

4

1

Modelling Nitrification Inhibitor Effects on N₂O Emissions after Fall and Spring-Applied Slurry by Reducing Nitrifier NH₄⁺ Oxidation Rate

Grant, Robert.F.^{1*}, Lin, Sisi¹ and Hernandez-Ramirez, Guillermo¹

⁵ ¹ Department of Renewable Resources, University of Alberta, Edmonton, AB,

6 Canada T6G 2E3

7 ABSTRACT

8 Reductions in N₂O emissions from nitrification inhibitors (NI) are substantial, but remain uncertain because measurements of N₂O emissions are highly variable and discontinuous. 9 Mathematical modelling may offer an opportunity to estimate these reductions if the processes 10 causing variability in N₂O emissions can be accurately simulated. In this study, the effect of NI 11 was simulated with a simple, time-dependent algorithm to slow NH_4^+ oxidation in the ecosystem 12 model ecosys. Slower nitrification modelled with NI caused increases in soil NH₄⁺ 13 concentrations and reductions in soil NO3⁻ concentrations and in N2O fluxes that were consistent 14 with those measured following fall and spring applications of slurry over two years from 2014 to 15 16 2016. The model was then used to estimate direct and indirect effects of NI on seasonal and 17 annual emissions. After spring slurry applications, NI reduced N₂O emissions modelled and measured during the drier spring of 2015 (35% and 45%) less than during the wetter spring of 18 2016 (53% and 72%). After fall slurry applications, NI reduced modelled N₂O emissions by 58% 19 20 and 56% during late fall in 2014 and 2015, and by 8% and 33% during subsequent spring thaw in 21 2015 and 2016. Modelled reductions were consistent with those from meta-analyses of other NI studies. Simulated NI activity declined over time, so that reductions in N₂O emissions modelled 22 with NI at an annual time scale were relatively smaller than those during emission events. These 23 24 reductions were accompanied by increases in NH₃ emissions and reductions in NO₃⁻ losses with 25 NI that caused changes in indirect N_2O emissions. With further parameter evaluation, the 26 addition of this algorithm for NI to ecosys may allow emission factors for different NI products to be derived from annual N₂O emissions modelled under diverse site, soil, land use and weather. 27

2

28

29 **1. INTRODUCTION**

Nitrification inhibitors (NI) have frequently been found to reduce N₂O emissions from 30 fertilizer and slurry applications in agricultural fields. In a meta-analysis of field experiments 31 conducted to 2008, Akiyama et al. (2010) found average reductions of $38 \pm 6\%$ in N₂O emissions 32 from NI with some variation attributed to land use type and emission rates. Similar average 33 34 reductions of 35 - 40% were reported in more recent meta-analyses by Ruser and Schulz (2015), Gilsanz et al. (2016) and Gao and Bian (2017). However the magnitudes of these reductions are 35 uncertain because they vary with rate and timing of fertilizer or slurry application, with land use 36 and ecosystem type (Aikyama et al., 2010) and with application method (Zhu et al., 2016). 37 38 These magnitudes are also uncertain because measurements of the N₂O emissions on which they are based are highly variable temporally and spatially, and difficult to sustain over the annual 39 time periods needed to estimate NI reductions. 40

The effects of NI on N₂O emissions are attributed to inhibition of ammonia 41 monooxygenase which slows the oxidation of NH_4^+ to NO_2^- during nitrification (Subbarao et al., 42 2006), and hence slows the reduction of NO₂⁻ to N₂O during nitrifier denitrification. The 43 consequent slowing of NO₂⁻ oxidation to NO₃⁻ would also slow the reduction of NO₃⁻ to N₂O 44 during denitrification. The effectiveness of NI has been found to decline over time due to 45 mineralization, adsorption and volatilization, depending on NI formulation. The rate of this 46 decline varies among NI products and soil types, and increases with soil temperature (Guardia et 47 al., 2018). 48

49 The great majority of the studies included in meta-analyses of NI effects on N2O emissions were conducted following fertilizer or slurry application on warm soils in spring or 50 51 summer. The effectiveness of NIs with fall applications of fertilizer or slurry on cold soils has thus far received very limited attention (Ruser and Schulz, 2015), although in cold climates N₂O 52 emissions during the spring thaw following fall applications may exceed those during later 53 spring and summer following spring applications (Lin et al., 2018). Emissions during spring 54 55 thaw were attributed by Wagner-Riddle and Thurtell (1998) to soil NO3-N concentrations exceeding 20 mg kg⁻¹ generated by fall-applied slurry that contributed to total N₂O emissions 56

