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Abstract. Some biological particles and macromolecules are particularly efficient ice nuclei (IN), triggering ice formation at

temperatures close to 0 ◦C. The impact of biological particles on cloud glaciation and the formation of precipitation is still

poorly understood and constitutes a large gap in the scientific understanding of the interactions and co-evolution of life and

climate. Ice nucleation activity in fungi was first discovered in the cosmopolitan genus Fusarium, which is widespread in soil

and plants, has been found in atmospheric aerosol and cloud water samples, and can be regarded as the best studied IN-active5

fungus. The frequency and distribution of ice nucleation activity within Fusarium, however, remains elusive. Here, we tested

more than 100 strains from 65 different Fusarium species for ice nucleation activity. In total, ∼11 % of all tested species

included ice nucleation-active (IN-active) strains, and ∼16 % of all tested strains showed ice nucleation activity above -12 ◦C.

Besides Fusarium species with known ice nucleation activity, F. armeniacum, F. begoniae, F. concentricum, and F. langsethiae

were newly identified as IN-active. The cumulative number of IN per gram of mycelium for all tested Fusarium species was10

comparable to other biological IN like Sarocladium implicatum, Mortierella alpina, and Snomax®. Filtration experiments

indicate that cell-free ice-nucleating macromolecules (INMs) from Fusarium are smaller than 100 kDa, and that molecular

aggregates can be formed in solution. Long-term storage and freeze-thaw cycle experiments revealed that the fungal IN in

aqueous solution remain active over several months and in the course of repeated freezing and thawing. Exposure to ozone and

nitrogen dioxide at atmospherically relevant concentration levels did also not affect the ice nucleation activity. Heat treatments15

at 40 ◦C to 98 ◦C, however, strongly reduced the observed IN concentrations, confirming earlier hypotheses that the INM in

Fusarium largely consists of a proteinaceous compound. The frequency and the wide distribution of ice nucleation activity

within the genus Fusarium, combined with the stability of the IN under atmospherically relevant conditions, suggest a larger

implication of fungal IN on the Earth’s water cycle and climate than previously assumed.
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1 Introduction20

Ice particles in the atmosphere are formed either by homogeneous nucleation at temperatures below -38 ◦C or by heterogeneous

nucleation catalyzed by particles or macromolecules serving as ice nuclei (IN) at warmer temperatures (Pruppacher and Klett,

1997; reviewed in detail in Fröhlich-Nowoisky et al. (2016) and Knopf et al. (2018)). Biological particles in particular are

expected to play an important role as IN in the temperature range from -15 ◦C to 0 ◦C, but the impact of biological particles

on cloud glaciation and the formation of precipitation is still poorly understood (Coluzza et al., 2017). Several studies suggest25

a triggering effect of biological IN for cloud glaciation and formation of precipitation (Creamean et al., 2013; DeMott and

Prenni, 2010; Failor et al., 2017; Hanlon et al., 2017; Joly et al., 2014; Petters and Wright, 2015; Pratt et al., 2009; Stopelli

et al., 2015, 2017), and former studies have shown that biological particles are more efficient than mineral IN (DeMott and

Prenni, 2010; Després et al., 2012; Hill et al., 2014; Hoose and Möhler, 2012; Huffman et al., 2013; Möhler et al., 2007; Morris

et al., 2014; Murray et al., 2012; Pratt et al., 2009).30

The best characterized biological IN are common plant-associated bacteria of the genera Pseudomonas, Pantoea, and Xan-

thomonas (Garnham et al., 2011; Govindarajan and Lindow, 1988; Graether and Jia, 2001; Green and Warren, 1985; Hill et al.,

2014; Kim et al., 1987; Ling et al., 2018; Šantl-Temkiv et al., 2015; Schmid et al., 1997; Wolber et al., 1986), and recently, an

ice nucleation-active (IN-active) Lysinibacillus was found (Failor et al., 2017). The first identified IN-active fungi were strains

of the genus Fusarium (Hasegawa et al., 1994; Pouleur et al., 1992; Richard et al., 1996; Tsumuki et al., 1992). To date, a few35

more fungal genera with varying initial freezing temperatures such as Isaria farinosa (∼ -4 ◦C), Mortierella alpina (∼ -5 ◦C),

Puccinia species (-4 ◦C to -8 ◦C), and Sarocladium (formerly named Acremonium) implicatum (∼ -9 ◦C) have been identified

as IN-active (Fröhlich-Nowoisky et al., 2015; Huffman et al., 2013; Morris et al., 2013; Richard et al., 1996).

