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Response to Anonymous referee 1: 
 
The manuscript has greatly improved since the last iteration. Thanks for considering all the reviewers’ 
comments. I think it is now easily understandable and should be of great interest to the readers of 
Biogeosciences it definitely is to me. I only have some minor comments at this point. 
Line 50: Remove one “an” 
Thank you. 
 
Line 83 and 88: I think it should be Cr in the formula in line 88. Please also check again for consistent 
use throughout the manuscript. 
Thank you.  
 
Line 116-117: I couldn’t find these files on the BG homepage 
These data are in OSF rather than the supplement hosted by the Biogeosciences journal website. We have 
added a sentence clarifying this is where to find them. 
 
Line 179: I think confirming is a rather strong word here. I suggest to change this headline to: “The role 
of Ct as an additional niche dimension” 
 
Thank you. This modification has been made. 
 
Line 323: Correct the brackets here. 
Thank you. 
 
Line 324: remove “should address” 
Thank you. 
 
Line 331: remove “to” 
Thank you. 
 
Figure 1 looks really nice now. 
 
Thank you. 
 
 
Response to Anonymous Referee #2’s Comments: 
 
1. In abstract, the statement on CUE definition, specifically regarding assimilation as biomass rather 
than loss as CO2 is not accurate. not only CO2 but enzymes is not accounted for in CUE. 
 
We have amended the abstract to reflect that enzyme production decreases CUE.  
 
2. In methods section, the equation of CUE is calculation should correct the first term Ci to Cr. 



 

 
Thank you. The suggested correction has been made. 
 
3. In the conlusion part, the atuhros stated that 'DEMENT favors the prediction that litter will to become 
a net atmospheric C source in a warmer world', which i also believe not accurate and spectulative. we 
simply do not know the balance between inputs into and outputs from the litter pool, and the litter 
dynamics simulated by DEMENT does not fully reflect such a balance. 
 
The reviewer’s comment is correct. Our intention with this statement was to clarify that our research does 
not definitively indicate that warming will cause leaf litter to respire more, but that our results support 
other empirical and modeling studies which indicate that this is a possibility. We have added in additional 
text (L333) to clarify this. 
 
Response to anonymous referee #3: 
 
I think that enzymes should be included in the sum of organic matter produced by microbes; this omission 
reduces CUE as enzyme production increases (lines 55-56, elsewhere) although I suspect it’s a modest 
difference, was this contribution quantified? 
 
We think there are two ideas being addressed by the reviewer’s comment. The first is that extracellular 
enzyme C should be considered part of microbial biomass, and the second is that our estimates of CUE 
are too low at high rates of enzyme production because enzyme C should be included as a part of 
microbial biomass but isn’t. The first idea is debatable on both technical and theoretical grounds. On 
technical grounds, very few empirical measurements of CUE attribute extracellular enzyme carbon to 
cells because doing so requires a number of very specific assumptions to be made about the fate of carbon 
in soil (such as in the method where CUE is calculated as the ratio of glucose-C respired to (glucose C 
added minus glucose C extracted at the end)).  On theoretical grounds, enzymes are modeled as distinct 
from biomass in the model once produced; although they stay in the grid cell where they are produced 
until they “die”, the rate of enzyme turnover/ “death” is independent of microbial biomass. To address the 
second point, the CUE numbers we present include the respiration costs of producing enzymes, but the C 
which enters into the enzymes themselves is not accounted for. That C is, however, subtracted from 
biomass carbon in keeping with the arguments to the first idea addressed above. Therefore, the omission 
of enzymes from the microbial biomass pool does not cause underestimation of CUE in the model 
because CUE is not calculated on actual MBC produced. Only a very small fraction of the carbon taken 
up (<1%) is parameterized to become enzyme C, so this direct cost to microbial biomass C is minimal 
compared to the respiration costs. Please let us know if we mis-understood the comment though. 
 
Minor quibble: line 137, higher LOM and MBC do not necessarily lead to higher ratios of MBC:LOM 
unless the higher MBC values were relatively higher than the LOM values. 
 
Thank you. The language has been modified to “LOM and MBC content were both generally higher than 
observed in environmental samples, AND CORRESPONDED TO MBC:LOM ratios at the high end of 
ranges observed in the field” 



 

 
Beginning on line 281, it was interesting that simulations appeared to be C-limited despite the high C:N 
content of litter. This is worth a short explanation, of course the baseline CUE (0.38) is relatively low and 
possibly more typical of SOM than litter. Any thoughts? 
 
CUE is not calculated based on actual MBC produced per actual CO2 respired, but rather is used to 
determine how much of the C taken up can be allocated to biomass, enzymes, and transporters (ie it is a 
factor which acts instantaneously at the moment carbon is taken up). As such, CUE is unaffected by the 
stoichiometry of the substrate. The apparent C limitation is therefore driven by the relatively low CUE, 
not litter stoichiometry. We have added in a note about this on L283. 
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Abstract. Climate change has the potential to destabilize the Earth’s massive terrestrial carbon (C) stocks, but the degree to

which models project this destabilization to occur depends on the kinds and complexities of microbial processes they simulate.

