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Abstract. Half of Asian tropical forests were disturbed in the last century resulting in the 

dominance of secondary forests in Southeast Asia. However, the rate at which biomass 

accumulates during the recovery process in these forests is poorly understood. We studied a forest 

landscape located in Khao Yai National Park (Thailand) that experienced strong disturbances in 

the last century due to clearance by swidden farmers. Combining recent field and airborne laser 

scanning (ALS) data, we first built a high-resolution aboveground biomass (AGB) map over 60 

km2 of the forest landscape. We then used the random forest algorithm and Landsat time-series 

(LTS) data to classify landscape patches as non-forested versus forested on an almost annual basis 

from 1972 to 2017. The resulting chronosequence was then used in combination with the AGB 

map to estimate forest carbon recovery rates in secondary forest patches during the first 42 years 

of succession. The ALS-AGB model predicted AGB with an error of 14% at 0.5-ha resolution 

(RMSE = 45 Mg ha−1) using the mean top-of-canopy height as a single predictor. The mean AGB 

over the landscape was of 291 Mg ha–1 showing a high level of carbon storage despite past 

disturbance history. We found that AGB recovery varies non-linearly in the first 42 years of the 

succession, with an increasing rate of accumulation through time. We predicted a mean AGB 

recovery rate of 6.9 Mg ha−1 yr–1, with a mean AGB gain of 143 and 273 Mg ha−1 after 20 and 40 

years, respectively. This rate estimate is about 50% larger than the rate prescribed for young 

secondary Asian tropical rainforests in the 2019 refinement of the 2006 IPCC guidelines for 

national greenhouse gas inventories. Our study hence suggests that the new IPCC rates, which 

were based on limited data from Asian tropical rainforests, strongly underestimate the carbon 

potential of forest regrowth in tropical Asia. Our recovery estimates are also within the range of 

those reported for the well-studied Latin American secondary forests under similar climatic 

conditions. This study illustrates the potential of ALS data not only for scaling up field AGB 

measurements but also for predicting AGB recovery dynamics when combined with long-term 

satellite data. It also illustrates that tropical forest landscapes that were disturbed in the past are of 
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utmost importance for the regional carbon budget and thus for implementing international 

programs such as REDD+.  

1 Introduction 

Tropical forest disturbances and subsequent biomass recovery through time significantly affect the 

global carbon cycle (Harris et al., 2012). Although secondary forests in the tropics could constitute 

a major global carbon sink, the magnitude of such sink remains poorly known (Chazdon, 2014; 

Lugo and Brown, 1992). A previous study estimated that 40 years of carbon storage in regenerating 

tropical forests from Latin America offset the past 19 years of carbon emissions from fossil fuels 

and industrial production in this region (Chazdon et al., 2016). Thus, there has been much interest 

in quantifying the ability of tropical secondary forests to sequester carbon in order to reduce 

uncertainties in the global carbon balance (e.g., Chai, 1997; Lohbeck, Poorter, Martínez-Ramos, 

& Bongers, 2015; Stas, et al., 2017).  

 Previous studies have used long-term forest plot surveys along chronosequences to 

quantify forest carbon dynamics in secondary tropical forests (Chazdon et al., 2007; N’Guessan et 

al., 2019; Norden et al., 2011, 2015; Poorter et al., 2016a; Rozendaal and Chazdon, 2015). 

Although long-term forest plots are essential for understanding the dynamics of tropical forests 

(Losos and Leigh, 2004), they are scarce, inherently labor-intensive, expensive and time-

consuming to maintain, and not evenly distributed in the tropics. In addition, most studies of 

carbon dynamics along tropical forest successions are concentrated in Latin America (Chave et al., 

in press) ; Letcher and Chazdon, 2009; Norden et al., 2015; Poorter et al., 2016a; Rozendaal et al., 

2017; Rozendaal and Chazdon, 2015 but see N’Guessan et al., 2019 in Africa). They show high 

among-site variation in forest carbon recovery rates, suggesting a high context-dependence 

(Chazdon et al., 2007; Norden et al., 2011, 2015), partly depending on climate conditions (Poorter 

et al., 2016a). A few pantropical studies have shown that the carbon potential of Latin American 

forests is smaller than that of Southeast Asian and African forests (Feldpausch et al., 2012; Sullivan 

et al., 2017). However, a recent study based on a compilation of published data throughout the 

pantropics surprisingly found that the forest carbon sequestration potential of Asian tropical 

secondary rainforest was in fact much lower than in American and African rainforests. This work 

led to a recent refinement of the 2006 IPCC guidelines for national greenhouse gas inventories 

(Requena Suarez et al. 2019; IPCC, 2019). Whether these new estimates are representative of 

Asian tropical rainforests is highly uncertain, due to a critical lack of data for this region. This 

issue is especially crucial for Asian tropical forests where half of the forests have been disturbed 

during the last century, resulting in the dominance of secondary forests throughout the region 

(Achard et al., 2014; Mitchard et al., 2013; Stibig et al., 2014). 

