
1 

 

Forest aboveground biomass stock and resilience in a tropical 

landscape of Thailand 

Nidhi Jha1, Nitin Kumar Tripathi1, Wirong Chanthorn2, Warren Brockelman3, Anuttara Nathalang 3,4, 
Raphaël Pélissier5, Siriruk Pimmasarn1, Pierre Ploton5, Nophea Sasaki6, Salvatore G.P. Virdis1, Maxime 
Réjou-Méchain5 5 

1Department of Information & Communication Technologies, School of Engineering and Technology 

(SET), Asian Institute of Technology, Thailand. 

2Faculty of Environment, Kasetsart University, Thailand 

3National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand 

4National Biobank of Thailand (NBT), Pathum Thani, Thailand 10 

5AMAP IRD, CNRS, CIRAD, INRA, Univ Montpellier, Montpellier, France. 

6Department of Development and Sustainability, Asian Institute of Technology, Thailand 

 

Correspondence to Nidhi Jha (nidhi23aug@gmail.com) 

Abstract. Half of Asian tropical forests were disturbed in the last century resulting in the dominance of 15 

secondary forests in Southeast Asia. However, the rate at which biomass accumulates during the recovery 

process in these forests is poorly understood. We studied a forest landscape located in Khao Yai National 

Park (Thailand) that experienced strong disturbances in the last century due to clearance by swidden 

farmers. Combining recent field and airborne laser scanning (ALS) data, we first built a high-resolution 

aboveground biomass (AGB) map over 60 km2 of the forest landscape. We then used the random forest 20 

algorithm and Landsat time-series (LTS) data to classify landscape patches as non-forested versus forested 

on an almost annual basis from 1972 to 2017. The resulting chronosequence was then used in combination 

with the AGB map to estimate forest carbon recovery rates in secondary forest patches during the first 42 

years of succession. The ALS-AGB model predicted AGB with an error of 14% at 0.5-ha resolution 

(RMSE = 45 Mg ha−1) using the mean top-of-canopy height as a single predictor. The mean AGB over 25 

the landscape was of 291 Mg ha–1 showing a high level of carbon storage despite past disturbance history. 

We found that AGB recovery varies non-linearly in the first 42 years of the succession, with an increasing 

rate of accumulation through time. We predicted a mean AGB recovery rate of 6.9 Mg ha−1 yr–1, with a 

mean AGB gain of 143 and 273 Mg ha−1 after 20 and 40 years, respectively. This rate estimate is about 

50% larger than the rate prescribed for young secondary Asian tropical rainforests in the 2019 refinement 30 

of the 2006 IPCC guidelines for national greenhouse gas inventories. Our study hence suggests that the 

new IPCC rates, which were based on limited data from Asian tropical rainforests, strongly underestimate 

the carbon potential of forest regrowth in tropical Asia. Our recovery estimates are also within the range 

of those reported for the well-studied Latin American secondary forests under similar climatic conditions. 

https://eecc.ait.ac.th/
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This study illustrates the potential of ALS data not only for scaling up field AGB measurements but also 35 

for predicting AGB recovery dynamics when combined with long-term satellite data. It also illustrates 

that tropical forest landscapes that were disturbed in the past are of utmost importance for the regional 

carbon budget and thus for implementing international programs such as REDD+.  

1. Introduction 

Tropical forest disturbances and subsequent biomass recovery through time significantly affect the global 40 

carbon cycle (Harris et al., 2012). Although secondary forests in the tropics could constitute a major global 

carbon sink, the magnitude of such sink remains poorly known (Chazdon, 2014; Lugo and Brown, 1992). 

A previous study estimated that 40 years of carbon storage in regenerating tropical forests from Latin 

America offset the past 19 years of carbon emissions from fossil fuels and industrial production in this 

region (Chazdon et al., 2016). Thus, there has been much interest in quantifying the ability of tropical 45 

secondary forests to sequester carbon in order to reduce uncertainties in the global carbon balance (e.g., 

Chai, 1997; Lohbeck et al., 2015; Stas et al., 2017).  