Of particular note is carbon use efficiency (CUE), which determines the fraction of C processed by microbes that is anabolized

into microbial biomass rather than being lost to the atmosphere and soil as carbon dioxide and extracellular products. The5

temperature sensitivity of CUE is often modeled as an intrinsically fixed (homogeneous) property of the community, which

contrasts with empirical data and has unknown impacts on projected changes to the soil C cycle under global warming. We

used the DEMENT model—which simulates taxon-level litter decomposition dynamics—to explore the effects of introducing

organism-level heterogeneity into the CUE response to temperature for decomposition of leaf litter under 5oC of warming. We

found that allowing CUE temperature response to differ between taxa facilitated increased loss of litter C, unless fungal taxa10

were specifically restricted to decreasing CUE with temperature. Litter C loss was exacerbated by variable and elevated CUE

at higher temperature, which effectively lowered costs for extracellular enzyme production. Together these results implicate a

role for diversity of taxon-level CUE responses in driving the fate of litter C in a warmer world within DEMENT, which should

be explored within the framework of additional model structures and validated with empirical studies.
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1 Introduction15

Soil heterotrophs are central to the cycling and recycling of the 60 gigatons of organic carbon (C) that plants deposit onto and

into the ground each year. How well these inputs are converted into relatively stable soil organic matter depends on temperature,

moisture, chemical composition, and soil mineralogy, which interact to influence microbial physiology (Manzoni et al., 2012;

Kallenbach et al., 2016; Oldfield et al., 2018). Predictions regarding how soil C stocks will respond to climate change are,

in turn, highly sensitive to how carbon use efficiency (CUE)—or the fraction of C taken up by a cell and incorporated into20

biomass rather than being respired—-changes with temperature (Allison et al., 2010; Wieder et al., 2013; Allison, 2014; Li

et al., 2014; Sistla et al., 2014; Tang and Riley, 2015). As such, quantifying microbial decomposer CUE and its responsiveness

to environmental change has been subject to intensive study (Devêvre and Horwáth, 2000; Frey et al., 2013; Blagodatskaya

et al., 2014; Lee and Schmidt, 2014; Spohn et al., 2016a, b; Öquist et al., 2017; Malik et al., 2018; Geyer et al., 2019; Malik

et al., 2019; Zheng et al., 2019).25

Soil microbial communities show considerable differences in how their metabolisms respond to elevated temperatures, with

their CUE increasing (Öquist et al., 2017; Zheng et al., 2019), decreasing (Devêvre and Horwáth, 2000; Frey et al., 2013;

Öquist et al., 2017; Li et al., 2018; Zheng et al., 2019) or remaining unaffected by warming (Dijkstra et al., 2011b; Öquist

et al., 2017; Walker et al., 2018; Zheng et al., 2019). However, models of the soil C cycle generally assume either no change

(Allison et al., 2010; Li et al., 2014; Wieder et al., 2014) or a fixed and homogeneous decrease in CUE with temperature30

(Allison et al., 2010; Wieder et al., 2013; Allison, 2014; Li et al., 2014). When CUE is allowed to directly increase with

temperature, this temperature response is homogeneous across taxa (Frey et al., 2013; Ye et al., 2019). In other instances, CUE

may be modeled as fixed within taxa, such that dynamic changes in community-level CUE with warming are the result of shifts

in the dominant group or groups of organisms present as a function of their dietary preferences and/or C: nitrogen (N) ratio

(Wieder et al., 2013; Sistla et al., 2014), rather than any inherent differences in the temperature sensitivity of the constituent35

community members. This may occur, for instance, if large C-rich fungi show less-positive responses to warming than small,

N-rich bacteria do (Pietikäinen et al., 2005; DeAngelis et al., 2015). Therefore, models have thus far insufficiently accounted for

how the temperature sensitivity of central metabolism may differ between microbes, such that intrinsic differences in efficiency

between taxa (“heterogeneity") above and beyond temperature-driven differences in substrate supply may also drive microbial

community trajectories.40

Heterogeneity in the temperature sensitivity of growth efficiency across taxa could be driven by differences in the rate-

limiting step of central metabolic pathways (Dijkstra et al., 2011a), or in how well the proteins responsible for the extracellular

processing and uptake of environmental nutrients are able to maintain activity as temperature increases (Allison et al., 2018;

Alster et al., 2018). For instance, there is some evidence that bacteria benefit more than fungi from an increase in temperature,

as their growth rate has been observed to decrease less rapidly with temperature above its optimum than a fungal community45

(Pietikäinen et al., 2005). The respiration rate for the two groups could not be isolated in that study, and so direct differential

effects of temperature on CUE could not be parsed out. However, the CUE has been observed to differ in how sensitive it is to

nutrient limitation for bacteria and fungi, such that differences in the temperature sensitivity of CUE between the two groups
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may play out as a consequence of changing nutrient demands (Keiblinger et al., 2010; Sinsabaugh et al., 2016). Therefore, the

temperature range over which an organism can maintain efficient growth is one important dimension of its niche (Cavicchioli,50

2016) and may differ between taxa.

The temperature response of CUE may also differ between taxa because of varying investments in extracellular enzyme

production. Extracellular enzyme production can impose substantial metabolic costs on the cell (Allison, 2014; Malik et al.,

2019), as C which could otherwise be allocated to growing the cell must instead be spent producing amino acids and ATP to

synthesize the enzymes (Kaleta et al., 2013; Kafri et al., 2016). Thus if taxa need to produce more extracellular enzymes in55

order to support rapid growth at higher temperature, then their CUE could decrease with temperature. However, some taxa

may have mechanisms to adjust central metabolism so growth remains efficient at elevated temperatures, as hinted by a weak

positive correlation between the Q10 of CUE and cellulolytic potential in soil communities (Zheng et al., 2019). Nonetheless,

the most probable relationship between CUE temperature response and extracellular investment is currently unknown.