3

exceeding 0.2 g N m⁻² measured between January and April of the following year. Large N₂O 57 emissions measured in late winter were attributed by Dungan et al. (2017) to labile N not used by 58 soil microorganisms during the previous fall and winter that was actively metabolized when the 59 soils began to warm in early March. Interannual differences in spring thaw emission events after 60 fall slurry applications were related by Kariyapperuma et al. (2012) to those in total soil mineral 61 N content in the upper 15 cm of the soil profile during spring thaw. The effects of NI on N_2O 62 emissions during spring thaw will therefore depend on the persistence with which NI reduces 63 64 nitrification in cold soils during fall and winter, and thereby alters mineral N concentrations during the following spring. 65

Reductions in N₂O emissions directly caused by slower nitrification with NI may be partially offset by increases in indirect N₂O emissions from increasing NH₃ emissions caused by greater soil NH₄⁺ concentrations (Lam et al., 2017, Qiao et al., 2015). NI may also decrease indirect N₂O emissions by reducing NO₃⁻ concentrations and hence leaching. Both direct and indirect effects of NI on N₂O emissions must be considered when estimating effects of NI on total N₂O emissions.

IPCC Tier 3 methodology for estimating N_2O emissions under diverse climates, soils, 72 fertilizers and land uses includes the use of comprehensive, process-based mathematical models 73 of terrestrial C, N, water and energy cycling (IPCC, 2019). Although NI effects on nitrification 74 have been added to some existing process models (Cui et al., 2014; Del Grosso et al., 2009), 75 testing of modelled NI effects on N₂O emissions against measurements remains limited to brief 76 periods following soil N amendments (e.g. Giltrap et al., 2011). The mathematical model ecosys 77 explicitly represents the key processes in nitrification (Grant, 1994), denitrification (Grant, 1991) 78 79 and associated N₂O emissions (Grant, 1995), and has been tested against measurements of N₂O emissions using micrometeorological methods, and manual and automated chambers (Grant and 80 81 Pattey, 1999, 2008; Grant et al., 2006, 2016; Metivier et al., 2009). In this study, we propose that applying a time-dependent reduction of NH_4^+ oxidation rates during nitrification will enable 82 83 ecosys to simulate the time course of reductions in N2O emissions with NI measured after fall and spring applications of dairy slurry in a field experiment. The model is then used to estimate 84 85 the direct and indirect effects of NI on annual N₂O emissions with fall and spring slurry

4

applications as required for IPCC Tier 3 methodology, and how these effects would change with
 alternative tillage practices and timings of slurry application.

88

89 **2. MODEL DEVELOPMENT**

90

91 **2.1.General Overview**

The hypotheses for oxidation-reduction reactions involving N_2O , and the aqueous and 92 gaseous transport of their substrates and products, are represented in Fig. 1 and described in 93 94 further detail below. References to equations and definitions listed in Supplements S1, S3, S4, S5 and S8 of the Supporting Information (Table 1) are provided for those interested in model 95 methodology, but are not needed for a general understanding of model behaviour. These 96 97 hypotheses function within a comprehensive model of soil C, N and P transformations, coupled to one of soil water, heat and solute transport in surface litter and soil layers, which are in turn 98 99 components of the comprehensive ecosystem model ecosys.

100

101 **2.2.**Mineralization and Immobilization of Ammonium by Microbial Functional Types

Heterotrophic microbial functional types (MFTs) *m* (obligately aerobic bacteria, 102 103 obligately aerobic fungi, facultatively anaerobic denitrifiers, anaerobic fermenters, acetotrophic methanogens, and obligately aerobic and anaerobic non-symbiotic diazotrophs) are associated 104 with each organic substrate *i* (*i* = manure, coarse woody plant residue, fine non-woody plant 105 residue, particulate organic matter, or humus). Autotrophic MFTs n (aerobic NH_4^+ and NO_2^- 106 oxidizers, aerobic methanotrophs and hydrogenotrophic methanogens) are associated with 107 108 inorganic substrates. These MFTs grow [A25] with energy generated from oxidation of dissolved organic C (DOC) by heterotrophs [H2, H10], of acetate by acetotrophic methanogens, of mineral 109 N (NH₄⁺ and NO₂⁻) [H11, H15] by nitrifiers, of CH₄ by methanotrophs [G7], or of H₂ by 110 hydrogenotrophic methanogens [G12], coupled with reduction of e⁻ acceptors O₂ [H4, G22], 111 acetate [G8], NO_x [H7 – H9], and CO₂ [G13]. These MFTs decay according to first-order rate 112 constants [A23] with internal recycling of resources (C, N, P) from structural to nonstructural 113 114 components i (i = labile, recalcitrant, nonstructural) varying with nonstructural C:N:P ratios

