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Abstract. Woody vegetation is an integral component of savannas. Here, two main change processes alter woody vegetation, 

namely shrub encroachment and deforestation. Both impact a range of ecosystem services and functions across scales. Accurate 

estimates of change, including spatial extent, rate and drivers are lacking. This is primarily due to savanna vegetation 

comprising woody and herbaceous vegetation, each of which exhibit divergent phenological characteristics, and vary 15 

importantly in their response to climatic and environmental factors. This study uses phenological metrics derived from the 

MODIS MOD13Q1 NDVI time-series to model woody cover as a function of field measurements, and to map trends across 

Namibia. These metrics enhance the contrasting phenological characteristics of woody and herbaceous vegetation, and 

standardizes their annual response to climatic and environmental factors by integrating short term variation. Trends in woody 

cover are excellent indicators of shrub encroachment and deforestation. Trend significance was computed using the Mann-20 

Kendall test, while change statistics, including the rate and spatial extent of change were derived using the Theil-Sen slope. 

Change was evaluated in relation to drivers including land-use, population, biomes and precipitation. An overall decrease in 

woody cover was identified, with the most pronounced decreases found in urban and densely populated areas. Decreases in 

woody cover were not homogenously distributed; losses predominated in tropical desert and dry forests, but gains were found 

across shrub lands. 25 

1 Introduction 

Savannas constitute one of the most extensive biomes, covering over a fifth of Earth’s land surface and providing a livelihood 

for a substantial number of people (Sankaran et al., 2005; Scholes and Archer, 1997). Savanna vegetation is characterized by 

the co-occurrence of trees, shrubs and herbaceous species with a distinguishing feature being their contrasting phenologies. 

The proportions of woody and herbaceous species vary widely, forming forests, grasslands and shrub lands (Archibald and 30 

Scholes, 2007; Frost, 1996; Murphy and Bowman, 2012). Woody vegetation is an important component of savannas 

(Chidumayo and Gumbo, 2010; Sánchez‐Azofeifa et al., 2005); it is essential not only at the local scale, where it provides 

resources for rural communities ranging from forage to timber, but also at the global scale, where it contributes key ecosystem 

services functions affecting biodiversity, carbon and water cycling, surface energy balance and climate (Adeel et al., 2005; 
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Alkama and Cescatti, 2016; Duveiller et al., 2018; Foley, 2005; Le Quéré et al., 2017; Turner et al., 2007). Woody vegetation 

is closely linked to biomass, carbon stocks, net primary productivity (NPP) and surface energy balance (Alkama and Cescatti, 

2016; Foley, 2005; Le Quéré et al., 2017). Quantifying its dynamics is therefore an important global environmental issue and 

research priority (Poulter et al., 2014). For instance, it has been shown that both the trend and inter-annual variability of the 

CO2 uptake by terrestrial ecosystems are dominated by semi-arid ecosystems, of which savannas and woody vegetation are an 5 

important component (Ahlström et al., 2015). Moreover, recent research has shown that tropical dry forests, which are closely 

linked to savannas in sub-Saharan Africa, are far more extensive than previously thought, thereby highlighting the need for a 

greater understanding of ecosystem functions and services provided by these biomes (Bastin et al., 2017; Parr et al., 2014; 

Scholes and Archer, 1997). 

Throughout sub-Saharan Africa, the need for arable land and forest products, such as charcoal, is driving widespread 10 

deforestation and forest degradation (Achard, 2002; Baccini et al., 2012; Brink and Eva, 2009). Simultaneously, a contrasting 

land degradation process is also widely reported, namely, the thickening of the woody layer and associated loss of herbaceous 

vegetation (i.e. shrub encroachment) which is of vital economic importance for rural communities relying on cattle (Liu et al., 

2015; Ward, 2005). Both processes involve changes in woody vegetation cover and are often associated with pervasive land 

degradation and desertification (Bond et al., 2010; Reynolds et al., 2007). At the same time, several authors questions whether 15 

shrub encroachment is a sign of declining ecosystem functioning, and suggesting that encroachment may limit degradation, 

boost carbon sequestration especially through the drylands (Eldridge et al., 2011; Maestre et al., 2009; Poulter et al., 2014; 

Soliveres and Eldridge, 2014). Thus, there is an inadequate understanding of the scale of woody vegetation change in relation 

to environmental and socio-economic and environmental drivers. In fact, separating trends in woody and herbaceous functional 

groups is an active area of research (Brandt et al., 2016b; Helman et al., 2015; Roderick et al., 1999). As such, monitoring 20 

trends in woody cover and deciphering its relation to climatic and anthropogenic drivers, including precipitation and land 

management, respectively, is fundamental for sustainable land management and planning (Fensholt et al., 2012).  

1.1 Satellite remote sensing 

Satellite remote sensing offers a convenient tool to study trends in woody cover, due to its synoptic coverage and cost-

effectiveness once calibrated and validated. Several continental-scale tree cover products, available at the spatial resolution of 25 

Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS), are widely used to monitor processes such as 

deforestation (Broich et al., 2014; Hansen et al., 2013a, 2016). These products use very high resolution (VHR) scenes to train 

a vegetation cover algorithm based on high to moderate resolution imagery. However, our current knowledge of the extent of 

tree cover and forests in drylands is limited. This is illustrated by substantial spatial disagreements between recent satellite-

based global forest maps (Hansen et al., 2013a; Sexton et al., 2013, 2016) and by the scarcity of large-scale studies of dryland 30 

biomes (Durant et al., 2012). Moreover,  savannas exhibit pronounced land cover heterogeneity (Durant et al., 2012; Hansen 

et al., 2013b; Sexton et al., 2013, 2016), ranging from open grassland to closed forest while exhibiting high intra- and inter-
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annual variability in vegetation photosynthetic activity and phenology, which is often enhanced by marked anthropogenic 

disturbances, including fire and grazing (Bastin et al., 2017; Gessner et al., 2013; Hansen et al., 2002, 2016).  

Within this context, satellite-derived indicators of vegetation dynamics are fundamental to identifying environmental change 

processes such as land degradation. These indicators are often derived from spectral vegetation indices of satellite imagery, 

which are related to the photosynthetic potential of vegetation canopies. For example, a time-series of Normalized Difference 5 

Vegetation Index (NDVI) effectively captures variation in photosynthetic activity, whether it results from phenological cycles 

or anthropogenic disturbances such as deforestation (Kuenzer et al., 2015; Myneni et al., 1995, 1997; Sankaran et al., 2008).  

The spatial and temporal resolution of MODIS is especially effective for continental-scale monitoring of land surface 

phenology, which refers to the seasonal and inter-annual variation in surface vegetation photosynthetic activity as measured 

by satellite vegetation indices (Friedl et al., 2006). In addition, its high temporal imaging frequency allows the negative effects 10 

of cloud cover to be overcome; this is important in biomes which are seasonally impacted by cloud cover (Hansen et al., 2002; 

Jacquin et al., 2010). Regional-scale modelling of woody cover using MODIS is strengthened by including seasonal 

phenological metrics which describe contrasting stages in seasonal vegetation growing cycles (i.e. green-up and senescence), 

rather than simply metrics which represent temporal snapshots (Broich et al., 2014). Such metrics enhance the phenological 

differences between woody and herbaceous vegetation, and constitute good proxies of woody cover, including all shrubs and 15 

trees, and have effectively been used to map trends in woody vegetation for large parts of sub-Saharan Africa (Horion et al., 

2014). In addition, MODIS has successfully been used to monitor vegetation phenology (Zhang et al., 2003) and been used in 

conjunction with satellite-derived precipitation estimates (Zhang et al., 2005).  