 Previous studies have used long-term forest plot surveys along chronosequences to quantify forest 

carbon dynamics in secondary tropical forests (Chazdon et al., 2007; N’Guessan et al., 2019; Norden et 

al., 2011, 2015; Poorter et al., 2016a; Rozendaal and Chazdon, 2015). Although long-term forest plots are 50 

essential for understanding the dynamics of tropical forests (Losos and Leigh, 2004), they are scarce, 

inherently labor-intensive, expensive and time-consuming to maintain, and not evenly distributed in the 

tropics. In addition, most studies of carbon dynamics along tropical forest successions are concentrated 

in Latin America Chave et al., in press; Letcher and Chazdon, 2009; Norden et al., 2015; Poorter et al., 

2016a; Rozendaal et al., 2017; Rozendaal and Chazdon, 2015 but see N’Guessan et al., 2019 in Africa). 55 

They show high among-site variation in forest carbon recovery rates, suggesting a high context-

dependence (Chazdon et al., 2007; Norden et al., 2011, 2015), partly depending on climate conditions 

(Poorter et al., 2016a). A few pantropical studies have shown that the carbon potential of Latin American 

forests is smaller than that of Southeast Asian and African forests (Feldpausch et al., 2012; Sullivan et al., 

2017). However, a recent study based on a compilation of published data throughout the pantropics 60 

surprisingly found that the forest carbon sequestration potential of Asian tropical secondary rainforest 

was in fact much lower than in American and African rainforests. This work led to a recent refinement of 

the 2006 IPCC guidelines for national greenhouse gas inventories (Requena Suarez et al. 2019; IPCC, 

2019). Whether these new estimates are representative of Asian tropical rainforests is highly uncertain, 

due to a critical lack of data for this region. This issue is especially crucial for Asian tropical forests where 65 

half of the forests have been disturbed during the last century, resulting in the dominance of secondary 

forests throughout the region (Achard et al., 2014; Mitchard et al., 2013; Stibig et al., 2014). 

 Remote sensing technology has emerged as a promising tool for extrapolating local field carbon 

estimates over landscapes, regions, or at the global scale (Gibbs et al., 2007; Goetz et al., 2009). However, 

current long-term (>20 years) satellite data such as Landsat are weakly sensitive to forest carbon, 70 

especially in high-biomass forests (Ferraz et al., 2018; Lu, 2006; Meyer et al., 2019; Zheng et al., 2004). 

Yet, these data may be used to produce reliable land-cover classifications (e.g., forest versus non-forest 

areas; FAO 2010). They allow assessing the dynamics of deforestation and reforestation worldwide 
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(Hansen et al., 2013) and can thus monitor disturbance history, particularly the time since abandonment 

of agriculture (Cohen et al., 1996; Masek and Collatz, 2006). However, the forest carbon dynamics 75 

associated with such deforestation and reforestation events remains highly uncertain due to the large 

uncertainties of global carbon maps (Mitchard et al., 2013, 2014; Réjou-Méchain et al., 2019). 

 On other hand, airborne laser scanning (ALS) provides accurate landscape-scale estimates of 

forest structural parameters (Maltamo et al., 2005; Næsset, 2002; Wulder et al., 2012). When calibrated 

with field-based estimates of aboveground biomass (AGB), ALS metrics can be used to produce high-80 

resolution forest carbon maps, even for high carbon-dense tropical forests (Asner et al., 2010; Cao et al., 

2016; Ferraz et al., 2018; Kronseder et al., 2012; Labriere et al., 2018; Zhao et al., 2009; Zolkos et al., 

2013). Multi-temporal ALS acquisitions may thus provide direct estimates of the carbon balance of 

tropical forest landscapes (Dubayah et al., 2010; Meyer et al., 2013; Réjou-Méchain et al., 2015). 

However, due to its relatively recent emergence, ALS technology cannot be used to investigate long-term 85 

dynamics directly yet (>10 years). 

 Combining long-term (>40 years) land cover change assessment from satellite data archives (e.g., 

Landsat) and contemporary LiDAR AGB maps may be a promising avenue for understanding the long-

term forest carbon dynamics. Such an approach has been successfully implemented in temperate and 

boreal forests (Bolton et al., 2015; Pflugmacher et al., 2012, 2014; White et al., 2018; Zald et al., 2014). 90 

However, to our knowledge, it has not been yet used to assess the forest carbon resilience of tropical 

forests (but see Helmer et al., 2009 who used satellite-based LiDAR). 

 In this study, we combined extensive field, ALS, and LTS data to assess the spatial variation of 

AGB and forest AGB dynamics of secondary forests in a Thai landscape. More specifically, we first 

calibrated a robust ALS-AGB model to produce a fine-scale AGB map at the landscape scale. We then 95 

used a random forest machine-learning algorithm to classify historical Landsat images from 1972 to 2017 

into forest and non-forest classes. Using this information over time, we generated a cumulative forest gain 

map over a period of 42 years of succession. We finally combined this chronosequence with our ALS-

AGB map to estimate the forest carbon resilience of secondary forests during the 42 first years after land 

abandonment. 100 

2. Materials and methods 

2.1 Study area 

The study area of ca. 6,400 ha is part of Khao Yai National Park in central Thailand (latitude: 14° 25' 