115	[A24], the decay products of which form humus C, N and P [A35, A36]. Each MFT seeks to
116	maintain a set nonstructural C:N:P ratio by mineralizing NH_4^+ and H_2PO4^- [H1a] from, or by
117	immobilizing NH_4^+ , NO_3^- and H_2PO4^- [H1b, H1c] into, its nonstructural N and P components.
118	These transformations control the exchange of N and P between organic and inorganic states,
119	and of O_2 between aqueous and gaseous states, and hence affect the availability of substrates and
120	e acceptors for nitrification and denitrification.
121	
122	2.3. Oxidation of DOC and Reduction of Oxygen by Heterotrophs
123	N ₂ O is generated when demand for e ⁻ acceptors from oxidation by aerobic heterotrophs
124	and autotrophs (Sec. 2.2) exceeds supply from O ₂ , requiring explicit modelling of O ₂ transport
125	and uptake, and consequent O ₂ constraints to oxidation-reduction reactions (Sec. 2.11 below).
126	Constraints on heterotrophic oxidation of DOC imposed by O ₂ uptake are solved in four steps:
127	1) DOC oxidation by heterotrophs under non-limiting O_2 is calculated from specific oxidation
128	rates multiplied by active biomasses and an Arrhenius function of T_s , constrained by DOC
129	concentration [H2],
130	2) O_2 reduction to H_2O under non-limiting O_2 (O_2 demand) by aerobic heterotrophs is calculated
131	from step 1 using a set respiratory quotient [H3],
132	3) O_2 reduction to H_2O under ambient O_2 is calculated from radial O_2 diffusion through water
133	films with thicknesses determined by soil water potential [H4a] coupled with active uptake at
134	heterotroph surfaces driven by step 2 [H4b]. O2 diffusion and active uptake are calculated for
135	each heterotrophic population associated with each organic substrate, allowing [H4] to
136	calculate lower O_2 concentrations at microbial surfaces (O_{2m}) associated with more
137	biologically active substrates (e.g. manure, litter). Localized zones of low O2 concentration
138	(hotspots) are thereby simulated when O_2 uptake by any aerobic MFT is constrained by O_2
139	diffusion to that functional type. O_2 uptake by each heterotrophic MFT is affected by
140	competition for O_2 uptake with other heterotrophs, nitrifiers, roots and mycorrhizae,
141	calculated from its biological O ₂ demand relative to those of other aerobic functional types.
142	4) DOC oxidation to CO_2 under ambient O_2 is calculated from steps 2 and 3 [H5]. The energy
143	yield of DOC oxidation with O_2 reduction drives the uptake of additional DOC for
144	construction of microbial biomass $M_{i,h}$ according to construction energy costs of each
145	heterotrophic functional type [A21]. Energy costs of denitrifiers are slightly larger than those

146	of obligately aerobic heterotrophs, placing denitrifiers at a small competitive disadvantage for
147	growth and hence DOC oxidation under non-limiting O ₂ .
148	
149	2.4.Oxidation of DOC and Reduction of Nitrate, Nitrite and Nitrous Oxide by
150	Denitrifiers
151	N_2O may be both product and substrate of NO_x reduction coupled with DOC oxidation by
152	denitrifiers. Constraints imposed by NO3 ⁻ availability on denitrifier DOC oxidation are solved
153	in five steps:
154	1) NO ₃ ⁻ reduction to NO ₂ ⁻ by heterotrophic denitrifiers under non-limiting NO ₃ ⁻ is calculated
155	from demand for e ⁻ acceptors by denitrifiers for DOC oxidation to CO ₂ , but not met from O ₂
156	reduction to H ₂ O because of diffusion limitations to O ₂ supply (Sec. 2.3 step 3). This unmet
157	demand is transferred to NO ₃ ⁻ [H6],
158	2) NO_3^- reduction to NO_2^- under ambient NO_3^- is calculated from step 1, accounting for relative
159	concentrations and affinities of NO_3^- and NO_2^- [H7],
160	3) NO_2^- reduction to N_2O under ambient NO_2^- is calculated from demand for e ⁻ acceptors not met
161	by NO_3^- reduction in step 2, accounting for relative concentrations and affinities of NO_2^- and
162	N_2O . This unmet demand is transferred to NO_2^- [H8].
163	4) N_2O reduction to N_2 under ambient N_2O is calculated from demand for e^- acceptors not met by
164	NO_2^- reduction in step 3, and hence transferred to N_2O [H9].
165	5) additional energy yield from DOC oxidation to CO_2 enabled by NO_x reduction in steps 2, 3
166	and 4 is added to that enabled by O_2 reduction from [H5], which drives additional DOC
167	uptake for construction of $M_{i,n}$. This additional uptake offsets the disadvantage incurred by the
168	larger construction energy costs of denitrifiers (Sec. 2.3 step 4).
169	
170	2.5. Oxidation of Ammonium and Reduction of Oxygen by Nitrifiers
171	N_2O may also be generated by reduction of NO_2^- coupled with oxidation of NH_4^+ by
172	autotrophic nitrifiers. Constraints on nitrifier oxidation of $\mathrm{NH_4^+}$ imposed by $\mathrm{O_2}$ uptake are solved
173	in four steps:
174	1) Oxidation of NH_4^+ (in dynamic equilibrium with NH_3 [E24]) under non-limiting O_2 is
175	calculated from a specific oxidation rate multiplied by active biomass and an Arrhenius
176	function of $T_{\rm s}$, and constrained by NH ₄ ⁺ and CO ₂ concentrations [H11],