 Remote sensing technology has emerged as a promising tool for extrapolating local field 

carbon estimates over landscapes, regions, or at the global scale (Gibbs et al., 2007; Goetz et al., 

2009). However, current long-term (>20 years) satellite data such as Landsat are weakly sensitive 

to forest carbon, especially in high-biomass forests (Ferraz et al., 2018; Lu, 2006; Meyer et al., 

2019; Zheng et al., 2004). Yet, these data may be used to produce reliable land-cover classifications 

(e.g., forest versus non-forest areas; FAO 2010). They allow assessing the dynamics of 

deforestation and reforestation worldwide (Hansen et al., 2013) and can thus monitor disturbance 

history, particularly the time since abandonment of agriculture (Cohen et al., 1996; Masek and 

Collatz, 2006). However, the forest carbon dynamics associated with such deforestation and 



reforestation events remains highly uncertain due to the large uncertainties of global carbon maps 

(Mitchard et al., 2013, 2014; Réjou-Méchain et al., 2019). 

 On other hand, airborne laser scanning (ALS) provides accurate landscape-scale estimates 

of forest structural parameters (Maltamo et al., 2005; Næsset, 2002; Wulder et al., 2012). When 

calibrated with field-based estimates of aboveground biomass (AGB), ALS metrics can be used to 

produce high-resolution forest carbon maps, even for high carbon-dense tropical forests (Asner et 

al., 2010; Cao et al., 2016; Ferraz et al., 2018; Kronseder et al., 2012; Labriere et al., 2018; Zhao 

et al., 2009; Zolkos et al., 2013). Multi-temporal ALS acquisitions may thus provide direct 

estimates of the carbon balance of tropical forest landscapes (Dubayah et al., 2010; Meyer et al., 

2013; Réjou-Méchain et al., 2015). However, due to its relatively recent emergence, ALS 

technology cannot be used to investigate long-term dynamics directly yet (>10 years). 

 Combining long-term (>40 years) land cover change assessment from satellite data 

archives (e.g., Landsat) and contemporary LiDAR AGB maps may be a promising avenue for 

understanding the long-term forest carbon dynamics. Such an approach has been successfully 

implemented in temperate and boreal forests (Bolton et al., 2015; Pflugmacher et al., 2012, 2014; 

White et al., 2018; Zald et al., 2014). However, to our knowledge, it has not been yet used to assess 

the forest carbon resilience of tropical forests (but see Helmer et al., 2009 who used satellite-based 

LiDAR). 

 In this study, we combined extensive field, ALS, and LTS data to assess the spatial variation 

of AGB and forest AGB dynamics of secondary forests in a Thai landscape. More specifically, we 

first calibrated a robust ALS-AGB model to produce a fine-scale AGB map at the landscape scale. 

We then used a random forest machine-learning algorithm to classify historical Landsat images 

from 1972 to 2017 into forest and non-forest classes. Using this information over time, we 

generated a cumulative forest gain map over a period of 42 years of succession. We finally 

combined this chronosequence with our ALS-AGB map to estimate the forest carbon resilience of 

secondary forests during the 42 first years after land abandonment. 

2. Materials and methods 

2.1 Study area 

The study area of ca. 6,400 ha is part of Khao Yai National Park in central Thailand (latitude: 14° 

25' 20.4'' N, longitude: 101° 22' 36.9'' E; Fig. 1). Khao Yai is the first national park of Thailand, 

established in 1962. It is home to numerous endangered plant and animal species (Kitamura et al., 

2004). The area receives approximately 2,200 mm of precipitation annually, with a dry season of 

five to six months (precipitation below 100 mm month−1) from November to April (Brockelman 

et al., 2011; Chanthorn et al., 2016). The annual mean temperature is about 22–23°C (Jenks et al. 

2011), and the altitude of the study area varies from 650 m to 870 m. Before establishment of the 

park, some areas were used for low-intensity agriculture activities that likely started at the end of 

the 19th century (Brockelman et al., 2011, 2017) and then naturally reforested at different times 

depending on when burning ceased (Chanthorn et al., 2016). As a consequence, the landscape 

constitutes a mosaic of secondary forests of different ages amidst old-growth forests (Chanthorn 

et al., 2016). 



2.2 Field data 

We used three sets of forest inventory plots with a total sample area of 35 ha (Fig. 1). First, a large 

30-ha contiguous (500 m × 600 m) forest dynamics plot, named Mo Singto, was established in 

old-growth forest after 1998 and completely censused in 2004–2005, 2010–2011 and 2016–2017. 

The census method follows the protocol of the Center for Tropical Forest Science (CTFS) network 

to which the plot belongs since 2009 (Brockelman et al., 2011). The second set of plots included 

eight separate 0.48-ha plots (60 m × 80 m) that were established from March to May 2013 and re-

censused from November 2017 to January 2018 (Chanthorn et al., 2017). These plots are set along 

a successional gradient varying from near stand initiation to old-growth forest. Lastly, a 1-ha plot 

(100 m × 100 m) located near the north border of the 30-ha Mo Singto plot was established in a 

secondary forest in 2005 and then re-censused in 2010 and 2017. In all plots, trees ≥1 cm in 

diameter at breast height (dbh) were tagged, identified to species, mapped and measured for their 

diameter, except in the 0.48-ha plots where the minimum dbh was 4 cm. A total of 184,239 

individual trees were measured across all the plots, from which 517 trees were measured for height 

using a pole for short trees (<5 m), a laser range finder (Nikon Forestry 550) for medium height 

trees (5–7m) and a Vertex III hypsometer for tall (>7 m) trees (Chanthorn et al., 2017). In this 

paper, we used the 2017 census data, concomitant with the ALS campaign, to estimate AGB and 

multiple censuses to estimate the AGB dynamics of secondary plots. For the sake of homogeneity 

in tree measurements, we used only trees ≥5 cm in dbh in the whole dataset. 