The genus Fusarium is cosmopolitan and includes saprophytes and pathogens of plants and animals (Leslie and Summerell,

2006; Nelson et al., 1994). Although they are considered to be primarily soil-borne fungi, many species of Fusarium are40

airborne (Prussin et al., 2014; Schmale et al., 2012; Schmale and Ross, 2015), and they were found in atmospheric and cloud

water samples (e.g., Amato et al., 2007; Fröhlich-Nowoisky et al., 2009; Fulton, 1966). Some species can cause wilts, blights,

root rots, and cankers in agriculturally important crops worldwide (e.g., Schmale and Gordon, 2003; Wang and Jeffers, 2000).

Other species can produce secondary metabolites known as mycotoxins that can cause a variety of acute and chronic health

effects in humans and animals (e.g., Bush et al., 2004; Ichinoe et al., 1983).45

While the factors for a positive selective pressure for ice nucleation activity in Fusarium and other fungi have not been

directly identified, an ecological advantage of initiating ice formation is easily conceivable. Indeed, most IN-active bacteria

and fungi are isolated from regions with seasonal temperatures below 0 ◦C (Diehl et al., 2002; Schnell and Vali, 1972). Ice

nucleation activity at temperatures close to 0 ◦C could be beneficial for pathogens or might provide an ecological advantage

for saprophytic Fusarium species by facilitating in the acquisition of nutrients liberated during cell rupture of the host (Lin-50

dow et al., 1982). Furthermore, IN on the surface of the mycelium could avoid physical damage of the fungus by protective

extracellular freezing (Fröhlich-Nowoisky et al., 2015; Zachariassen and Kristiansen, 2000) or to bind moisture as ice in cold

and dry seasons (Pouleur et al., 1992). With increasing temperatures, the retained water can be of advantage in early vegetative
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periods and for bacterial movement on the mycelial water film known as fungal highway (Kohlmeier et al., 2005; Warmink

et al., 2011). Moreover, ice nucleation activity might be beneficial for airborne Fusarium and for their return to the Earth’s55

surface under advantageous conditions in a feedback cycle known as bioprecipitation (Després et al., 2012; Morris et al., 2013,

2014; Sands et al., 1982). In addition, once the IN are released into the environment, they can adsorb to clay and might also be

available in the atmosphere associated with soil dust particles (Conen et al., 2011; Fröhlich-Nowoisky et al., 2015, 2016; Hill

et al., 2016; O’Sullivan et al., 2014, 2015, 2016; Sing and Sing, 2010).

The sources, abundance, and identity of biological IN are not well characterized (Coluzza et al., 2017), and it has been60

proposed that systematic surveys will likely increase the number of IN-active fungal species discovered (Fröhlich-Nowoisky

et al., 2015). Fusarium is the best-known IN-active fungus, but the frequency and distribution of ice nucleation activity within

Fusarium is not well known. In this study, more than 100 strains from 65 different Fusarium species were tested for ice

nucleation activity in three laboratories with different freezing methods. A high-throughput droplet freezing assay was used to

quantify the IN of selected Fusarium species, and filtration experiments were performed to estimate the size of the Fusarium65

IN. Furthermore, the stability of Fusarium IN upon exposure to ozone and nitrogen dioxide, under high and low or quickly

changing temperatures, and after short- and long-term storage under various conditions was investigated.

2 Materials and methods

2.1 Origin and growth conditions of fungal cultures

Thirty Fusarium strains from USDA-ARS/Michigan State University (L. Hanson, East Lansing, MI, USA), 13 strains from the70

Schmale Laboratory at Virginia Tech (D. Schmale, Blacksburg, VA, USA), and 69 strains from the Kansas State University

Teaching Collection (J. Leslie, Manhattan, KS, USA) were screened for ice nucleation activity (Table S1).

The strains from the USDA-ARS/Michigan State University were collected from crop tissue (sugar beet). All isolates were

from field-grown beets and were obtained by hyphal tip transfer. The strains from the Schmale Laboratory at Virginia Tech were

collected with unmanned aircraft systems (UASs or drones) equipped with remotely-operated sampling devices containing a75

Fusarium selective medium (e.g., Lin et al., 2013, 2014). All of the Schmale Laboratory strains were collected 100 m above

ground level at the Kentland Farm in Blacksburg, Virginia, USA. Detailed information is not available for the sources of the

strains for the Kansas State University Teaching collection. However, some of these strains are holotype strains referenced in

Leslie and Summerell (2006).