1.2 Phenology of Namibian savannas 

In sub-Saharan savannas, important plant phenological events often occur in response to the seasonal availability of water, 20 

although it is widely reported that several vegetation phenophases do not follow this pattern. For instance, pre-rainy season 

leaf-flushing, as observed across much of sub-Africa, is thought to be driven mainly by photoperiod and temperature cues; 

here, woody species flower and leaf-out before the onset of the rains (Childes, 1988; Ryan et al., 2017). The many woody 

species found throughout Namibia exhibit different phenophases and vary in the timing of leafing and leaf senescence. 

However, for most deciduous tree and shrub species, senescence occurs in response to a drop in soil moisture and the onset of 25 

lower daily minimum temperatures (Childes, 1988). The leaf-on period takes place shortly before the onset of the rainy season 

(September-October) and leaf-off period ensues throughout the middle of the dry season (April-August). Various species are 

evergreen, keeping at least a portion of their leaves throughout the dry season, but the majority are strongly deciduous, losing 

effectively all their leaves during the dry months and experiencing a leaf flush independently and before the first rains.  For 

example, a pre-rainfall leaf flush and synchronized flowering is commonly observed in three tree/shrub species which are 30 

widespread in the northeast, in particular, Terminalia sericea, Ochna pulchra and Pterocarpus angolensis. In contrast, several 

common species in closed savanna woodland often demonstrate asynchronous flowering periods, notably Baikiaea plurijuga 

(Childes, 1988).  Trees and shrubs retain their foliage longer than herbaceous vegetation during the dry season (Mendelsohn 
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and el Obeid, 2005a; Verlinden and Laamanen, 2006). The annual growth of herbaceous biomass relies on the first precipitation 

events to initiate photosynthesis and remains photosynthetically active during the rainy season, as it is largely dependent on 

the spatio-temporal distribution of annual precipitation. Senescence of herbaceous vegetation then takes place at the onset of 

the dry season once the plants have completed their annual life cycle, while in addition, intense grazing pressure throughout 

the country contributes to promptly grazing the pasture throughout much the country. Importantly, this results in woody 5 

vegetation remaining photosynthetic during part of the year, while herbaceous vegetation is entirely desiccated.  

Woody vegetation dynamics in savanna biomes can be broadly divided into intra-annual (seasonal) fluctuations, and inter-

annual trends (occurring over a period of years). Seasonal fluctuations are mainly controlled by seasonal precipitation and 

short-term anthropogenic disturbances, such as burning, grazing and vegetation clearing. Environmental factors such as soil 

type, vegetation community composition and land-use history, also affect the seasonal growth of woody vegetation. Concurrent 10 

to shifts in canopy foliar density, are the associated leaf and plant phenology changes, including timing of flowering and leaf 

senescence; for most tree and shrub species, these are in turn regulated by seasonal water availability and temperature. For 

instance, the timing of plant phenological stages may vary for a given year, as a function of the seasonal availability of water 

in certain species, such as leaf flush occurring as a result of early rainfall onset. At the same time, these phenological stages 

may be influenced by the climatic, anthropogenic and environmental factors listed above (Chidumayo, 2001; Childes, 1988; 15 

Kuenzer et al., 2015; Ryan et al., 2017; Wagenseil and Samimi, 2007). Importantly, these different processes, their interactions 

and synergies, contribute to creating a marked variation in the seasonal NDVI signal across savanna biomes. Finally, different 

plant functional types, including in particular herbaceous vegetation, also have a pronounced seasonal effect on the NDVI 

signal (Kuenzer et al., 2015).  

In contrast, inter-annual trends impact woody vegetation dynamics over multiple years and thereby encompass the life cycle 20 

of trees and shrubs. For example, a minimum period of 5 years is thought sufficient to capture any increases in woody biomass, 

which is related to woody cover, using satellite indices (Asner et al., 2003; Ryan et al., 2012a; Williams et al., 2008). This is 

due to the fact that forest inventory parameters used to monitor tree growth, such as diameter at breast height, height, canopy 

cover and basal area, change slowly over the course of several years (i.e. gradual changes). However, they are also subject to 

abrupt negative changes, often triggered by deforestation, encroacher bush control or forest fires (Chidumayo, 1997; Ryan et 25 

al., 2012b; Williams et al., 2008).  

1.3 Aims 

Against this background, land surface phenology across Namibia is highly variable over time, yet simultaneously reveals clear 

annual cycles at regional scales (104 km2) (Wingate et al., 2018). It is to a large extent driven by the distinctive rainy season 

(December-April) and the variable proportion of herbaceous and woody vegetation. These display divergent phenologies, 30 

which can be exploited to map either vegetation functional type (Hüttich et al., 2009; Mendelsohn and el Obeid, 2005a). In 

addition,  vegetation change processes, including deforestation and woody encroachment are reported to be widespread in 

Namibia, yet their spatial and temporal dynamics remain little studied. In particular, the relation of these change processes to 
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land-use, biomes, population density and precipitation trends, are poorly known (Curtis and Mannheimer, 2005; John 

Mendelsohn and el Obeid, 2002a; Mendelsohn and el Obeid, 2005a; Wingate et al., 2016, 2018). The aims of the following 

study are therefore to 1) exploit the relationship between phenological metrics and field measurements of woody vegetation 

cover to create a time-series of percentage woody cover, 2) map trends in woody cover across Namibia, including the rates, 

trajectory and spatial extent, and 3) evaluate the relationship between trends in woody cover and potential anthropogenic 5 

drivers, as well as environmental and climatic gradients, namely, land-use and population density, as well as biomes and 

precipitation, respectively.  

2 Material and methods 

2.1 Approach  

An empirical/statistical approach based on the Random Forest algorithm was used to map percentage woody cover (Breiman, 10 

2001; Colombo et al., 2003). Here, phenological metrics derived from a MODIS NDVI time-series, together with 484 field-

based measurements of percent woody cover sampled over three years (2012, 2014 and 2016), were used to model percentage 

woody cover at annual intervals, resulting in a study period spanning the period from 2001 to 2016. Outliers NDVI values 

were attenuated by applying a temporal filter to the original MOD13Q1 NDVI time-series, and subsequently creating monthly 

mean composites.  Phenological metrics which integrate seasonal fluctuations into a single annual metric, characterising the 15 

phenology of a particular plant functional types were used to enhance long-term trends by suppressing inter-annual variation. 

The approach enables a maximum amount of noise and variation to be integrated, and hence enhances gradual trends and 

changes associated with woody vegetation. A fundamental underlying assumption of these metrics is that the observed NDVI 

signal during the dry season is derived only from woody vegetation. Thus, phenological metrics act as indicators of woody 

vegetation cover, while also effectively separating the woody NDVI signal from the herbaceous one. Estimates were validated 20 

using independent measurements of tree cover, which are closely correlated with woody cover and hence constitute a proxy. 

Trend significance was computed using the Mann-Kendall test and the annual rate, trajectory and spatial extent of change was 

derived using the Theil-Sen slope. These were then evaluated in relation to potential drivers including land-use, population 

biomes and precipitation. Finally, hotspots of change were selected for further discussion (Figure 1).  
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Figure 1. Schematic workflow diagram illustrating the datasets and approach used to map and evaluate trends in percentage woody 

cover. 