 In order to homogenize plot size, we subdivided all plots ≥1 ha into 0.5-ha subplots. This 

resulted in 70 plots of either 50 m × 100 m (n = 62) or 60 m × 80 m (n = 8) that we classified in 

three successional stages from young to old-growth forests following the classification from 

(Chanthorn et al., 2017): Stand initiation (early) stage (SIS; n = 3); stem exclusion (intermediate) 

stage (SES; n = 5), and old growth stage (OGS; n = 62). Based on interviews of senior park rangers 

and using Landsat remote sensing data, Chanthorn et al., (2017) estimated that the age of the forests 

was approximately 15–20 years for SIS forests, 35–40 years for SES forests and unknown but 

probably older than 200 years for OGS forests. This classification into successional stages 

followed the framework of Oliver and Larson (1996) who studied successional gradients in 

temperate forests. Although the original framework considered four successional stages, we did 

not find any area corresponding to the understory re-initiation stage in the study landscape, i.e., 

the stage following SES and preceding OGS. Most second-growth forests have regenerated since 

the Park was established about 50-60 years ago so that old second-growth forests, where 

understory re-initiation occurs, are very rare in this area. Note also that our study period (1972–

2017; see below) cannot account for forests from the SES stage older than 40 years, e.g., that 

directly started regenerating at the establishment of the park in 1962, as suggested by some hand 

drawn historical maps (Cumberlege & Cumberlege, 1963; Smitinand, 1968). 

2.3 ALS data 

The airborne laser scanning (ALS) campaign was conducted on 10 April 2017 over ca. 64 km2 

(Fig. 1). The Asian Aerospace Services Limited company (Bangkok) acquired the ALS data with 

a RIEGL LMS Q680i installed into a Diamond Aircraft “Airborne Sensors” DA-42 fixed-wing 

plane. The flying altitude was about 500–600 m above ground level with a 60-degree field of view, 

and a pulse repetition frequency of 400 kHz, for which the aircraft maintained an average ground 

speed of 185 km hr−1 capturing the area of interest in 50 overlapping laser strips. We discretized 



the full waveform data for subsequent analyses resulting in an average point density of ca. 22 

points m-2. 

 Post-processing of ALS data and point cloud classification into ground, vegetation, or noise 

were done using TerraScan of Terrasolid Version 14. Points classified as ground were used to build 

a digital terrain model (DTM) at 1-m resolution using a k-nearest neighbour kriging approach 

implemented in the LidR R package (Roussel and Auty, 2017). A 1-m resolution canopy height 

model (CHM) was then computed from the height of the normalized vegetation points, discarding 

outliers classified as air or noise. Finally, we used the CHM and the normalized vegetation point 

cloud to derive different forest height metrics at the plot level (Table S1). 

2.4 Landsat data 

We retrieved Landsat images (MSS, TM, OLI and TIRS products) for the study area from the 

Landsat archive (http://glovis.usgs.gov) between the 1972–2017 period (WRS-1 138/50 and 

WRS-2 path/row: 129/50). To minimize the impact of clouds and potentially varying phenology 

within years, we mostly selected images acquired during the dry season, from November to March. 

We thus collected Landsat 1-3 MSS data (1972–1983), Landsat 4-5 TM (1984–2011), and Landsat 

8 OLI & TIRS (2013–2017) data. We did not consider Landsat 7 ETM+ images due to the failure 

of the Scan Line Corrector, leading to data gaps. All Landsat images were already orthorectified 

and displayed an accurate co-registration with ALS data. Before 1984, Landsat MSS collected data 

at 60 m × 60 m spatial resolution in most bands. Thus, to have consistent time series data, we 

aligned all the post-1983 Landsat data using a reference image from 1972 and aggregated each 

image to 60 × 60 m. Over the 44 years, we selected a total of 34 high-quality images, each 

representing one year. For the 11 missing years, we could not find cloud-free images and no image 

was available in 2012 since we discarded Landsat 7 ETM+ data. 

2.5 Field aboveground biomass calculation 

We estimated tree aboveground biomass (AGB) using a pantropical allometric model (Eq. 4 from 

Chave et al., 2014). This model uses the diameter (D), total tree height (H) and wood density (WD) 

as the predictors and was shown to hold across tropical vegetation types and regions. Wood density 

was estimated using species (47% of stems), genus (50%) or stand (3%) averaged values from the 

global wood density database (Chave et al., 2009; Zanne et al., 2009). Tree height was estimated 

through locally-adjusted height-diameter (H-D) models of the form given in Eq. (1): 

 

  𝑙𝑛(𝐻) = 𝑎 + 𝑏 × 𝑙𝑛(𝐷) + 𝑐 × 𝑙𝑛(𝐷)2 + 𝜀         (1) 

where a and b are model parameters to be adjusted and ε is a normally distributed error with mean 

0 and standard error σlogH. Tree height was subsequently estimated using the back-transformation 

formula including a known bias correction (Baskerville, 1972) using following Eq. (2): 

    𝐻 = 𝑒𝑥𝑝(0.5 × 𝜎𝑙𝑜𝑔𝐻
2 + 𝑎 + 𝑏 × 𝑙𝑛(𝐷) + 𝑐 × 𝑙𝑛(𝐷)2 + 𝜀)      

(2) 

Because H-D relationship varies along the successional gradient (Chanthorn et al., 2017), we fitted 

three independent H-D models for the three different successional growth forest stages using 177 

measured trees for SIS plots, 159 for SES plots and 181 for OGS plots. 

