of ecosystem 
changes in terms of human welfare endpoints, often by means of 
monetary valuation. Ecologists and economists must interact across 
disciplinary boundaries if ecological experiments are intended 
to predict these endpoints within an ecosystem services context. 
Hence, economists need to be involved during the design of ecologi-
cal experiments to ensure that the ecosystem service changes most 
relevant for human welfare are measured and predicted.

We suggest that the desired large-scale integration can be 
achieved in several steps, organized in a top-down approach. The 
first step is to identify the key ecosystem services to value, based 
on welfare endpoints40. For most terrestrial ecosystems, this would 
imply assessing services from the following list: food and raw 
material production and quality, water supply and quality, carbon 
sequestration, depollution, erosion prevention, soil fertility, pest 
and pathogen control, pollination, maintenance of biodiversity and 
recreation. The second step consists of identifying the set of vari-
ables that best describes the ecosystem functions, processes and 
structures associated with these services. Based on the literature41, 
we suggest the following measures (see also Fig. 3): (1) vegetation 
variables (plant community structure, above/belowground biomass, 
litter quality); (2) atmospheric parameters (net ecosystem exchange, 
greenhouse gas emissions); (3) soil abiotic (pH, texture, electrical 
conductivity, macro- and micronutrient and pollutant content) and 
biotic (fauna and microbial community structure, mineralization 
rates, respiration and biomass) variables; and (4) all parameters that 
describe movements of water in the soil–plant–atmosphere con-
tinuum (precipitation, leaching, air relative humidity, evapotrans-
piration, water potential). Air and soil temperatures should also be 
monitored, as they determine biogeochemical reaction rates. Finally, 
ecosystem processes, structures and functions need to be translated 
into services and ultimately into societal value by expressing them 
in monetary and non-monetary terms. Measuring all of these vari-
ables, integrating them in an ecosystem service framework, and 
estimating the societal value of these services would require exper-
tise from plant ecologists and ecophysiologists, hydrologists, soil 
biogeochemists, animal ecologists, microbiologists, pedologists and 
climatologists, as well as modellers and environmental economists42.

The uHasselt Ecotron as an initial application
Here we describe the proposed interdisciplinary approach in the 
context of a climate change manipulation using the proposed 
Hasselt University ecotron experiment (UHasselt Ecotron).

Ecotron infrastructure. The UHasselt Ecotron facility consists 
of tightly controlled climate change manipulations of 12 macro-
cosms (soil–canopy columns of 2 m in diameter and 1.5 m depth), 
extracted without significant disruption of the soil structure from 
a dry heathland plot in the ‘Hoge Kempen’ National Park (50° 59′ 
02.1″ N, 5° 37′ 40.0″ E) in November 2016, and placed in 12 sepa-
rate ecotron units. The plot was managed for restoration 6 years 
before the sampling. The design of this infrastructure benefited 
from exchanges through the AnaEE (Analysis and Experimentation 
on Ecosystems)/ESFRI (European Strategy Forum on Research 
Infrastructure) project. Some of its features were inspired by the 
Macrocosms platform of the CNRS Montpellier Ecotron16. Each 
UHasselt Ecotron unit consists of three compartments: the dome, 
the lysimeter and the chamber. The shell-shaped dome is made 
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of material that is highly transparent to photosynthetically active 
radiation. Within the dome, wind and precipitation are generated 
and measured, and the concentration of greenhouse gases (CO2, 
N2O, CH4), photosynthetic photon flux density and difference 
between incoming and outgoing short- and long-wave radiation 
are measured. The lysimeter (which measures hydrological varia-
tions undergone by a body of soil under controlled conditions) 
contains the soil–canopy column, where soil-related parameters are 
controlled (including the vertical gradient of soil temperature and 
water tension) and measured, and is weighed every minute. Suction 
cups and soil sensors are installed following a triplicated five-depth 
design (Supplementary Fig. 1). The chamber is a gastight room that 
encloses the lysimeter, where air pressure, air temperature, relative 
humidity and CO2 concentration are controlled, and key variables 
measured in each unit (Supplementary Fig. 1). The ecotron is linked 
with a nearby Integrated Carbon Observation System (ICOS) eco-
system tower (https://www.icos-ri.eu/home), which provides real-
time data on local weather and soil conditions, with a frequency of 
at least once every 30 minutes.