We explored whether interactions between the temperature sensitivity of intracellular (i.e. CUE) and extracellular (i.e. litter60

decomposing enzyme) metabolic processes of cells can explain why CUE is observed to increase with temperature in some

soils, and decrease in others. We used the litter decomposition model DEMENT (Allison, 2012) to evaluate four hypotheses:

1) allowing temperature response of CUE to differ (be heterogeneous) between taxa increases uncertainty in projected litter

decomposition dynamics because more diverse phenotypic combinations exist for competitive selection (i.e. species sorting) to

act upon; 2) this heterogeneity favors a community with higher CUE, in turn leading to higher microbial biomass and greater65

litter C loss with warming; 3) forcing the temperature response of CUE to increase with the number of enzymes an organism

produces causes greater litter C loss than when the two factors vary independently, because increasing CUE with temperature

offsets the increased costs against CUE associated with copious enzyme production; and 4) the magnitude of litter C loss with

warming is greater when the CUE of the C-rich fungal functional group increases with temperature than if only the N-rich

bacterial functional group does due to higher relative C demand of the former.70

2 Methods

2.1 DEMENT background and model design

DEMENT (Allison, 2012) is a litter decomposition model designed to simulate the loss of leaf C through time. The principal

advancement of DEMENT over its predecessors is that it is both microbially- and spatially-explicit. The model is able to

simulate inter- and intraspecific microbial interactions, with a primary focus on the tradeoff between the ability to take up75

and digest substrates, and the metabolic costs of creating and maintaining the machinery required to do so. Because these

tradeoffs are both explicit and variable across taxa, DEMENT is an ideal model for evaluating how the physiology and ecology

of microbes affects C stocks in a changing world. Furthermore, DEMENT allows for consideration of how heterogeneous

responses across taxa (rather than using some homogeneous cross-taxon mean) can facilitate soil C responses to climate

change. Full details about the setup and execution of DEMENT are available elsewhere (Allison, 2012, 2014; Allison and80

Goulden, 2017); here we describe the controls on CUE in the model which are relevant to our study.
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Intrinsic CUE—the maximum CUE an organism could attain under ideal temperature and stoichiometry—is calculated for

each taxon as a function of the baseline CUE at 15 oC (Cr), and the number of enzymes (Ne) and uptake transporters (Nu)

the taxon can produce. In turn, how much CUE is decreased due to enzyme and transporter production depends on the cost

per enzyme (Ce) and cost per transporter (Cu) (Table 1). The C used in enzyme synthesis is considered a loss from the cell,85

and is therefore not reported as microbial biomass C. The intrinsic CUE of each taxon is adjusted for temperature, decreasing

by 0.016oC-1 by default (i.e. Ct = -0.016oC-1), consistent with a global meta-analysis (Qiao et al., 2019). Therefore, CUE is

calculated as CUE = C r +(temperature− 288) ∗C t +Ce ∗N e +Cu ∗N u, where temperature is in Kelvin.

2.2 Modifications to DEMENT

DEMENT v0.7.2 was downloaded from GitHib (https://github.com/stevenallison/DEMENT), and modified as follows. Cr was90

adjusted downwards from its original published value of 0.58 to 0.38 at 15oC; this not only improved model stability (Table

S1), but is also consistent with a comparative modeling study completed by Li et al. (2014), several 18O-H2O based CUE

measurements (Spohn et al., 2016a, b; Geyer et al., 2019), and for the structural components of litter modeled by the soil C

model MIMICS (Wieder et al., 2015a). By default, the temperature sensitivity of CUE (Ct) is fixed to take on the same value (ie

is homogeneous) for all taxa; therefore we modified the model so Ct could vary around the mean in different ways (Figure 1).95

In the first set of scenarios, Ct varied independent of the taxonomic identity or number of enzymes a taxon produced (Figure 1B

and hypotheses 1 and 2). In the second scenario, Ct was limited to either increasing (Figure 1C) or decreasing (Figure 1D) as a

function of the number of enzymes a given taxon had (hypothesis 3). In the third, bacteria were constrained to have a positive

and fungi a negative Ct (Figure 1E), fungi a positive and bacteria a negative Ct (Figure 1F), both bacteria and fungi to have a

positive Ct (Figure 1G), or both have a negative Ct (Figure 1H; hypothesis 4). In all instances, Ct was selected at random from100

a uniform distribution bounded by +/- 0.022oC-1 at the upper and/or lower limits (scenarios B-H, Fig. 1), or assigned a fixed

value equivalent to the cross-taxon mean (scenario A, Fig. 1; scenario Ai, Aii Fig. S1). These values are within the range of

temperature sensitivities observed for both bacterial cultures in the lab and for field communities (Figure 2), as well as values

inferred based on modeling CUE against mean annual temperature on a global basis (Sinsabaugh et al., 2017; Ye et al., 2019).

It was necessary to force the temperature sensitivity of CUE to take on a zero-centered uniform distribution so that simulation105

outputs in which extracellular enzyme counts were linked to the Ct could be compared to those scenarios where they were not

linked, without changing the distribution of extracellular enzyme counts present in the community.

2.3 Running DEMENT

DEMENT was run on the Massachusetts Green High Performance Computing Cluster for 6,000 model days using 59 different

independent starting seeds and a 100x100 grid size. “Control" runs were completed at 15oC (equivalent to April to November110

mean soil temperature for a northern mid-latitude temperate deciduous forest (Boose, 2001)), while “heated" runs were com-

pleted at 20oC (Allison, 2014). The first 1000 days of each resultant output file was excluded from the analysis because of rapid

shifts in the microbial community during this time. In addition, outputs were filtered to exclude any seeds where the substrate

pool was two or more times greater at the end of the model run than the median during the preceding 5000 days, indicating
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unrealistic, unconstrained litter accumulation. R version 3.4.0 was used for all runs and analyses (R Core Team, 2016). A full115

set of parameters and the model used to run all these simulations can be found in OSF.