 AGB at the plot level was then estimated in Mg ha-1 by summing individual tree AGB for 

all trees with dbh ≥ 5cm belonging to the plot. We did all these analyses using the R BIOMASS 

package (Réjou-Méchain et al., 2017). 

http://glovis.usgs.gov/


2.6 LiDAR AGB model 

We relied on a log-log model form given in Eq. (3) to model AGB from ALS data (Asner et al., 

2012; Réjou-Méchain et al., 2015): 

  𝑙𝑛(𝐴𝐺𝐵 ) = 𝑎 + 𝑏 × 𝑙𝑛(𝐿1) + 𝑐 × 𝑙𝑛(𝐿2) + … + 𝜀       (3) 

Where L1, L2, … are the LiDAR metrics to be selected (see Table S1) and ε the error term assumed 

to be normally distributed with zero mean and residual standard error σlogL. Fitting the model with 

log-transformed variables allows us to model a multiplicative error and thus to account for higher 

model prediction error with larger AGB values (Zolkos et al., 2013). Using this model, we selected 

the most predictive LiDAR metrics from our full set of LiDAR metrics using a leave-one-out-

cross-validation (LOOCV) scheme nested within a forward selection procedure. The LOOCV 

consists of fitting models with all observations except one, and then using the model to predict the 

value of the observation held out of model calibration. The process is repeated for all observations 

so that model prediction accuracy, here the root mean squared error (RMSE), can be independently 

assessed from all observations. This LOOCV approach was repeated for different models 

following a forward procedure that begins by selecting the most discriminant variable according 

to the LOOCV-RMSE criterion. The procedure then continues by selecting the second most 

discriminant variable and so on. To minimize the problem of model overfitting, we only kept 

explanatory variables that contribute to a decrease in relative RMSE (RMSE divided by the mean 

observed AGB) by more than 1%. The selected LiDAR-AGB model was then used to predict AGB 

values over the Landscape at 60-m resolution, to match the resolution of Landsat images. 

2.7 AGB recovery analysis 

2.7.1 Forest-non-forest classification 

To classify areas as forest or non-forest, we applied the random forest (RF) algorithm 

independently on each Landsat image to minimize inter-images classification error that may 

otherwise arise from instrumental (e.g. differences in sensors spectral characteristics) and 

phenological effects. We used all Landsat bands and their ratios as predictors in our RF 

classification models i.e. the 4 raw bands for Landsat 1-3 MSS data (1972-1983), the 7 raw bands 

for Landsat 4-5 TM (1984-2011) and the 9 raw bands for Landsat 8 OLI & TIRS (2013-2017). The 

normalized difference vegetation index (NDVI) was additionally used as a predictor for all the 

sensors while the normalized burn ratio (NBR) was only used for Landsat 4-5 and Landsat 8 due 

to non-availability of SWIR bands in MSS sensors. Thus, we used 18 predictors for MSS, 51 

predictors for TM and 83 for OLI & TIRS as an input for the RF algorithm. RF model for each 

year of the study period was then trained on the same set of pixels that likely remained either 

forested or non-forested from 1972 up until 2017. This training dataset was built using the 2017 

ALS data. We first aggregated the 1-m LiDAR-derived CHM at the same resolution as the Landsat 

images (60-m resolution) and defined non-forest pixels as pixels having a mean top of canopy 

height < 5 m (FAO, 2012; Sasaki & Putz, 2009). Because 60-m scale deforestation is unlikely to 

have occurred in the area since the establishment of the national park in 1962, areas that were 

classified as non-forest with the 2017 LiDAR data very likely corresponded to non-forested areas 

during the whole study period. By contrast, we defined as forested areas all 60-m pixels that had a 

LiDAR mean top of canopy height > 30 m because these tall forests very likely corresponded to 

forested areas during the whole study period. We thus used a reference set of 400 60-m pixels 

classified as non-forest and 110 as forest. This dataset was then randomly divided into a training 



dataset (60%) to calibrate the RF models and a validation dataset (40%) to assess the accuracy of 

the forest and non-forest classification. We only considered classified pixels that had a post-

probability of assignment >90% in the RF outputs (Pickell et al., 2016; White et al., 2018) and 

calculated the classification accuracy as the proportion of pixels that were correctly classified as 

forest or non-forest in the validation dataset. This statistical analysis was done using the 

“randomForest” R package (Liaw and Wiener, 2002). 

 

2.7.2 Forest AGB recovery analysis 

 

We combined time-series classified Landsat images with the 60-m resolution LiDAR AGB map to 

quantify AGB recovery as a function of time. We used classified time-series data to assign to each 

pixel the last date at which a shift from a non-forest to forest status occurred during the study 

period. Thus, all pixels that did not experience any shift, i.e. that remained non-forested or forested 

during the whole study period were discarded from this analysis. To minimize false detection of 

land cover change due, for example, to atmospheric pollution, we only considered shifts that 

entailed land cover change for at least two consecutive images. Thus, we did not consider any shift 

before 1975 because, to be considered, the non-forest to forest shift of a pixel should occur after 

being classified as non-forest in the two previous images (in our case in 1972 and 1973). Finally, 

we also discarded pixels that underwent more than four different shifts during the whole study 

period because numerous shifts are likely to indicate areas prone to forest degradation, e.g. close 

to human occupancy areas such as roads, introducing a bias in our inferences on the natural 

successional dynamics. We thus assigned to each pixel the year of the last non-forest to forest shift, 

if any, and considered this year as the forest recovery starting time. The AGB predicted by the 

LiDAR AGB map in 2017 was then used to estimate how much AGB was stored between the forest 

recovery starting time and 2017 through a non-linear power model. 