177	2) O_2 reduction to H_2O under non-limiting O_2 (O_2 demand) is calculated from step 1 using set
178	respiratory quotients [H12],
179	3) O ₂ reduction to H ₂ O under ambient O ₂ is calculated from radial O ₂ diffusion through water
180	films of thickness determined by soil water potential [H13a] coupled with active uptake at
181	nitrifier surfaces driven by step 2 [H13b]. O2 uptake by nitrifiers is affected by competition
182	for O2 uptake with heterotrophic DOC oxidizers, roots and mycorrhizae, calculated from its
183	biological O ₂ demand relative to those of other aerobic functional types.
184	4) NH_4^+ oxidation to NO ₂ - under ambient O ₂ is calculated from steps 2 and 3 [H14]. The energy
185	yield of NH_4^+ oxidation drives the fixation of CO ₂ for construction of microbial biomass $M_{i,n}$
186	according to nitrifier construction energy costs.
187	
188	2.6.Oxidation of Nitrite and Reduction of Oxygen by Nitrifiers
189	Constraints on nitrifier oxidation of NO_2^- to NO_3^- imposed by O_2 uptake [H15 - H18] are
190	solved in the same way as are those of NH_4^+ to NO_2^- [H11 - H14]. The energy yield of NO_2^-
191	oxidation drives the fixation of CO_2 for construction of microbial biomass $M_{i,o}$ according to
192	nitrifier construction energy costs.
193	
194	2.7. Oxidation of Ammonium and Reduction of Nitrite by Nitrifiers
195	In both nitrifier and denitrifier processes, N_2O is generated from reduction of NO_2^- , the
196	availability of which is controlled by NO ₂ ⁻ oxidation (Sec. 2.6). Under low O ₂ concentrations
197	NO ₂ ⁻ oxidation is suppressed [H18], favoring NO ₂ ⁻ reduction. Constraints on nitrifier oxidation
198	of NH_4^+ imposed by NO_2^- availability are solved in three steps:
199	1) NO ₂ ⁻ reduction to N ₂ O under non-limiting NO ₂ ⁻ is calculated from e ⁻ acceptors demanded by
200	$\mathrm{NH_4}^+$ oxidation to $\mathrm{NO_2}^-$ but not met by $\mathrm{O_2}$ for reduction to $\mathrm{H_2O}$ because of diffusion
201	limitations to O_2 supply, and hence transferred to NO_2^- [H19],
202	2) NO ₂ ⁻ reduction to N ₂ O under ambient NO ₂ ⁻ and CO ₂ is calculated from step 1 [H20],
203	competing for NO_2^- with denitrifiers [H8] and nitrifiers [H18],
204	3) energy yield from additional NH_4^+ oxidation to NO_2^- enabled by NO_2^- reduction in step 2
205	[H21] is added to that enabled by O_2 reduction from Sec. 2.5 step 4 [H14] which drives the
206	fixation of additional CO ₂ for construction of $M_{i,n}$.
207	