2.4 Analysis of outputs

The model outputs of interest were litter organic matter (LOM), microbial biomass carbon (MBC), respiration rate, rich-

ness and diversity of the surviving community, median number of enzymes per taxon for taxa alive during the 5000-day

simulation, fungal:bacterial biomass ratio for surviving taxa, and reference and simulation temperature CUE. Two diversity120

metrics — richness and Shannon’s H — were calculated using median daily values for the microbial community over the

5000 days of simulation and the vegan package (Oksanen et al., 2017). Biomass-weighted CUE was reported for communities

at 15oC (“reference temperature CUE") or at the simulation temperature (“simulation temperature CUE"), calculated using

the formula
∑6000

d=1000

∑100
i=1Cr +Ce ∗Nei +Cu ∗Nui +Cti ∗ (temperature− 288) ∗ biomassi/

∑ntaxa
i=1 biomassi, where

1000 and 6000 are the days of the simulation the outputs were examined over; 100 is the number of taxa the model was125

initiated with; Nei is the number of enzyme genes taxon i has; and Nui is the number of uptake transporter genes the taxon has;

and temperature is the simulation temperature in oK.

In order to determine whether warming and model parameterization affected model outputs, we used mixed effect models

with starting seed as a random effect and warming or simulation scenario as fixed effects using lmer in lme4 v 1.1-17 (Bates

et al., 2015). Data were visually assessed for normality and homoskedasticity using qqplots and residual plots following log-130

transformation. Significantly different pairwise differences were subsequently identified using emmeans v.1.3.0 (Lenth et al.,

2019), with a stringent Bonferoni-corrected p-value cutoff of P < 0.0001. Warming effect sizes are plotted as the natural log

ratio of model outputs in heated:control scenarios. Figures were generated using ggplot2 (Wickham, 2009), and asterisks and

letters denoting significant effects of experimental factors were added in Inkscape (Inkscape’sContributors, 2003–2019).

3 Results and discussion135

LOM and MBC content were both generally higher than observed in environmental samples, and corresponded to MBC:LOM

ratios at the high end of ranges observed in the field (2-11% vs. 1-5% (Santos et al., 2012; Xu et al., 2013)). LOM and MBC

values were within the range previously observed for simulations using DEMENT with daily litter inputs (Allison et al., 2014),

but greater than those with just a single litter pulse (Allison, 2012; Allison and Goulden, 2017; Evans et al., 2017), indicating

that these high biomass and litter C values can be attributed to these substrate inputs.140

3.1 Intertaxon variability

To evaluate the effect of intertaxon CUE variablity on LOM stocks, we ran the model at 20oC (“heated") under two scenarios,

and then compared the results to runs at 15oC (“control"). In the first “homogeneous" scenario all taxa had an identical Ct, equal

to 0oC-1 (Figure 1A). In the second “heterogeneous" scenario, Ct was assigned from a random uniform distribution bounded
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by -0.022 and 0.022oC-1 (Figure 1B). Therefore, the mean Ct of the heterogeneous scenario was 0oC-1, matching that of the145

homogeneous scenario.

Introducing intertaxon differences in CUE temperature response caused the characteristics of the initial microbial community

(starting seed) to have a greater impact on litter decomposition than when all taxa had an identical temperature response

(Table 2). This contrasts with the dampening effect proposed to explain instability in small-scale microbially-explicit models

compared to their macroscale counterparts (Wieder et al., 2015b). Specifically, Wieder et. al. proposed integrating diverse150

physiology into C-cycling models should allow different microbial subpopulations to follow distinct trajectories which average

out to a more consistent community-level mean and greater certainty in model projections. However, we found that the additive

effect of increased physiological diversity was to increase, rather than decrease, uncertainty in the present simulations. The

median-standardized interquartile ranges of both MBC (0.25 vs. 0.16) and LOM (0.28 vs. 0.14) increased with the introduction

of a variable Ct. Through species sorting, this heterogeneously-responding microbial community became less diverse than155

both the homogeneous and control communities (Table 2). The communities characterized by heterogeneous Ct maintained a

higher median microbial biomass—driving two and a half times more LOM loss—than the communities characterized by a

homogeneous Ct (Figure 3). Intriguingly, neither litter (r=0.16, P = 0.23) nor microbial biomass pool sizes (r=-0.44, P< 0.001)

positively correlated with extracellular enzyme investment; thus, a (non-significant) 28% increase in the median enzyme count

is unlikely to have driven the increased decomposition under the heterogeneous scenario. Instead, increased decomposition and160

increased biomass are likely the consequence of elevated CUE under warming conditions. Nonetheless, the non-linearity of the

model limits the degree to which causal relationships can be drawn between changes in litter C and the microbial parameters.