20.4'' N, longitude: 101° 22' 36.9'' E; Fig. 1). Khao Yai is the first national park of Thailand, established 

in 1962. It is home to numerous endangered plant and animal species (Kitamura et al., 2004). The area 105 

receives approximately 2,200 mm of precipitation annually, with a dry season of five to six months 

(precipitation below 100 mm month−1) from November to April (Brockelman et al., 2011; Chanthorn et 

al., 2016). The annual mean temperature is about 22–23°C (Jenks et al. 2011), and the altitude of the study 

area varies from 650 m to 870 m. Before establishment of the park, some areas were used for low-intensity 

agriculture activities that likely started at the end of the 19th century (Brockelman et al., 2011, 2017) and 110 

then naturally reforested at different times depending on when burning ceased (Chanthorn et al., 2016). 
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As a consequence, the landscape constitutes a mosaic of secondary forests of different ages amidst old-

growth forests (Chanthorn et al., 2016). 

2.2 Field data 

We used three sets of forest inventory plots with a total sample area of 35 ha (Fig. 1). First, a large 30-ha 115 

contiguous (500 m × 600 m) forest dynamics plot, named Mo Singto, was established in old-growth forest 

after 1998 and completely censused in 2004–2005, 2010–2011 and 2016–2017. The census method 

follows the protocol of the Center for Tropical Forest Science (CTFS) network to which the plot belongs 

since 2009 (Brockelman et al., 2011). The second set of plots included eight separate 0.48-ha plots (60 m 

× 80 m) that were established from March to May 2013 and re-censused from November 2017 to January 120 

2018 (Chanthorn et al., 2017). These plots are set along a successional gradient varying from near stand 

initiation to old-growth forest. Lastly, a 1-ha plot (100 m × 100 m) located near the north border of the 

30-ha Mo Singto plot was established in a secondary forest in 2005 and then re-censused in 2010 and 

2017. In all plots, trees ≥1 cm in diameter at breast height (dbh) were tagged, identified to species, mapped 

and measured for their diameter, except in the 0.48-ha plots where the minimum dbh was 4 cm. A total of 125 

184,239 individual trees were measured across all the plots, from which 517 trees were measured for 

height using a pole for short trees (<5 m), a laser range finder (Nikon Forestry 550) for medium height 

trees (5–7m) and a Vertex III hypsometer for tall (>7 m) trees (Chanthorn et al., 2017). In this paper, we 

used the 2017 census data, concomitant with the ALS campaign, to estimate AGB and multiple censuses 

to estimate the AGB dynamics of secondary plots. For the sake of homogeneity in tree measurements, we 130 

used only trees ≥5 cm in dbh in the whole dataset. 

 In order to homogenize plot size, we subdivided all plots ≥1 ha into 0.5-ha subplots. This resulted 

in 70 plots of either 50 m × 100 m (n = 62) or 60 m × 80 m (n = 8) that we classified in three successional 

stages from young to old-growth forests following the classification from (Chanthorn et al., 2017): Stand 

initiation (early) stage (SIS; n = 3); stem exclusion (intermediate) stage (SES; n = 5), and old growth stage 135 

(OGS; n = 62). Based on interviews of senior park rangers and using Landsat remote sensing data, 

Chanthorn et al., (2017) estimated that the age of the forests was approximately 15–20 years for SIS 

forests, 35–40 years for SES forests and unknown but probably older than 200 years for OGS forests. 

This classification into successional stages followed the framework of Oliver and Larson (1996) who 

studied successional gradients in temperate forests. Although the original framework considered four 140 

successional stages, we did not find any area corresponding to the understory re-initiation stage in the 

study landscape, i.e., the stage following SES and preceding OGS. Most second-growth forests have 

regenerated since the Park was established about 50-60 years ago so that old second-growth forests, where 

understory re-initiation occurs, are very rare in this area. Note also that our study period (1972–2017; see 

below) cannot account for forests from the SES stage older than 40 years, e.g., that directly started 145 

regenerating at the establishment of the park in 1962, as suggested by some hand drawn historical maps 

(Cumberlege & Cumberlege, 1963; Smitinand, 1968). 
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2.3 ALS data 

The airborne laser scanning (ALS) campaign was conducted on 10 April 2017 over ca. 64 km2 (Fig. 1). 