Climate manipulations. A double-gradient approach is adopted: 
one approach (involving six of the ecotron units) measures the 
effect of an altered single factor (here, precipitation regime) while 
maintaining the natural variation of other abiotic factors; the other 
approach (six units) manipulates climate by jointly simulating all 
covarying parameters, representing increasingly intense climate 
change. The two approaches are described below. Because they sit 
isolated in an enclosed facility, it is possible that small initial dif-
ferences in the soil–canopy core in a given unit will increase with 
time to the point where the unit becomes statistically different from 
the others. Therefore, the units were first distributed within the two 
gradients using a cluster analysis to minimize the noise in ecosys-
tem responses measured during a test period (see Supplementary 
Fig. 2) due to small-scale soil heterogeneity. This clustering was 
used to distribute the units according to the pattern shown in Fig. 1.

Climate change projections for the northwest Europe region 
predict higher probability of both heavier precipitation and longer 
droughts, without a significant change in yearly precipitation43. The 
precipitation regime gradient uses real-time input from the eco-
system tower nearby, and only alters precipitation events: across 
the gradient, increasingly long periods (2, 6, 11, 23, 45 and 90 

days, based on local climate records from Maastricht44) in which 
precipitation is withheld (dry period) are followed by increasingly 
long periods in which precipitation is increased (wet period), with 
the duration of the two periods kept equal within a unit (Fig. 1). 
Precipitation events during the wet period are increased twofold 
and are adjusted at the end of the period to avoid altering the yearly 
precipitation amount.

To drive the second gradient of the UHasselt Ecotron experi-
ment, we use the climate variables produced by an RCM follow-
ing Representative Concentration Pathway 8.5, a high-emission 
scenario45. The gradient itself is based on global mean temperature 
anomalies. In the six units, climates corresponding to a +0 °C to  
+4 °C warmer world (projected for periods ranging from 1951−1955 
to 2080−2089) are simulated (Fig. 1, Supplementary Fig. 3), by 
extracting local climate conditions from the RCM for periods con-
sistent with these warming levels (Supplementary Fig. 3)46. This set-
up also aids comparison of the ‘present-day’ climate as simulated 
by the RCM (the +1 °C unit) with the unit driven by ICOS field 
observations. Moreover, the climate simulated in the +1.5 °C unit is 
reasonably consistent with the lower end of the long-term tempera-
ture goals set by the Paris Agreement47.

Integrating scientific disciplines for an interdisciplinary 
approach. As outlined in Recommendations, climate change exper-
iments require large-scale knowledge integration to enable more 
useful estimates of climate change effects on ecosystem functioning 
and on society. The UHasselt Ecotron facility makes it possible to 
extend the degree of interdisciplinarity by investigating the entire 
cascade from climate changes to ecosystem functions, ecosystem 
services and, finally, societal values. As such, the facility contrib-
utes towards large-scale knowledge integration on climate change. 
Consequently, the ecotron experiment brings together several dis-
ciplines in an interdisciplinary framework (Fig. 2). With input from 
other involved disciplines, climatologists design the protocols for 
climate manipulations and plant ecologists monitor plant commu-
nities in each ecotron unit. Numerical models for water movement 
within one unit are developed by mathematicians and hydrologists. 
Ecotron output on carbon cycling is fed into a soil-carbon model48, 
both for calibration and prediction purposes. Community mod-
ellers improve the power of this model by accounting for the soil 
community structure and species interactions (food web). The spe-
cific role of soil organisms in soil biogeochemistry is investigated 
by microbial and soil fauna ecologists. This is inferred from varia-
tion in responses of different functional groups such as nitrogen 
fixers, mycorrhizal fungi and different feeding guilds of soil fauna, 
combined with additional separate experiments, both in the field 
and in vitro. The outputs of the measurements above (see Fig. 3) 
allow experts in ecosystem ecology to quantify ecosystem ser-
vices. Environmental economists express the change in ecosystem 
services provided, using best-practice monetization approaches49. 
For example, water quality regulation is assessed as the prevented 
cost of intensified water treatment or use of other water resources. 
Measurements of vegetation, soil abiotic parameters and the water 
balance make it possible to quantify this benefit. Carbon seques-
tration is assessed as the prevented cost from increased global 
temperature, which can be quantified based on measurements of 
vegetation, air parameters and soil abiotic parameters. Maintenance 
of biodiversity and recreation can be assessed from measurements 
of vegetation.