The stains from the USDA-ARS/Michigan State University were cultivated on dextrose peptone yeast extract agar, con-80

taining 10 g L-1 dextrose (VWR, Radnor, PA, USA), 3 g L-1 peptone (Difco Proteose Peptone No. 3, Becton, Dickinson and

Company, Franklin Lakes, NY, USA), and 0.3 g L-1 yeast extract (Merck, Kenilworth, NJ, USA), filtered through a 0.2 µm pore

diameter filter (PES disposable filter units, Life Science Products, Frederick, CO, USA). After filtration, 12 g L-1 agarose (Cer-

tified Molecular Biology Agarose, Bio-Rad, Hercules, CA, USA) was added, and the medium was sterilized by autoclaving at

121 ◦C for 20 min. The colonies were grown at 22 ◦C to 24 ◦C for 7 to 19 days. The strains from the Schmale Laboratory at85

Virginia Tech and the Kansas State University Teaching Collection were maintained in cryogenic storage at -80 ◦C and were
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grown on quarter-strength potato dextrose agar (Difco Laboratories, Detroit, USA) on 100 mm petri plates at ambient room

temperature for four days prior to ice nucleation assays.

For quantitative analysis, exposure experiments, heat treatments, freeze-thaw cycles, as well as short- and long-term storage

tests a selection of IN-active tested strains was grown on full-strength potato dextrose agar (VWR International GmbH, Darm-90

stadt, Germany) first at room temperature for four to six days and then at 6 ◦C for about four weeks. For filtration experiments,

the fungal cultures were grown at 6 ◦C for up to six months.

2.2 Preparation and treatments of aqueous extracts

For LED-based Ice Nucleation Detection Apparatus (LINDA) (Stopelli et al., 2014) experiments (see Sect. 2.3), 4 mL of sterile

0.9 % NaCl was added to each of eight petri plates, and the fungal cultures were scraped with the flat end of a sterile bamboo95

skewer. The resulting suspension of mycelium and spores was filtered through a 100 µm filter (Corning Life Sciences, Reims,

France).

For Twin-plate Ice Nucleation Assay (TINA) (Kunert et al., 2018) experiments (see Sect. 2.3) the fungal mycelium was

scraped off the agar plate and transferred into a 15 mL tube (Greiner Bio One, Kremsmünster, Austria). The fresh weight of

the mycelium was determined gravimetrically. Pure water was prepared as described in Kunert et al. (2018). Aliquots of 10 mL100

pure water were added before vortexing three times at 2 700 rpm for 30 s (Vortex-Genie 2, Scientific Industries, Inc., Bohemia,

NY, USA) and centrifugation at 4 500 g for 10 min (Heraeus Megafuge 40, Thermo Scientific, Braunschweig, Germany). For

all experiments the aqueous extract was filtered successively through a 5 µm and a 0.1 µm PES syringe filter (Acrodisc®,

Sigma-Aldrich, Taufkirchen, Germany), and the aqueous extract contained IN from spores and mycelial surfaces.

For filtration experiments, the 0.1 µm filtrate was further filtered successively through 300 000 MWCO and 100 000 MWCO105

PES ultrafiltration units (Vivaspin®, Satorius AG, Göttingen, Germany). After each filtration step, the IN concentration was

determined using TINA.

For exposure experiments, aqueous extracts of F. acuminatum 3-68 and F. avenaceum 2-106 were exposed to high concen-

trations of O3 and NO2 as described in Liu et al. (2017). Briefly, a mixture of 1 ppm O3 and 1 ppm NO2 was bubbled through

1 mL aliquots of aqueous extract for 4 h, and the IN concentration was determined using TINA.110

For heat treatment experiments, aliquots of aqueous extracts of F. acuminatum 3-68, F. armeniacum 20970, F. avenaceum

2-106, and F. langsethiae 19084 were incubated at 40 °C, 70 °C, and 98 °C, respectively, for one hour. The IN concentration

was determined using TINA.

For freeze-thaw cycles, the ice nucleation activity of F. acuminatum 3-68 was determined shortly after preparation of the

aqueous extract and after storage at 6 ◦C for 24 h using TINA. Then, the aqueous extract was stored at -20 ◦C for 24 h and115

thawed again. The ice nucleation activity was tested before storage at -20 ◦C for an additional 24 h. After thawing, the ice

nucleation activity was determined again.