The Asian Aerospace Services Limited company (Bangkok) acquired the ALS data with a RIEGL LMS 150 

Q680i installed into a Diamond Aircraft “Airborne Sensors” DA-42 fixed-wing plane. The flying altitude 

was about 500–600 m above ground level with a 60-degree field of view, and a pulse repetition frequency 

of 400 kHz, for which the aircraft maintained an average ground speed of 185 km hr−1 capturing the area 

of interest in 50 overlapping laser strips. We discretized the full waveform data for subsequent analyses 

resulting in an average point density of ca. 22 points m-2. 155 

 Post-processing of ALS data and point cloud classification into ground, vegetation, or noise were 

done using TerraScan of Terrasolid Version 14. Points classified as ground were used to build a digital 

terrain model (DTM) at 1-m resolution using a k-nearest neighbour kriging approach implemented in the 

LidR R package (Roussel and Auty, 2017). A 1-m resolution canopy height model (CHM) was then 

computed from the height of the normalized vegetation points, discarding outliers classified as air or 160 

noise. Finally, we used the CHM and the normalized vegetation point cloud to derive different forest 

height metrics at the plot level (Table S1). 

2.4 Landsat data 

We retrieved Landsat images (MSS, TM, OLI and TIRS products) for the study area from the Landsat 

archive (http://glovis.usgs.gov) between the 1972–2017 period (WRS-1 138/50 and WRS-2 path/row: 165 

129/50). To minimize the impact of clouds and potentially varying phenology within years, we mostly 

selected images acquired during the dry season, from November to March. We thus collected Landsat 1-

3 MSS data (1972–1983), Landsat 4-5 TM (1984–2011), and Landsat 8 OLI & TIRS (2013–2017) data. 

We did not consider Landsat 7 ETM+ images due to the failure of the Scan Line Corrector, leading to 

data gaps. All Landsat images were already orthorectified and displayed an accurate co-registration with 170 

ALS data. Before 1984, Landsat MSS collected data at 60 m × 60 m spatial resolution in most bands. 

Thus, to have consistent time series data, we aligned all the post-1983 Landsat data using a reference 

image from 1972 and aggregated each image to 60 × 60 m. Over the 44 years, we selected a total of 34 

high-quality images, each representing one year. For the 11 missing years, we could not find cloud-free 

images and no image was available in 2012 since we discarded Landsat 7 ETM+ data. 175 

2.5 Field aboveground biomass calculation 

We estimated tree aboveground biomass (AGB) using a pantropical allometric model (Eq. 4 from Chave 

et al., 2014). This model uses the diameter (D), total tree height (H) and wood density (WD) as the 

predictors and was shown to hold across tropical vegetation types and regions. Wood density was 

estimated using species (47% of stems), genus (50%) or stand (3%) averaged values from the global wood 180 

density database (Chave et al., 2009; Zanne et al., 2009). Tree height was estimated through locally-

adjusted height-diameter (H-D) models of the form given in Eq. (1): 

 

  𝑙𝑛(𝐻) = 𝑎 + 𝑏 × 𝑙𝑛(𝐷) + 𝑐 × 𝑙𝑛(𝐷)2 + 𝜀         (1) 

http://glovis.usgs.gov/
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where a and b are model parameters to be adjusted and ε is a normally distributed error with mean 0 and 185 

standard error σlogH. Tree height was subsequently estimated using the back-transformation formula 

including a known bias correction (Baskerville, 1972) using following Eq. (2): 

    𝐻 = 𝑒𝑥𝑝(0.5 × 𝜎𝑙𝑜𝑔𝐻
2 + 𝑎 + 𝑏 × 𝑙𝑛(𝐷) + 𝑐 × 𝑙𝑛(𝐷)2 + 𝜀)      (2) 

Because H-D relationship varies along the successional gradient (Chanthorn et al., 2017), we fitted three 

independent H-D models for the three different successional growth forest stages using 177 measured 190 

trees for SIS plots, 159 for SES plots and 181 for OGS plots. 

 AGB at the plot level was then estimated in Mg ha-1 by summing individual tree AGB for all trees 

with dbh ≥ 5cm belonging to the plot. We did all these analyses using the R BIOMASS package (Réjou-

Méchain et al., 2017). 

2.6 LiDAR AGB model 195 

We relied on a log-log model form given in Eq. (3) to model AGB from ALS data (Asner et al., 2012; 

Réjou-Méchain et al., 2015): 

  𝑙𝑛(𝐴𝐺𝐵 ) = 𝑎 + 𝑏 × 𝑙𝑛(𝐿1) + 𝑐 × 𝑙𝑛(𝐿2) + … + 𝜀       (3) 

Where L1, L2, … are the LiDAR metrics to be selected (see Table S1) and ε the error term assumed to be 

normally distributed with zero mean and residual standard error σlogL. Fitting the model with log-200 

transformed variables allows us to model a multiplicative error and thus to account for higher model 

prediction error with larger AGB values (Zolkos et al., 2013). Using this model, we selected the most 

predictive LiDAR metrics from our full set of LiDAR metrics using a leave-one-out-cross-validation 