2.2 Study region 5 

The study area comprises the whole country of Namibia and encompasses an extensive and biogeographically diverse southern 

African savanna biome (Figure 2). The area is semi-arid to arid, with precipitation across the country varying from an annual 

average of 650 mm in the northeast, to 50 mm in the southwest. Rainfall events are variable both within and between years for 

any given period. In the north and central regions, precipitation is concentrated during the five summer months (December to 

April), while in the southernmost regions it occurs especially in the austral winter (Desmet and Cowling, 1999; Mendelsohn 10 

and el Obeid, 2005a). Agriculture ranges from subsistence small-scale cropping and ranching on commonages, predominantly 

across the northern areas, to large-scale commercial ranching and wildlife tourism enterprises on private (free-hold) lands in 

the central and southern areas; most of the land which is not set aside for conservation being used for livestock grazing or 

subsistence agro-pastoralism. 
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Figure 2. The study area encompasses Namibia (822,634 km2). The background image is a MODIS mean dry season NDVI image 

(2016), which enhances the presence of woody vegetation since herbaceous vegetation has already senesced.  

 

 5 
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2.3 MODIS data 

The MODIS MOD13Q1 NDVI time-series gridded level-3 product collection 6 has a number of advantages over the previous 

collection, making it suited for land surface phenology parameter estimation. A number of improvements have been made on 

the MODIS vegetation index algorithm, which minimize the confounding effect of bidirectional reflectance distribution 

functions (Didan, 2015). The product is available at 250m spatial resolution, is masked for water, clouds, heavy aerosols, cloud 5 

shadows and merged into 16-day composites, which allows only the highest quality values to be used, thus minimizing the 

impact of cloud cover (Didan, 2015). Pixels flagged as low quality were masked and a Savitzky-Golay smoothing filter was 

applied to each pixel of the time-series to interpolate missing values, smooth outliers and minimize the effects of low quality 

data resulting from noise and cloud cover, and the time-series was aggregated to mean monthly values. The computation of 

smoothing filters is recommended since observations over time are often noisy, especially in drylands (Broich et al., 2014).  10 

2.4 Field data 

Field measurements of percentage woody cover were made at three separate periods, 2012 (July), 2014 (May-June), and 2016 

(April-May), across three separate regions and amalgamated into a single calibration dataset, resulting in a total of 483 samples. 

Only woody cover was used in this study since it aims to map vegetation associated with both deforestation and shrub 

encroachment, and woody cover is assumed to be representative of either plant functional type (i.e. trees and shrubs).  Thus, 15 

woody vegetation encompasses both tall and short vegetation, counting trees and shrubs. Field data were collected using the 

point cover observation method described in Herrick et al. (2013), as part of the Land-Potential Knowledge System (Herrick 

et al., 2013), and consisting of stratified point intercept measurements of plant canopies in a 50 × 50 m area (Herrick et al., 

2010). Sample sizes were 100 intercept points in 2012 and 2014, but were increased to 160 points in the 2016 survey.   The 

post-processing and sampling effort was also different for the 2016 dataset, in which data were processed to fractional cover 20 

values.  Therefore, in order for the 2012 and 2014 datasets to be included in the analysis, fractions of the three primary 

components (i.e. woody, herbaceous and bare ground) assessed were normalized so that their sum would correspond to 100 

percent.  In order to ensure the normal distribution, each variable was logarithmically transformed (Zandler et al., 2015). 

Samples with a measured percent woody cover <10% were excluded (n=25) from this analysis in order to apply log 

transformations, which otherwise would have resulted in negative values, this resulted in a total of 458 available for model 25 

calibration.   

2.5 Scaling field data 

Importantly, a key challenging in the use of field data in remote sensing research is making sure that the in situ field 

measurements provide a representative sample; this problem is especially pertinent in studies which cover large spatial areas 

with moderate spatial resolution data. In particular, when using plot-level field data to calibrate and validate remote sensing 30 

models at moderate spatial resolutions, the field data needs to be up-scaled to the resolution of the remotely sensed observations 
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(Baccini et al., 2007).  In this study, the field plots were not scaled to the resolution of MODIS (250 × 250 m) using spatial 

averaging; instead, the average percentage woody cover within the 50 × 50 m field plot was compared with the corresponding 

MODIS pixel values. We make the assumption, therefore, that the 50 × 50 m field plot adequately captures the average 

percentage woody cover within the corresponding MODIS pixel. We justify this assumption since the field plots were sampled 

in homogenous vegetation strata (Baccini et al., 2007). 5 

2.6 Spatial data 

To investigate the observed trends in terms of potential drivers, a number of additional datasets were acquired. Land-use data 

were acquired from the Atlas of Namibia (Mendelsohn et al., 2002). Biomes distribution was downloaded from the Food and 

Agricultural Organization Global Forest Resources Assessment. For Namibia, they comprise tropical desert, tropical dry forest, 

tropical mountain system and tropical shrub land; the latter two being very similar (Simons et al., 2001). Population density 10 

data were obtained from the Worldpop, high resolution global gridded dataset at 100 m resolution, which gives an estimation 

of the number of people per km2 (Lloyd et al., 2017). This dataset was classified into four classes, with population densities 

per pixel ranging from 0-9, 9-53, 53-127, and 127-483 people per 100 × 100 m pixel. The average trends in percentage woody 

cover were then evaluated for each land-use type, biome and population density class.  

2.7 Rainfall data 15 

Monthly precipitation was computed using the Climate Prediction Center Morphing technique (CMORPH) dataset, in which 

precipitation estimates are from satellite-derived passive microwave and infrared data, and available at a resolution of 0.0727° 

(Joyce et al., 2004). The CMORPH dataset was aggregated to mean annual values and converted to anomalies. To evaluate the 

correlation between rainfall and modelled woody cover, the CMORPH anomalies time-series was regressed, as the independent 

variable, against the time series of annual percentage woody cover anomalies. In contrast to NDVI which is highly correlated 20 

with precipitation (i.e. NDVI integrates the signal from herbaceous vegetation which responds quickly to precipitation), we 

expect a low correlation between precipitation with predicted woody cover. This is because wooded regions undergo a pre-

rainy season green-up (Childes, 1988; Fensholt et al., 2012; Herrmann et al., 2005; Nicholson et al., 1998; Nicholson and 

Entekhabi, 1987; Ryan et al., 2017).  

2.8 Modelling woody cover 25 

The Random Forest algorithm was selected since it is effective at estimating predictor variable importance, integrating multiple 

predictor variables with different predictive power, not ‘over-fitting’ data, not assuming normal statistical data distribution or 

any particular relation (i.e. exponential) between dependent and independent variables, in addition to being multivariate 

(Breiman, 2001; Cutler et al., 2007; Moisen and Frescino, 2002; Prasad et al., 2006).  

Models were created by taking plot measurements of percent woody cover, with the coincident pixel values of each of the five 30 

metrics (Table 1), for every year. In other words, the coincident pixel values of each of the five metrics do not correspond to 
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the timing of the field data; rather the field data, which have been aggregated into a single dataset, are related to each annual 

time-step of satellite data. This resulted in an annual time-series of modelled percentage woody cover for the period from 2001 

to 2016. 