For long-term storage experiments, the aqueous extract of various Fusarium species was stored at 6 ◦C for about four months

or at -20 ◦C for about eight months, and the ice nucleation activity was determined using TINA.
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2.3 Ice nucleation assays120

Two independent droplet freezing assays conducted in two laboratories were used to investigate the distribution of ice nucle-

ation activity within Fusarium in an initial screening.

First, a thermal cycler (PTC200, MJ Research, Hercules, CA, USA) was used as described in Fröhlich-Nowoisky et al. (2015)

to screen 30 Fusarium strains from seven species from USDA-ARS/Michigan State University in the temperature range from -

2 ◦C to -9 ◦C. Mycelium was picked with sterile pipette tips (Eppendorf, Westbury, NY, USA) into 80 µL aliquots of 0.2 µm pore125

diameter filtered dextrose peptone yeast (DPY) broth in sterile 96-well polypropylene PCR plates (VWR International, LLC,

Radnor, PA, USA). Up to seven droplets were measured for each sample, and the mean freezing temperature was calculated.

Aliquots of uninoculated DPY broth were used as negative controls, which did not freeze in the investigated temperature

interval.

Second, the LED-based Ice Nucleation Detection Apparatus (LINDA) was used as described by Stopelli et al. (2014) to130

screen 13 strains from the Schmale Laboratory at Virginia Tech and 69 strains from the Kansas State University Teaching

Collection. Aliquots of 200 µL of each aqueous extract were transferred to three separate 500 µL tubes and placed on ice

for 1 h prior to the LINDA experiments. LINDA was run from -1 ◦C to -20 ◦C, and images of the samples were recorded

every six seconds. The mean freezing temperature for three droplets was calculated. Note, that the aqueous extracts were

prepared in 0.9 % NaCl solution, which could reduce the freezing temperatures by 0.5 ◦C based on theoretical calculations.135

We cannot exclude, however, that the high concentration of IN compensates the effect of NaCl on the freezing temperature.

This is supported by the investigations of Stopelli et al. (2014), who did not find a systematic suppression of freezing at this

salt concentration in LINDA experiments. As a negative control, a 0.9 % NaCl solution was added to three uninoculated agar

plates, and the freezing started below -14 ◦C. As positive control, aqueous suspensions of Pseudomonas syringae CC94 from

the collection of INRA (Avignon, France) (Berge et al., 2014) (with a final OD580 of 0.5 to 0.7, i.e. ∼109 bacteria mL-1)140

were used for each experiment. The bacteria were grown on King’s medium B (King et al., 1954) at 22 ◦C to 25 ◦C for 48 h,

and aqueous suspensions were equilibrated at 4 ◦C for 1 h to 4 h before LINDA experiments. The freezing temperatures of

Pseudomonas syringae CC94 ranged from -3.46 ◦C to -4.58 ◦C.

Ice nuclei of selected Fusarium species, which were long known for ice nucleation activity (F. acuminatum, F. avenaceum)

as well as all the newly identified species, were further analyzed in immersion freezing mode using the high-throughput Twin-145

plate Ice Nucleation Assay (TINA) (Kunert et al., 2018). The aqueous extracts were serially diluted 10-fold with pure water

by a liquid handling station (epMotion ep5073, Eppendorf, Hamburg, Germany) to a dilution where droplets remained liquid

in the investigated temperature interval. Of each dilution, 96 droplets (3 µL) were tested with a continuous cooling rate of

1 ◦Cmin-1 from 0 ◦C to -20 ◦C. Pure water samples (0.1 µm filtrated) served as a negative control for each experiment. These

did not freeze in the observed temperature interval. The temperature was measured with an accuracy of 0.2 K (Kunert et al.,150

2018). The obtained fraction of frozen droplets (f ice) and the counting error were used to calculate the cumulative number of IN

(Nm) with the associated error using the Vali formula and the Gaussian error propagation (Kunert et al., 2018; Vali, 1971). For

each experiment, the cumulative number of IN was averaged over all dilutions. If the experiment was repeated, the cumulative
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number of IN was averaged over all experiments, and the standard error was calculated. Three independent experiments with

aqueous extract from three individual fungal culture plates of the same strain showed similar results with only slight variation.155

An example of results is presented for F. armeniacum 20970 (Fig. S1).