 

3. Results 

3.1 Forest biomass stocks 

Field plots AGB ranged from 80 to 577 Mg ha−1 (mean of 315 Mg ha−1), with a mean AGB of SIS, 

SES and OGS plots of 87 Mg ha−1, 291 Mg ha−1 and 328 Mg ha−1, respectively. Among all the 

LiDAR metrics, the mean of top-of-canopy height (TCH, defined as the maximum height of 1-m 

resolution pixels) was the best predictor of field AGB estimates with a relative RMSE of 14% 

(RMSE = 45 Mg ha−1; R2= 0.85) at 0.5-ha scale (Fig. 2). Adding a second predictor did not reduce 

the relative RMSE by more than 1% (Table S2). We thus kept TCH as a single predictor for our 

analyses resulting in the following Eq. (4) for LiDAR-AGB model: 

 

𝐴𝐺𝐵𝐿 = 4.30 × 𝑇𝐶𝐻1.39           (4) 

 

Using this LiDAR-AGB model, we predicted AGB over the whole landscape (Fig. 3a). The 

distribution of AGB values over the landscape was not normally distributed due to an over-

representation of pixels with low AGB values. At the landscape scale, predicted AGB ranged from 

0 to 681 Mg ha−1 with a mean of 291 Mg ha−1 (Fig. 3b), close to the mean AGB of the field plots. 



3.2 AGB recovery analysis 

Our forest and non-forest classification through time was highly accurate, with 90% to 99% of 

well-classified validation pixels in individual classified images (Table S3, Fig. S1-2). Figure 4a 

illustrates the resulting spatialized time series of non-forest-to-forest shifts over the study area and 

showed that most (83%) of the landscape did not experience such shift at 60-m resolution. About 

78% and 5% of the study area remained permanently forested and non-forested over the 42-year 

study period, respectively. Most of the stable non-forested areas correspond to National Park 

building areas, including tourist shops and guesthouses or to continuously cleared areas such as 

camping locations. Over the 17% remaining pixels that experienced a shift, we concentrated our 

analyses on the 4% pixels (n = 550; ca. 198 ha) that passed our selection procedure and that were 

well distributed over the landscape (Fig. 4b). 

Considering the selected pixels that experienced a shift from non-forest to forest, we found 

that AGB accumulated non-linearly through time during the 42 first years of the succession (Fig. 

5). A simple power model led to a pseudo-R2 of 0.66 and a power exponent greater than 1, 

indicating an increase in the rate of AGB accumulation with recovery time. This model predicts an 

AGB gain of 143 Mg ha−1 after 20 years of recovery and of 273 Mg ha−1 after 40 years (spatialized 

gain in AGB is shown in Fig. S3). Using field AGB estimates at two different census dates from 

eight secondary forest plots that started regenerating during the study period (see Figure S5), we 

showed that the observed rate of AGB accumulation was similar to the one predicted by our model 

and also tended to increase with forest age (in blue dots in Fig. 5). Finally, focusing on the 17% 

pixels that experienced at least one shift from non-forest to forest since 1972, we estimated that 

the study area has stored a minimum AGB of 455 Gg, as observed in the 2017 LiDAR AGB map, 

equivalent to 214 GgC during the study period. 

4. Discussion 

In this study, we showed that the integration of field inventory, Landsat archives, and LiDAR data 

provide a powerful approach for characterizing the spatio-temporal dynamics of aboveground 

biomass in tropical forests. While the carbon stocks and recovery potential of south-Asian tropical 

forests are globally poorly known, our approach contributes to a better understanding of the role 

of these forests in global carbon dynamics. We specifically showed that our study site stores a large 

amount of carbon, despite its disturbance history, and acts as a strong carbon sink, through 

secondary succession pathways. 

4.1 Spatial variation in AGB 

Using extensive field data, we have shown that forest AGB can be predicted with an error of 14% 

at a 0.5-ha resolution using a single LiDAR metric, the mean top-of-canopy-height (TCH), a metric 

previously identified as a robust predictor of AGB (Asner and Mascaro, 2014). This error typically 

falls within the range of expected errors at this resolution (Zolkos et al., 2013). Using a robust 

metric selection approach, we showed that adding any other LiDAR metrics did not bring any 

additional information and that our single predictor did not show any saturation for large AGB 

values. Many studies have used a combination of several LiDAR metrics selected through less 

robust approaches, i.e. not through independent validation approaches such as our LOOCV 

procedure, potentially generating overfitting problems (Junttila et al., 2015). We here confirm, 



similarly to Asner et al. (2012) and Réjou-Méchain et al. (2015), that simple parsimonious models 

should be preferred, at least within a given tropical forest landscape. Due to a limited number of 

field plots in low-biomass areas, we were, however, unable to test whether model prediction error 

varied with forest stand AGB. 