Phenology metrics were extracted using TIMESAT, which has been extensively used for measuring seasonal land surface 

phenology in drylands (Fensholt et al., 2012; Herrmann and Tappan, 2013; Horion et al., 2014; Jönsson and Eklundh, 2004). 5 

Three phenological metrics found to comprise an indirect measure of woody canopy cover were selected as model predictors 

(Table 1). They include the dry season index (DSI), described in Brandt et al. (2016) (Brandt et al., 2016a), the mean annual 

dry season values (MeanDS), and the dry season integral (DSINT) defined in Brandt et al. (2016) (Brandt et al., 2016b). These 

metrics reduce the confounding effects of herbaceous vegetation on woody vegetation, by taking advantage of the seasonal 

period when herbaceous vegetation photosynthetic activity and biomass are at their minimum (i.e. the dry season).  10 

In order to test the sensitivity of these metrics to predicting woody cover from field measurements, two phenological metrics 

known to be related to herbaceous vegetation cover were included in the model. Predictor variable importance metrics were 

then computed to contrast their effectiveness at predicting observed woody cover. They include, the maximum annual values 

(MaxWS) taken for each wet season, and the integral of the difference between the function describing the season and the base 

level from season start to season end or the small seasonal integral (SINT) (Jönsson and Eklundh, 2004). Calculation of the 15 

SINT used values spanning the start of season (SOS) and end of season (EOS), as described in Jönsson and Eklundh et al. 

(2004) (Jönsson and Eklundh, 2004), where the onset of the rainy season is inferred by assigning a percentage threshold of 

20% of the yearly NDVI amplitude value. Although this threshold is well established for the SOS, it should be interpreted with 

caution for the EOS, since a number of factors are likely to influence this period, for example, wetlands and cropland remaining 

photosynthetically active longer than the surrounding herbaceous layer, or a particularly wet year may result in vegetation 20 

remaining photosynthetic for longer. 

Table 1. Phenological metrics used in this study, their abbreviation and concise description.  

Phenological Metric Short form Description 

Annual dry season index DSI Dry season index, calculated as per Brandt et al. (2016) 

Mean annual dry season value MeanDS The mean annual values taken for the duration of the dry season 

Maximum annual wet season value MaxWS The maximum annual values taken for each wet season 

Annual small seasonal integral SINT Integral of the difference between the function describing the 

season and the base level from season start to season end 

Annual dry season integral DSINT Dry season integral described in Brandt et al. (2016) 

 

2.9 Model accuracy and comparision 

The paired observed and predicted values were used to compute two accuracy metrics, namely, the Root Mean Squared Error 25 

(RMSE) and the coefficient of determination (R2) (Stehman et al., 2012; Willmott, 1982). For the Random Forest algorithm 

where the output is a continuous response, the pixel-wise prediction represents the average of the model trees. Hence, the 
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individual tree predictions offer the opportunity to compute uncertainty metrics including the coefficient of variation (CV) and 

standard deviation (SD); a large CV and SD suggests higher variability (Zhu and Southworth, 2013). Finally, model predictions 

were compared to the recently published 4,684 sample calibration/validation dataset of percentage tree cover from Bastin et 

al. (2017) (Bastin et al., 2017); each data point consists of a 0.5-ha plot, visually assessed for tree cover percentage using very 

high resolution imagery. This dataset is assumed to act as a good proxy for percentage woody cover, since interpretation of 5 

contemporary high resolution imagery was used and it provides the latest estimate of tree cover in drylands. In addition, we 

find observed tree cover percentage and observed woody cover percentage, sampled as part of this study, to be highly correlated 

(r=0.83).  

To test the correlation between modelled percentage woody cover and the validation dataset, model predictions were firstly 

classified into 5% increment classes; the validation dataset was then aggregated and averaged within these classes. The mean 10 

values of the validation dataset were regressed with the corresponding values of 5% increment class values, and the R2 and 

RMSE computed. This approach aimed to reduce the spread of values from the large number of validation points. No validation 

has been conducted in the temporal domain due to a lack of long-term field data which would have allowed validating past 

land cover changes. 

2.10 Trend analyses 15 

Key aspects surrounding trend estimation from Earth Observation (EO) time-series include temporal and spatial resolution, as 

well as data quality (Badreldin and Sanchez-Azofeifa, 2015; Sulkava et al., 2007). Although trend estimation using linear 

regression analysis is widely employed, it contravenes several statistical assumptions (deBeurs and Henebry, 2004; Eklundh 

and Olsson, 2003). Hence, non-parametric tests which overcome these limitations were applied (i.e. Mann-Kendall and Median 

Theil Sen trend analyses) (deBeurs and Henebry, 2004; Forkel et al., 2013). Furthermore, limitations are incurred by temporally 20 

aggregating, for example, to the annual scale, by diminishing temporal resolution. On the other hand, annual aggregation may 

strengthen trend analysis by eliminating seasonal cycles, which have been found to add seasonal correlation structures and 

thus augmenting uncertainties (Forkel et al., 2013). In this study, by aggregating NDVI values to average monthly scales, we 

assume fluctuations due to climate, fire or anthropogenic activity are effectively integrated, permitting the quantification of 

anomalies, such as deviations from long-term averages, and the strengthening of the signals under investigation, namely that 25 

of woody vegetation.  

The time-series was first converted to anomalies before applying the trend analysis (Eastman, 2009). Subsequently, the 

statistical significance of the trend was defined by applying a pixel-wise Mann-Kendall trend test to the woody cover time-

series. Areas which exhibited no significant trend (P≥0.05) were masked out and assumed to represent no change. For areas 

which demonstrated a significant trend (P≤0.05), the Theil-Sen trend test was applied to the time series. This approach smooths 30 

the annual time-series using a linear trend, and is generally recommended for looking at rates of change in noisy or short time-

series, since it is robust in identifying trends and insensitive to outliers (Hoaglin et al., 1983). Additionally, it has been 
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extensively used to measure trends in EO time-series (Andela et al., 2013; Fensholt et al., 2012; Guay et al., 2014; Zhu et al., 

2016). 

The percentage woody cover time-series was created with the aim of reducing both inter- and intra-annual fluctuations; 

however, important inter-annual fluctuations in the percentage woody cover time-series values remained apparent. These can 

be attributed to a variety of factors, including variable atmospheric and weather conditions, together with changing vegetation 5 

phenology. In light of these fluctuations, simply applying an image differencing change detection method to estimate annual 

change would not be reliable; hence, the Theil-Sen trend slope was used. By multiplying the slope by the number of years, the 

annual rate of change rate can be computed, thereby providing an estimate of change in percentage woody cover between 2001 

and 2016. The resulting annual slope was then spatially aggregated by taking the mean (spatially aggregated mean annual net 

change) to the country level, land-use types, population density classes and biomes; the mean slope, minimum and maximum 10 

change estimates reported. Subsequently, two layers were derived from the significant annual slope image, the percentage 

woody cover gain (positive slope) and loss (negative slope). Pixel-wise loss and gain were then aggregated (mean values) at 

the level of the country and land-use types, to estimate gross gain and loss (i.e. loss and gain) (Table 2). All datasets were 

projected to the WGS_1984_UTM_Zone_33N projected coordinate system, and annual slope values we converted from the 

MODIS resolution (250 × 250 m) to km2 (1000 × 1000 m) by multiplying by and expansion factor (1.6), where:  15 

Equation (1) 

𝑒𝑥𝑎𝑝𝑛𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
100,000𝑚2

62,500𝑚2
 

 

2.11 Multi-temporal imagery evaluation  

To qualitatively assess what the observed trends represent on the ground, in terms of land cover change, a visual assessment 20 

was undertaken using a range of multi-temporal, high resolution scenes, including Google Earth imagery. The assessment 

aimed to identify direct drivers namely, human driven land-use and land cover change, such as urbanization and deforestation, 

as well as indirect drivers, including land cover changes driven by a combination of climate and human land-use, such as 

woody encroachment. Two classes were created representing areas mapped as either positive or negative trends, with slopes 

