

- 1 Low sensitivity of gross primary production to elevated CO₂ in a mature Eucalypt woodland
- 2 Authors: Jinyan Yang¹, Belinda E. Medlyn¹, Martin G. De Kauwe^{2,3}, Remko A. Duursma¹, Mingkai Jiang¹,
- **3** Dushan Kumarathunge¹, Kristine Y. Crous¹, Teresa E. Gimeno^{4,5}, Agnieszka Wujeska-Klause¹, David S.
- 4 Ellsworth¹
- 5
- 6 Affiliation: ¹ Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- 7 ² ARC Centre of Excellence for Climate Extremes, Sydney, NSW 2052, Australia
- 8 ³ Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- 9 ⁴ Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
- 10 ⁵ IKERBASQUE, Basque Foundation for Science, 48008, Bilbao, Spain
- 11 Correspondence to: Jinyan Yang (jinyan.yang@westernsydney.edu.au)
- 12
- 13
- 14
- 15 For submission to: Biogeosciences Discussions
- 16 No of words in abstract: 269
- 17 No of words in main text: 6705
- 18 No of Figures: 8
- 19 No of Tables: 1

20

22 Abstract

- 23 The response of mature forest ecosystems to rising atmospheric carbon dioxide concentration (C_a) is a major 24 uncertainty in projecting the future trajectory of the Earth's climate. Although leaf-level net photosynthesis is 25 typically stimulated by exposure to elevated C_a (e C_a), it is unclear how this stimulation translates into carbon 26 cycle responses at whole-ecosystem scale. Here we estimate a key component of the carbon cycle, the gross 27 primary productivity (GPP), of a mature native Eucalypt forest exposed to Free Air CO₂ Enrichment (the 28 EucFACE experiment). In this experiment, light-saturated leaf photosynthesis increased by 19% in response to a 29 38% increase in Ca. We used the process-based forest canopy model, MAESPA, to upscale these leaf-level 30 measurements of photosynthesis with canopy structure to estimate Gross Primary Production (GPP) and its 31 response to eC_a . We assessed the direct impact of eC_a , as well as the indirect effect of photosynthetic 32 acclimation to eC_a and variability among treatment plots via different model scenarios. 33 At the canopy scale, MAESPA estimated a GPP of 1574 g C m⁻² yr⁻¹ under ambient conditions across four years 34 and a direct increase in GPP of +11% in response to eC_a . The smaller canopy-scale response simulated by the 35 model, as compared to the leaf-level response, could be attributed to the prevalence of RuBP-regeneration 36 limitation of leaf photosynthesis within the canopy. Photosynthetic acclimation reduced this estimated response 37 to 10%. Considering variability in leaf area index across plots, we estimated a mean GPP response to eC_a of 6% 38 with a 95% CI of (-2%, 14%). These findings highlight that the GPP response of mature forests to eC_a is likely
- 39 to be considerably lower than the response of light-saturated leaf photosynthesis. Our results provide an
- 40 important context for interpreting eC_a responses of other components of the ecosystem carbon cycle.

41 1. Introduction

42 Forests represent the largest long-term terrestrial carbon storage (Bonan, 2008; Pan et al., 2011). Atmospheric 43 carbon dioxide concentration (C_a) has increased significantly since the beginning of the industrial era (Joos and 44 Spahni, 2008), but the increase would have been considerably larger without forest carbon sequestration, which 45 is estimated to have offset 25-33% of recent anthropogenic CO₂ emissions (Le Quéré et al. 2017). C_a is projected 46 to continue to increase by 1-5 µmol mol⁻¹ per year into the future (IPCC, 2014), but the rate of this rise depends 47 on the magnitude of the forest feedback on C_a . At the leaf scale, the direct physiological effects of rising C_a are 48 well understood: elevated C_a (e C_a) stimulates plant photosynthesis (Kimball et al. 1993; Ellsworth et al. 2012) 49 and reduces stomatal conductance (Morison, 1985, Saxe et al. 1998), which together increase leaf water-use 50 efficiency (De Kauwe et al. 2014). These physiological responses at leaf scale could potentially increase 51 ecosystem carbon uptake and hence the amount of carbon stored in the ecosystem, which at the global scale 52 significantly mitigates the rise in C_{a} . However, projecting the response of the terrestrial carbon sink to future 53 increases in C_a is a major uncertainty in models (Friedlingstein et al. 2014), highlighting an urgent need to make 54 greater use of data from manipulative experiments at leaf scale to inform terrestrial biosphere models (Medlyn 55 et al., 2015).

56 Our understanding of ecosystem responses to eC_a relies on both experiments and observations. However, results 57 from different types of studies show some important areas of disagreement. At the global scale, satellite data 58 provide evidence of a strong greening trend over the last 20 years, indicating an increase in leaf area and/or 59 above-ground biomass, which has been attributed to the gradual increase in CO₂ (Donohue et al., 2009; 60 Donohue et al., 2013; Yang et al., 2016; Zhu et al., 2016). A positive response of carbon uptake/greenness is 61 also found in manipulative eC_a open-top chamber experiments with young trees (Eamus and Jarvis, 1989; Curtis 62 and Wang 1998; Saxe et al. 1998; Medlyn et al., 1999) and ecosystem-scale FACE experiments in young, 63 aggrading forest stands (Ainsworth and Long, 2005; Norby et al., 2005; , Ellsworth et al. 2012; Walker et al. 64 2019). In contrast, individual-tree experiments with mature trees (>30 years old) have found relatively small 65 responses of tree growth to eC_a despite an apparent increase in leaf photosynthesis (Dawes et al., 2011; 66 Sigurdsson et al., 2013; Klein et al., 2016). Also, tree-ring studies indicate an apparent lack of stimulation of 67 vegetation growth in mature forests over the last century (Peñuelas et al. 2011; Silva and Anand, 2013; van der 68 Sleen et al. 2014). These studies raise important questions about how mature ecosystems will respond to eC_a . 69 The Eucalyptus FACE experiment (EucFACE; Australia) is the first replicated, ecosystem-scale experiment 70 where a mature native forest has been experimentally subjected to eC_a and provides a valuable case study to 71 assess the response of a mature forest response to eC_a under field conditions (Ellsworth et al. 2017). Results 72 from the first five years (2013-2018) of leaf gas exchange measurements showed a consistent stimulation of 73 leaf-level light-saturated net photosynthesis (A) of 19% (Ellsworth et al., 2017; Wujeska-Klause et al., 2019). 74 Nevertheless, the increase in A did not lead to a detectable change in above-ground growth (Ellsworth et al., 75 2017). These experimental results are consistent with empirical evidence arising from tree-ring studies 76 (Peñuelas et al. 2011; Silva and Anand, 2013; van der Sleen et al. 2014) and also with experimental evidence 77 from individual mature trees (Körner et al., 2005; Dawes et al., 2011; Klein et al., 2016).

78 As a first step towards reconciling the eC_a responses of leaf photosynthesis and above-ground growth in this 79 experiment, here we quantify how the whole canopy carbon uptake, or gross primary productivity (GPP) was 80 increased under eC_{a} . The response of GPP is important because it provides an upper bound on the potential 81 response of other components of ecosystem carbon balance, such as above-ground growth. It needs to be 82 quantified explicitly because the response of GPP to eC_a may be quite different to that of leaf net 83 photosynthesis. The leaf-level response of photosynthesis to eC_a is usually measured on sunlit leaves under 84 saturating light (Ainsworth and Rogers, 2007). As a result, these leaf-level eC_a responses largely reflect the 85 responses of the photosynthesis rate when limited by maximum Rubisco activity (V_{cmax}). However, depending 86 on the canopy architecture and ambient light condition, the canopy could have many shaded leaves, which 87 would mean that the emergent rate of photosynthesis could actually be limited by RuBP regeneration (J). RuBP-88 regeneration limited photosynthesis has a smaller response to eC_a than Rubisco-limited photosynthesis 89 (Ainsworth and Rogers, 2007), resulting in a smaller response of GPP than leaf photosynthesis under saturating

90 light.

91 The transition from RuBP-regeneration to Rubisco-limited photosynthesis of the canopy is determined by the
92 ratio of the maximum capacities for RuBP-regeneration and Rubisco activity, J_{max} and V_{cmax} (Friend, 2001;
93 Zaehle et al. 2014; Rogers et al., 2017). Wullschleger (1993) reported a J_{max}:V_{cmax} ratio of 2, which has been
94 widely adopted in models (e.g., Wang et al., 1998; Luo et al., 2001; Rogers et al., 2017). However, recent

95 studies have suggested a lower J_{max} : V_{cmax} ratio for many forest ecosystems (Kattge and Knorr, 2007; Ellsworth

96 et al., 2012; Kumarathunge et al., 2018). A lower J_{max} : V_{cmax} ratio results in more frequent RuBP-regeneration

97 limitation of photosynthesis, which reduces the response of GPP to eC_a .