(LOOCV) scheme nested within a forward selection procedure. The LOOCV consists of fitting models 

with all observations except one, and then using the model to predict the value of the observation held 205 

out of model calibration. The process is repeated for all observations so that model prediction accuracy, 

here the root mean squared error (RMSE), can be independently assessed from all observations. This 

LOOCV approach was repeated for different models following a forward procedure that begins by 

selecting the most discriminant variable according to the LOOCV-RMSE criterion. The procedure then 

continues by selecting the second most discriminant variable and so on. To minimize the problem of 210 

model overfitting, we only kept explanatory variables that contribute to a decrease in relative RMSE 

(RMSE divided by the mean observed AGB) by more than 1%. The selected LiDAR-AGB model was 

then used to predict AGB values over the Landscape at 60-m resolution, to match the resolution of Landsat 

images. 

2.7 AGB recovery analysis 215 

2.7.1 Forest-non-forest classification 

To classify areas as forest or non-forest, we applied the random forest (RF) algorithm independently on 

each Landsat image to minimize inter-images classification error that may otherwise arise from 

instrumental (e.g. differences in sensors spectral characteristics) and phenological effects. We used all 

Landsat bands and their ratios as predictors in our RF classification models i.e. the 4 raw bands for 220 

Landsat 1-3 MSS data (1972-1983), the 7 raw bands for Landsat 4-5 TM (1984-2011) and the 9 raw bands 
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for Landsat 8 OLI & TIRS (2013-2017). The normalized difference vegetation index (NDVI) was 

additionally used as a predictor for all the sensors while the normalized burn ratio (NBR) was only used 

for Landsat 4-5 and Landsat 8 due to non-availability of SWIR bands in MSS sensors. Thus, we used 18 

predictors for MSS, 51 predictors for TM and 83 for OLI & TIRS as an input for the RF algorithm. RF 225 

model for each year of the study period was then trained on the same set of pixels that likely remained 

either forested or non-forested from 1972 up until 2017. This training dataset was built using the 2017 

ALS data. We first aggregated the 1-m LiDAR-derived CHM at the same resolution as the Landsat images 

(60-m resolution) and defined non-forest pixels as pixels having a mean top of canopy height < 5 m (FAO, 

2012; Sasaki & Putz, 2009). Because 60-m scale deforestation is unlikely to have occurred in the area 230 

since the establishment of the national park in 1962, areas that were classified as non-forest with the 2017 

LiDAR data very likely corresponded to non-forested areas during the whole study period. By contrast, 

we defined as forested areas all 60-m pixels that had a LiDAR mean top of canopy height > 30 m because 

these tall forests very likely corresponded to forested areas during the whole study period. We thus used 

a reference set of 400 60-m pixels classified as non-forest and 110 as forest. This dataset was then 235 

randomly divided into a training dataset (60%) to calibrate the RF models and a validation dataset (40%) 

to assess the accuracy of the forest and non-forest classification. We only considered classified pixels that 

had a post-probability of assignment >90% in the RF outputs (Pickell et al., 2016; White et al., 2018) and 

calculated the classification accuracy as the proportion of pixels that were correctly classified as forest or 

non-forest in the validation dataset. This statistical analysis was done using the “randomForest” R package 240 

(Liaw and Wiener, 2002). 

2.7.2 Forest AGB recovery analysis 

We combined time-series classified Landsat images with the 60-m resolution LiDAR AGB map to 

quantify AGB recovery as a function of time. We used classified time-series data to assign to each pixel 

the last date at which a shift from a non-forest to forest status occurred during the study period. Thus, all 245 

pixels that did not experience any shift, i.e. that remained non-forested or forested during the whole study 

period were discarded from this analysis. To minimize false detection of land cover change due, for 

example, to atmospheric pollution, we only considered shifts that entailed land cover change for at least 

two consecutive images. Thus, we did not consider any shift before 1975 because, to be considered, the 

non-forest to forest shift of a pixel should occur after being classified as non-forest in the two previous 250 

images (in our case in 1972 and 1973). Finally, we also discarded pixels that underwent more than four 

different shifts during the whole study period because numerous shifts are likely to indicate areas prone 

to forest degradation, e.g. close to human occupancy areas such as roads, introducing a bias in our 

inferences on the natural successional dynamics. We thus assigned to each pixel the year of the last non-

forest to forest shift, if any, and considered this year as the forest recovery starting time. The AGB 255 

predicted by the LiDAR AGB map in 2017 was then used to estimate how much AGB was stored between 

the forest recovery starting time and 2017 through a non-linear power model. 
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3. Results 