208	2.8. Uptake of Ammonium and Reduction of Oxygen by Roots and Mycorrhizae
209	$\mathrm{NH_4}^+$ oxidation and $\mathrm{O_2}$ reduction by nitrifiers compete for substrates with $\mathrm{NH_4}^+$ uptake
210	and O ₂ reduction by other MFTs, and by roots and mycorrhizae.
211	1) NH_4^+ uptake by roots and mycorrhizae under non-limiting O_2 is calculated from mass flow
212	and radial diffusion between adjacent roots and mycorrhizae [C23a] coupled with active
213	uptake at root and mycorrhizal surfaces [C23b]. Active uptake is subject to product inhibition
214	by root nonstructural N:C ratios [C23g] where nonstructural N is the active uptake product,
215	and nonstructural C is the CO ₂ fixation product transferred to roots and mycorrhizae from the
216	canopy.
217	2) O_2 reduction to H_2O under non-limiting O_2 is calculated from O_2 demands for NH_4^+ uptake in
218	step 1, and for oxidation of root and mycorrhizal nonstructural C for root maintenance and
219	growth using a set respiratory quotient [C14e],
220	3) O_2 reduction to H_2O under ambient O_2 is calculated from mass flow and radial diffusion
221	between adjacent roots and mycorrhizae [C14d] coupled with active uptake at root and
222	mycorrhizal surfaces driven by step 2 [C14c]. O2 uptake by roots and mycorrhizae is also
223	affected by competition with O_2 uptake by heterotrophic DOC oxidizers, and autotrophic
224	nitrifiers, calculated from their biological O2 demands relative to those of other populations.
225	4) oxidation of root and mycorrhizal nonstructural C to CO ₂ under ambient O ₂ is calculated from
226	steps 2 and 3 [C14b],
227	5) NH_4^+ uptake by roots and mycorrhizae under ambient O_2 is calculated from steps 1, 2, 3 and 4
228	[C23b].
229	
230	2.9. Nitrification Inhibition
231	For this study, NIs were assumed to reduce specific rates of NH_4^+ oxidation by nitrifiers
232	in Sec. 2.5 step 1, thereby simulating inhibition of ammonia monooxygenase (Subbarao et al.,
233	2006). This reduction was represented by a time-dependent scalar I:
234	
235	$I_{t_l} = I_{t-1_l} - I_{t_l} * R_I * f_{Ts_l} $ [1]
236	
237	where t is the current time step (h), t-1 is the previous time step (h), I is the inhibition (initialized
238	to 1.0 at t = 0 at the time of application), R_{I} is the rate constant for decline of <i>I</i> representing NI

9

degradation (set to 2.0 x 10^{-4} h⁻¹ for more persistent NIs such as DMPP and to 1.0 x 10^{-3} h⁻¹ for 239 less persistent NIs such as nitrapyrin (Ruser and Schulz, 2015)), f_{Ts} is an Arrhenius function of 240 soil temperature (T_s) used to simulate T_s effects on microbial activity (Sec. 2.3 step 1), and l is 241 the soil layer in which NI is present. The values of R_1 and f_{T_s} for DMPP were selected to give 242 time and temperature dependencies of DMPP activity following application inferred from 243 incubation studies by Guardia et al. (2018). Model results for NI presented below are those using 244 the smaller $R_{\rm I}$ for DMPP unless stated as those using the larger $R_{\rm I}$ for nitrapyrin. 245 246 Specific rates of NH_4^+ oxidation (Sec. 2.5 step 1) with NI was calculated as: 247 248 $X'_{\text{NH4t}_{I}} = X''_{\text{NH4}_{I}} * (1.0 - I_{t_{I}} / (1.0 + [\text{NH4}^{+}]/K_{i\text{NH4}}))$ 249 [2] 250 where X'_{NH4} and X''_{NH4} are specific NH₄⁺ oxidation rates with and without NI (g N g nitrifier C⁻¹ 251 h^{-1}), $[NH_4^+]$ is the aqueous NH_4^+ concentration (g N m⁻³ in dynamic equilibrium with $[NH_3]$), and 252 K_{iNH4} is an inhibition constant set at 7000 g N m⁻³ to reduce inhibition at very large [NH₄⁺] as 253 suggested in Janke et al. (2019). These rates were used to calculate nitrification rates [H11]: 254 255 $X_{\text{NH4t}_{l}} = X'_{\text{NH4t}_{l}} M_{n_{l}} f_{t_{l}} \{ [\text{NH4}^{+}]_{l} / ([\text{NH4}^{+}]_{l} + K_{\text{NH4}}) \} \{ [\text{CO}_{2}\text{s}]_{l} / ([\text{CO}_{2}\text{s}]_{l} + K_{\text{CO2}}) \} [3]$ 256 257 where X_{NH4t} is the nitrification rate (g N m⁻² h⁻¹), M_n is the nitrifier biomass (g C m⁻²) and K_{NH4} 258 and K_{CO2} are half-saturation constants for aqueous NH₄⁺ and CO₂ (g N and C m⁻³). NI in Eq. 1 259 slows X'_{NH4t} in Eq. 2 and thereby X_{NH4t} in Eq. 3, and hence slows NO₂⁻ production from 260 nitrification (Sec. 2.5 step 4), and thereby N₂O production from nitrification (Sec. 2.7 step 2) and 261 denitrification (Sec. 2.4 step 3). By slowing $X_{\rm NH4t}$ in Eq. 3, NI also reduces nitrification energy 262

yield and hence M_n growth, biomass [A25] and O₂ uptake [H13], thereby further reducing N₂O production.