 

 Using this LiDAR model, we predicted a mean AGB over the landscape of 291 Mg ha-1, 

corresponding to a carbon density of 137 MgC ha-1 (using a ratio of biomass to carbon conversion 

of 0.47; Thomas and Martin, 2012). Using a large network of field plots, a recent pantropical study 

suggested that Southeast Asian and African forests store significantly more carbon than 

Amazonian forests (Sullivan et al., 2017). However, in this latter study, Southeast Asian forests 

were only represented by field data from Indonesia and Malaysia where trees are known to be 

particularly tall (Coomes et al., 2017; Feldpausch et al., 2011; Jucker et al., 2017, 2018). Here, we 

found that our study forests stored significantly less carbon than forests in Indonesia and Malaysia, 

where the mean carbon density reached ca. 200 MgC ha-1 (Sullivan et al., 2017), but as much as 

in Amazonian forests (mean of 140 MgC ha-1; Sullivan et al., 2017), even when considering only 

old-growth forest plots. Whether the relatively low carbon density of our study site, compared to 

other Southeast Asian forests, is specific to our study area or representative of other Southeast 

Asian forests should be further investigated. 

 

 We found a very high spatial heterogeneity of AGB at the landscape scale with an apparent 

over-representation of low AGB values. This is most probably the consequence of past human 

activities in this area up to the establishment of the park that led to the present mosaic of secondary 

and mature forests. This result indicates that this area is currently likely to be a net carbon sink. 

4.2 AGB recovery through time 

Combining classified images obtained from LTS and LiDAR data, we quantified the recovery rate 

of forests after land abandonment. As expected, we showed a significant increase of AGB with 

recovery time. After 20 years of recovery, our model predicts an AGB accumulation of 143 Mg 

ha−1, an estimate slightly higher than the one predicted by Poorter et al., (2016a) in Neotropical 

secondary forests (122 Mg ha−1). However, this difference can partly be explained by the inclusion 

of trees between 5 and 10 cm dbh in our study, contrary to Poorter et al. (2016)’s study. AGB 

accumulation in our study corresponds to a net carbon uptake of 3.4 Mg C ha−1yr−1 for the first 20 

years. This rate of carbon accumulation is close to the pantropical estimate from Silver et al., (2000) 

and is similar to the default continent recovery rates given by the previous 2006 IPCC guidelines 

for national greenhouse gas inventories (IPCC, 2006). However, the 2019’s refinement of these 

guidelines halved the recovery rate estimate for young Asian secondary rainforest (≤ 20 years) 

(Requena Suarez et al. 2019; IPCC, 2019), suggesting that young secondary forests in Asia store 

carbon at a much lower rate than in Latin America or in Africa. This new estimate derived from a 

very limited dataset (7 chronosequences) that may not be representative of Asian tropical 

rainforests. Besides, these data included very small field plots (≤ 0.01 ha in size; Hiratsuka, et al., 

2006; Ewel et al., 1983), potentially leading to important sampling errors (Réjou-Méchain et al. 

2014). Given the serious implications of these updated IPCC default rates for Asian countries, we 

here call for further testing of these new IPCC rates across tropical Asia. 

 Our model showed that a non-linear power model with an exponent > 1 best fit our data, 

suggesting an increase in the rate of carbon accumulation during the first 42 years of succession. 

Contrary to the results found by Feldpausch et al. (2007), the rates of AGB accumulation inferred 



with our approach provided estimates similar to those obtained from long-term field plot surveys 

(Fig. 5), validating the chronosequence approach in our study area. Assuming that the carbon 

recovery rate rapidly decreases after 50–60 years (Brown and Lugo, 1990; Silver et al., 2000), our 

result suggests a sigmoid relationship of AGB accumulation with time in our study area. Previous 

studies have shown different models of AGB accumulation with forest age. Saldarriaga et al. (1988) 

showed that the AGB of Neotropical forests from the upper Rio Negro increased linearly with 

stand age during the 40 years, while Jepsen, (2006) reported a sigmoidal increase in AGB 

accumulation in Sarawak, Malaysia, as is likely the case in our study area. Finally, working on 41 

Neotropical sites, Poorter et al. (2016a) assumed a logarithmic trend in the AGB accumulation 

over time, hence a decrease of the rate of carbon accumulation through time, probably because 

they investigated a longer time period. Selecting the sites of Poorter et al. (2016a, 2016b) that had 

at least 10 observations over the first 44 years (n = 21 out of 28 sites, i.e. excluding 7 sites for 

which model fitting was not possible), site-specific power models revealed that two-thirds of the 

sites displayed a power exponent <1 and one-third showed an exponent >1 (Fig. S4). Thus, the 

accumulation of AGB with age follows different trends across sites, as already highlighted in 

previous studies (Kennard et al., 2002; Poorter et al., 2016a; Ray and Brown, 2006; Ruiz et al., 

2005; Silver et al., 2000; Toledo and Salick, 2006). Understanding how these trends vary according 

to abiotic factors (e.g. soil type, rainfall), species assemblage and diversity, or to priority effects 

such as types of land use and land management existing before forest recolonization, constitutes 

an important research perspective (Chazdon, 2014; McMahon et al., 2019). 

 Our analysis was based on a forest/non-forest classification through time and our 

independent validation suggested a high overall accuracy (90 to 99%), similar to that reported by 

other studies using Landsat data classification in boreal systems (Bolton et al., 2015; White et al., 

2018). Furthermore, our estimate of forest age using this approach was highly consistent with our 

expectations. Indeed, using our forest plots, we found that the SES and SIS forest stages lasted on 

average 40 years (range 38–42) and 13 years (range 8–20), respectively, hence very close to 

suggestions of Chanthorn et al. (2017) (Fig. S5). However, our overall approach cannot be 

replicated easily in human-occupied areas. Indeed, human disturbances lead to forest degradation 

that, in contrast to deforestation, is not captured by the Landsat signal, so that, when combined 

with a reference AGB map, natural carbon recovery potential could be seriously underestimated. 