≥25% (≥-25). 10 randomly sampled points were then generated within each class   and subjectively assessed for vegetation 25 

changes using Corona satellite imagery (6 feet spatial resolution, 1972), contemporary aerial images (0.5 m, 2010), pan-

sharpened Landsat 7 imagery (~15 m, 2000), Sentinel-2 imagery (10 m, 2016) and multi-temporal (time-slider tool) Google 

Earth imagery.  
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3 Results 

3.1 Predictor layer importance and model uncertainty 

The evaluation of predictor importance yielded a clear pattern: the maximum annual wet season value (MaxWS) and annual 

small seasonal integral (SINT) were consistently the weakest predictors (expect for the 2007 model, in which the DSINT is 

the weakest, potentially implying an anomalous year). Predictor importance (2008) is plotted in (Figure 3); two measures are 5 

used to assess variable importance, including percent increase in Mean Standard Error (MSE) following random permutation, 

and increase in node purity resulting from all the splits in the forest based on a particular variable, as computed using the gini 

criterion. Plots for the remaining years (2001-2015) are provided in the supplementary material (Figure S1). A plot of CV 

shows that model uncertainty is higher for the arid coastal and southern regions, where percentage woody cover lower and 

most likely more variable; where percentage woody cover is high and more stable, a lower CV is identified (Figure 3). These 10 

results indicate that in areas of lower woody cover, model predictions are the least accurate and should be interpreted with 

caution.   

 

Figure 3. Predictor importance (2008) generated using the Random Forest algorithm. Mean coefficient of variation. 

3.2 Model accuracy and comparison  15 

Moderate correlations were found between observed and predicted (2001-2016) percentage woody cover. Figure 4 illustrates 

the linear relation between observed and predicted (2016) percentage woody cover, yielding an R2 of 0.47 and an RMSE of 

14.47%. Between the 2001 and 2016 models, the R2 values ranged from 0.4 to 0.5, and the RMSE ranged from 14.14% to 

15.43%. Plots for the remaining years are provided in the supplementary material (Figure S2).  
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Figure 4. Linear relation between observed and predicted (2016) percentage woody cover.  

Each annual model prediction was compared to the Bastin et al. (2017) percentage tree cover dataset (Bastin et al., 2017). 

Figure 4 illustrates the linear relationship between percentage woody cover at 5% increment classes (2016), and percentage 

tree cover, yielding an R2 of 0.77 and an RMSE of 3.94%. Between the 2001 and 2016 models, the R2 values ranged from 0.13 5 

to 0.96, and the RMSE varied from 3.52% to 4.10%. Plots for the remaining years (2001-2015) are provided in the 

supplementary material (Figure S3).  
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Figure 5. Linear relationship between percentage woody cover at 5% increment classes, and percentage tree cover. 

3.3 Trends in relation to land-use, biomes and population  

Trend analysis results for Namibia and its constituent land-use classes are presented in Table 2. The areal extent of modelled 

woody cover in 2001 (km2), the spatially aggregated mean annual net change (i.e. slope [% km2 yr-1] and minimum and 5 

maximum values [% km2 yr-1], and total change (i.e. loss and gain) (% km2 yr-1) are shown. The average annual slope for 

Namibia is negative (-4.38 % km2 yr-1). In term of land-use types, large-scale communal and urban lands show a positive 

average annual slope with 8.42 % km2 yr-1, and 0.37 % km2 yr-1, respectively. For the remaining land cover types, mean annual 

slope was negative, suggesting an overall loss of woody cover (Table 2).   

 10 
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Table 2. Change in woody cover (annual slope) in relation to land-use, estimated using Theil–Sen trend test, of the time series of 

annual percentage woody cover area. The 2001 percentage woody cover area, Min and max slopes are included. P represented a 

Mann–Kendall trend test with P < 0.05 used to define statistically significant trends, with a sample size of n = 16 years. Total change 

in percentage woody cover was estimated pixel-wise using the Theil-Sen trend test, with losses and gains being summed and 

converted to km2 to compute total loss and gain.   5 

Percent woody cover area (2001) 

  Mean annual net change  Total change 

Land-use Woody cover/km2 Slope/ km2 yr-1 Min/ km2 yr-1 Max/ km2  yr-1  Loss  km2 yr-1 Gain km2 yr-1 

Namibia 774588 -4.38 -4.82 5.42  -303 257 

Large-scale communal 354332 8.42 -3.55 4.05  -21 20 

Resettlement 5257 -12.59 -3.17 2.42  -21 12 

Government agriculture 48697 -8.11 -2.58 3.65  -20 27 

Other government 16159 -12.32 -3.07 2.72  -18 6 

Urban 6741 0.37 -4.67 5.42  -18 21 

State protected 246907 -6.26 -3.58 2.98  -18 15 

Small-scale Communal  88852 -14.94 -3.57 3.87  -19 16 

Freehold 6982 -7.76 -4.82 4.14  -20 11 
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Figure 6. Maps the significant positive (negative) Theil-Sen trend slope, including hotspots of change selected for further discussion 

marked in black rectangles (c-h), overlaid on modelled percentage woody cover for the study area in 2016. Positive trends are shown 

in blue and negative in red. 

Tropical shrub land manifested very minor decline (-0.17 % km2 yr-1) in woody cover and associated tropical mountain system 

an increase (3.76 % km2 yr-1), respectively. The tropical desert biome displayed a pronounced decrease (-4.64 % km2 yr-1) in 5 

woody cover, while the tropical dry forest biome experienced the most striking decline (-7.39 % km2 yr-1) (Table 3).  

Table 3. change in woody cover (annual slope) in relation to biomes.  

Percent woody cover area (2001) 

  Mean annual net change  Total change 

Biome Woody cover/km2 Slope/ km2 yr-1 Min/ km2 yr-1 Max/ km2  yr-1  Loss  km2 yr-1 Gain km2 yr-1 

Tropical desert 2698569 -4.64 -31.96 36.68  -8.70 1.76 

Tropical mountain system 182080 3.76 -25.23 27.43  -8.34 7.59 

Tropical shrubland 3421476 -0.17 -48.24 37.50  -11.27 9.58 

Tropical dry forest 1432130 -7.39 -46.78 54.29  -12.79 15.31 

 

Most of the country (>99.86%) has a low population density, with between 0-9 people per km2 (Table 4). Areas of “no data” 

cover a relatively large area (0.11%), while the remaining population density classes (0-9, 9-53, 53-127, 127-483 people per 10 

km2) occupy 0.03% of the remaining land area. The average slope values for each population density class are listed in Table 

4. All population density classes show an average negative trend, with the strongest decline being in the middle 9-53, 53-127 

classes, (-11.10 % km2 yr-1, -8.12 % km2 yr-1, respectively).  