265

266 2.10. Cation Exchange and Ion Pairing of Ammonium

Availability of NH_4^+ to nitrifiers is also controlled by NH_4^+ adsorption. A Gapon selectivity coefficient is used to solve cation exchange of NH_4^+ vs. Ca^{2+} [E10] as affected by other cations [E11] – [E15] and CEC [E16]. A solubility product is used to equilibrate soluble

10

270	NH_4^+ and NH_3 [E24] as affected by pH [E25] and other solutes [E26 – E57]. Equilibrium NH_4^+
271	concentrations drive NH_4^+ oxidation (Sec. 2.5 step 1) and NH_3 volatilization (Sec. 2.11 below).
272	
273	2.11. Soil Transport and Surface - Atmosphere Exchange of Aqueous and Gaseous
274	Substrates and Products
275	O_2 uptake and N_2O emissions in Sec. 2.3 to 2.8 above are governed by aqueous and
276	gaseous transport processes in vertical and lateral directions:
277	1) Exchanges of all modelled gases γ ($\gamma = O_2$, CO_2 , CH_4 , N_2 , N_2O , NH_3 and H_2) between
278	aqueous and gaseous states within each soil layer are driven by disequilibrium between
279	aqueous and gaseous concentrations according to a T_s -dependent solubility coefficient,
280	constrained by an interphase transfer coefficient based on air-water interfacial area that
281	depends on air-filled porosity (θ_g) [D14 – D15] (Fig. 1).
282	2) These gases undergo vertical and lateral convective-dispersive transport through soil in
283	gaseous [D16] and aqueous [D19] states driven by soil water flux and by gas concentration
284	gradients. Dispersive transport is controlled by gaseous diffusion [D17] and aqueous
285	dispersion [D20] coefficients calculated from θ_g and water-filled porosity (θ_w). Both θ_g and
286	θ_{w} are affected by ice-filled porosity (θ_{i}) from freezing and thawing driven by soil heat fluxes
287	[D13].
288	3) Vertical exchanges of all gases between the atmosphere and both gaseous and aqueous states
289	at the soil surface are driven by atmosphere - surface gas concentration differences and by
290	boundary layer conductance above the soil surface, calculated from wind speed and from
291	vegetation density and surface litter [D15]. These exchanges give modelled surface fluxes
292	used in tests against surface fluxes measured in field experiments.
293	4) All solutes can be lost/gained by lateral surface runoff/runon modelled from Manning's
294	equation [D1a] with surface water depth [D2] calculated from surface water balance [D4]
295	using kinematic wave theory, and by lateral subsurface discharge/recharge modelled from
296	convective exchange through subsurface boundaries with an external water table.
297	
298	3. FIELD EXPERIMENT

11

300	3.1. Site Description and Experimental Design
301	An experiment was established on a Black Chernozem (Table 2) under barley silage from
302	2014 to 2016 at the South Campus Farm in Edmonton, AB, Canada (53°29'30"N, 113°31'53"W),
303	using an incomplete split-plot design (main plot: fall vs. spring application of dairy slurry; split
304	plot: control vs. NI treatments) with three replicates (Lin et al., 2018). The NI products ENTEC
305	(Eurochem Agro, Mannheim, Germany) and eNtrench Nitrogen Stabilizer (Dow Chemical
306	Company, Dow AgroSciences, Calgary, AB, Canada) were mixed with the slurry immediately
307	before application to provide 0.4 kg ha ⁻¹ active ingredient with slurry injection of 56.17 m ³ ha ⁻¹
308	at 12.7 to 15.2 cm (average 14 cm) depth and 28 cm spacing. Measured concentrations of $\rm NH_4^+$
309	and of organic N and C in each slurry application were used to calculate rates of $\mathrm{NH_4^+}$, organic N
310	and organic C amendments (Table 3). Soil NH_4^+ concentrations were measured from 0 to 10 cm
311	every $2-3$ weeks between spring thaw and autumn freezing in 2014, 2015 and 2016.
312	
313	Weather data (radiation, air temperature (T_a) , humidity, windspeed and precipitation)
314	were recorded hourly from 2012 through 2016 at the South Campus Farm. During the first
315	experimental year (16 Sep. 2014 to 15 Sep. 2015) T_a remained $1 - 2$ °C higher than historical
316	(1981 – 2010) averages (Lin et al., 2018) (Table 4). Precipitation was slightly higher than
317	historical averages during autumn and winter, but was about one-half those during spring and
318	summer. During the second experimental year (16 Sep. 2015 to 15 Sep. 2016), T_a was higher
319	than that of the first year during winter and early spring, and similar during late spring and

summer. However precipitation during the second year was lower from autumn to early springand much higher during late spring and summer.