The homogeneous community scenario tested here is akin to the fixed “no adaptation of CUE" scenario reported in a number

of other studies (Allison et al., 2010; Li et al., 2014; Sistla et al., 2014), because the cross-taxon mean used is zero temperature

response. However, the effect of inter-taxon differences in Ct ("heterogeneous") is less studied. Our results of reduced LOM loss165

in the absence of acclimation are consistent with two previous studies, but contrast with others. In an ecosystem-level model

parameterized for an arctic tundra system, Sistla et al. (2014) found that greater soil organic matter (SOM) loss occurred with

warming when the microbial community was able to dynamically acclimate its CN ratio (and in turn efficiency), than when the

CUE was effectively fixed. Likewise, Allison (2014) found greater potential for increased LOM accumulation under warming

when there was greater absolute variation in CUE across taxa (i.e. Cr from 0.18 to 0.58 rather than 0.38 to 0.58) (Allison,170

2014), although Ct was always consistent across taxa in these simulations. On the other hand, a comparison of models where

taxon-level differences in CUE or Ct are not possible (i.e. Ct is intrinsically homogeneous at the community level) showed that

soil organic matter loss increases when organisms do not adapt (Li et al., 2014). Similarly, Wieder et al. found that greater

SOM loss occurred if the CUE was directly insensitive to temperature than when Ct was negative (Wieder et al., 2014). These

microbially-explicit decomposition models vary in if and how they link CUE to microbial traits, and so our findings support175

the concept that nuances in how different components of CUE respond to warming is an important control on the fate of litter

C (Hagerty et al., 2018).
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3.2 The role of Ct as an additional niche dimension

We allowed for CUE to increase with temperature for a subset of taxa in a way that most previous modeling efforts have

not, and so it is possible that our results deviate from those of prior studies not because of variation in Ct, but rather because180

our simulations explore novel (positive Ct) parameter space. To facilitate comparison with previous decomposition modeling

studies, we ran DEMENT simulations to test the effect of Ct being homogeneous vs. heterogeneous when CUE was either

always positive (homogeneous Ct = 0.011 oC-1 (Figure S1Ai); heterogeneous Ct = 0 to 0.022 oC-1 (Figure S1G)) or always

negative (homogeneous Ct = -0.011 oC-1 (Figure S1Aii); heterogeneous Ct = -0.022 to 0 oC-1 (Figure S1H)). In contrast to

when Ct was allowed to vary over the whole spectrum of values, introducing heterogeneity in CUE did not increase inter-185

run uncertainty in LOM or MBC pools (Table S2). We also found that less LOM accumulated when CUE showed a variable

decrease with warming than a fixed one (Figure S2), which could be attributed to a reduction in MBC. By contrast, the

homogeneous zero-centered and homogeneous positive Ct scenarios, and the heterogeneous zero-centered and heterogeneous

positive Ct, behaved more similarly to one-another in that warming decreased LOM while increasing MBC and CUE to a

greater degree in the heterogeneous than homogeneous scenarios (Table S2). This finding reinforces the idea that if warming190

favors decomposer taxa capable of maintaining efficient growth, then soil C loss will be accelerated. Nonetheless, the strongly

selected-for positive CUE response is rarely observed in complex soil communities. This indicates that additional tradeoffs

with CUE temperature response are likely at play when CUE is either unaffected or decreases with temperature, but that these

tradeoffs are missing in the formulation of DEMENT used in this scenario. One such tradeoff possible to explore within the

framework of DEMENT is the allocation of resources to extracellular enzyme activity.195

3.3 Linkages between CUE temperature response and extracellular enzyme allocation

Microbes depend upon extracellular enzymes to break down substrates in the environment into digestible pieces, and enzyme

activities can be, like CUE, responsive to temperature (Wallenstein et al., 2010; German et al., 2012; Allison et al., 2018). Soil

extracellular enzymes often are active in-situ at temperatures much below their apparent activity optima (German et al., 2012;

Pold et al., 2017; Alster et al., 2018). Therefore, warming is assumed to enable them to process substrates at a higher rate in200

DEMENT (Allison, 2012), increasing the supply of growth substrates to microbes. However, the affinity of enzymes for their

substrates may also decrease as temperature increases (German et al., 2012; Allison et al., 2018), as is assumed in DEMENT. If

this is the case, then unless enzyme Vmax increases faster with temperature than Km, additional resources must be diverted from

growth to enzyme production to maintain microbial growth substrate supply rate. Therefore, taxa may differentially-allocate

resources to enzymes and so demonstrate a relationship between the temperature sensitivity of CUE and the number of enzymes205

they produce.

We evaluated whether litter decomposition changed its trajectory when the organisms with the greatest genomic potential to

break the litter down (i.e. enzyme counts) also showed the most- or least-positive growth efficiency response to warming. In the

“increase" scenario, we simulated a positive relationship between temperature sensitivity of CUE and extracellular enzymes,

where Ct increased linearly from -0.022oC-1 for organisms with no extracellular enzyme production potential to 0.022oC-1 for210
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those organisms capable of producing the model maximum of 40 enzymes (Figure 1C). In the “decrease" scenario, we simulated

a negative relationship between temperature sensitivity of CUE and extracellular enzymes, where the opposite relationship was

imposed with Ct decreasing with enzyme counts (Figure 1D). These scenarios were then compared to the “heterogeneous"

scenario (aka “no relation", as described above), where Ct varied across the same range, but independently of the number of

enzymes an organism could produce. Therefore, the starting distribution of Ct and enzymes per taxon was identical across215

scenarios, and only their relationship with one-another changed.

More taxa survived to the end of the simulation when warming was applied under the “increase" scenario than either the

“decrease" or “no relation" scenario (median of 13 versus 7 and 8, respectively, median absolute deviation = 2.97 in all cases).