We note that (monetary) estimates from an individual study 
often cannot be applied directly for generating policy recommenda-
tions50, especially for complex and spatially heterogeneous problems 
such as climate change impacts on ecosystems. However, meta-anal-
yses need to rely on data generated by primary studies that estimate 
the societal cost (or benefit) of changes in specific services provided 
by a specific ecosystem at specific location(s). In this regard, the 
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UHasselt Ecotron experiment can also provide valuable input data 
for dedicated policy-guiding analyses51.

Place of the design within the experimental landscape
A comprehensive understanding of ecosystem responses to climate 
change can only be achieved through a broad range of different, 
complementary experimental designs, all of which can be integrated 
through modelling. The experimental design suggested here exhib-
its a set of advantages and drawbacks that makes it suited to tackle 
specific needs within the landscape of climate change experiments.

Strengths and limitations of the design. The strengths of the sug-
gested design comprise (1) high-performance microclimate condi-
tioning, both above- and belowground, which makes it possible to 
approximate field conditions while maintaining control, (2) high-
frequency automated measurements of ecosystem functions and thus 
of treatment impact thereon, and (3) a large-scale interdisciplinary 
approach. The first two strengths are inherent to the ecotron research 
infrastructure, whereas the large-scale integration could theoretically 
be implemented in any climate change experiment. However, we 
consider ecotron infrastructures to be particularly suitable for such 
an interdisciplinary approach, because of the high-end climate con-
trol and the broad range of functions monitored at a high frequency.

With respect to (1), studies focusing on ecosystem functions, 
processes and structures that are highly sensitive to soil tempera-
ture and soil water potential would benefit most from being con-
ducted in ecotrons (for example, soil CO2 exchange and carbon 
sequestration, growth and activity of soil microbes and soil fauna), 
as the lysimeter component can generate very precise lower bound-
ary conditions and thus realistic vertical soil profiles of temperature 
and soil water status. With respect to (2), studies in which the high-
resolution temporal pattern of ecosystem functions and their cou-
pling is important would also benefit from ecotron infrastructures, 
as it is difficult to measure these parameters manually across long 

timescales. For example, simultaneous automated measurement of 
the carbon, water and mineral nutrient cycles makes it possible to 
disentangle their interactions in a range of climate conditions, and 
to feed control mechanisms into models.

A first set of constraints in the usefulness of the experimental 
design described here stems from the scale limitation of the experi-
mental units. Ecotrons can accommodate plants of only small stat-
ure (less than 2 m in height), which excludes forests and tall crops. 
For the same reason, the impact of megafauna such as grazers or top 
predators cannot be tested. Results obtained in macrocosms inte-
grate only small-scale (less than 1 m) variability, which leads to a 
lack of accuracy when scaling up to ecosystem.

Second, it may be difficult to financially support this type of 
experiment on the timescale of ecosystem responses (10 years or 
more)52. Ecosystem shifts to alternative stable states may remain 
undetected if the funding period is shorter than the period required 
for the shift. A partial solution for this would be to adopt a gradient 
design with increasingly late endpoints of projected climate change; 
this would allow for some extrapolation of ecosystem response in 
time (trajectories), which is possibly enough to estimate ranges of 
this response in the longer term.

Third, macrocosms in ecotron facilities are isolated from their 
ecosystem of origin. Hence, genetic input from propagules or pol-
lination probably differs significantly from the field, which can be 
an issue, especially in long-term experiments. This could be miti-
gated in two ways. The first is by replacing soil sampling cores in the 
lysimeter by cores taken from the same ecosystem. If microbes and 
soil fauna are sampled not more than twice a year, using soil cores of 
10 cm in diameter, this would account for disturbance of only 1.5% 
of total lysimeter surface annually. The second way is to use field 
traps to collect airborne propagules, which can be collected yearly 
and their contents spread on the enclosed surface of the soil–canopy 
columns. These solutions would at least ensure fresh genetic input 
into the system, even though this input may be different in the field 
in future conditions.