 

Table 4. Change in woody cover (annual slope) in relation to population density classes.   15 

Percent woody cover area (2001) 

  Mean annual net change  Mean annual change 

Population density Woody cover/km2 Slope/ km2 yr-1 Min/ km2 yr-1 Max/ km2  yr-1  Loss/  km2 yr-1 Gain/ km2 yr-1 

NoData 573.42 -3.43 -50.40 69.31  -22.23 24.08 

0-9 773104.77 -4.38 -77.18 86.86  -18.93 16.08 

9-53 223.32 -11.10 -48.55 7.60  -13.61 3.95 

53-127 20.65 -8.12 -23.98 -3.52  -8.12 0.00 

127-483 6.74 -4.20 -4.20 -4.20  -4.20 0.00 

 

3.4 Trend assessment using multi-temporal imagery 

Of the 20 randomly sampled points assessed for each trend slope class (i.e. ≥25% and ≥-25%), two examples exhibiting 

characteristic land cover changes were selected for further discussion. They include a direct human impact, namely land 

clearing (shown in Figures 6a and 6b), and an indirect impact, potentially manifesting as greening (shown in Figures 7a and 20 

7b). For the remaining randomly sampled points in the ≥25% trend class, no clearly apparent land cover changes could be 

distinguished, using the available imagery and sampling method.  
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Figure 7. Randomly sampled point for an area exhibiting a significant negative slope (≥-25%), visible as land clearing for small-scale 

agriculture and indicative of direct land cover change. These are identified using a 1972 Corona image (a) and a 2010 aerial 

othrophoto (b).  
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Figure 8. Randomly sampled point for an area exhibiting a significant positive slope(≥25%); no apparent change can be identified 

from a 1972 Corona image (a) and a 2010 aerial othrophoto (b). Results may be indicative of indirect change.  

3.5 Trends in relation to precipitation  

The linear regression between mean annual precipitation anomalies (independent) and annual percentage woody cover 

anomalies (dependent), reveals that the majority of R2 values are low, signifying no significant linear relationship. The result 5 

implies that anomalies in precipitation are not coupled with those of percentage woody cover for most of the country, except 

along the western escarpment (Figure S4). 

4 Discussion 

4.1 Trends in relation to biomes 

Globally, arid and semi-arid (desert) biomes have recently been found to exhibit large decreases in short vegetation (≤5 m in 10 

height) and important increases in bare ground, with both trends pointing to long-term land degradation; simultaneously, the 

world’s tropical shrub land biome is reported to have experienced a considerable areal increase in short vegetation and a 

concurrent bare ground loss, and these results are postulated to be the result of woody encroachment (Song et al., 2018). In 

contrast, the tropical dry forest biome is found to have undergone significant levels of deforestation (Song et al., 2018). When 

evaluating the results from Song et al. (2018) for Namibia only, an overall greening trend from 1982 to 2016 can be identified. 15 

On average for each FAO biome, a decrease in bare ground and a simultaneous increase and short vegetation can be noted, 

while a gain in tree canopy is seen across the tropical dry forest biome. Our results differ in that we identify an overall browning 

trend with an average slope of -4.38 km2 yr-1, with an especially marked decrease in woody cover across the tropical dry forest 

biome (-7.39 km2 yr-1). These contrasting results may be due to the different spatial (0.05° × 0.05° compared to 250 m × 250 

m) and temporal (1982-2016 compared to 2001-2017) scales of the studies.  Importantly, they serve to highlight how these 20 

two factors can lead to substantially differing results when analysing EO time-series.   

Of the four biomes which Namibia encompasses, large parts of the country are desert (38.45%), shrub land (including mountain 

system) (43.74%) and dry forest (17.81%) (Simons et al., 2001). Tropical shrub land showed only a very small decline in 

woody cover (-0.17 % km2 yr-1), and the closely related tropical mountain system an increase (3.76 % km2 yr-1), indicating 

overall woody encroachment. In contrast, the tropical desert biome showed a marked decline (-4.64 % km2 yr-1) in woody 25 

cover, suggesting long-term land degradation. Lastly, the tropical dry forest biome experienced the most pronounced decline 

in woody cover (-7.39 % km2 yr-1), pointing to extensive deforestation (Table 3).  

Overall, our results point to the occurrence of contrasting land cover change processes, with both gains and loss in woody 

cover. We find that woody cover loss is associated with the more humid areas (tropical dry forest) and is therefore potentially 

the result of deforestation/forest degradation , which has been shown to be taking place (Wingate et al., 2016, 2018).  The 30 

desert biome also exhibited a woody cover loss; such losses in arid biomes are often associated with desertification and land 
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degradation (Song et al. 2018b). In contrast, the tropical shrub land and mountain biomes demonstrated an increase woody 

cover suggesting greening and in turn shrub encroachment (Saha et al., 2015). Our results mirror those recently publish by 

Brandt et al. (2017); in their pan-African study on trends in woody cover, the authors found that negative trends were 

preferentially associated with humid, high biomass forest biomes, while positive trends were mostly found across drylands, 

except very hot xeric ecoregions or tropical deserts (Brandt et al., 2017). 5 

4.2 Trends in relation to land-use and population  

The overall positive trend in percentage woody cover (8.42 % km2 yr-1) identified for large-scale agriculture on communal 

land agrees with previous studies, in that a high density of encroacher species, at early growing stages, were identified in these 

regions (De Klerk, 2004a). However, they may also result from other land management practices, such as agro-forestry and 

large-scale fencing of commonage, which are known to cause an overall increase in woody and herbaceous vegetation (John 10 

Mendelsohn and el Obeid, 2002b). However, this result is also unexpected, since the land-use type has been shown to be 

experiencing substantial land clearing for cropping and ranching (Wingate et al., 2016, 2018). The limited increasing trend 

(0.37 % km2 yr-1) observed for urban land areas is again unexpected, since rapid urbanization, associated with vegetation cover 

losses, is occurring throughout Namibia (Wingate et al., 2016).  

A decrease of -14.94 % km2 yr-1 in woody cover is identified across small-scale agriculture on communal land; while a similar 15 

loss of -12.59 % km2 yr-1 can be noted on resettlement land. This trend is most likely the result of widespread vegetation 

clearing for small-scale cropping and ranching (John Mendelsohn and el Obeid, 2002a; Wingate et al., 2016). Importantly, it 

is likely that as a consequence of the moderate spatial resolution of MODIS, much of the small-scale deforestation is being 

concealed; in fact its resolution has been shown to hide up to 50% of small-scale deforestation (Anderson et al., 2005; Hammer 

et al., 2014; Hansen and Loveland, 2012). The negative trend identified across protected areas (-6.26 % km2 yr-1) is unexpected, 20 

since conservation efforts in Namibia, especially in the Kalahari woodland ecoregion, focus on the preservation of woodlands 

and forests (Mendelsohn and el Obeid, 2005b). However, long-term fire-scar monitoring studies throughout the northern 

regions of the country, where much of the conservation areas are found, identify increasing fire frequencies. More frequent 

fires are associated with a decrease in tree stem diameters, densities and species diversity, and is potentially being driven by 

more intensive land management (Anon, 2017; De Cauwer et al., 2016; Mendelsohn and el Obeid, 2005b; Sankaran et al., 25 

2008) (Table 2).  

An important environmental and socio-economic question for much of northern Namibia and neighboring countries is the 

expansion of small-scale arable cropping into marginal land (Pröpper et al., 2010). The primary reason for this expansion is 

the demand for farm land due to population growth; in addition, the on-going land reform is introducing land privatization and 

hence important changes in land-use on commonages, for instance, large-scale fencing (Mendelsohn and el Obeid, 2005b).  30 

Furthermore, since the end of the civil war in 1990, the region has undergone important infrastructural developments, with 

new roads connecting much of the north and neighboring countries, together with the establishment of water and power 

infrastructure. These have greatly facilitated access to and settlement of remote regions, promoting the expansion of new 
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farmsteads and villages. The  greater need for arable land and the consequent heightened pressure on it for the extraction of 

natural resources such as timber, lead to a reduction in woody cover (De Cauwer et al., 2016; Pröpper et al., 2010; Röder et 

al., 2015; Schneibel et al., 2013, 2017; Wingate et al., 2016).  