3.1 Forest biomass stocks 

Field plots AGB ranged from 80 to 577 Mg ha−1 (mean of 315 Mg ha−1), with a mean AGB of SIS, SES 260 

and OGS plots of 87 Mg ha−1, 291 Mg ha−1 and 328 Mg ha−1, respectively. Among all the LiDAR metrics, 

the mean of top-of-canopy height (TCH, defined as the maximum height of 1-m resolution pixels) was 

the best predictor of field AGB estimates with a relative RMSE of 14% (RMSE = 45 Mg ha−1; R2= 0.85) 

at 0.5-ha scale (Fig. 2). Adding a second predictor did not reduce the relative RMSE by more than 1% 

(Table S2). We thus kept TCH as a single predictor for our analyses resulting in the following Eq. (4) for 265 

LiDAR-AGB model: 

 

𝐴𝐺𝐵𝐿 = 4.30 × 𝑇𝐶𝐻1.39           (4) 

 

Using this LiDAR-AGB model, we predicted AGB over the whole landscape (Fig. 3a). The 270 

distribution of AGB values over the landscape was not normally distributed due to an over-representation 

of pixels with low AGB values. At the landscape scale, predicted AGB ranged from 0 to 681 Mg ha−1 with 

a mean of 291 Mg ha−1 (Fig. 3b), close to the mean AGB of the field plots. 

3.2 AGB recovery analysis 

Our forest and non-forest classification through time was highly accurate, with 90% to 99% of well-275 

classified validation pixels in individual classified images (Table S3, Fig. S1-2). Figure 4a illustrates the 

resulting spatialized time series of non-forest-to-forest shifts over the study area and showed that most 

(83%) of the landscape did not experience such shift at 60-m resolution. About 78% and 5% of the study 

area remained permanently forested and non-forested over the 42-year study period, respectively. Most 

of the stable non-forested areas correspond to National Park building areas, including tourist shops and 280 

guesthouses or to continuously cleared areas such as camping locations. Over the 17% remaining pixels 

that experienced a shift, we concentrated our analyses on the 4% pixels (n = 550; ca. 198 ha) that passed 

our selection procedure and that were well distributed over the landscape (Fig. 4b). 

Considering the selected pixels that experienced a shift from non-forest to forest, we found that 

AGB accumulated non-linearly through time during the 42 first years of the succession (Fig. 5). A simple 285 

power model led to a pseudo-R2 of 0.66 and a power exponent greater than 1, indicating an increase in 

the rate of AGB accumulation with recovery time. This model predicts an AGB gain of 143 Mg ha−1 after 

20 years of recovery and of 273 Mg ha−1 after 40 years (spatialized gain in AGB is shown in Fig. S3). 

Using field AGB estimates at two different census dates from eight secondary forest plots that started 

regenerating during the study period (see Figure S5), we showed that the observed rate of AGB 290 

accumulation was similar to the one predicted by our model and also tended to increase with forest age 

(in blue dots in Fig. 5). Finally, focusing on the 17% pixels that experienced at least one shift from non-

forest to forest since 1972, we estimated that the study area has stored a minimum AGB of 455 Gg, as 

observed in the 2017 LiDAR AGB map, equivalent to 214 GgC during the study period. 
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4. Discussion 295 

In this study, we showed that the integration of field inventory, Landsat archives, and LiDAR data provide 

a powerful approach for characterizing the spatio-temporal dynamics of aboveground biomass in tropical 

forests. While the carbon stocks and recovery potential of south-Asian tropical forests are globally poorly 

known, our approach contributes to a better understanding of the role of these forests in global carbon 

dynamics. We specifically showed that our study site stores a large amount of carbon, despite its 300 

disturbance history, and acts as a strong carbon sink, through secondary succession pathways. 

4.1 Spatial variation in AGB 

Using extensive field data, we have shown that forest AGB can be predicted with an error of 14% at a 

0.5-ha resolution using a single LiDAR metric, the mean top-of-canopy-height (TCH), a metric previously 

identified as a robust predictor of AGB (Asner and Mascaro, 2014). This error typically falls within the 305 

range of expected errors at this resolution (Zolkos et al., 2013). Using a robust metric selection approach, 

we showed that adding any other LiDAR metrics did not bring any additional information and that our 

single predictor did not show any saturation for large AGB values. Many studies have used a combination 

of several LiDAR metrics selected through less robust approaches, i.e. not through independent validation 

approaches such as our LOOCV procedure, potentially generating overfitting problems (Junttila et al., 310 

2015). We here confirm, similarly to Asner et al. (2012) and Réjou-Méchain et al. (2015), that simple 

parsimonious models should be preferred, at least within a given tropical forest landscape. Due to a 

limited number of field plots in low-biomass areas, we were, however, unable to test whether model 

prediction error varied with forest stand AGB. 