Finally, radiation in ecotron enclosures sometimes differs from 
that in the field. Artificial LED-lighting allows radiation to be con-
trolled precisely but is yet not able to reach the same radiation level 
as in the field, while ambient lighting can disrupt its synchroniza-
tion with temperature or precipitation. This may be an issue while 
simulating heatwaves and droughts, which have more sunshine 
hours than wet periods53.

Complementarity with other climate change experiments. The 
weaknesses of the proposed design (small spatial scale, potentially 
insufficient timescale, lack of interaction with the surrounding 
environment) can be mitigated further through the use of comple-
mentary experiments, which might even be partially integrated into 
the overarching approach. For example, owing to small spatial scale, 
the results might have limited validity as a predictor of ecosystem 
responses at other sites and in other habitats. Running experiments 
in parallel across multiple climates and locations with the same 
methodology, also known as ‘coordinated distributed experiments’ 
(CDEs), would be better suited for this purpose as these experi-
ments allow extrapolation and generalization of results while cor-
recting for effect size54. For example, such a design makes it possible 
to study plant response to nutrient addition and herbivore exclu-
sion55, and ecological responses to global change factors across 20 
eco-climate domains using a set of observatory sites56. In fact, a 
CDE using the UHasselt Ecotron design presented above and test-
ing the same climate gradient in different ecosystems across several 
ecotron facilities would combine the high generalization potential 
of CDEs with the precision of ecotrons.

A second area for potential complementarity and integration 
is translocation experiments. These experiments are well suited 
for long-term observations, owing to their relatively low funding 
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– leaching
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Less attractive

Ecosystem
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Fig. 2 | Impact pathway showing the reasoning behind the integration of 
scientific disciplines in the uHasselt Ecotron experiment. Ruderal species 
are fast-growing species colonizing disturbed environments. ‘Less tight’ 
indicates less internal recycling and more losses from the environment.  
C, carbon; GHG, greenhouse gas. The research hypotheses are given in 
italics and described in more detail in Supplementary Fig. 4.
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requirements and ease of implementation, and the soil macrocosms 
used in these experiments are still connected to their surrounding 
environment17. However, the functioning of the ecosystem is moni-
tored less comprehensively and frequently within these types of 
experiments, and the influence of different climate factors on eco-
system functioning cannot be disentangled. Consequently, running 
an ecotron and a translocation experiment in parallel on the same 
ecosystem with similar climate treatments would make it possible 
to estimate the effect size of the connection with the surrounding 
environment on ecosystem response to climate change. This infor-
mation could then, in turn, be used to correct the outputs of future 
ecotron experiments by accounting for the isolation factor.

Usefulness of suggested design for modelling ecosystem response. 
Although ecosystem models can be evaluated and calibrated using 
a range of data sources, including sites in different climate zones 
and long-term experiments without climate manipulation57, data 
from well-controlled, replicated and highly instrumented facilities 
such as those described here are invaluable for testing the process 
understanding encapsulated in the models, and for testing model 
behaviour against detailed, multiparameter observations36. Models 
that are tested and, where necessary, calibrated against such data can 
then be evaluated against data from other sites. If the outputs do not 
prove to be generalizable, the information derived from testing the 

model could be used to refine the experimental design and explain 
variation in the measured values. If the outputs prove generalizable, 
the models can be used across larger temporal and spatial scales to 
project potential impacts of future climate change58,59.

Conclusion
The effects of climate change on ecosystem functioning have far-
reaching consequences for society. Here we present a type of experi-
ment that is designed to estimate the amplitude and dynamics of 
ecosystem responses to climate change, and the consequences for 
ecosystem services. We foresee that the holistic approach outlined 
in this Perspective could yield more reliable, quantitative predic-
tions of terrestrial ecosystem response to climate change, and could 
improve knowledge on the value of ecosystem services and their 
links with ecosystem processes. We expect these results to be of 
interest for society beyond just scientists: they provide nature man-
agers with predictions on ecosystem responses to help them decide 
on ecosystem management practices in the mid- and long-term, 
and they will explain to policymakers and the wider public the soci-
etal impact of ecosystem changes induced by climate change at a 
more detailed, ecosystem-specific level.
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Fig. 3 | Measured variables in the uHasselt Ecotron experiment and links with ecosystem functions, services and values. Left-hand side of the table: 
ecosystem services. Right-hand side: variables measured in the ecotron experiment. Lower part of the table: illustration of how the societal value of four of 
the ecosystems services will be assessed.
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