Across agriculture and tourism on freehold land, the negative trends observed (-7.76 % km2 yr-1) may be the result of 

encroacher shrub control (De Klerk, 2004a). This land management activity is widely implemented on commercial farm land 5 

in order to favor herbaceous vegetation growth which supports livestock production (Mendelsohn and el Obeid, 2005c) (Table 

2).  

The 9-53, 53-127 population density classes exhibited the largest declines in woody cover (-11.10 % km2 yr-1, -8.12 % km2 yr-

1, respectively), suggesting densely populated regions are responsible for most land cover changes associated with decreases 

in woody vegetation cover.   Table 4 shows the mean trend values for each population density class as being largely negative, 10 

indicating that overall, decreases in woody cover occur across population density classes, and implying that population density 

may have a role in explaining the observed trends.   

4.3 Trend assessment using multi-temporal imagery 

Qualitative analysis of historical and contemporary high resolution imagery, using a random sample of ten points distributed 

in areas with slopes ≥25% (≤-25%), enabled the observed trends to be interpreted as specific land cover changes. In particular, 15 

negative trends were chiefly identified as a general reduction in vegetation cover, together with a concurrent increase in bare 

ground cover, vehicle tracks and farm plots, thereby indicating a direct human impact (Figure 7). However, when evaluating 

areas exhibiting positive trends, land cover changes were harder to conclusively identify. For instance, no apparent change can 

be seen in Figures 8a and 8b, yet this area was mapped as having undergone a significant positive trend. These results suggest 

the occurrence of indirect impacts manifesting gradually; as such they may comprise increases in vegetation density.  20 

4.4 Trends in relation to precipitation 

Low R2 values, resulting from the linear regression between percentage woody vegetation cover anomalies and precipitation 

anomalies, are seen across much of the country. The of cause of this may be that much of the country’s densely wooded areas 

are photosynthetically active before the on-set of the rainy season i.e. pre-rainfall leaf flush (Childes, 1988; Ryan et al., 2017). 

In other words, anomalies in NDVI and hence woody vegetation cover, were anticipated to occur independently of anomalies 25 

in precipitation. Hence, from the un-coupled relationship observed between both variables, we may conclude that the model 

is, to a certain extent, effective at predicting woody cover, with the low R2 supporting the effectiveness of using dry season 

phenological metrics to predicted woody cover. Finally, the high R2 values observed throughout a portion of the western 

escarpment region may be a response specific to vegetation communities or species avoiding drought by not leafing-out in dry 

years, such as the widespread Senegalia reficiens (pers. comm. C. van der Waal, 2017).  30 
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4.5 Regional hotspots 

Namibia is comparatively heterogeneous in terms of eco-floristic regions and climate and consequently land-use, due to the 

pronounced altitudinal and climatic gradients (Mendelsohn and el Obeid, 2005c). Large parts of the south and western coast 

of the country are hyper-arid to arid and have very low woody vegetation cover, which may help explain why little or no 

significant trends were identified here. In these regions the land is mainly used for extensive grazing with little or no cropping 5 

being practiced due to the extreme aridity (Mendelsohn et al., 2002). Figure 6, which illustrates significant trends in woody 

cover across Namibia, suggests that there are important differences in the spatial pattern of trends across the country; based on 

this observation, six areas were qualitatively selected for further discussion (Figures 5a to f).  

The Kaokoland region (Figure 6a) exhibits important negative trends in woody cover; this region is primarily composed of 

mopane woodland which are often used as coppice stands harvested for building material. Being sparsely populated during the 10 

civil war, the mopane woodland in this region is thought to have widely regenerated and may now be extensively utilized 

(Mendelsohn and el Obeid, 2005c).  

The Ohangwena and Kavango West border regions (Figure 6b) display significant positive trends; these findings are somewhat 

unexpected, since  the area is known to be experiencing small-scale deforestation for urbanization and rain-fed crop farming 

(Wingate et al., 2016). However, evidence suggests shrub encroachment is also occurring in these areas, potentially 15 

contributing to explaining the observed greening trends (De Klerk, 2004b; Erkkilä, A, 2001). Further, the moderate spatial 

resolution of MODIS is probably masking small-scale deforestation which is likely to be co-occurring adjacent to greening 

trends.  

In the Kavango East region (Figure 6c), a spatially heterogeneous pattern of trends can be observed, with negative trends 

predominating. Increasing fire frequency is the likely cause of this, as demonstrated by the long-term Namibian fire monitoring 20 

data (Anon, 2017). These data agree with a recent study demonstrating regional increasing fire activity (Andela et al., 2017).  

Figure 6d highlights widespread positive trends; this area comprises both large and small-scale agriculture on communal land 

in the southeastern portion of the rectangle, as well as agriculture and tourism on freehold land on the north-western side. 

Despite the different land-uses present within the demarcated area, a very homogeneous trend is observed, possibly suggesting 

widespread encroachment by Senegalia mellifera and Dichrostachys cinerea occurring across land-use types (De Klerk, 25 

2004b).  

Important negative trends in woody cover were identified across the region south of Etosha National Park (Figure 6e). These 

may be the result of several consecutive low rainfall years and a high density of elephants (Loxodonta africana), which in 

combination led to a net decline in woody cover (de Beer et al., 2006). The central eastern area (Figure 6f) which comprises 

freehold land again reveals widespread positive trends, pointing to the occurrence of shrub encroachment by Senegalia 30 

mellifera (De Klerk, 2004b). 
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4.6 Trend analysis  

Recent studies find a greening trend in satellite-derived vegetation proxies across southern Africa; however, interpreting these 

trends in terms of ecologically meaningful, measureable and identifiable vegetation properties, for instance, in terms of plant 

functional type, is often problematic (Brandt et al., 2015; Saha et al., 2015; Song et al., 2018; Zhu et al., 2016). We find woody 

cover has decreased overall and several recent studies corroborate these findings; for example, decreases in NPP were 5 

identified in the adjacent Okavango, Kwando and upper Zambezi catchment areas over a 29-year period using MODIS (Zhu 

and Southworth, 2013).  Similarly, Andela et al. (2017) find an increasing trend in fire activity across much of the north east 

of the country which implies less woody cover (Andela et al., 2017; De Cauwer et al., 2016; Sankaran et al., 2008).  These 

results stand in contrast to those of Tian et al. (2016) (Tian et al., 2016), who identify increases in woody density across 

southern Africa, and Fensholt et al. (2012) (Fensholt et al., 2012) who identify greening trends. However, both these studies 10 

rely on coarse spatial resolution data (i.e. 0.25°, 8 km and 0.05°× 0.05°, respectively) and cover different time periods (2000-

201 and 1981-2007, respectively). Furthermore, they do not provide country-specific change statistics, but only regional 

approximations.  

The south-north and west-east gradient of increasing percentage woody cover reflects the different eco-floristic regions (Figure 

6). Northern regions consist of Kalahari and mopane woodlands, whereas the southern regions are made up of grass and shrub 15 

land, which exhibit lower woody cover densities (J Mendelsohn et al. 2002; John Mendelsohn and el Obeid 2005b). The overall 

decline in woody vegetation cover is therefore likely to be occurring in the north of the country, and be associated with 

declining tree and shrub stem numbers; these variables are related to aboveground biomass,  as well as foliar and canopy 

density (Asner et al., 2003; Asner and Heidebrecht, 2005; Asner and Lobell, 2000). In effect, Wingate et al. (2018) identified 

a net loss of aboveground woody biomass for the northern Kalahari ecoregion (Wingate et al., 2018). Based on our results, we 20 

may conclude that decreases in vegetation biomass associated with woody vegetation are also taking place, especially in the 

desert and tropical dry forest biomes; however, since the approach used does not permit the direct estimation of change in 

carbon stocks, a precise inventory of loss and gains cannot be undertaken. Several anthropogenic and biophysical factors are 

known to drive decreases in woody cover. In particular, they include long-term changes in precipitation patterns, disturbances 

resulting from cattle grazing, high densities of browsers, fires, timber extraction and land clearing (De Cauwer et al., 2016; 25 

Sankaran et al., 2005, 2008).  