322

323 3.2. N₂O Flux Measurements

N₂O fluxes were measured from as soon as possible after spring thaw to late summer during both experimental years with automated chambers (height 26 cm, area 0.216 m^2) connected by 0.5 cm i.d. tubes to a FTIR gas analyzer (GASMET model CX4025, Temet Instruments, Finland) through which air flow was maintained at 5.1 L min⁻¹. During each 20 minute measurement period, the chambers remained open for the first 5 minutes to restore ambient N₂O concentrations in the gas analyzer, after which chambers were closed and N₂O concentrations were measured at 10 Hz and averages recorded at 1 minute intervals. Concentrations during the

331	first minute after closure were discarded and those during the following 14 minutes were used to
332	calculate fluxes using linear regression with an acceptance criterion of $R^2 \ge 0.85$. Based on the
333	analytical precision of the gas analyzer, the N_2O flux detection limit was determined to be +/-
334	$0.03 \text{ mg N m}^{-2} \text{ h}^{-1}$.
335	
336	N2O emissions were also measured once or twice per week from spring thaw to autumn
337	freezing during both experimental years with manually operated chambers as described in Lin et
338	al. (2018). The time required for installation of the automated chambers after snowmelt limited
339	their ability to measure N2O emissions during spring thaw, so that measurements from the
340	manually operated chambers were used to evaluate emissions during these periods.
341	
342	4. MODEL EXPERIMENT
343	
344	4.1. Model Spinup
345	To simulate site conditions prior to the experiment, ecosys was initialized with the properties
346	of the Black Chernozem (Table 2) and run from model dates 1 Jan. 1992 to 31 Dec. 2013 under
347	a repeating 5-year sequence of weather data (radiation, air temperature (T_a) , humidity,
348	windspeed and precipitation recorded hourly from 2012 through 2016 at the South Campus
349	Farm. During each year of the spinup run, barley was planted, fertilized and harvested as silage
350	to reproduce land use practices reported from the field site.
351	
352	4.2. Model Runs
353	The spinup run was extended from 1 Jan. 2014 to 31 Dec. 2016 under weather data recorded
354	from 2014 to 2016 with the land use schedules and practices from the field site (Table 3). Each
355	modelled slurry application was added to the soil layer the depth of which corresponded to that
356	of slurry injection in the field experiment (14 cm). Modelled applications were accompanied by
357	addition of water corresponding to the volume and depth of the application (5.6 mm from 56.17
358	m ³ ha ⁻¹ at 14 cm in Sec. 3.1), and by tillage using a coefficient for surface litter incorporation
359	and soil mixing of 0.2 to the depth of application, based on field observations. A control run was
360	also conducted in which no slurry applications were modelled. For all silage harvests, cutting
361	height and harvest efficiency were set to 0.15 m and 0.9, so that 0.9 of all plant material above

13

362	0.15 m was removed as yield. Concentrations of NH_4^+ and NO_3^- , and N_2O emissions modelled
363	during key emission events, were compared with measured values (Sec. 3.1 and 3.2), and
364	modelled emissions were then aggregated into seasonal and annual values.
365	
366	There is some flexibility in the timing of fall slurry application between crop harvest in late
367	summer and soil freezing in early November. To examine how timing of fall slurry application
368	would affect subsequent N_2O emissions with and without NI, fall slurry application dates were
369	advanced or delayed by 2 weeks from those in Table 3, and effects on spring and annual $\mathrm{N}_2\mathrm{O}$
370	emissions were evaluated. To examine how increased tillage during slurry application would
371	affect subsequent N2O emissions with and without NI, coefficients for surface litter
372	incorporation and soil mixing to the depth of slurry application were raised from 0.2 to 0.5 and
373	0.8 for fall and spring applications.
374	
375	5. RESULTS
376	
377	5.1. NI and Soil NH ₄ ⁺ and NO ₃ ⁻ Concentrations
378	5.1.1. Fall Slurry Applications
379	In the model, NI slowed NH_4^+ oxidation (Sec. 2.9, Eq. 3) so that declines in NH_4^+
380	concentrations modelled and measured after fall and spring slurry applications with NI were
381	slower than those without NI (Fig. 2a), particularly during winter when declines in inhibition
382	were slowed by low T_s (Sec. 2.9, Eq. 1) following the onset of soil freezing modelled at the depth
383	of slurry injection (DOY 313 in 2014 and DOY 318 in 2015 in Fig. 2a). Overwinter declines in
384	NH_4^+ concentrations were slower during the winter of 2015/2016 with lower T_s modelled under
385	less winter precipitation and hence shallower snowpack (Table 4). These slower declines caused
386	larger NH4 ⁺ concentrations to be modelled during the following spring, consistent with
387	measurements (Fig. 2a). The slower declines in NH_4^+ concentrations modelled with NI caused
388	slower rises in NO ₃ ⁻ concentrations following fall slurry applications (Fig. 2c). However slower
389	rises with NI were not always apparent in the measured NO ₃ ⁻ concentrations.
200	
390	

391 5.1.2. Spring Slurry Applications

14

392	Declines in NH_4^+ concentrations modelled after slurry applications with NI in spring 2015
393	and 2016 were also slower than after those without NI (Fig. 2b), consistent with higher $\mathrm{NH_4^+}$
394	concentrations measured after spring application with DMPP in both years (Fig. 2b). These
395	slower declines caused slower rises in NO3 ⁻ concentrations to be modelled following spring
396	slurry applications with NI (Fig. 2d).