98 It is difficult to directly measure the eC_a effect on GPP. In some previous eC_a experiments, GPP has been 99 estimated by scaling up from leaf-level measurements using a canopy model. Wang et al (1998) and Luo et al 100 (2001) both used the tree array model, MAESPA, which can simulate the radiative transfer within and between 101 tree crowns and can be parameterised to describe the spatial locations and sizes of trees in eC_a experiments. In 102 these previous applications of MAESPA, the direct response of GPP to eC_a was consistently half of that 103 observed at the leaf level because of a large contribution of RuBP-regeneration limited photosynthesis to GPP 104 (Wang et al., 1998; Luo et al., 2001). However, the direct effect of eC_a on photosynthesis was modified by two 105 major indirect effects. When LAI increased under eC_a , the additional leaf area amplified the GPP response by up 106 to 60%. The other factor is the downregulation of photosynthesis under eC_a , or photosynthetic acclimation 107 (Long et al., 2004; Ainsworth and Rogers, 2007; Rogers, et al., 2017). Under long-term exposure to eC_a, some 108 plants have been observed to reduce nitrogen allocation to Rubisco, which results in a decrease of 109 photosynthetic capacity (Gunderson and Wullschleger, 1993). The average decrease of V_{cmax} among plants in 110 FACE experiments was found to be 13% for all species and 6% for trees (Ainsworth and Long, 2005). Both 111 Wang et al. (1998) and Luo et al. (2001) tested the impact of photosynthetic acclimation and showed a moderate 112 reduction of canopy GPP (5-6%) due to photosynthetic acclimation (10-20%) at the studied experiments. 113 Following Wang et al. (1998) and Luo et al. (2001), we used MAESPA (Duursma and Medlyn, 2012) to 114 estimate canopy GPP at EucFACE in ambient and elevated C_a treatments. The model has previously been 115 evaluated with leaf- and whole-tree- scale measurements from EucFACE (Yang et al., in review). Here, we first

116 parameterised the model with physiological, structural and meteorological data measured during the experiment.

- 117Then, we quantified the response of canopy GPP to eC_a and partitioned this response into the direct stimulation118of GPP and the indirect effects of photosynthetic acclimation and variation of LAI. The overall goal of this
- 119 study was to estimate the magnitude of the response of forest canopy GPP to eC_a in order to provide a baseline
- against which to compare changes in other components of the ecosystem carbon balance.
- 121 2. Methods

122 2.1 Site

123 The EucFACE experiment (technical details in Gimeno et al., 2016) is located in western Sydney, Australia 124 (33.617S, 150.741E). It consists of six circular plots, each of which has a diameter of 25 m, enclosing 15-25 125 mature forest trees (referred to as 'rings' hereafter). The rings are divided into two groups: control (with ambient 126 C_a ; 390-400 µmol mol⁻¹ during the study period) and experimental (e C_a ; +150 µmol mol⁻¹). The tree canopy is 127 dominated by *Eucalyptus tereticornis* Sm. which are ~20 m in height and have a basal area of ~24 m² ha⁻¹. The 128 site receives a mean annual precipitation of 800 mm yr⁻¹, a mean annual photosynthetically active radiation 129 (PAR) of 2600 MJ m⁻² yr⁻¹, and a mean annual temperature of 17 °C.

- 130 2.2 Model
- The MAESPA model is a process-based tree-array model (Wang and Jarvis, 1990) that calculates canopy carbon
 and water exchange (https://bitbucket.org/remkoduursma/maespa/src/Yang_et_al_2019/). At each 30-minute
 timestep, the model simulates the radiative transfer, photosynthesis, and transpiration of individual trees
 mechanistically. Soil moisture balance can be calculated dynamically, but here we chose to improve accuracy by
 using soil moisture as an input to the model (Duursma and Medlyn, 2012).
- 136 The model represents the tree canopy as an array of tree crowns. The location and dimensions of each crown are 137 specified based on-site measurements (see 2.3.2 Canopy structure, below). Calculations of carbon and water 138 fluxes are made for each tree crown, which is divided into six layers. Here it was assumed that crowns are 139 represented by an ellipsoidal shape and that leaf area is uniformly distributed across layers within the tree 140 crown. The leaf angles were assumed to follow a spherical distribution to ensure consistency with the method 141 used to estimate leaf area index (LAI) in Duursma et al. (2016). Within each layer, the model evaluates the 142 radiation transfer and leaf gas exchange at 12 grid points such that each crown is represented by a total of 72 143 grid points. The radiation intercepted at each grid point is calculated for direct and diffuse components by 144 considering shading from the upper crown and surrounding trees and solar angle (zenith and azimuth), and light 145 source (diffuse or direct). Penetration by direct radiation to each grid point is used to estimate the sunlit and 146 shaded leaf area at each grid point. The radiation intercepted by the fraction of sunlit and shade foliage is then 147 used to calculate the leaf gas exchange.
- The gas exchange sub-model combines the leaf photosynthesis model of Farquhar et al. (1980) with the stomataloptimisation model, following Medlyn et al. (2011). Stomatal conductance is modelled as:

$$150 \qquad g_s = 1.6 \cdot (1 + \frac{g_1}{\sqrt{D}}) \cdot \frac{A_{net}}{c_a} \tag{1}$$

151 where g_s is the stomatal conductance to water vapour (mol m⁻² s⁻¹); g_1 is a parameter that represents the g_s

sensitivity to photosynthesis (kPa^{0.5}; see definition in Medlyn et al., (2011)); A_{net} is the net CO₂ assimilation rate

- 153 (μ mol m⁻² s⁻¹); C_a is the atmospheric CO₂ concentration (μ mol mol⁻¹). The factor 1.6 converts the conductance of
- $154 \quad CO_2 \text{ to that of } H_2O.$
- **155** The impact of soil moisture on g_s is represented through an empirical function that links soil water availability **156** to g_1 following (Drake et al., 2017):

157
$$g_1 = g_{1.max} \left(\frac{\theta - \theta_{min}}{\theta_{max} - \theta_{min}}\right)^q$$
(2)

- 158 where the $g_{1,\max}$ is the maximum g_1 value; θ is volumetric soil water content (%); θ_{\max} and θ_{\min} are the upper and
- 159 lower limit within which θ has impact on g_1 ; q describes the non-linearity of the curve. The equations to
- 160 calculate A_{net} are in Supplementary (Text S1, Eqns. S1 S6).
- 161 Following Yang et al. (2019), MAESPA considers a non-stomatal limitation to biochemical parameters J_{max} and 162 V_{cmax} at high *D*:

163
$$V_{max} = V_{max,t}(1 - c_D \cdot D)$$
 (3)

- 164 where $V_{\text{max,t}}$ is the J_{max} or V_{cmax} at given leaf temperature, and c_{D} is a fitted parameter (Table 1). This relationship 165 is empirical and fitted to data collected in EucFACE. Incorporating this relationship was shown to improve the 166 predicted photosynthesis by the leaf gas exchange model (Yang et al., 2019).
- 167 Combining Eqns. 1-3 and S1 S6 yields the gs and Anet of each grid point, which is then multiplied by leaf area
- at each grid point and summed to give whole-tree photosynthesis. Photosynthesis of individual trees is thensummed to give whole-canopy photosynthesis.

170 2.3 Model Parameterisation

- 171 2.3.1 Meteorological forcing
- The model is driven by *in situ* PAR, wind speed, air temperature, vapour pressure deficit (*D*), and soil moisture
 measurements from 2013 to 2016 (Figures 1 and 2). The PAR, air temperature, and relative humidity were
 measured every five minutes in each ring and then were gap-filled by linear interpolation and aggregated to 30
 minute-mean time slices across all six rings (Figure 1). Each ring has a set of PAR (LI-190, Li-cor, Lincoln, NE,
 U.S.), wind speed (Wincap Ultrasonic WMT700 Vaisala, Vantaa, Finland), humidity, and temperature sensors
 (HUMICAP ® HMP 155 Vaisala, Vantaa, Finland) at the centre of the ring above the canopy at 23.5 m. *D* was
 calculated from temperature and humidity measurements.
- 179 Two levels of C_a were used in the model according to the measured C_a (LI-840, Li-cor, Lincoln, NE, U.S.). The
- 180 ambient C_a was gap-filled (in total <10 days during four years gaps due to power outage) and aggregated to 30
- 181 minute-mean time slices from the five-minute measurements across the three ambient rings (rings 2, 3, and 6).
- **182** The eC_a was processed in the same way but using data from the experimental rings (rings 1, 4, and 5).
- 183 The volumetric soil water content (θ) was used as an estimate of plant water availability and was taken every 20
- 184 days using neutron measurements at 25 cm intervals (503DR Hydroprobe, Instroteck, NC, U.S.) and averaged to
- 185 the top 150 cm (Figure 2). There were two probes in each ring and the average of these probes was used to
- 186 represent the ring average for each measurement date. θ was updated on the days of measurements and thus not 187 gap-filled.