3 Results and discussion

3.1 IN-active Fusarium species

Although several IN-active Fusarium species are known, the frequency and distribution of ice nucleation activity within the

fungal genus Fusarium is still not well studied (Hasegawa et al., 1994; Humphreys et al., 2001; Pouleur et al., 1992; Richard160

et al., 1996; Tsumuki and Konno, 1994). Two initial screenings in the temperature range from -1 ◦C to -20 ◦C were performed

to better evaluate the frequency of ice nucleation activity within Fusarium. A strain was defined as IN-active, when it initiated

ice formation above - 9 ◦C (thermal cylcer) and -12 ◦C (LINDA), respectively.

In total, ∼ 16 % (18/112) of the tested strains showed ice nucleation activity with mean freezing temperatures of -3.5 ◦C

to -11.2 ◦C (Table 1) in the typical range known for Fusarium (-1 ◦C and -9 ◦C) (Hasegawa et al., 1994; Humphreys et al.,165

2001; Pouleur et al., 1992; Richard et al., 1996; Tsumuki et al., 1992; Tsumuki and Konno, 1994). Most formerly reported

initial freezing temperatures were obtained with different Fusarium strains, growth conditions, and freezing assays, which

might explain differences compared to our results. The high proportion of IN-active strains within F. acuminatum is consistent

with previous reports (Pouleur et al., 1992; Tsumuki et al., 1995). Overall, ∼ 11 % (7/65) of the tested species included IN-

active strains. In addition to strains from Fusarium species with known ice nucleation activity, four Fusarium species were170

newly identified as IN-active: F. armeniacum, F. begoniae, F. concentricum, and F. langsethiae. In further experiments, the ice

nucleation activity of F. begoniae and F. concentricum could not be verified.

The newly identified IN-active species are cosmopolitan. Fusarium armeniacum is a toxigenic saprophyte (Burgess et al.,

1993) causing seed and root rot on soybeans (Ellis et al., 2012). The geographical distribution has been reported as tropical and

subtropical (Leslie and Summerell, 2006), but it was also found in Minnesota, USA (Kommedahl et al., 1979) and Australia175

(Burgess et al., 1993). Fusarium begoniae is a plant pathogen of Begonia found in Germany with a potential wider distribution

(Nirenberg and O’Donnell, 1998). Fusarium concentricum is a plant pathogen, frequently found in Central America and iso-

lated from bananas (Aoki et al., 2001; Leslie and Summerell, 2006), and F. langsethiae is a broadly distributed cereal pathogen

(Torp and Nirenberg, 2004). Some strains of these newly identified IN-active species are known to produce mycotoxins, which

can threaten the health of humans and animals (Fotso et al., 2012; Kokkonen et al., 2012; Wing et al., 1993a, b).180

The results suggest that the ice nucleation activity within Fusarium is more widespread than previously known. Not all

Fusarium species include IN-active strains and not all strains within one species show ice nucleation activity. Earlier studies

including experiments suggested that Fusarium IN are proteins or at least contain a proteinaceous compound (Hasegawa et al.,

1994; Pouleur et al., 1992; Tsumuki and Konno, 1994). Their production requires energy, and we might assume that this

trait would not be expressed or maintained unless there was an ecological advantage. It is known that Fusarium can regulate185

the gene expression for IN production depending on environmental conditions such as nutrient availability (Richard et al.,
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1996), and some Fusarium species reduce or lose their ice nucleation activity after several subcultures (Pummer et al., 2013;

Tsumuki et al., 1995). Thus, we cannot exclude that all Fusarium strains have the ability to produce IN. From the phylogenetic

distribution of ice nucleation activity across the genus Fusarium, we can speculate that ice nucleation activity is a very old trait,

but either the gene expression requires a trigger, which is not yet identified, or the trait might be in the process of being lost.190

It is unlikely, however, that the age of the genetic determinants of fungal ice nucleation activity is older than that in bacteria,

since fungi diverged well after the age that has been attributed to the bacterial IN gene (Morris et al., 2014), and the genetic

determinants are not the same as those in bacteria.