Under the ”increase" scenario, taxa had 70% more enzymes each than the “no relation" scenario, and more than three times

as much as the “decrease" scenario (Table 2). This relationship caused the CUE of surviving taxa to be 20-37% lower at 15oC220

for the “increase" scenario compared to the others, but this deficit was diminished at 20oC. As a result, the “increase" scenario

led to higher respiration and a greater LOM loss under warming than under the ”decrease" scenario, despite an overall smaller

microbial biomass pool (Figure 4).

How the relationship between Ct and extracellular enzymes drives favorable trait combinations in DEMENT can also be

observed in Figure 5. Surviving taxa retained a median enzyme count of at least 30 and a realized CUE temperature response225

of no less than 0.0158oC-1 under the “increasing" scenario (ρ=0.64, P < 0.001), but there was no relationship between real-

ized CUE temperature response and enzyme production under either the “decrease" or “no relation" scenarios. The selection

for community capable of maintaining high CUE at high temperatures was much weaker when it was associated with re-

duced enzyme production. When there was no relationship between Ct and extracellular enzyme production costs, however,

communities were able to attain a high realized CUE temperature response over a much wider range of median enzyme costs.230

These findings indicate that response traits—which determine how an organism reacts to changes in temperature (e.g. CUE

temperature response)—and effect traits—which determine how an organism alters its environment (e.g. litter decomposi-

tion potential)—interact to determine the fate of organic C within DEMENT. However, contrary to our hypothesis, adjusting

DEMENT to allow for this tradeoff did not substantially alter how community-level CUE responds to temperature. The obser-

vation that LOM is reduced further when enzyme production is effectively cheaper contrasts with earlier work with DEMENT235

(Allison, 2014) showing smaller litter C pools under both ambient and elevated temperature when enzymes and transporters

were cheaper to produce. However, our results are consistent in that microbial biomass was lower when enzyme costs are

high, and that the microbial community was able to maintain a higher CUE under warming no matter the enzyme costs. The

mechanisms underlying these phenomenological similarities differ, however, due to differences in how Ct was parameterized

in the two sets of model simulations. Specifically, although microbes were able to attain high CUE at elevated temperatures240

in our simulations by balancing the benefits of elevated CUE at higher temperatures with the costs of enzyme production

against CUE, CUE always decreased with temperature in earlier work with DEMENT (Allison, 2014). Furthermore, enzyme

production costs varied both with and independently of enzyme counts in previous DEMENT simulations (Allison, 2014).

Within the framework of DEMENT, increased CUE is likely needed to offset the costs of extracellular enzyme production

that allow taxa to remain competitive at elevated temperatures, However, there is a paucity of empirical evidence regarding245
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the hypothesized correlations between temperature sensitivity of CUE and enzyme investment in soil systems. By examining

correlations between the number of enzymes an organism can produce and its CUE temperature response at the end of the

DEMENT model run, we see that there is likely to be either no or a positive correlation between the two variables, rather than

a negative one (Figure 6). Limited data from bacterial isolates grown in the lab also support this, whereby CUE temperature

response is either positively correlated or uncorrelated with the number of enzymes produced (Pold et al., in prep). Furthermore,250

although the mechanisms underlying the isolate response remain unclear, it is consistent with the scenario of Ct and enzyme

counts being positively correlated. Specifically, we found isolates with lower CUE at 15oC (more extracellular enzymes in

DEMENT) were more likely to have a positive CUE temperature response than those with a higher CUE (fewer enzymes in

DEMENT). Together, these insights support a synergism between CUE temperature response and enzyme production, rather

than a tradeoff within the model. Because our DEMENT simulations indicate that selection for organisms characterized by255

high, positive CUE temperature responses with warming can alter both the directionality and extent of projected C loss, we

propose it is important for other models to explore how possible increases—rather than just decreases—in Ct affect terrestrial

C projections.

3.4 Ecological relevance of microbial metabolic diversity—bacteria vs. fungi

Across scenarios, fungi generally dominated the microbial biomass C pool (Table 2), as is typical for litter decomposition260

(Chapman et al. (2013), and references therein). This pattern occurred despite generally lower biomass-weighted CUE for

surviving fungal taxa, and preferential loss of fungal taxa across most scenarios (Table 2). The lower CUE for surviving

fungi was not driven by higher enzyme costs than for bacteria, as median biomass-weighed enzyme costs were not statistically

different (pairwise t-test P> 0.4) and differed by less than one enzyme for the two groups. To test whether modeled differences

in fungal vs. bacterial cell sizes and stoichiometry were driving this pattern, we tested how forcing differences in Ct in the two265

groups would impact the decomposition rate.

DEMENT was run with CUE simulated to respond to temperature: 1) negatively for all fungi and positively for all bacteria

(F-B+; Figure 1E); 2) negatively for all bacteria and positively for all fungi (F+B-; Figure 1F); 3) positively for all bacterial and

fungal taxa (F+B+; Figure 1G) or 4) negatively for all bacterial and fungal taxa (F-B-; Figure 1F). Minimum and maximum

Ct were set to -0.022 oC and 0.022 oC, respectively. All four scenarios were tested in order to isolate the effect of changing270

taxonomic domain-Ct relationships from simply changing Ct or taxonomic domain independently.