188 2.3.2 Canopy structure

189	Trees in MAESPA were represented by their actual location, height, and crown size to mimic the realistic
190	effects of shading. Tree location, crown height, crown base and stem diameter were measured in January 2013
191	at the start of the experiment. For each ring, a time-series of LAI was obtained based on measurements of
192	above- and below- canopy PAR (Duursma et al. 2016). This LAI represents plant area index, which includes the
193	woody component as well as leaves and does not account for clumping. In order to retrieve the actual LAI, we
194	assumed a constant branch and stem cover (0.8 $\text{m}^2 \text{ m}^{-2}$) based on the lowest LAI during November 2013 when
195	the canopy shed almost all leaves. The LAI used in this study was thus the plant area index estimates from
196	Duursma et al. (2016), less 0.8 m ² m ⁻² (Figure 2a). Since LAI is the only parameter beside soil moisture that
197	differed by ring, canopy structure (i.e., the LAI and its distribution) was the major driver of inter-ring
198	variability.
199	The total leaf area (m ²) of each ring was calculated as the product of LAI and ground area of each plot (491 m ²).
200	This total leaf area (LA) was then assigned to each tree based on an allometric relationship between the total leaf
201	area (m ²) and diameter at breast height (DBH; m). The allometric relationship was derived from data in the
202	BAAD database (Falster et al., 2015) for <i>Eucalyptus</i> trees grown in natural conditions with DBH <1 m to match
203	the characteristics of EucFACE. In total, this database yielded a total of 66 observations with which to estimate
204	the relationship between LA and DBH:

205 $L_{allom} = a \cdot DBH^b$

(4)

where L_{allom} is the theoretical leaf area based on allometric relationship to DBH. The values obtained via fitting for *a* and *b* were 492.6 and 1.8 respectively, with a root mean square error of 14.4 (m²). This relationship was used to assign the total LA of each ring to each tree in the following steps: (i) the L_{allom} for each tree was calculated based on DBH; (ii) the L_{allom} was summed to obtain a total LA for each ring; and (iii) the fractional contribution of each tree to the ring total LA was calculated. The total LA based on LAI was then assigned to each tree based on this fraction.

- 212 The crown radius was calculated with a linear function with DBH based on measurements made in August
- 213 2016. The data consisted of DBH and crown radius (one on North-South axis and one on East-west axis) of four
- trees in each ring. The crown radius measurements were averaged by tree and used to fit a linear model with
- $\label{eq:215} DBH. The estimated slope and intercept of the relationship are 0.095 (m \, cm^{-1}) and 0.765 (m), respectively.$
- 216 MAESPA also considered the shading from surrounding trees outside the rings. However, no measurements of
- 217 locations or diameters were available for the trees surrounding the rings. Therefore, a total of 80 surrounding
- 218 trees were arbitrarily assumed to form two uniform and circular layers around each ring. They were assigned the
- 219 mean height, mean crown radius, and mean leaf area estimated from all trees in EucFACE. Except for shading,
- the surrounding trees have no impact on the trees within the rings. Ring 1 is shown in Figure S1 as an exampleof the representation of canopy structure in MAESPA.

222 2.3.3 Physiology

- 223 The physiological parameters were estimated from field gas exchange measurements as described below. The
- data were collected with portable photosynthesis systems (Li-6400, Li-Cor, Inc., USA). The only parameter

225 226 227	found to differ between ambient and elevated C_a rings was $V_{cmax.25}$ (V_{cmax} at 25 °C; Ellsworth et al., in prep.). Hence, all other parameters (e.g., the temperature responses of photosynthesis and respiration) were estimated by combining all data across CO ₂ treatments. Fitted parameter values are given in Table 1.
228 229 230 231 232	A set of temperature-controlled photosynthesis- CO_2 response (<i>A</i> - <i>C</i> _i) curves was measured at different leaf temperatures (20-40 °C) under saturating light in February 2016. The dataset was used to quantify the temperature dependences of J_{max} and V_{cmax} by fitting a peaked Arrhenius function (Eqn. S5) to the measurements. We assumed that these temperature response functions applied throughout the period of the study.
233 234 235 236 237 238	Light- and temperature-controlled <i>A</i> - <i>C</i> _i curves were also measured in the morning for ten field campaigns during 2013 to 2016. All <i>A</i> - <i>C</i> _i curves were started at the growth <i>C</i> _a of 395 µmol mol ⁻¹ or 545 µmol mol ⁻¹ (depending on e <i>C</i> _a treatment) with a saturating light of 1800 µmol m ⁻² s ⁻¹ and a flow rate of 500 µmol s ⁻¹ with temperature controlled to a constant based on the seasonal temperature. These data were used to estimate J_{max} and V_{cmax} at 25 °C using the <i>fitaci</i> function in the <i>plantecophys</i> R package (Duursma, 2015), using the measured temperature responses of J_{max} and V_{cmax} described in the previous paragraph to correct to 25 °C.
239 240 241 242 243 244 245 246 247	Repeated gas exchange measurements were made on the same leaves in the morning and afternoon under prevailing field conditions and saturating light (photon flux density = 1800 µmol m ⁻² s ⁻¹) on four occasions in 2013 ("diurnal"; Gimeno et al., 2016). To expand the diurnal dataset, we obtained the points from <i>A</i> - <i>C</i> _i curves at field <i>C</i> _a and combined the two data sets. These data were used to estimate the <i>g</i> ₁ parameter in the stomatal conductance model (Eqn. 1) using the <i>fitBB</i> function in the <i>plantecophys</i> R package (Duursma, 2015). One <i>g</i> ₁ value was fitted to the data from each treatment and date. The <i>g</i> ₁ values were then regressed against θ measured in each treatment group to estimate the impact of soil moisture availability on leaf gas exchange, following Eqn. 2. The <i>g</i> ₁ values were related to the nearest measurements of θ (within two weeks without rain). Eqn. 2 was fitted to this data set using the non-linear least squares method (Figure 3).
248 249 250 251 252 253	The dark respiration rate of foliage, R_{dark} , was measured at least three hours after sunset at a range of leaf temperatures (14-60 °C) in February 2016 also with LiCor 6400. The temperature dependence of R_{dark} was fitted using non-linear least squared method to all of the measured data using Eqn. S6. Light responses of photosynthesis were measured on two trees from each ring in October 2014 (Crous et al., unpublished). This data set was used to constrain the light response parameters (α_J and θ_J) in Eqn. S4. Details of fitting the light response curves are provided in supplementary (Text S1).
254 255 256 257	2.4 Model simulations and analysisMAESPA was used to simulate radiation interception and gas exchange of all six rings between 1 January 2013 and 31 December 2016 on a half-hourly basis. The model simulated half-hourly gross primary production (GPP) of each tree, which was then summed for all trees in each ring to get the total annual GPP for each ring and year.
258 259 260 261 262	Four different sets of simulations were used to estimate carbon uptake under ambient and eC_a and to identify the key limiting factors on canopy GPP response to eC_a . Firstly, we carried out a simulation of leaf scale ("leaf scenario") photosynthesis with measured meteorological data but fixed physiological data ($g_1 = 3.3 \text{ kPa}^{0.5}$, $V_{\text{cmax.25}} = 91 \mu\text{mol }\text{m}^{-2} \text{ s}^{-1}$, and $J_{\text{max.25}} = 159 \mu\text{mol }\text{m}^{-2} \text{ s}^{-1}$). This simulation aimed to quantify the CO ₂ response of Rubisco-limited and RuBP-limited photosynthesis at the leaf scale. This calculation was made using the

- 263 photosyn function in plantecophys R package (Duursma, 2015). This function implements the leaf gas exchange 264 routine used in MAESPA.
- 265 Secondly, MAESPA was run for all six rings with ambient C_a and with $V_{cmax.25}$ from ambient measurements

266 ("ambient scenario"). The results of this simulation were used to calculate the GPP of each ring under ambient

- 267 conditions. The ambient GPP values were also used to evaluate the inherent variability among the rings.
- 268 Thirdly, all six rings were simulated with eC_a and $V_{cmax,25}$ based on measurements from ambient rings ("elevated
- 269 scenario"). The results of this simulation were compared to those from the ambient scenario to illustrate the
- 270 instantaneous response of canopy GPP to eC_a in each ring and year. This simulation also quantifies the variation 271 of the GPP response to eC_a across rings and years.
- 272 Lastly, we simulated the response of the three rings exposed to eC_a (rings 1, 4, and 5) using the $V_{cmax,25}$ and eC_a
- 273 measured from these elevated rings ("field scenario"). Results from the field scenario were used for two
- 274 analyses: (i) to compare GPP from the field scenario to that of the three rings from the elevated scenario (i.e.,
- 275 eC_a and ambient $V_{cmax,25}$, which allows us to quantify the impact of photosynthetic acclimation (i.e., due to a
- 276 reduction in V_{cmax} ; (ii) to calculate the difference in GPP between the three ambient rings in ambient scenario
- 277 and elevated rings in the field scenario to estimate the response of GPP to eC_a in the field.