Gains in woody cover are thought to be driven by factors including reforestation, conservation land management activities and 

raising atmospheric CO2 concentrations, which under certain conditions have been found to favor C3 plants over C4, and the 

interaction of these factor presumably leading to shrub encroachment (Donohue et al., 2013; Mendelsohn and el Obeid, 2005a; 

Saha et al., 2015). Finally, most of the study area (92.2%) exhibits no significant trends, which agrees with several long-term 30 

studies demonstrating vegetation to be remarkably stable in the region (Buitenwerf et al., 2012; O’Connor et al., 2014; Rohde 

and Hoffman, 2012). 
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4.7 Model accuracy and limitations  

Both predictor layers MaxWS and SINT are proxies for herbaceous vegetation; their low ranking is indicative of the higher 

correlation between field measurements of woody cover and phenological metrics characterizing woody vegetation. Similarly, 

when model predictions are compared to percentage tree cover, an increasing spread of values can be noted in the higher 

predicted percentage woody cover classes, as indicated by the black standard error bars (Figure 5) (Bastin et al., 2017). The 5 

low RMSE error observed suggests both datasets show a moderately good agreement, in spite of the fact that the datasets 

measure distinct variables using different methodologies, which makes their comparison prone to a multitude of confounding 

factors. Low R2 values are the result of single outliers (percentage tree cover) within woody cover classes.  

The low R2 found when comparing observed and predicted values result from several limitations related to the phenological 

metrics, field measurements and nature of the savanna system. Limitations associated with the phenological metrics include, 10 

pixel resolution, spectral limitations, the use of monthly averages causing the lose of the  full suite of variation in NDVI values, 

and the temporal mismatch between the field observations and the coincident pixel phenological metric values (Mendelsohn 

and el Obeid, 2005a). Limitations associated with field measurements include, the different sample sizes (e.g. 100 point 

observations per site for the 2012 and 2014 datasets, compared to 160 point for the 2016 dataset); date of field data collection 

(i.e. 2012, 2014, 2016); and a modified methodology adopted for the samples collected in 2016. Moreover, the small field plot 15 

size may not be adequately representative at the spatial resolution of the MODIS data, and similarly, the field sample sites may 

not be sufficiently representative of the variability within predictor metrics (i.e. more variability within a pixel that between 

pixels) (Baccini et al., 2007). The seasonal phenological cycles of woody and herbaceous vegetation in response to 

precipitation and temperature cues, results in a variable NDVI signal for any given period. This causes the computed 

phenological metrics to vary annually, in relation to the static field plot estimates.  Furthermore, management actions, such as 20 

grazing and fire are likely to have impacted both the sample sites and the coincident pixel values of each metric.  In particular, 

fire scars, which are often extensive, cause the NDVI signal to fluctuate importantly and hence affect the phenological metrics. 

Fire is an important factor shaping vegetation structure and composition across Namibia, with certain areas routinely 

experiencing grass fires during the on-set of the dry season (John Mendelsohn and el Obeid 2005c). Lastly, the diverse 

vegetation characteristics, including species composition and structure, encompassed within the field sites used for model 25 

calibration, are likely to not be fully representative of the overall local to regional vegetation characteristics, resulting in 

decreased model accuracy (Carreiras, Vasconcelos, and Lucas 2012; V. R. Wingate et al. 2018). These may include for 

example, among other biotopes, wetlands and floodplains which are ephemerally submerged in water, and where herbaceous 

perennial plants can remain green for longer periods (Hüttich et al. 2011). 

Several additional limitations are are likely to have introduced inaccuracies into the modelling of woody cover. For instance, 30 

NDVI is well correlated with vegetation chlorophyll content, leaf color, vegetation density and depth, soil color and moisture, 

as well as being a good indicator of NPP in drylands. However, it is limited by effects of soil and senesced vegetation 

background and signal saturation at high biomass levels, while in addition not being directly correlated with woody cover 
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(Asrar et al., 1984; Pettorelli et al., 2005; Prince, 1991; Sellers et al., 1992). Furthermore, savanna biomes are often 

characterized by several vegetation strata, ranging from tall tree canopies to shrub and herbaceous layers, all of which exhibit 

distinct phenophases (Chidumayo, 2001). Taken together, this variability in these factors contributes to impacting the regularity 

and rigorousness of the phenological metrics extracted.  

5 Conclusion 5 

This study provides a new estimate of change in woody cover across Namibia. Annual maps were created based on 

contemporary field measurements and MODIS NDVI metrics aimed at enhancing the distinct phenophases of woody and 

herbaceous vegetation. The resulting time-series was used to map trends in woody cover, which are excellent indicators of 

vegetation changes, including shrub encroachment and deforestation. The annual rate, trajectory and spatial extent of change 

was evaluated in relation to potential drivers, including biomes, land-use, population density and precipitation.  10 

On average, a loss of woody cover was identified; specifically, the desert and tropical dry forest biomes displayed a marked 

decline in woody cover, pointing to long-term land degradation, and deforestation/forest degradation, respectively. In contrast, 

tropical shrub lands demonstrated increases in woody cover, suggestive of woody encroachment. These results reflect those of 

a recent pan-African study on trends in woody cover (Brandt et al., 2017). Here, we identify contrasting change processes, 

where woody cover loss is associated with more humid areas (tropical dry forest), and very arid areas (tropical desert), while 15 

woody cover gain predominated across the intervening tropical shrub lands.  

Certain land-uses exhibited pronounced declines, notably protected areas; here these changes may be due to woody vegetation 

die-back caused by large herbivores and below average rainfall. Similarly, a negative trend was identified in resettlement and 

small-scale communal agricultural land, and is likely the result of increases in urbanization, deforestation and fire frequency; 

similarly, a negative trend on freehold might be the result of encroacher shrub control. Greening trends across large-scale 20 

agriculture on communal land could be indicative of shrub encroachment, agro-forestry and fencing causing decreased grazing 

intensity. Importantly, no significant trends in woody cover were found across most of the country.  

Qualitative high resolution image interpretation allowed the nature of observed land cover changes to be evaluated; in 

particular, our trend analysis effectively captured direct human impacts such as land clearing. However, greening could not be 

conclusively identified using available imagery, and is probably the result of indirect impacts. Lastly, trends in woody cover 25 

and trends in precipitation are unrelated for most of the study area; their un-coupled relationship supports the validity of using 

metrics which enhance the distinct phenophases of woody and herbaceous vegetation.  

Our results point to a landscape substantially affected by direct human impacts, resulting from the expansion of agriculture 

and urbanization, but also from indirect impacts, manifesting as long-term gradual vegetation changes. Moreover, distinct 

change processes prevails across different biomes. Both instances have important implications for the provision of long-term 30 

ecosystem services, and evaluating the response of biomes with large proportion of C4 species to changing atmospheric CO2 

concentrations.    
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