 Using this LiDAR model, we predicted a mean AGB over the landscape of 291 Mg ha-1, 315 

corresponding to a carbon density of 137 MgC ha-1 (using a ratio of biomass to carbon conversion of 0.47; 

Thomas and Martin, 2012). Using a large network of field plots, a recent pantropical study suggested that 

Southeast Asian and African forests store significantly more carbon than Amazonian forests (Sullivan et 

al., 2017). However, in this latter study, Southeast Asian forests were only represented by field data from 

Indonesia and Malaysia where trees are known to be particularly tall (Coomes et al., 2017; Feldpausch et 320 

al., 2011; Jucker et al., 2017, 2018). Here, we found that our study forests stored significantly less carbon 

than forests in Indonesia and Malaysia, where the mean carbon density reached ca. 200 MgC ha-1 

(Sullivan et al., 2017), but as much as in Amazonian forests (mean of 140 MgC ha-1; Sullivan et al., 2017), 

even when considering only old-growth forest plots. Whether the relatively low carbon density of our 

study site, compared to other Southeast Asian forests, is specific to our study area or representative of 325 

other Southeast Asian forests should be further investigated. 

 We found a very high spatial heterogeneity of AGB at the landscape scale with an apparent over-

representation of low AGB values. This is most probably the consequence of past human activities in this 

area up to the establishment of the park that led to the present mosaic of secondary and mature forests. 

This result indicates that this area is currently likely to be a net carbon sink. 330 
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4.2 AGB recovery through time 

Combining classified images obtained from LTS and LiDAR data, we quantified the recovery rate of 

forests after land abandonment. As expected, we showed a significant increase of AGB with recovery 

time. After 20 years of recovery, our model predicts an AGB accumulation of 143 Mg ha−1, an estimate 

slightly higher than the one predicted by Poorter et al., (2016a) in Neotropical secondary forests (122 Mg 335 

ha−1). However, this difference can partly be explained by the inclusion of trees between 5 and 10 cm dbh 

in our study, contrary to Poorter et al. (2016)’s study. AGB accumulation in our study corresponds to a 

net carbon uptake of 3.4 Mg C ha−1yr−1 for the first 20 years. This rate of carbon accumulation is close to 

the pantropical estimate from Silver et al., (2000) and is similar to the default continent recovery rates 

given by the previous 2006 IPCC guidelines for national greenhouse gas inventories (IPCC, 2006). 340 

However, the 2019’s refinement of these guidelines halved the recovery rate estimate for young Asian 

secondary rainforest (≤ 20 years) (Requena Suarez et al. 2019; IPCC, 2019), suggesting that young 

secondary forests in Asia store carbon at a much lower rate than in Latin America or in Africa. This new 

estimate derived from a very limited dataset (7 chronosequences) that may not be representative of Asian 

tropical rainforests. Besides, these data included very small field plots (≤ 0.01 ha in size; Hiratsuka, et al., 345 

2006; Ewel et al., 1983), potentially leading to important sampling errors (Réjou-Méchain et al. 2014). 

Given the serious implications of these updated IPCC default rates for Asian countries, we here call for 

further testing of these new IPCC rates across tropical Asia. 

 Our model showed that a non-linear power model with an exponent > 1 best fit our data, suggesting 

an increase in the rate of carbon accumulation during the first 42 years of succession. Contrary to the 350 

results found by Feldpausch et al. (2007), the rates of AGB accumulation inferred with our approach 

provided estimates similar to those obtained from long-term field plot surveys (Fig. 5), validating the 

chronosequence approach in our study area. Assuming that the carbon recovery rate rapidly decreases 

after 50–60 years (Brown and Lugo, 1990; Silver et al., 2000), our result suggests a sigmoid relationship 

of AGB accumulation with time in our study area. Previous studies have shown different models of AGB 355 

accumulation with forest age. Saldarriaga et al. (1988) showed that the AGB of Neotropical forests from 

the upper Rio Negro increased linearly with stand age during the 40 years, while Jepsen, (2006) reported 

a sigmoidal increase in AGB accumulation in Sarawak, Malaysia, as is likely the case in our study area. 