3.2 Quantification and size determination of IN from selected Fusarium species

A selection of IN-active Fusarium species was further investigated by extensive droplet freezing assay analysis using TINA.195

All tested Fusarium strains initiated ice nucleation between -3 ◦C and -4 ◦C (Fig. 1). Differences in the freezing temperatures

between the initial screening and the quantitative analysis can be due to different growth conditions and freezing assays. The

cumulative number of IN (Nm) per gram of mycelium was in the range between 108 g-1 and 1013 g-1. Fusarium acuminatum 3-

68 showed the highest ice nucleation activity and F. langsethiae the lowest per gram of mycelium. The results are comparable

to other IN-active microorganisms like Sarocladium implicatum (108 g-1, Pummer et al., 2015, Mortierella alpina (109 g-1,200

Fröhlich-Nowoisky et al., 2015; 1010 g-1, Kunert et al., 2018), and the bacterial IN-active substance Snomax® containing

Pseudomonas syringae (1012 g-1, Budke and Koop, 2015; Kunert et al., 2018).

The size of the Fusarium IN was investigated by filtration experiments. Filtration through a 5 µm and a 0.1 µm filter did

not affect the ice nucleation activity (Fig. 2), revealing that Fusarium IN are smaller than 100 nm, cell-free, easily removed

from the fungus, and stay active in solution. This is in agreement with other Fusarium studies (O’Sullivan et al., 2015; Pouleur205

et al., 1992; Tsumuki and Konno, 1994). Moreover, biological INMs smaller than 200 nm were also found in various organisms

e.g., other fungi (Fröhlich-Nowoisky et al., 2015; Pummer et al., 2015), leaves, bark, and pollen from birch trees (Betula spp.)

(Felgitsch et al., 2018; Pummer et al., 2012), leaf litter (Schnell and Vali, 1973), some microalgae (Tesson and Šantl-Temkiv,

2018), strains of Lysinibacillus (Failor et al., 2017), and biological particles in the sea surface microlayer (Irish et al., 2019;

Wilson et al., 2015). Filtration through a 300 000 MWCO filter unit decreased the cumulative number of IN per gram of210

mycelium about 50 % to 75 % depending on the Fusarium species, but a tremendous number of IN (1010 - 1013 g-1) still passed

through the filter. The initial freezing temperature was slightly shifted towards lower temperatures. Further filtration through

a 100 000 MWCO filter unit reduced the IN number to 108 - 1010 g-1, which is less than 1 % of the initial IN concentration.

Additionally, the initial freezing temperature was shifted about one degree towards lower temperatures.

As ice nucleation activity was found in all filtrates, the aqueous extract of Fusarium consists of a mixture of IN-active215

proteins with different sizes. We hypothesize that Fusarium IN are macromolecules (INMs) smaller than 100 kDa, which

agglomerate to large protein complexes in solution. Some of these complexes fall apart upon filtration, so that the INMs

can pass through the filter. The small shift in the initial freezing temperature suggests that these INMs reassemble again to

aggregates after filtration, as larger IN nucleate at warmer temperatures (Govindarajan and Lindow, 1988; Pummer et al.,

2015). Erickson (2009) determined the size of proteins based on theoretical calculations. As the interior of proteins is closely220
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packed with no substantial holes and almost no water molecules inside, proteins are rigid structures with approximately the

same density (∼ 1.37 g cm-1). Assuming the protein as a smooth spherical particle, the minimum diameter of the INM would

be smaller than 6.1 nm. Our results are in accordance with Lagzian et al. (2014), who cloned and expressed a 49 kDa IN-active

protein from F. acuminatum.

As Fusarium IN are cell-free and can easily be washed off the fungal surface, they can be released in high numbers into the225

environment. If they are not degraded by microorganisms before, the IN can adsorb to soil dust and be aerosolized attached to

these particles (Conen et al., 2011; Fröhlich-Nowoisky et al., 2015; Hill et al., 2016; O’Sullivan et al., 2014, 2015, 2016; Sing

and Sing, 2010). This is in good agreement with Pruppacher and Klett (1997), who found a positive correlation between IN

number concentration and particles in the coarse mode. Other releasing processes cannot be excluded, however, it is unlikely

that the INMs are present in the atmosphere as individual aerosol particles. Individual proteins with a diameter of ∼ 6 nm, which230

may enter the atmosphere, would be in the nucleation mode size range, where particles tend to uptake gaseous compounds and

grow to Aitken mode particles, which themselves tend to coagulate to larger agglomerates (Seinfeld and Pandis, 1998).