Litter C accumulated at higher rates with warming when fungal Ct was negative, regardless of the bacterial Ct (Figure 7,

blue, orange). This is consistent with the observation that the CUE of surviving fungi was lower at the simulation temperature

in seven out of the eleven scenarios. Because fungi have higher CNP ratios than bacteria (and thus higher C demands per

unit biomass), we predicted that if fungi have a negative CUE temperature response, they would be weaker competitors at275

higher temperature than bacterial taxa, reducing their C demand and mitigating the warming effect on SOC stocks. While this

contrasts with the premise that fungi should have a higher CUE (Six et al., 2006) due to their higher CN ratio (Zak et al., 1996),

it is consistent with a growing body of literature indicating that substrate quality—rather than the F:B ratio correlated with

it—is the underlying driver of differences in CUE between soils (Thiet et al., 2006; Frey et al., 2013; Malik et al., 2018; Soares
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and Rousk, 2019). Despite the low nutrient content of the daily inputs to the model (92:0.26:0.02 C:N:P), microbes did not280

show evidence for nutrient limitation as biomass CN and CP ratios were lower than are typical for soil communities (Xu et al.,

2013) (4.1 and 36.7 vs. 7.6 and 42.4, respectively). Thus C was limiting, driven by a low Cr which is unresponsive to substrate

stoichiometry in the model; this could have further disfavored the highly C-demanding fungi when their Ct was negative. The

lower CUE (and increased sensitivity to warming) for fungi compared to bacteria under a given scenario was also not driven

by increased metabolic costs for enzyme production in fungi, as median biomass-weighted enzyme counts were statistically285

indistinguishable from those in bacteria.

The litter C pool decreased when fungal CUE increased with temperature (Figure 7), correlating with a smaller microbial

biomass pool when bacterial CUE also decreased with temperature. By contrast, the LOM and MBC responses to warming

were similar when only the Ct of bacteria was changed, indicating that it is the fungal warming response which really drives

changes in litter decomposition in DEMENT. This result is interesting because no a priori differences in decomposition or290

uptake potential were imposed on the two groups, and fungal and bacterial richness was initially equivalent. Nonetheless,

differences in C and nutrient translocation abilities, and in cell size, stoichiometry and turnover rates still defined the two

groups. Warming decreased the enzyme costs when fungal Ct was positive but bacterial Ct was negative, and decreased them

under the opposing scenario, as evidenced by an increase in Cr in the former and decrease in the latter. Nonetheless, as long as

both bacterial and fungal CUE did not both decrease their CUE with temperature, community level CUE remained higher at295

20oC than it was at 15oC.

Empirical evidence for high-level differences in the temperature sensitivity of CUE in bacteria and fungi is currently mixed,

but indicate CUE temperature response for fungi is unlikely to be more positive than that for bacteria. Zheng et al. (2019)

did not find a correlation between the lipid-based fungal:bacterial ratio and Q10 of CUE over a range of soils. However, we

(Pold et al., in prep) and our colleagues (Eric Morrison, personal comment) have found that fungi tend to show a stronger300

negative CUE response with warming than do bacteria when examining them in isolation in the lab. This is consistent with the

observation that fungal CUE decreases more strongly with warming than bacterial CUE does when Ct is restricted to negative

values (Figure 7). It is also consistent with the premise that bacterial growth benefits more from elevated temperature than does

fungal growth in some soils (Pietikäinen et al., 2005). Greater empirical insight into the taxonomic drivers of the temperature

sensitivity of CUE will assist with constraining the parameterization and projections of microbially-explicit decomposition305

models such as DEMENT.

3.5 Comparison to empirical warming studies

Litter decomposition is typically observed to accelerate under warming (Lu et al., 2013). However, both the chemical compo-

sition of the litter and the identity of the living plant community at the site of decomposition are important for the magnitude of

this response (Cornelissen et al., 2007; Ward et al., 2015). Consistent with these empirical studies—but inconsistent with a pre-310

vious publication using DEMENT (Allison, 2014)—we found that litter decomposition was accelerated by warming in seven

of ten scenarios. The range of losses and gains of litter C we observed with warming (-62% (scenario C) to +42% (scenario

Ai)) approximates the -65% to +36% change observed in field experiments (Lu et al., 2013), with the upper limit only being
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exceeded when Ct is constrained to negative values. Likewise, values for simulated litter respiration response (-5 to +6%) were

within a narrow range compared to those observed for soil respiration in the field (-48 to +178%), and responses for microbial315

biomass C were also within the observed range (-25 to +58% vs -47 to +86%) (Lu et al., 2013). Our modeled responses to

warming thus suggest that one possible explanation for differences in terrestrial C pool responses to warming may be diverse

temperature sensitivities of underlying decomposer communities. Nonetheless, a number of additional factors must be taken

into consideration when interpreting our results in the context of global climate change, including soil mineral-mediated mod-

ulation of substrate supply (Schimel and Schaeffer, 2012; Coward et al., 2018), plant-microbe feedbacks (Melillo et al., 2011;320

Sistla et al., 2014; Suseela and Tharayil, 2018), and temporal variation in temperature. Furthermore, we modeled CUE as a

somewhat inflexible property of individual taxa, rather than as the emergent property of allocation to different, biochemically-

important physiological processes that it is (Hagerty et al., 2018). These are important features to pursue in future iterations of

the model.

4 Conclusions325

Our results indicate that accounting for heterogeneous temperature response increases uncertainty regarding future litter C

stocks, but only when Ct does not differ from zero on average. However, by combining simulations, empirical studies, and

literature searches, we can conclude that microbes with high enzyme costs are likely to have larger increases in intrinsic CUE

with temperature; that taxa can sort on a CUE temperature response axis; and that fungi are more likely to increase CUE

with warming than bacteria. The simulations meeting each or all of these criteria lead to loss of litter C under warming, and330

so DEMENT supports the observation made by other studies that litter will become a net atmospheric C source in a warmer

world (Song et al., 2019). Nonetheless, our results also indicate that litter C stocks may change heterogeneously with warming

because of diversity in how decomposers’ CUE responds to temperature. We encourage models functioning on larger scales

to explore the effect of including heterogeneity in the temperature response of CUE in order to determine the robustness of

our conclusions to other model structures. However, ultimately increased integration of the growing body of literature on the335

temperature sensitivity of CUE must be explored for root causes of heterogeneity in temperature sensitivity of CUE in taxa

under in situ conditions.