Finally, working on 41 Neotropical sites, Poorter et al. (2016a) assumed a logarithmic trend in the AGB 

accumulation over time, hence a decrease of the rate of carbon accumulation through time, probably 360 

because they investigated a longer time period. Selecting the sites of Poorter et al. (2016a, 2016b) that 

had at least 10 observations over the first 44 years (n = 21 out of 28 sites, i.e. excluding 7 sites for which 

model fitting was not possible), site-specific power models revealed that two-thirds of the sites displayed 

a power exponent <1 and one-third showed an exponent >1 (Fig. S4). Thus, the accumulation of AGB 

with age follows different trends across sites, as already highlighted in previous studies (Kennard et al., 365 

2002; Poorter et al., 2016a; Ray and Brown, 2006; Ruiz et al., 2005; Silver et al., 2000; Toledo and Salick, 

2006). Understanding how these trends vary according to abiotic factors (e.g. soil type, rainfall), species 

assemblage and diversity, or to priority effects such as types of land use and land management existing 

before forest recolonization, constitutes an important research perspective (Chazdon, 2014; McMahon et 

al., 2019). 370 
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 Our analysis was based on a forest/non-forest classification through time and our independent 

validation suggested a high overall accuracy (90 to 99%), similar to that reported by other studies using 

Landsat data classification in boreal systems (Bolton et al., 2015; White et al., 2018). Furthermore, our 

estimate of forest age using this approach was highly consistent with our expectations. Indeed, using our 

forest plots, we found that the SES and SIS forest stages lasted on average 40 years (range 38–42) and 13 375 

years (range 8–20), respectively, hence very close to suggestions of Chanthorn et al. (2017) (Fig. S5). 

However, our overall approach cannot be replicated easily in human-occupied areas. Indeed, human 

disturbances lead to forest degradation that, in contrast to deforestation, is not captured by the Landsat 

signal, so that, when combined with a reference AGB map, natural carbon recovery potential could be 

seriously underestimated. Because our study area was protected from human disturbances during the 380 

study period, we were in very favourable conditions to estimate forest carbon recovery rates and strongly 

encourage researchers benefiting from similar conditions to replicate our analyses in other study sites. 

5. Conclusions 

Our study demonstrates that combining field, LiDAR, and long-term satellite data provides an efficient 

way to assess forest carbon recovery rates during secondary successions. We showed that it produces 385 

similar estimates as those inferred from long term field plots, but at a much lower cost and within a much 

shorter time frame. Replicating this approach in other protected tropical landscapes, notably in the Asian 

subcontinent, would thus considerably increase the representativeness of forest carbon recovery rates. 

This would improve our understanding of the environmental and historical drivers of these varying rates 

between ecological zones and continents. This is especially important in Southeast Asian forests that 390 

constitute a hotspot of biodiversity and carbon, and that are under threat due to the fast changing of both 

environment and socio-economics in this region. Quantifying the rates at which different forest types 

accumulate carbon should thus stay at the forefront of the research agenda and would greatly benefit the 

Earth system model community and international policy initiatives such as REDD+. 

 395 
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Figure 1. Location of the study area in Thailand (upper left) and in the Khao Yai reserve (bottom left). The central map illustrates 770 
the LiDAR top of canopy height (TCH) in the study area at 1-m resolution and the location of the 70 studied plots (in black). 

Examples of the different stand development stages are illustrated (right; SIS: stand initiation stage; SES: stem exclusion stage; and 

OGS: old growth stage) 
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Figure 2. LiDAR-AGB model showing the relationship between field-derived plot AGB and the LiDAR top-of-canopy height (TCH) 775 
at a 0.5-ha resolution. The power model is illustrated by the red line, and the points represent the field plot AGB estimates at different 

successional stages: stand initiation (early) stage (SIS; n = 3); stem exclusion (intermediate) stage (SES; n = 5), and old growth stage 

(OGS; n = 62) according to the classification by Chanthorn et al. (2017).   
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Figure 3. LiDAR-AGB map and the distribution of AGB values over the landscape at 60-m resolution. (a)- Spatial distribution of 780 
AGB predicted from the LiDAR-AGB inversion model over the study area; (b)- Density distribution of predicted AGB over the 

landscape.   
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Figure 4. Landsat time series derived map showing non-forest-to-forest change over the study area. (a)- Map showing spatialized 785 
selected pixel shifts from non-forests to forests over years. The shade gradient represents pixels that did not experience any shift 

(permanently forested or deforested) and pixels that experienced a shift but that did not pass our quality procedure during the study 

period (Not selected) (b)- Density distribution of selected pixel shifts over the landscape during the study period. 
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Figure 5. Relationship between forest biomass estimated from a LiDAR-AGB model and forest recovery time estimated from a time 790 
series of classified Landsat images (grey dots). The fitted power model is represented by the red line. Blue lines and dots represent 

the AGB directly estimated from eight field plots (same plots are joined by a line) in 2013 and in 2017/8 and for which the forest 

recovery time was inferred from Landsat derived forest age (Fig. S5). 

 