Parameters	Definitions	Units	Values	Eqn.
αJ	Quantum yield of electron transport rate	µmol µmol ⁻¹	0.30	S7
а	Fitted slope of LA and DBH	$m^2 m^{-1}$	492.6	4
$a_{\rm abs}$	Absorptance of PAR	fraction	0.825	S4
b	Fitted index of LA and DBH	-	1.8	4
CD	Slope of V_{cmax} to D	kPa ⁻¹	0.14	3
ΔS	Entropy factor	J mol ⁻¹ K ⁻¹	639.60 (V _{cmax}); 638.06 (J _{max})	S5
E_{a}	Activation energy	J mol ⁻¹	66386 (V _{cmax}); 32292 (J _{max})	S5
g _{1.max}	Maximum g_1 value	kPa ^{0.5}	5.0	2
$H_{\rm d}$	Deactivation energy	J mol ⁻¹	200000	S5
$ heta_{ m J}$	Convexity of electron transport rate to Q_{APAR}	-	0.48	S 8
$ heta_{ m max}$	Upper limit which θ has impact on g_1	-	0.240	2
$ heta_{ m mim}$	Lower limit which θ has impact on g_1	-	0.106	2
$J_{\text{max.25}}$	Value of J_{max} at 25°C	µmol m ⁻² s ⁻¹	159	3
k_{T}	Sensitivity of R_{dark} to temperature	°C-1	0.078	S 6
q	The non-linearity of the g_1 dependence of θ	-	0.425	2
$R_{\rm day.25}$	Light respiration rate	µmol m ⁻² s ⁻¹	0.9	S6
R _{dark.25}	Dark respiration rate	µmol m ⁻² s ⁻¹	1.3	S6
R _{gas}	Gas constant	$J \text{ mol}^{-1} \text{ K}^{-1}$	8.314	S5
V _{cmax.25}	Value of V _{cmax} at 25°C	µmol m ⁻² s ⁻¹	91 (ambient); 83 (elevated)	3

11 C 1 0 . . 278

280	3. Results
281	Figure 4 summarises the results from measurements and the different simulations conducted in this study. It
282	demonstrates that the impact of eC_a diminishes as calculations are scaled from the instantaneous leaf-level
283	response (A_{insl}) to the long-term canopy response (GPP_{field}) and the various feedback effects are accounted for.
284	Each row of Figure 4 is explained in detail in the following paragraphs.
285	3.1 Instantaneous C _a response of photosynthesis at leaf and canopy scale
286	The mean instantaneous C_a response of leaf-level photosynthesis (A_{inst}) was +33% (Figure 4a). This response
287	ratio was calculated from ~600 light- and temperature-controlled A - C_i curves measured in the ambient rings.
288	From the curves, we extracted the photosynthesis at 400 and 550 C_a (µmol mol ⁻¹) and calculated the
289	instantaneous C_a effect as their ratio. This approach allows an estimation of the direct CO ₂ response independent
290	of the impact of photosynthetic acclimation.
291	By contrast, the modelled direct GPP response to eC was considerably less, just +11%, as shown in Figure 4d
292	("GPP _{inst} "). This canopy response rate was calculated by comparing the modelled GPP of all six rings under
293	ambient and elevated C_s ("ambient" vs. "elevated" scenario). As a result, this direct canopy GPP response also
294	excludes the impact of photosynthetic acclimation.
295	Our results show that the major reason for the difference between the direct leaf and canopy photosynthesis
296	responses to eC_a is the relative contributions from Rubisco- and RuBP-regeneration-limited photosynthesis (cf.
297	Figure 4 b and c). Figure 5 shows that the response of photosynthesis to eC_a is considerably higher when
298	Rubisco activity limits photosynthesis (A_c) than when RuBP-regeneration limits photosynthesis (A_J) . When
299	averaged over the range of leaf temperatures experienced during the four years of experiment, the A_c response to
300	eC_a on average (+26%; Figure 4b) is larger than that of A_J (+10%; Figure 4c). Leaf gas exchange measurements
301	were taken in saturating light (1800 µmol m ⁻² s ⁻¹) and thus, are mostly Rubisco limited. The observed response
302	rate of A_{inst} is thus close to that of A_c .
303	At the canopy scale, a large fraction of the modelled canopy photosynthesis is limited by RuBP-regeneration. In
304	Figure 6, we show the distribution of A_c and A_J during the four years of simulation as calculated by MAESPA.
305	On average, 70% of the canopy photosynthesis is limited by RuBP-regeneration under ambient conditions
306	("ambient scenario"). The high fraction of A_J is partly a consequence of the relatively low ratio of $J_{\text{max.25}}$ to
307	$V_{\text{cmax.25}}$ (J:V ratio) which was estimated to be 1.7 (Table 1). In Figure 7, we estimated the PAR level at which
308	Rubisco activity becomes limiting to leaf photosynthesis. The transition point from Rubisco- to RuBP-
309	regeneration-limited photosynthesis was calculated from the leaf gas exchange sub-model by assuming a
310	constant C_a (390 µmol mol ⁻¹), D (1.5 kPa), g_1 (3.3 kPa ^{0.5}), and $V_{cmax.25}$ (90 µmol m ⁻² s ⁻¹) but varying leaf
311	temperature. As shown, under these conditions, when temperature = 25 °C and J:V ratio = 1.7, Rubisco activity
312	limits photosynthesis only when incident PAR $> 1800 \ \mu$ mol m ⁻² s ⁻¹ . Using a higher J:V ratio such as the
313	commonly-used value of 2 would decrease the saturating PAR value at which photosynthesis becomes Rubisco
314	limited. We ran additional simulations assuming a J:V ratio of 2 and found that, with this ratio, MAESPA
315	estimated 48% of photosynthesis to be RuBP-regeneration limited under ambient conditions and a direct GPP
316	response of 15% (data not shown).

317	The shape of the light response curve also determines the transition point from RuBP- to Rubisco-limited
318	photosynthesis. We explored this effect by investigating the effect of varying the convexity, θ_J . At EucFACE,
319	this parameter is estimated to be 0.48 based on data collected on site, indicating a shallow curvature and a high
320	light saturation points, in contrast to the commonly assumed 0.85, representing a steeper curvature and a lower
321	light saturation point. Using a value of 0.85 for θ_J resulted in a much lower PAR required for photosynthesis to
322	became Rubisco limited (dashed curves in Figure 7). With a θ_J of 0.85 and a J:V ratio of 1.7, MAESPA
323	estimated 40% of photosynthesis to be RuBP-regeneration limited under ambient conditions and a direct GPP
324	response of 16% (data not shown). With a θ_J of 0.85 and a J:V ratio of 2, MAESPA estimated just 34% of
325	photosynthesis to be RuBP-regeneration limited under ambient conditions and a direct GPP response of 18%
326	(Figure S2). The simulated CO ₂ response of canopy carbon uptake thus depends heavily on the parameterisation
327	of light response and J:V ratio.

328

~ - -

329 3.2 Acclimation of photosynthesis

- 330The above calculations are made considering only the instantaneous response of photosynthesis to eC_a .331However, photosynthetic acclimation was observed at leaf scale (Ellsworth et al., in prep), and will also reduce332the response of GPP to eC_a at the canopy scale. At the leaf-level, photosynthesis measured in the elevated rings333after five years of treatment (A_{long}) was 19% higher than that measured in ambient rings (Figure 4e; Ellsworth et334al. 2017). A_{long} thus accounts for the photosynthetic acclimation in the elevated rings after four years of exposure335to eC_a . A_{long} is considerably smaller than A_{inst} (19% vs. 33%; Figure 4 a and e), indicating a large effect of336photosynthetic acclimation on the eC_a response of light-saturated photosynthesis.
- 337 Accounting for the impact of photosynthetic acclimation in MAESPA, by using the V_{cmax} from elevated rings 338 ("field" vs. "ambient" scenarios) reduced the response of GPP to Ca from 11% to 10% (GPP_{ione}; Figure 4f). As 339 such, the photosynthetic acclimation had a relatively modest impact on the modelled annual GPP in the model. 340 The small impact of photosynthetic acclimation on canopy photosynthesis relative to the effect on leaf 341 photosynthesis can be explained by the fact that the leaf photosynthesis data are measured under saturating light 342 and thus are typically Rubisco-limited, so a reduction in V_{cmax} had a large effect. In contrast, at the canopy scale, 343 much of the photosynthesis was limited by RuBP-regeneration and was largely unaffected by a reduction in 344 V_{cmax}.

345 3.3 Influence of LAI

346The realised GPP response to eC_a also depends on the canopy structure, specifically the LAI. In this experiment,347there was no significant change in LAI with eC_a (-4% ± 5%; Figure 4g; see also Duursma et al. 2016). The348effect of eC_a on LAI was calculated as the average effect between elevated and ambient annual mean LAI.349However, there was inherent variability in LAI across the rings (Figure 2a), which does not fundamentally350change the effect of eC_a but requires a detailed analysis of the potential effects of natural variability on the351response to eC_a .

353 The small pre-treatment difference in LAI across rings gives rise to a range of estimates for the GPP response to 354 eC_a in the field (6% ±8%; Figure 4h). This result is explored further in Figure 8, which combines the results 355 from "ambient", "elevated", and "field" scenarios. The average GPP across all six rings under ambient Ca was 356 1574 g C m⁻² yr⁻¹ over the four-year simulation ("ambient scenario"; Figure 8). However, there was significant 357 variability in ambient GPP across rings, related in part to the inherent variability in LAI across rings. We 358 characterised the pre-existing differences in LAI by the initial LAI (LAI_i), measured on 26 October 2012. These 359 initial values are low, because they are measured immediately before the seasonal leaf flush, but characterise the 360 difference in LAI across rings over the full experimental period. Rings 1 and 4 (both experimental rings) have 361 the lowest LAI_i ($<0.3 \text{ m}^2 \text{ m}^2$) and thus the lowest average GPP under ambient conditions (1206 g C m⁻² yr⁻¹). 362 Ring 5 (the other experimental ring) has the second highest LAI_i (~0.4 m² m⁻²) and also the highest GPP under 363 ambient conditions (2359 g C m^2 yr⁻¹). The variability among rings in ambient GPP (SD = 15%) is thus larger 364 than the modelled direct effect of C_a on GPP, which is similar in all rings (+11%).

365 Owing to the variability among rings represented by LAI_i, the estimated mean GPP response to eC_a across the 366 experimental rings has a sizeable confidence interval (±8%, Figure 4h). The actual eC_a response was estimated 367 as an average effect between the ambient and elevated GPP values considering the impacts of photosynthetic 368 acclimation and inter-ring variability. The average GPP of experimental rings under field conditions (eC_a) was 369 estimated to be 1698 g C m⁻² yr⁻¹ while the average GPP of control rings under field conditions (ambient C_a) 370 was 1599 g C m⁻² yr⁻¹, an increase of 6% as shown in the Figure 4h. The variation of annual average GPP of the 371 control and experimental groups (blue and red squares in Figure 8) are thus represented by the CI in Figure 4h.