Because our study area was protected from human disturbances during the study period, we were 

in very favourable conditions to estimate forest carbon recovery rates and strongly encourage 

researchers benefiting from similar conditions to replicate our analyses in other study sites. 

5 Conclusions 

Our study demonstrates that combining field, LiDAR, and long-term satellite data provides an 

efficient way to assess forest carbon recovery rates during secondary successions. We showed that 

it produces similar estimates as those inferred from long term field plots, but at a much lower cost 

and within a much shorter time frame. Replicating this approach in other protected tropical 

landscapes, notably in the Asian subcontinent, would thus considerably increase the 

representativeness of forest carbon recovery rates. This would improve our understanding of the 

environmental and historical drivers of these varying rates between ecological zones and 

continents. This is especially important in Southeast Asian forests that constitute a hotspot of 

biodiversity and carbon, and that are under threat due to the fast changing of both environment and 

socio-economics in this region. Quantifying the rates at which different forest types accumulate 



carbon should thus stay at the forefront of the research agenda and would greatly benefit the Earth 

system model community and international policy initiatives such as REDD+. 
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Figure 1. Location of the study area in Thailand (upper left) and in the Khao Yai reserve (bottom left). The central map 

illustrates the LiDAR top of canopy height (TCH) in the study area at 1-m resolution and the location of the 70 studied 

plots (in black). Examples of the different stand development stages are illustrated (right; SIS: stand initiation stage; 

SES: stem exclusion stage; and OGS: old growth stage). 



 
Figure 2. LiDAR-AGB model showing the relationship between field-derived plot AGB and the LiDAR top-of-canopy 

height (TCH) at a 0.5-ha resolution. The power model is illustrated by the red line, and the points represent the field plot 

AGB estimates at different successional stages: stand initiation (early) stage (SIS; n = 3); stem exclusion (intermediate) 

stage (SES; n = 5), and old growth stage (OGS; n = 62) according to the classification by Chanthorn et al. (2017).   

 
Figure 3. LiDAR-AGB map and the distribution of AGB values over the landscape at 60-m resolution. (a)- Spatial 

distribution of AGB predicted from the LiDAR-AGB inversion model over the study area; (b)- Density distribution of 

predicted AGB over the landscape.   



 

  

Figure 4. Landsat time series derived map showing non-forest-to-forest change over the study area. (a)- Map showing 

spatialized selected pixel shifts from non-forests to forests over years. The shade gradient represents pixels that did not 

experience any shift (permanently forested or deforested) and pixels that experienced a shift but that did not pass our 

quality procedure during the study period (Not selected) (b)- Density distribution of selected pixel shifts over the 

landscape during the study period. 



  
Figure 5. Relationship between forest biomass estimated from a LiDAR-AGB model and forest recovery time estimated 

from a time series of classified Landsat images (grey dots). The fitted power model is represented by the red line. Blue 

lines and dots represent the AGB directly estimated from eight field plots (same plots are joined by a line) in 2013 and in 

2017/8 and for which the forest recovery time was inferred from Landsat derived forest age (Fig. S5). 
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Table S1. Lidar metrics (n = 21) and their descriptions 

Performance comparisons of several LiDAR-derived metrics to infer AGB at 0.5-ha resolution. Metrics (1-17) were calculated 

directly from the LiDAR cloud dataset and metrics (18-21) were derived from the canopy height model (CHM), which itself derived 

from the LiDAR cloud data. LOOCV-RMSE is the back-transformed error of the LiDAR-AGB log-log model obtained through a 

leave-one-out scheme (see methods).  The relative RMSE is the ratio of this LOOCV-RMSE to the mean of field AGB. Among all 

the metrics, the mean top-of-canopy-height (TCH) derived from CHM was the best metric selected (highlighted in blue).  
S.No. LiDAR metric 

 

LOOCV-RMSE Relative RMSE 

(in%) 

1 H10 (10th Percentile) 93.53 29.70  
2 H25 

(25th Percentile) 

72.13 22.90  

3 H50 

(50th Percentile) 

48.73 15.47  

4 H75 

(75th Percentile) 

50.08 15.90  

5 H95 

(95th percentile) 

67.78 21.52  

6 HIQR 

(HIQR = Q75 - Q25) 

81.02 25.72  

7 Hmean 47.16 14.97  
8 Hsqmean 

(quadratic mean) 

48.44 15.38  

9 Hcv 

coefficient of variation of all height 

94.79 30.10  

10 Bin95 

(Percent of points within Q95) 

93.95 29.83  

11 Bin75 

(Percent of points within Q75) 

96.51 30.64  

12 Bin50 

(Percent of points within Q50) 

95.54 30.33  

13 Bin25 

(Percent of points within Q25) 

95.51 30.32  

14 Hperc10 

Percentage of height ranges in 0–10m 

91.76 29.13  

15 Hperc20 

Percentage of height ranges in 0–20m 

74.45 23.64  

16 Hperc30 

Percentage of height ranges in 0–30m 

74.98 23.81  

17 Hperc40 

Percentage of height ranges in 0–40m 

89.75 28.50  

18  TCH (Mean of top of Canopy Height) 45.2 14.35  

19 CHM_H50  47.8 15.18  
20 CHMHrelief 

(((mean - min) / (max – min)) 

90.12 28.61  



21 CHMSqMean 46.83 14.87  
 

 

 

Table S2. Results from the model selection approach using TCH and any other of the additional LiDAR-based metrics 

described in Table S1 in a log-log linear model of the form 𝑙𝑜𝑔⁡(𝐴𝐺𝐵) = 𝑎 + 𝑏 × 𝑙𝑜𝑔⁡(𝑇𝐶𝐻) + 𝑐 × 𝑙𝑜𝑔⁡(𝑋), 

where X is the additional metric tested given in the table. LOOCV-RMSE is the back-transformed error of this model 

obtained through a leave-one-out scheme (see methods). The relative RMSE is the ratio of the LOOCV-RMSE to the 

mean of field AGB. Adding a second predictor did not reduce the relative LOOCV-RMSE by more than 1%, so only 

TCH was selected as final predictor.  