3.3 Stability of Fusarium IN

In the atmosphere, IN can interact with other aerosol particles or gases. They can be exposed to chemically modifying agents

like ozone and nitrogen dioxide, and physical stressors like high and low or quickly changing temperatures. To investigate the235

stability of Fusarium IN, we performed exposure experiments, heat treatments, freeze-thaw cycles, and long-term storage tests.

The influence of chemical processing on the Fusarium IN, in particular oxidation and nitration reactions as occurring during

atmospheric aging, was investigated by exposing aqueous extracts from F. acuminatum 3-68 and F. avenaceum 2-106 to high

concentrations of ozone and nitrogen dioxide in liquid phase. Figure 3 shows that for both species neither the initial freezing

temperature nor the cumulative number of IN per gram of mycelium was affected by exposure. These results demonstrate a240

high stability of Fusarium IN under oxidizing and nitrating conditions. This is in contrast to other biological IN e.g., bacterial

IN (Snomax®) (Kunert et al., 2018), birch and alder pollen (Gute and Abbatt, 2018), and dissolved organic matter (Borduas-

Dedekind et al., 2019), where exposure to oxidizing agents reduced the IN activity.

The stability of the INM in Fusarium was investigated in heat treatment experiments. The ice nucleation activity was reduced

significantly at a 40 ◦C treatment (Fig. 4). Between 40 % and 90 % of IN were lost at this temperature depending on the245

species, which supports the hypothesis that the INM in Fusarium consists of a proteinaceous compound. A heat treatment

at 70 ◦C reduced the ice nucleation activity to less than 0.01 % compared to the initial level. Moreover, the initial freezing

temperature was shifted to lower temperatures indicating a breakdown of the large protein aggregates. After a 98 ◦C treatment,

we still found ice nucleation activity for all investigated species except for F. avenaceum 2-106. The results are in agreement

with previous studies, which also reported a reduction in ice nucleation activity with increasing temperature in heat treatment250

experiments (Hasegawa et al., 1994; Pouleur et al., 1992; Tsumuki and Konno, 1994). The remaining activity after the 98 ◦C

treatment, however, could indicate that post-translational modifications like glycosylation and therefore polysaccharides could

play a role in the ice nucleation activity of Fusarium. Further systematic studies including chemical analyses are needed for

elucidation.
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To study the effects of short-term storage and freeze-thaw cycles on the ice nucleation activity of F. acuminatum 3-68, IN255

measurements of the same aqueous extract were performed at different time points (Fig. 5). The results of freshly prepared

aqueous extract revealed that the highest activity of fungal IN was already developed during preparation of the filtrate and no

time for equilibration was required. Storage of aqueous extract at 6 ◦C for 24 h did not affect the ice nucleation activity. Also,

further storage at -20 ◦C for another 24 h, and repeated freeze-thaw cycles had no impact on the ice nucleation activity. This

means, that, once in the atmosphere, the IN can undergo several freeze-thaw cycles without losing their activity and are still260

able to influence cloud glaciation and the formation of precipitation. This could be an explanation why not all fungi are always

IN-active as their IN are highly stable and quasi recyclable. Ice nuclei might influence the availability of moisture over long

times periods, and if enough moisture is available in the environment, the necessity of IN production would be omitted and the

fungus could save energy.

In addition, the stability of the INM in Fusarium was studied in long-term storage tests, where aqueous extracts of various265

Fusarium species were stored at different temperatures for a long period of time. Figure 6 shows that storage at 6 ◦C for

four months and -20 ◦C for eight months, respectively, did not influence the ice nucleation activity of F. armeniacum 20970,

F. acuminatum 1-4, F. avenaceum 2-106, and F. acuminatum 2-38. The results demonstrate the high stability of the INMs

in Fusarium in liquid and frozen solutions over long time periods, which makes Fusarium well applicable for laboratory IN

studies. Moreover, the high stability is likely an advantage for these fungi to be linked to atmospheric processes.270

4 Conclusions

The frequency and distribution of ice nucleation activity within the fungal genus Fusarium was investigated in a screening of

more than 100 strains from 65 different Fusarium species. In total, ∼ 11 % (7/65) of all tested species included IN-active strains,

and ∼ 16 % (18/112) of all tested strains showed ice nucleation activity, demonstrating the wide distribution of ice nucleation

activity within Fusarium. Filtration experiments suggest that Fusarium IN form aggregates consisting of INMs smaller than275