372

373 4. Discussion

374 We have showed how a large response of leaf-level photosynthesis to eC_a diminishes when integrated to the 375 canopy-scale, according to the synthesis of four years of leaf measurements at EucFACE with the stand-scale 376 model, MAESPA. We estimated that the canopy GPP of a mature Eucalyptus woodland under ambient Ca 377 conditions varied from 1084-2129 g C m⁻² yr⁻¹ by ring and year with a mean of 1574 g C m⁻² yr⁻¹. The model, 378 constrained by site measurements, predicted that once scaled to the canopy, the response of GPP to eC_a only 379 increased by 6% (95% CI of ±8%) compared to the 19% (95% CI of ±5%) observed in leaf-scale measurements. 380 We were able to quantify the response of GPP to eC_a and attribute the reduction in the response to various 381 factors including: (i) Rubisco versus RuBP-regeneration limitations to photosynthesis; (ii) photosynthetic 382 acclimation; (iii) inter-ring variability in LAI. Together these findings provide valuable insights into the relative 383 importance of each factor and help close a key knowledge gap in our understanding of how mature forests 384 respond to eC_a .

385 4.1 Performance of MAESPA under ambient conditions

The ambient GPP of EucFACE estimated by MAESPA was comparable to that measured with eddy covariance
in similar evergreen Eucalypt forests in Southeast Australia. In a nearby eddy covariance site (<1 km), ,
Renchon et al. (2018) estimated the ecosystem GPP from eddy convariance to be 1561 g C m⁻² yr⁻¹ during 2013
to 2016 which is within the range estimated for the ambient rings in this study, though this latter site and the
EucFACE are not the same in terms of canopy structure and LAI. Furthermore, our version of MAESPA was

- 391 evaluated against leaf photosynthesis and whole-tree sap flow measurements in EucFACE (R² of 0.77 and 0.8,
- 392 respectively; Yang et al., in review). These comparisons indicate MAESPA is a useful tool to explore the
- 393 canopy carbon uptake and the predicted GPP could provide a baseline to future studies.

394 4.2 RuBP-regeneration limited photosynthesis

395 Our results show that the canopy GPP at EucFACE was predominantly limited by RuBP regeneration. The 396 reason for the frequent RuBP-regeneration limitation is that the measured J:V ratio was relatively small in 397 EucFACE (1.7), and stomata tend to close at midday when light levels are higher and Rubisco-limitation is 398 expected (Gimeno et al., 2016). A lower J:V ratio increases the PAR threshold required for the photosynthesis 399 model to switch between the RuBP-regeneration limitation and the Rubisco limitation (from <1000 to <1800 400 µmol m⁻² s⁻¹; Figure 7). Previous studies have highlighted the need to consider J:V ratio for a correct prediction 401 of CO2 response (Long et al, 2004; Zaehle et al., 2014; Rogers et al., 2017). However, as shown by Zaehle et al. 402 (2014), Medlyn et al. (2015), and Rogers et al. (2017), current models differ in their predictions of the transition 403 from RuBP-regeneration- to Rubisco-limited photosynthesis, suggesting the uncertainty of predicted CO₂ 404 response of GPP could be reduced by using a realistic J:V ratio.

405 Previous modelling studies applying MAESPA to eC_a experiments both assumed higher J:V ratio (2) and 406 estimated higher GPP response to eC_a presumably due to less frequent RuBP-regeneration limitation (Wang et 407 al., 1998; Luo et al., 2001). A J:V ratio of 2 was suggested by Wullschleger (1993) and has been used in many 408 modelling studies (e.g., the seven terrestrial biosphere models assessed by Rogers et al. (2017) all assumed a J:V 409 ratio of 1.9-2). Global terrestrial biosphere models such as JULES and others frequently estimate J_{max} on the 410 basis of this ratio (e.g., Clark et al. 2011). However, the relatively low J:V ratio observed at EucFACE is not 411 unique. In the Duke Forest FACE site in the US, Ellsworth et al. (2012) reported a J:V ratio of ~1.7 which is the 412

413 across the world and found a low J:V ratio (<1.8) in herbaceous, coniferous, and broadleaved species. Most

same as that estimated for EucFACE. Kattge and Knorr (2007) analysed V_{cmax} and J_{max} values from 36 species

- 414 recently, Kumarathunge et al. (2018) studied the variation in J:V ratio in datasets obtained from around the
- 415 globe and found a consistent relationship with growing season temperature. The ratio varied from 2.5 in tundra
- 416 environments to < 1.5 in tropical environments. The value of 1.7 observed at EucFACE falls within this
- 417 prediction for the prevailing growth temperature at this site. The inclusion of his relationship between this

418 relationship of J:V ratio and temperature will thus be important for capturing the GPP response to eCa globally.

419 We also found that the curvature of the light response of photosynthesis affected the predicted GPP response to

420 eC_a (Figure 7). The parameter value we fitted to data measured in situ ($\theta_1 = 0.48$) is lower than the value

421 commonly assumed in the models (typically around 0.85, e.g. Medlyn et al., 2002; Harverd et al., 2018).

422 Nonetheless, our relatively low θ_J value (<0.7) is not unique, as it is also supported by a number of studies on

423 different species around the world (Ögren, 1993; Valladares et al., 1997; Lewis et al., 2000; Hjelm and Ögren,

424 2004). The inclusion of higher θ_I value would predict a much higher direct GPP response to e C_a (e.g., 16%

425 versus 11% in this study), because higher θ_J results in a large proportion of GPP being Rubisco-limited. This

426 finding calls for careful examination of the light-response of photosynthesis, which has a large effect on the

427 predicted eC_a response

428 4.2 Photosynthetic acclimation

429 Some degree of photosynthetic acclimation (i.e., a long-term reduction of V_{cmax} under eC_a) has been widely 430 reported in FACE studies and has been attributed to a reduction of leaf nitrogen concentration (Saxe et al., 1998; 431 Ainsworth and Long, 2005). The response of GPP to eC_a would be linearly related to V_{cmax} if photosynthesis 432 were mostly limited by Rubisco activity. Photosynthetic acclimation was responsible for the reduced response of 433 leaf-scale light-saturated photosynthesis from 33% (A_{inst}) to 19% (A_{long}). However, this reduction in V_{cmax} 434 translated into only a ~2% reduction in GPP modelled by MAESPA. Wang et al. (1998) also showed that 435 photosynthetic acclimation (-21% in V_{cmax}) reduced modelled canopy GPP by only 6% due to RuBP-436 regeneration being the primary limitation of canopy photosynthesis. These findings thus suggest that 437 photosynthetic acclimation may only have a small effect in the GPP response to eC_a when canopy 438 photosynthesis is mostly RuBP-regeneration limited. This response is thus consistent with the hypothesis that 439 the reduction in V_{cmax} represents a re-allocation of nitrogen to optimise nitrogen use efficiency under eC_a (Chen 440 et al., 1993; Medlyn et al., 1996). 441 4.3 Constraining the carbon balance response to eCa

442 At EucFACE, after four years of eC_a treatment, there was no evidence of increased above-ground tree growth 443 (Ellsworth et al., 2017). Nor have the trees at EucFACE shown any significant change in LAI (Duursma et al., 444 2016). The relatively small response of GPP and the effect of ring-to-ring variation provides important context 445 for these statistically non-significant responses of tree growth at the stand scale at EucFACE. Firstly, the effect 446 size calculated for GPP of +11% (+ 169 g C m⁻² yr⁻¹) constrains the likely effect size for plant growth and other 447 components of the ecosystem carbon balance and is a more useful baseline for comparison than the response of 448 light-saturated leaf photosynthesis (+19% = 299 g C).

449 Secondly, the inherent ring-to-ring variation in this natural forest stand is even higher than the GPP response, 450 which highlights the importance of considering both the effect size and uncertainty than to focus on statistical 451 significance. It is important to note that the EucFACE site could be considered relatively homogeneous for a 452 mature woodland. The site is flat, trees appear similar-aged, and almost all the overstory belongs to a single 453 species. In addition, plots were carefully sited to minimise variation in basal area. However, there are small-454 scale variations in soil type, depth, and nutrient availability that cause variation in LAI. This scale of variation is 455 likely to present in other natural forests, and indeed, other studies on mature trees also note that background 456 variability can contribute to the lack of statistically significant findings (Fatichi and Leuzinger, 2013;

457 Sigurdsson et al. 2013). We highlight the need to focus on effect size and its uncertainty, rather than the

458 dichotomous significant/non-significant approach when evaluating experimental results from native forests.