 

Log- Log Model LOOCV-RMSE 

RMSE 
Relative RMSE 

Relative to mean 

AGB 
AGB~TCH 45.2 14.35% 

AGB~ TCH + Bin 95 44.90 
 

14.26% 

AGB~ TCH + Bin 95+H10 43.86 13.96% 

AGB~ TCH + Bin 95+H10+Hperc40 45.11 14.32% 

 

  



Table S3: Landsat Time-series data used for the study with corresponding validation score 

 

S.No Landsat Mission Sensor Date of 

collection 
Validation Score 

1 Landsat 1-3 MSS 19/12/1972 94.12 
2 Landsat 1-3 MSS 6/1/1973 90.69 
3 Landsat 1-3 MSS 13/12/1975 92.65 
4 Landsat 1-3 MSS 18/01/1976 94.12 
5 Landsat 1-3 MSS 18/11/1978 94.61 
6 Landsat 1-3 MSS 1/12/1979 96.57 
7 Landsat 1-3 MSS 13/01/1982 95.1 
8 Landsat 4-5 TM 9/12/1987 94.61 
9 Landsat 4-5 TM 11/12/1988 96.57 
10 Landsat 4-5 TM 13/02/1989 96.08 
11 Landsat 4-5 TM 5/4/1990 98.53 
12 Landsat 4-5 TM 2/11/1991 97.06 
13 Landsat 4-5 TM 18/03/1992 95.1 
14 Landsat 4-5 TM 23/11/1993 96.08 
15 Landsat 4-5 TM 28/12/1994 94.12 
16 Landsat 4-5 TM 20/03/1996 96.08 
17 Landsat 4-5 TM 20/12/1997 91.67 
18 Landsat 4-5 TM 23/12/1998 92.65 
19 Landsat 4-5 TM 26/12/1999 96.08 
20 Landsat 4-5 TM 12/12/2000 95.1 
21 Landsat 4-5 TM 2/3/2001 94.61 
22 Landsat 4-5 TM 24/01/2002 97.06 
23 Landsat 4-5 TM 21/11/2004 97.55 
24 Landsat 4-5 TM 13/03/2005 98.04 
25 Landsat 4-5 TM 13/12/2006 94.61 
26 Landsat 4-5 TM 30/01/2007 95.1 
27 Landsat 4-5 TM 18/12/2008 94.12 
28 Landsat 4-5 TM 19/11/2009 92.65 
29 Landsat 4-5 TM 25/01/2011 95.59 
30 Landsat 8 OLI & TIRS 30/11/2013 89.71 
31 Landsat 8 OLI & TIRS 19/12/2014 93.14 
32 Landsat 8 OLI & TIRS 2/4/2015 91.67 
33 Landsat 8 OLI & TIRS 11/3/2016 95.1 
34 Landsat 8 OLI & TIRS 25/01/2017 96.57 

 

  



 

Figures 

 

 

Fig S1: Random Forest results showing the average variable importance in each Landsat sensors used for classification (a) 

Average variable importance for Landsat 1-3 (MSS) sensor images (1972–1983) (b) Average variable importance for 

Landsat 4-5 (TM) sensor images (1984–2011) (c) Average variable importance for Landsat 8 (OLI & TIRS) sensor images 

(2013-2017)  
 



 

Fig S2: Non-Forest and Forest status across period (1972-2017) 

 



 

 

  

 

Fig S3: AGB recovery of the pixels that experienced a single shift from Non-Forest to Forest. (a)- Map showing spatialized 

single shifts from non-forests to forests with the corresponding AGB gain in 2017 as predicted by our LiDAR AGB map 

(Fig. 3a). The shade gradient represents pixels that did not experience any shift (permanently forested or  deforested) and 

pixels that experienced a shift but that did not pass our quality procedure during the study period (Not selected) (b)- Density 

distribution of pixels with AGB gain which experiences single shifts over the landscape during the study period compared 

with the density distribution of predicted AGB over the full landscape in 2017 (Fig. 3b) 

 

 

 

 



 

 

Fig S4: Distribution of the power coefficients obtained from site-specific power models fitted on AGB recovery versus forest 

age in 21 sites studied by Poorter et al. (2016) and in our site (red line). We only considered the sites having a minimum of 

10 observations and that were younger than 45 years old. We excluded 7 sites matching those rules as they exhibited dubious 

patterns of carbon recovery through time that cannot be captured by a power model (sites Eastern Pará 2, El Carite, Mata 

Seca, Patos, San Carlos, Yucatán, Zona Norte). 

 

   



  

  
Fig S5. Non-forest (red) to forest (green) status during the 1972-2017 period in 10 field plots belonging to different 

successional stages as estimated from our forest classification approach. We did not represent here the subplots belonging 

to the Mo Singto plot as they all were in a forested status during the whole study period.  


