## Supplementary

## TEXT S1. Additional equations of photosynthesis and respiration

 $A_{net}$  was modelled as:

$$A_{net} = min(A_c, A_l) - R_{day} \quad (S1)$$

where  $A_c$  is the gross photosynthetic rate limited by carboxylation rate, while  $A_J$  is the photosynthetic rate limited by electron transport rate;  $R_{day}$  is the light respiration rate in absence of photorespiration (µmol m<sup>-2</sup> s<sup>-1</sup>).

 $A_c$  is calculated as a function of maximum carboxylation capacity ( $V_{cmax}$ ; µmol m<sup>-2</sup> s<sup>-1</sup>) and intercellular CO<sub>2</sub> concentration ( $C_i$ ):

$$A_c = V_{cmax} \frac{C_i - \Gamma^*}{K_c (1 + \frac{O_i}{K_0}) + C_i} \quad (S2)$$

where  $K_c$  and  $K_o$  are the Michaelis–Menten coefficients of Rubisco activity for CO<sub>2</sub> and O<sub>2</sub>, respectively (µmol mol<sup>-1</sup> and mmol mol<sup>-1</sup>, respectively), and  $\Gamma^*$  is the CO<sub>2</sub> compensation point in the absence of mitochondrial respiration (µmol mol<sup>-1</sup>);  $O_i$  is intercellular O<sub>2</sub> concentration (mmol mol<sup>-1</sup>). The  $K_c$ ,  $K_o$ , and  $\Gamma^*$  are temperature dependent following Bernacchi et al. (2001).

 $A_J$  is calculated according to:

$$A_J = \frac{J}{4} \frac{C_i - \Gamma^*}{C_i + \Gamma^*} \quad (S3)$$

where J is the electron transport rate calculated by solving:

$$\theta_J \cdot J^2 - \left(a_{abs} \cdot \alpha_J \cdot Q_L + J_{max}\right) \cdot J + a_{abs} \cdot \alpha_J \cdot Q_L \cdot J_{max} = 0 \quad (S4)$$

where  $\theta_J$  describes the curvature electron transport rate (unitless);  $\alpha_J$  is the quantum yield (µmol µmol<sup>-1</sup>);  $Q_L$  is the PAR incident on the leaf;  $a_{abs}$  is the absorptance of PAR (1 minus leaf reflectance and transmittance; fraction);  $J_{max}$  is the maximum electron transport rate at the given temperature (µmol m<sup>-2</sup> s<sup>-1</sup>). Both  $J_{max}$  and  $V_{cmax}$  depend on leaf temperature and are modelled using a peaked Arrhenius function:

$$k_T = k_{25} \cdot \exp(E_a \frac{T_k - 298.15}{298.15 \cdot R_{gas} \cdot T_k}) \cdot (1 + \frac{\exp(298.15 \cdot \Delta S - H_d)}{298.15 \cdot R_{gas}}) / (1 + \frac{\exp(T_k \cdot \Delta S - H_d)}{T_k \cdot R_{gas}})$$
(S5)

where  $k_t$  is the value of  $J_{max}$  or  $V_{cmax}$  at a given temperature (µmol m<sup>-2</sup> s<sup>-1</sup>);  $k_{25}$  is the value of  $J_{max}$  or  $V_{cmax}$  at 25 °C; µmol m<sup>-2</sup> s<sup>-1</sup>);  $T_k$  is the leaf temperature in Kelvin;  $E_a$  is the activation energy which describes the rate of increase of  $k_t$  to temperature (J mol<sup>-1</sup>);  $H_d$  is the deactivation energy which describe the rate of decrease of  $k_t$  to temperature (J mol<sup>-1</sup>);  $\Delta S$  is known as the entropy factor (J mol<sup>-1</sup> K<sup>-1</sup>);  $R_{gas}$  is the gas constant (J mol<sup>-1</sup> K<sup>-1</sup>).

The model also assumes  $R_{day}$  to be a fixed fraction (0.7) of  $R_{dark}$  (dark respiration rate; µmol m<sup>-2</sup> s<sup>-1</sup>), and uses an Arrhenius temperature response function:

$$R_{dark} = R_{dark.25} \cdot \exp(kT \cdot (T_{leaf} - 25)) \quad (S6)$$

where  $k_T$  is the sensitivity of  $R_{dark}$  to temperature (°C<sup>-1</sup>); and  $T_{leaf}$  is the leaf temperature (°C). MAESPA calculates the leaf temperature that closes the energy balance iteratively (Medlyn et al., 2007).

The light response parameters  $\alpha_J$  and  $\theta_J$  of *J* were fitted to light response curves measured *in situ*. We assumed that  $\alpha_J$  is related to quantum yield of photosynthesis ( $\alpha$ ):

$$\alpha_J = 4 \cdot \alpha \cdot \frac{C_i + 2 \cdot \Gamma^*}{C_i - \Gamma^*} \quad (S7)$$

A linear model was fitted to the measured photosynthesis fluxes and absorbed PAR from the initial part of the light response curves (< 100 µmol m<sup>-2</sup> s<sup>-1</sup>) and the fitted slope was assumed to be  $\alpha$ . This slope was converted to  $\alpha_J$  using Eqn. S7. The curvature of  $J(\theta_J)$  was assumed to be the same as photosynthesis and thus could be estimated by fitting the following quadratic relationship:

$$A_{net} = \frac{a_{abs} \cdot \alpha \cdot Q_L + A_{max} - \sqrt{(a_{abs} \cdot \alpha \cdot Q_L + A_{max})^2 - 4 \cdot a_{abs} \cdot \alpha \cdot Q_L \cdot A_{max} \cdot \theta_J}}{2 \cdot \theta_J} + R_{day} \quad (S8)$$

where  $A_{\text{max}}$  is the maximum of A,  $Q_L$  is the incident PAR and  $a_{abs}$  is the absorptance, which was calculated to be 0.825, by subtracting the fractions of reflectance (0.082) and transmittance (0.093). Eqn. S8 was fitted to the full light response curves using non-linear least squared method to obtain the values of  $A_{\text{max}}$  and  $\theta_J$ , assuming  $\alpha$  from above. Since the fitting is not significantly different in the ambient and elevated data, this study used one  $\theta_J$  value fitted to all the data.







Figure S2. Distribution of average annual photosynthesis limited by Rubisco activity and RuBP-regeneration in bins of absorbed PAR (25  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>), as calculated by MAESPA for all rings during 2013. This figure is produced with a  $\theta_J$  of 0.85 and a J:V ratio of 2, which represents the assumptions inmost models.