100 kDa (∼ 6 nm). Exposure experiments, freeze-thaw cycles, and long-term storage tests revealed a high stability of the INMs

in Fusarium, demonstrating the suitability of Fusarium in laboratory IN studies. Heat treatments at 40 ◦C to 98 ◦C reduced

the IN concentration significantly, supporting the hypothesis that the INM in Fusarium largely consists of a proteinaceous

compound. An involvement of polysaccharides, however, cannot be excluded. The wide distribution of ice nucleation activity

within the genus Fusarium together with the stability of the INM in Fusarium under atmospherically relevant conditions,280

suggest that the implication of these IN on the Earth’s water cycle and climate might be more significant than previously

assumed. Additional research is necessary to characterize the INMs in Fusarium and processes, which can result in their

agglomeration to larger protein complexes. To evaluate the implication of these IN on the Earth’s climate, additional work is

required to study the abundance of Fusarium IN in environmental samples on a global scale.

Data availability. All data are available from the corresponding authors upon request.285
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Table 1. Ice nucleation-active Fusarium strains with corresponding mean freezing temperatures of the initial screening. The newly identified

IN-active Fusarium species are marked with an asterisk (*).

Species Strain T (◦C)

F. acuminatum 1-3 -5.6

F. acuminatum 1-4 -5.0

F. acuminatum 1-5 -5.6

F. acuminatum 1-24 -3.5

F. acuminatum 2-38 -5.0

F. acuminatum 2-48 -5.6

F. acuminatum 2-109 -5.6

F. acuminatum 3-48 -5.0

F. acuminatum 3-68 -3.5

F. acuminatum 20964 -6.2

F. armeniacum* 20970 -5.3

F. avenaceum 2-106 -5.0

F. avenaceum 11440 -7.6

F. begoniae* 10767 -11.2

F. concentricum* 10765 -4.6

F. langsethiae* 19084 -9.4

F. tricinictum 20990 -7.3
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Figure 1. Overview of ice nucleation activity for selected Fusarium species and strains: cumulative number of IN (Nm) per gram of mycelium

plotted against the temperature (T); arithmetic mean values and standard error of three independent experiments with aqueous extracts from

different fungal culture plates.
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Figure 2. Size determination of the Fusarium IN upon filtration: cumulative number of IN (Nm) per gram of mycelium plotted against the

temperature (T) for (a) F. acuminatum 3-68, (b) F. armeniacum 20970, (c) F. avenaceum 2-106, and (d) F. langsethiae 19084. The error bars

were calculated using the counting error and the Gaussian error propagation.
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Figure 3. Exposure of aqueous extract from Fusarium to ozone and nitrogen dioxide: cumulative number of IN (Nm) per mass of mycelium

plotted against the temperature (T) for (a) F. acuminatum 3-68 and (b) F. avenaceum 2-106; arithmetic mean values and standard error of two

independent experiments with aqueous extracts from different fungal culture plates.
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Figure 4. Effects of high temperatures on the ice nucleation activity of Fusarium: cumulative number of IN (Nm) per gram of mycelium

plotted against the temperature (T) for (a) F. acuminatum 3-68, (b) F. armeniacum 20970, (c) F. avenaceum 2-106, and (d) F. langsethiae

19084. The error bars were calculated using the counting error and the Gaussian error propagation.

21



10
1
 

10
3
 

10
5
 

10
7
 

10
9
 

10
11
 

10
13
 

N
m

 [g
-1

]

270265260255
T [K]

-20 -15 -10 -5 0
T [°C]

  F. acuminatum 3-68 
  Fresh
  24 h, 6 °C
  48 h, -20 °C
  72 h, -20 °C     

Figure 5. Effects of short-term storage and freeze-thaw cycles on the ice nucleation activity of Fusarium acuminatum 3-68: cumulative

number of IN (Nm) per gram of mycelium plotted against the temperature (T). The same aqueous extract was measured immediately after

preparation (black), after storage at 6 ◦C for 24 h (blue), after another 24 h stored at -20 ◦C (total 48 h; green), and after another 24 h stored

at -20 ◦C (total 72 h; yellow). The error bars were calculated using the counting error and the Gaussian error propagation.
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Figure 6. Effect of long-term storage on the ice nucleation activity of (a) F. armeniacum 20970, (b) F. acuminatum 1-4, (c) F. acuminatum

2-38, and (d) F. avenaceum 2-106: cumulative number of IN (Nm) per gram of mycelium against the temperature (T). The error bars were

calculated using the counting error and the Gaussian error propagation.
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