459 4.4 Implications for terrestrial biosphere models

460 Seven Terrestrial Biosphere Models (TBMs) were used to predict GPP and LAI responses to eC_a in advance of 461 the EucFACE experiment (Medlyn et al. 2016). The predicted eC_a responses of GPP ranged from +2 to +24% 462 across the seven models, while the predicted responses of LAI ranged from +1 to +20%. With our results, it is 463 possible to falsify some of these model simulations. The model with the lowest GPP response (CLM4-P) 464 assumed very strong down-regulation of photosynthesis owing to phosphorus limitation. However, this down-

465 regulation was not observed here. The models with the highest GPP responses (GDAY, O-CN, SDGVM) had a

- 466 J:V ratio of 2 which is higher than that observed at EucFACE, and also had a positive feedback to GPP via 467 increased LAI (+5-15%), which did not occur (Duursma et al., 2016). The model rendering most similar 468 prediction for the GPP response to eC_a to the output of MAESPA incorporating empirical observations was the 469 CABLE model. This latter model predicted an eC_a response of GPP of ~12% with a large proportion of RuBP-470 regeneration limited photosynthesis, both of which are similar to the findings in this study. Future TBMs may 471 benefit from incorporating a more realistic representation of the relative contribution of RuBP-regeneration- to 472 Rubisco- limited photosynthesis to GPP. For instance, adding the temperature dependency of J:V ratio could
- 473 help capture the variation of J:V ratio globally (e.g., Kumarathunge et al., 2018).
- 474 Our study provides a number of process-based insights that can be used to improve model performance both
- 475 qualitatively and quantitatively. Our modelling exercise is also a major contribution to the understanding of the
- 476 EucFACE experiment by quantifying the amount of extra carbon input into the system by canopy-level
- 477 photosynthesis and thus providing a reference for assessing the impacts of eC_a on growth and soil respiration.
- 478 Finally, our study highlights that the eC_a effect on canopy-scale GPP may be considerably lower than the effect
- 479 on photosynthesis of the light-saturated leaves, due to contrasting relative limitations to photosynthesis
- 480 operating and different scales. In future work, our GPP estimates will be used as an input to calculate the overall
- 481 effect of eC_a on the carbon balance at the whole EucFACE site.
- 482 Acknowledgements
- 483 JY was supported by a PhD scholarship from Hawkesbury Institute for the Environment, Western Sydney
- 484 University. MGDK was supported by NSW Research Attraction and Acceleration Program (RAAP).
- 485 EucFACE was built as an initiative of the Australian Government as part of the Nation-building Economic
- 486 Stimulus Package and is supported by the Australian Commonwealth in collaboration with Western Sydney
- 487 University. It is also part of a TERN Super-site facility.
- 488 We thank Vinod Kumar, Craig McNamara and Craig Barton, for their excellent technical support. We also
- thank Elise Dando for help in measuring crown radius, Steven Wohl for crane driving, Julia Cooke and BurhanAmiji for installing the neutron probe access tubes.

491 Author contribution statement

- 492 JY, BM, MDK, and RD conceived and designed the analysis. KC, DE, and TG designed sampling of leaf
- 493 physiological data, while DE and RD designed sampling of canopy structure data. KC, DE, TG, AWK, RD and
- 494 JY collected data. RD and DK provided analysis tools. JY and BM performed the analysis. JY, BM, MDK, and
- 495 MJ wrote the paper. All authors edited and approved the manuscript.

496

497

498 References

Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A
 meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂,
 New Phytol., 165(2), 351–372, doi:10.1111/j.1469-8137.2004.01224.x, 2005.

- 502 Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R. and Long, S. P.: Improved temperature response
- 503 functions for models of Rubisco-limited photosynthesis, Plant, Cell Environ., 24(2), 253-259,
- 504 doi:10.1046/j.1365-3040.2001.00668.x, 2001.
- 505 Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The challenge to predict life in 506 Earth system models, Science (80-)., 359(6375), doi:10.1126/science.aam8328, 2018.
- 507 Chen, J. L., Reynolds, J. F., Harley, P. C. and Tenhunen, J. D.: Coordination theory of leaf nitrogen distribution 508 in a canopy, Oecologia, 93(1), 63-69, doi:10.1007/BF00321192, 1993.
- 509 Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery,
- 510 R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C. and Cox, P. M.: The Joint UK Land
- 511 Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics, Geosci. 512 Model Dev., 4(3), 701-722, doi:10.5194/gmd-4-701-2011, 2011.
- 513 Curtis, P. S., and X. Wang (1998), A meta-analysis of elevated CO₂ effects on woody plant mass, form, and 514 physiology, Oecologia, 113(3), 299-313, doi:10.1007/s004420050381.
- 515 Dawes, M. A., Hättenschwiler, S., Bebi, P., Hagedorn, F., Handa, I. T., Körner, C. and Rixen, C.: Species-
- 516 specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline, J. Ecol., 99(2), 383-394, 517 doi:10.1111/j.1365-2745.2010.01764.x, 2011.
- 518 De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., Luo, Y., Jain, A. K., 519 El-Masri, B., Hickler, T., Wårlind, D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, 520 S., Smith, B., Mccarthy, H. R., Iversen, C. M., Hanson, P. J., Warren, J. M., Oren, R. and Norby, R. J.: Where 521 does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at 522 two temperate forest free-air CO2 enrichment sites, New Phytol., 203(3), 883-899, doi:10.1111/nph.12847, 523 2014.
- 524 Donohue, R. J., Mcvicar, T. R. and Roderick, M. L.: Climate-related trends in Australian vegetation cover as 525 inferred from satellite observations, 1981-2006, Glob. Chang. Biol., 15(4), 1025-1039, doi:10.1111/j.1365-526 2486.2008.01746.x, 2009.
- 527 Donohue, R. J., Roderick, M. L., McVicar, T. R. and Farquhar, G. D.: Impact of CO₂ fertilization on maximum 528 foliage cover across the globe's warm, arid environments, Geophys. Res. Lett., 40(12), 3031-3035, 529 doi:10.1002/grl.50563, 2013.
- 530 Drake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D.,
- 531 Maier, C., Pfautsch, S., Smith, R. A., Tjoelker, M. G. and Tissue, D. T.: Stomatal and non-stomatal limitations 532 of photosynthesis for four tree species under drought: A comparison of model formulations, Agric. For. 533
- Meteorol., 247, 454-466, doi:10.1016/j.agrformet.2017.08.026, 2017.
- 534 Duursma, R. A. and Medlyn, B. E .: MAESPA: a model to study interactions between water limitation,
- 535 environmental drivers and vegetation function at tree and stand levels, with an example application to $[CO_2] \times$ 536 drought interactions, Geosci. Model Dev., 5(4), 919-940, doi:10.5194/gmd-5-919-2012, 2012.
- 537 Duursma, R. A.: Plantecophys - An R package for analysing and modelling leaf gas exchange data, PLoS One, 538 10(11), 1-13, doi:10.1371/journal.pone.0143346, 2015.
- 539 Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G. and Ellsworth, D. S.: Canopy leaf
- 540 area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks 541 water availability, Glob. Chang. Biol., 22(4), 1666-1676, doi:10.1111/gcb.13151, 2016.
- 542 Eamus, D. and Jarvis, P. G.: The direct effects of increase in the global atmospheric co2 concentration on natural 543 and commercial temperate trees and forests, Advances in Ecological Research, vol. 19, pp. 1–55., 1989.

- 544 Ellsworth, D. S., Thomas, R., Crous, K. Y., Palmroth, S., Ward, E., Maier, C., Delucia, E. and Oren, R.:
- Elevated CO₂ affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A
- 546 synthesis from Duke FACE, *Glob. Chang. Biol.*, 18(1), 223–242, doi:10.1111/j.1365-2486.2011.02505.x, 2012.
- 547 Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., Gimeno, T. E.,
- $548 \qquad \text{Macdonald, C. A., Medlyn, B. E., Powell, J. R., Tjoelker, M. G. and Reich, P. B.: Elevated CO_2 \ does \ not$
- 549 increase eucalypt forest productivity on a low-phosphorus soil, *Nat. Clim. Chang.*, 7(4), 279–282,
- **550** doi:10.1038/nclimate3235, 2017.
- Farquhar, G. D., Caemmerer, S. and Berry, J. A.: A biochemical model of photosynthetic CO₂ assimilation in
 leaves of C3 species, *Planta*, 149(1), 78–90, doi:10.1007/BF00386231, 1980.
- Fatichi, S. and Leuzinger, S.: Reconciling observations with modeling: The fate of water and carbon allocation
 in a mature deciduous forest exposed to elevated CO₂, *Agric. For. Meteorol.*, 174–175, 144–157,
 doi:10.1016/j.agrformet.2013.02.005, 2013.
- Friend, A.: Modelling canopy CO₂ fluxes: are 'big-leaf' simplifications justified?, Glob. Ecol. Biogeogr., 10(6),
 603–619, 2001.
- Gimeno, T. E., Crous, K. Y., Cooke, J., O'Grady, A. P., Ósvaldsson, A., Medlyn, B. E. and Ellsworth, D. S.:
 Conserved stomatal behaviour under elevated CO₂ and varying water availability in a mature woodland, *Funct. Ecol.*, 30(5), 700–709, doi:10.1111/1365-2435.12532, 2016.
- 561 Gimeno, T. E., McVicar, T. R., O'Grady, A. P., Tissue, D. T. and Ellsworth, D. S.: Elevated CO₂ did not affect
 562 the hydrological balance of a mature native *Eucalyptus* woodland, *Glob. Chang. Biol.*, 33(0), 0–2,
 563 doi:10.1111/gcb.14139, 2018.

Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger, C. M., Canadell, J. G. and Cuntz,
M.: A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and
land cover change, woody vegetation demography, and a novel optimisation-based approach to plant
coordination of photosynthesis, Geosci. Model Dev., 11(7), 2995–3026, doi:10.5194/gmd-11-2995-2018, 2018.