Code and data availability. The data and modified version of DEMENT used to generate it are available at OSF (https://osf.io/cwep9/?view_

only=de0e6ba7b7da493f96531f398ca62c2c) under DOI 10.17605/OSF.IO/CWEP9
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Figure 1. Schematic of experimental design used in this study, where CUE temperature response (Ct) varies as a function of the number

of enzymes and/or taxonomic affiliation of organisms. Graphs show the effects of having homogeneous (A) or heterogeneous (B) Ct across

taxa; the effect of forcing a positive (“increase";C) or negative (“decrease";D) correlation between the number of enzymes and Ct; bacteria

showing a positive Ct and fungi a negative Ct (E); fungi showing an positive Ct and bacteria a negative Ct (F); or fungi and bacteria both

having positive (G) or negative (H) Ct. Each point represents the combination of traits one of ten taxa in the model might have, although

100 taxa were actually used in the simulations. Horizontal dashed lines indicate a Ct of zero, and clusters of points above and below this line

denote when CUE tends to increase or decrease with increasing temperature. The letters F and B in the x-axis of individual graphs denote

sensitivities for fungi and bacteria, respectively. The trait values for different mock taxa may not be visible if the values for the traits on the

two axes are identical. Figure prepared in BioRender
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Figure 2. Density plot of observed CUE temperature response for 23 soil bacterial isolates grown between 15 and 25oC on four different

liquid media types in the lab (n=160 datapoints, grey), and for soil microbial communities grown with various different substrates and

temperatures based on a literature search (n=141 datapoints, brown). Vertical lines are placed at 0 (no change in CUE with temperature) as

well as the +/-0.022 oC-1 upper and lower limits used in the present study. Contributing datapoints are primarily derived from Qiao et al.

(2019) and can be found in the "Ct_literatureValues.txt" file in OSF.
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Figure 3. Effect of warming 5oC on C stocks and flows in simulations, reported as the natural log of the ratio of values in heated compared

to control conditions. CUE temperature response either varied between taxa (“heterogeneous") or took on the fixed cross-sample mean

temperature response of zero. Values above the zero line indicate warming increased the value, and values below indicate a decrease with

warming. Boxplots denote 1st to 3rd quartiles with the median. Asterisks denote significant warming effect based on a paired Wilcoxon test

at Bonferoni-corrected P < 0.0001. Letters denote warmed scenarios which are significantly different from one-another by the same criteria.

“Reference temperature CUE" denotes the ratio of CUE for the surviving community at 15oC in warmed to the ratio of CUE for the surviving

community at 15ocontrol scenarios, while “Simulation temperature CUE" denotes the ratio of CUE in heated scenarios run at 20oC to control

scenarios run at 15oC.
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Figure 4. Effect of warming 5oC on C stocks and flows in simulations, reported as the natural log of the ratio of values in heated compared

to control conditions. CUE temperature response was forced to increase, decrease, or remain independent of the number of enzymes a

taxon could produce. Values above the zero line indicate warming increased the value, and values below indicate a decrease with warming.

Boxplots denote 1st to 3rd quartiles with the median. Asterisks denote significant warming effect at P < 0.0001 after correcting for multiple

comparisons using the Bonferoni method. Letters denote warmed scenarios which are significantly different from one-another by the same

criteria. “Reference temperature CUE" denotes the ratio of CUE for the surviving community at 15oC in warmed to the ratio of CUE for the

surviving community at 15ocontrol scenarios, while “Simulation temperature CUE" denotes the ratio of CUE in heated scenarios run at 20oC

to control scenarios run at 15oC.
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Figure 7. Effect of 5oC of warming on components of the litter C cycle when bacteria and fungi show dissimilar (F-B+ (orange), F+B-

(yellow)) or similar (F+B+ (red), F-B- (blue)) CUE responses to temperature. Values above the zero line indicate warming increased the

value (log ratio positive), and values below indicate a decrease with warming. Boxplots denote 1st to 3rd quartiles with the median. Asterisks

denote significant warming effect at P < 0.0001 after correcting for multiple comparisons using the Bonferoni method. Letters denote

warmed scenarios which are significantly different from one-another by the same criteria. “Reference temperature CUE" denotes the ratio

of CUE for the surviving community at 15oC in warmed to the ratio of CUE for the surviving community at 15ocontrol scenarios, while

“Simulation temperature CUE" denotes the ratio of CUE in heated scenarios run at 20oC to control scenarios run at 15oC. Values for

“simulation temperature CUE" are also shown for bacteria and fungi separately.
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Table 1. CUE-related model parameters mentioned in this paper. The complete set of parameters can be found in the params.txt file in the

supplement.

Parameter Value Units Description Reference

Cr 0.38 dimensionless CUE at 15oC for a taxon with no transporters or enzymes this paper

Ce -0.0025 enzyme-1 change in CUE per extracellular enzyme gene Allison, 2014

Cu -0.0071 transporter-1 change in CUE per transporter gene Allison, 2014

Ct
-0.022 to

0.022
oC-1 change in CUE per degree change in temperature from 15oC this paper
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