Hjelm, U. and Ögren, E.: Photosynthetic responses to short-term and long-term light variation in Pinus
sylvestris and Salix dasyclados, Trees, 18(6), 622–629, doi:10.1007/s00468-004-0329-8, 2004.

570 IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
 571 Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and
 572 L.A. Meyer (eds.)]. *IPCC*, Geneva, Switzerland, 151 pp.

- 573 Joos, F. and Spahni, R.: Rates of change in natural and anthropogenic radiative forcing over the past 20,000 574 years, *Proc. Natl. Acad. Sci.*, 105(5), 1425–1430, doi:10.1073/pnas.0707386105, 2008.
- 575 Knauer, J., Zaehle, S., De Kauwe, M. G., Bahar, N. H. A., Evans, J. R., Medlyn, B. E., Reichstein, M. and

Werner, C.: Effects of mesophyll conductance on vegetation responses to elevated CO₂ concentrations in a land
 surface model, *Glob. Chang. Biol.*, (September 2018), 1–19, doi:10.1111/gcb.14604, 2019.

- 578 Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P. and Richardson, A. D.:
- 579 Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, *Nature*, 499(7458),
 580 324–327, doi:10.1038/nature12291, 2013.
- 581 Kimball, B. A., Mauney, J. R., Nakayama, F. S. I. and Idso, S. B.: Effects of increasing atmospheric CO₂ on
- 582 vegetation, *Vegetatio*, 104/105, 65–75 [online] Available from:
- 583 https://link.springer.com/article/10.1007/BF00048145, 1993.

584 Klein, T., Bader, M. K. F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R. T. W. and Körner, C.: Growth
585 and carbon relations of mature *Picea abies* trees under 5 years of free-air CO₂ enrichment, edited by E. Lines, *J. Ecol.*, 104(6), 1720–1733, doi:10.1111/1365-2745.12621, 2016.

587 Körner, C., Asshoff, R., Bignucolo, O., Hattenschwiler, S., Keel, S. G., Pelaez-Riedl, S., Pepin, S., Siegwolf, R.
588 T. W. and Zotz, G.: Carbon flux and growth in mature deciduous forest trees exposed to elevated CO₂, *Science*589 (80)., 309(5739), 1360–1362, 2005.

Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G., Aspinwall, M. J., Battaglia, M., Cano, F. J.,
 Carter, K. R., Cavaleri, M. A., Cernusak, L. A., Chambers, J. Q., Crous, K. Y., De Kauwe, M. G., Dillaway, D.

592 N., Dreyer, E., Ellsworth, D. S., Ghannoum, O., Han, Q., Hikosaka, K., Jensen, A. M., Kelly, J. W. G., Kruger,

593 E. L., Mercado, L. M., Onoda, Y., Reich, P. B., Rogers, A., Slot, M., Smith, N. G., Tarvainen, L., Tissue, D. T.,

Togashi, H. F., Tribuzy, E. S., Uddling, J., Vårhammar, A., Wallin, G., Warren, J. M. and Way, D. A.:

595 Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global

596 scale, *New Phytol.*, 222(2), 768–784, doi:10.1111/nph.15668, 2019.

597 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I.,

598 Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker,

D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E.,

600 Cross, J., Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G.,

601 Ilyina, T., Jain, A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer,

602 P., Lefèvre, N., Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S.,

Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., Padín, X. A., Peregon, A., Pfeil, B., Pierrot, D.,
 Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D

Poulter, B., Rehder, G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D.,
Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., van Heuven, S., Viovy, N., Vuichard, N.,

Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S. and Zhu, D.: Global Carbon Budget 2017, *Earth Syst.*

607 *Sci. Data Discuss.*, (November), 1–79, doi:10.5194/essd-2017-123, 2017.

608 Lewis, J. D., McKane, R. B., Tingey, D. T. and Beedlow, P. A.: Vertical gradients in photosynthetic light

response within an old-growth Douglas-fir and western hemlock canopy, Tree Physiol., 20(7), 447–456,
doi:10.1093/treephys/20.7.447, 2000.

611 Long, S. P., Ainsworth, E. A., Rogers, A. and Ort, D. R.: Rising atmospheric carbon dioxide: Plants FACE the 612 Future, *Annu. Rev. Plant Biol.*, 55(1), 591–628, doi:10.1146/annurev.arplant.55.031903.141610, 2004.

613 Luo, Y., Medlyn, B., Hui, D., Ellsworth, D., Reynolds, J. and Katul, G.: Gross primary productivity in duke

- 614 forest: Modeling synthesis of CO₂ experiment and eddy-flux data, *Ecol. Appl.*, 11(1), 239–252,
 615 doi:10.2307/3061070, 2001.
- Medlyn, B. E.: Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light
 use efficiency: A modeling analysis, *Tree Physiol.*, 16(1–2), 201–209, doi:10.1093/treephys/16.1-2.201, 1996.
- 618 Medlyn, B., Badeck, F.-W., De Pury, D., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P.,

619 Forstreuter, M., Jach, M., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen,

- 620 K., Liozon, R., Portier, B., Robertntz, P., Wang, K. and Jarvis, P.: Effects of elevated [CO₂] on photosynthesis
- 621 in European forest species: a meta-analysis of model parameters, *Plant Cell Environ.*, 22, 1475–1495, 1999.
- 622 Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B.,

623 Smith, B., Wang, Y. P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J.,

624 Power, S. A., Tjoelker, M. G. and Ellsworth, D. S.: Using models to guide field experiments: *a priori*

predictions for the CO₂ response of a nutrient- and water-limited native *Eucalypt* woodland, *Glob. Chang. Biol.*,
22(8), 2834–2851, doi:10.1111/gcb.13268, 2016.

627 Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X.,

628 Montpied, P., Strassemeyer, J., Walcroft, a., Wang, K. and Loustau, D.: Temperature response of parameters of

- a biochemically based model of photosynthesis. II. A review of experimental data, *Plant, Cell Environ.*, 25(9),
 1167–1179, doi:10.1046/j.1365-3040.2002.00891.x, 2002.
- 631 Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De
- Angelis, P., Freeman, M. and Wingate, L.: Reconciling the optimal and empirical approaches to modelling
- 633 stomatal conductance, *Glob. Chang. Biol.*, 17(6), 2134–2144, doi:10.1111/j.1365-2486.2010.02375.x, 2011.
- 634 Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A.
- 635 K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y. P., Weng, E., Iversen, C. M.,
- Mccarthy, H. R., Warren, J. M., Oren, R. and Norby, R. J.: Using ecosystem experiments to improve vegetation
 models, *Nat. Clim. Chang.*, 5(6), 528–534, doi:10.1038/nclimate2621, 2015.
- 638 Morison, J. I. L.: Sensitivity of stomata and water use efficiency to high CO₂, Plant, Cell Environ., 8, 4
- Morison, J. I. L.: Sensitivity of stomata and water use efficiency to high CO₂, Plant, Cell Environ., 8, 467–474,
 1985.Niinemets, Ü., Keenan, T. F. and Hallik, L.: A worldwide analysis of within-canopy variations in leaf
- structural, chemical and physiological traits across plant functional types, *New Phytol.*, 205(3), 973–993,
 doi:10.1111/nph.13096, 2015.
- 642 Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H.
- 643 R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M.,
- 644 Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H. and Oren, R.: Forest response to elevated CO₂
- 645 is conserved across a broad range of productivity, *Proc. Natl. Acad. Sci.*, 102(50), 18052–18056,
- 646 doi:10.1073/pnas.0509478102, 2005.
- 647 Ögren, E.: Convexity of the Photosynthetic Light-Response Curve in Relation to Intensity and Direction of
- 648 Light during Growth., Plant Physiol., 101(3), 1013–1019 [online] Available from:
- 649 http://www.ncbi.nlm.nih.gov/pubmed/12231754%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid
 650 =PMC158720, 1993.
- 651 Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A.,
- 652 Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
- 653 Sitch, S. and Hayes, D.: A large and persistent carbon sink in the world's forests, *Science* (80)., 333(6045), 988–654 993, doi:10.1126/science.1201609, 2011.
- 655Peñuelas, J., Canadell, J. G. and Ogaya, R.: Increased water-use efficiency during the 20th century did not656translate into enhanced tree growth, *Glob. Ecol. Biogeogr.*, 20(4), 597–608, doi:10.1111/j.1466-
- 657 8238.2010.00608.x, 2011.
- Saxe, H., Ellsworth, D. S. and Heath, J.: Tree and forest functioning in an enriched CO₂ atmosphere, *New Phytol.*, 139(3), 395–436, doi:10.1046/j.1469-8137.1998.00221.x, 1998.
- Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. and Linder, S.: Growth of mature boreal Norway
 spruce was not affected by elevated [CO₂] and/or air temperature unless nutrient availability was improved, *Tree Physiol.*, 33(11), 1192–1205, doi:10.1093/treephys/tpt043, 2013.
- Silva, L. C. R. and Anand, M.: Probing for the influence of atmospheric CO₂ and climate change on forest
 ecosystems across biomes, *Glob. Ecol. Biogeogr.*, 22(1), 83–92, doi:10.1111/j.1466-8238.2012.00783.x, 2013.
- Slevin, D., Tett, S. F. B. and Williams, M.: Multi-site evaluation of the JULES land surface model using global
 and local data, *Geosci. Model Dev.*, 8(2), 295–316, doi:10.5194/gmd-8-295-2015, 2015.
- 667 Valladares, F., Allen, M. T. and Pearcy, R. W.: Photosynthetic responses to dynamic light under field conditions
- 668 in six tropical rainforest shrubs occurring along a light gradient, Oecologia, 111(4), 505–514,
- doi:10.1007/s004420050264, 1997.

- 470 van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G.
- and Zuidema, P. A.: No growth stimulation of tropical trees by 150 years of CO₂ fertilization but water-use
- 672 efficiency increased, *Nat. Geosci.*, 8(1), 24–28, doi:10.1038/ngeo2313, 2015.
- Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M., Asao, S., Guenet, B., Harper, A.,
- Hickler, T., Hungate, B. A., Jain, A. K., Luo, Y., Lu, X., Lu, M., Luus, K., Megonigal, J. P., Oren, R., Ryan, E.,
- 675 Shu, S., Talhelm, A., Wang, Y.-P., Warren, J. M., Werner, C., Xia, J., Yang, B., Zak, D. R. and Norby, R. J.:
- 676 Decadal biomass increment in early secondary succession woody ecosystems is increased by CO₂ enrichment,
- 677 *Nat. Commun.*, 10(1), 454, doi:10.1038/s41467-019-08348-1, 2019.
- Wang, Y. P., Rey, A. and Jarvis, P. G.: Carbon balance of young birch trees grown in ambient and elevated
 atmospheric CO₂ concentrations, *Glob. Chang. Biol.*, 4(8), 797–807, doi:10.1046/j.1365-2486.1998.00170.x,
 1998.
- Wujeska-Klause, A., Crous, K. Y., Ghannoum, O. and Ellsworth, D. S.: Lower photorespiration in elevated CO₂
 reduces leaf N concentrations in mature *Eucalyptus* trees in the field, *Glob. Chang. Biol.*, (August 2018), 1–14, doi:10.1111/gcb.14555, 2019.
- Wullschleger, S. D.: Biochemical Limitations to Carbon Assimilation in C 3 Plants—A Retrospective Analysis
 of the A/C_i Curves from 109 Species, *J. Exp. Bot.*, 44(5), 907–920, doi:10.1093/jxb/44.5.907, 1993.
- Yang, J., Medlyn, B. E., De Kauwe, M. G. and Duursma, R. A.: Applying the concept of ecohydrological
 equilibrium to predict steady state leaf area index, *J. Adv. Model. Earth Syst.*, 10(8), 1740–1758,
 doi:10.1029/2017MS001169, 2018.
- 689 Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y. P.,
- 690 El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-
- 691 Budynek, A., Mccarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R. and Norby, R. J.: Evaluation of 11
- $\begin{array}{l} \textbf{692} \\ \textbf{terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO_2 Enrichment \\ \textbf{CO_2 Enrichment} \\ \textbf{CO_2 En$
- 693 studies, *New Phytol.*, 202(3), 803–822, doi:10.1111/nph.12697, 2014.
- Chu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P.,
- Arneth, A., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J. and Poulter, B.: Greening of the Earth and its
- drivers, Nat. Clim. Chang., 6, early online, doi:10.1038/NCLIMATE3004, 2016.

- 698 Figures and Captions
- 699

700

701

702 Figure 1. Meteorological data measured at the site during the period 2013-2016. Panels show (a) daily mean

703 vapour pressure deficit (D) with shaded area marking the maximum and minimum of the day, (b) daily mean air

temperature (T_{air}) with shaded area marking the maximum and minimum of the day, (c) daily maximum

photosynthetically active radiation (PAR), and (d) monthly total precipitation. Note that precipitation has no

706 direct impact in the model but modifies stomatal conductance via the change in soil moisture.

708 Figure 2. (a) Leaf area index (LAI) and (b) volumetric water content (θ) used to drive the model. LAI was

709 measured in each ring using the measured absorbed PAR and smoothed using generalized additive model

710 following Duursma et al. (2016). θ was measured using neutron probes at top 150 cm biweekly and gap-filled

⁷¹¹ *using a linear interpolation between two nearest available data (Gimeno et al. 2018).*

712

707

713 Figure 3. The impact of soil moisture content (θ) at top 150 cm on stomatal regulation. Red dots are fitted to

714 data from elevated rings while blue are ambient rings. The bars mark the standard errors of the fitted values.

715 The grey line shows the fit of Eqn. 2 to the data.

718

719 Figure 4. The response of photosynthesis to eC_a on different scales and limited by different factors. In summary, 720 from top to bottom, the figure demonstrates how a large increase in leaf photosynthesis can diminish into a non-721 statistically significant change in canopy GPP under eC_a . Entries from top to bottom are as follows. (a) A_{inst} , the 722 instantaneous response of leaf photosynthesis to eC_a obtained from A-C_i measurements in ambient rings (error 723 bars indicate 95% CI). (b) A_c, the modelled response of Rubisco-limited leaf photosynthesis, assuming no down-724 regulation, averaged over the range of diurnal air temperatures experienced during the experimental period. (c) 725 A_{J} , the modelled response of RuBP-regeneration limited leaf photosynthesis. (d) GPP_{inst}, the direct effect of eC_a 726 on canopy GPP, modelled with MAESPA, assuming no downregulation of photosynthesis and averaged across 727 all six rings. (e) A_{longs} the long-term response of leaf photosynthesis to eC_a obtained from leaf photosynthesis 728 measured at treatment CO_2 concentrations (see Ellsworth et al. 2017). This value is different from A_{inst} because 729 it incorporates photosynthetic acclimation. (f) GPP_{long} , the effect of eC_a on canopy GPP once the measured 730 down-regulation of V_{cmax} is taken into account. (g) LAI, the measured difference in average LAI between eC_a 731 and ambient C_a rings over the experiment period (data from Duursma et al. 2016). (h) GPP_{field}, the GPP 732 response modelled with MAESPA comparing the three elevated rings with the three ambient rings. See text for 733 further explanation.

735

736Figure 5. The modelled C_a response of Rubisco-limited leaf photosynthesis (A_c) and RuBP-regeneration-limited**737**leaf photosynthesis (A_J) against leaf temperature (T_{leaf}) . The responses are calculated for temperatures during**738**the period 2013-2016. Parameters are as given in Table 1, except that $V_{cmax,25}$ and g_J were assumed to be**739**constant for clarity $(g_1 = 3.3 \ kPa^{0.5} \ and \ V_{cmax,25} = 90 \ \mu mol \ m^2 \ s^{-1}).$

- 741 Figure 6. Distribution of average annual photosynthesis limited by Rubisco activity and RuBP-regeneration in
- 742 bins of absorbed PAR (25 µmol m⁻² s⁻¹)., as calculated by MAESPA across all rings during 2013-2016. The
- 743 histogram was constructed by calculating the photosynthesis (either limited by Rubisco or RuBP) falling into
- 744 each bin for every half-hour in the "ambient scenario". These values were then summed to each year and ring

745 and averaged over six rings and four years.

747 Figure 7. Estimated PAR value at which limitation to photosynthesis shifts from RuBP generation to Rubisco at 748 different leaf temperatures and J:V ratios. Rubisco limitation occurs at PAR values above the curves; RuBP 749 regeneration limitation occurs below the curves. The curves were calculated using the Photosyn function in the 750 plantecophys R package (Duursma, 2015). The parameters other than PAR and T_{leaf} were assumed to be 751 constant: $C_a = 390 \,\mu mol \, mol^{-1}$; $D = 1.5 \, kPa$; $g_1 = 3.3 \, kPa^{0.5}$; $V_{cmax,25} = 90 \,\mu mol \, m^{-2} \, s^{-1}$. The temperature and 752 light dependences of photosynthesis were assumed to be the same as in MAESPA. The grey line was predicted 753 by assuming $J_{max,25} = 153 \ \mu mol \ m^{-2} \ s^{-1}$ (i.e., J:V ratio = 1.7). This J:V ratio was observed consistently in 754 EucFACE across campaigns and rings. The red line was predicted by assuming $J_{max25} = 180 \ \mu mol \ m^{-2} \ s^{-1}$ (i.e., 755 J:V ratio= 2). This J:V ratio was commonly reported and used in other studies. The horizontal dashed line 756 shows the $PAR = 1800 \,\mu$ mol m⁻² s⁻¹ at which leaf-level measurements of EucFACE were made. Note the log 757 scale of the y axis. The dashed curved are based on quantum yield of electron transport (α_J ; mol mol⁻¹) and 758 (Convexity of light response of RuBP; θ_J ; unitless)values from CABLE model (Haverd et al., 2018).

759 760

Figure 8. The four-year average GPP of all six rings under ambient and eC_a plotted against initial leaf area 761 index (LAI_i). LAI_i is the LAI measurement taken on the 26 October 2012 and is a proxy of the inherent variation 762 among the rings. For all six rings, estimated GPP is shown for ambient C_a (blue) and eC_a (red). Crosses 763 indicate GPP from simulations by varying C_a and squares indicate GPP as under field conditions. The flat bars 764 on the right hand-side of the plot indicate the average ambient C_a GPP for ambient rings only (the average of 765 blue squares) and average eC_a GPP for elevated rings only (the average of red squares). Dashed lines indicate 766 average ambient C_a (the average of blue crosses) and eC_a GPP across all six rings (the average of red crosses). 767 The flat bars thus mark the modelled response without inter-ring variability while the dashed lines mark the 768 modelled realized response, including inter-ring variability.