397

400

398

5.2. NI and Soil Gas Concentrations

399 5.2.1. Fall Slurry Applications

In the model, spring snowmelt and soil thaw raised θ_w and lowered θ_g , slowing gas transfers 401 in gaseous phases and gas exchanges between gaseous and aqueous phases (Sec. 2.11 step 1, 2). Slower O_2 transfers relative to O_2 uptake (Sec. 2.3, 2.5 and 2.6) forced reductions in aqueous O_2 402 403 concentrations (O_{2s}) to be modelled during early spring in 2015 (Fig. 3a,b) and 2016 (Fig. 3c,d) following fall slurry applications in 2014 and 2015. Declines in O_{2s} were later but more rapid in 404 405 2015 than in 2016, following greater winter precipitation and hence greater snowmelt in 2014/2015 (Table 4). Earlier and more persistent declines in O_{2s} were modelled in 2016 because 406 greater θ_i modelled with less thermal insulation under a shallower snowpack (Sec. 2.11 step 2) 407

reduced or eliminated θ_g during much of the winter. Drainage of meltwater after snowmelt 408

eventually lowered θ_w and raised θ_g , allowing O_{2s} to return to atmospheric equivalent 409

concentrations. 410

411

```
Declines in O<sub>2s</sub> in slurry-amended treatments drove increases in aqueous N<sub>2</sub>O concentrations
412
        (N_2O_8) (Fig. 3b,d) during winter and early spring (Sec. 2.7, step 1). These rises were similar with
413
        and without NI, in spite of higher NH<sub>4</sub><sup>+</sup> concentrations without NI (Fig. 2a). Rises in \theta_g
414
        following spring drainage allowed volatilization of N2O from aqueous to gaseous phases (Sec.
415
```

416 2.11 step 1), reducing N_2O_s and driving N_2O emissions modelled during spring thaw.

417

418 5.2.2. Spring Slurry Applications

419 Declines in O_{2s} modelled after spring slurry application were small during the drier spring of

420 2015 (Table 4) (Fig. 3e), but were greater with lower $\theta_{\rm g}$ during the wetter spring of 2016 (Fig.

421 3g) (Sec. 2.11). During both years, these declines were more rapid with slurry than without, but

15

422	less rapid with NI-amended slurry than with unamended slurry. Greater declines in O_{2s} modelled
423	in 2016 vs. 2015 drove greater increases in N_2O_s (Sec. 2.7), particularly without NI, and hence
424	greater emissions of N_2O (Sec. 2.11) during subsequent declines in N_2O_s .
425	
426	5.3. NI and N ₂ O Fluxes
427	5.3.1. Fall Slurry Applications
428	Smaller rises and subsequent declines in N_2O_s modelled with NI than without (Fig. 3b) drove
429	smaller N_2O emission events modelled during spring thaw in 2015 (Fig. 4a) following slurry
430	application in fall 2014 (Fig. 4b). These events were driven by increases in θ_g during
431	midafternoon thawing of near-surface soil (Sec. 2.11 step 1), but were terminated by loss of θ_g
432	during nighttime refreezing. These events preceded the start of the automated chamber
433	measurements on DOY 102 and so could not be corroborated by them. However measurements
434	with manual chambers earlier in spring 2015 by Lin et al. (2018) indicated that N ₂ O emission

events occurred from DOY 85 to 100 that were similar in magnitude although not always in

timing with those modelled (Fig. 4b). These measured emissions were smaller with NI than

437 without, consistent with modelled emissions.

438

The smaller rises and subsequent declines in N2Os modelled with NI than without in the 439 winter of 2016 (Fig. 3d) drove smaller emission events during thawing and refreezing of near-440 surface soil in spring 2016 (Fig. 5a) following slurry application in fall 2015 (Fig. 5b). These 441 modelled events preceded the start of automated chamber measurements on DOY 91, but earlier 442 measurements with manual chambers indicated N2O emission events occurred from DOY 74 to 443 444 93. The smaller emission events modelled with NI were consistent with those measured using the 445 manual chambers, although some larger emissions measured with DMPP using the automated chambers from DOY 91 to 102 were not modelled (Fig. 5b). In both years, emissions modelled 446 and measured without slurry remained very small, consistent with low N₂O_s (Fig. 3b,f). 447

- 448
- 449

5.3.2. Spring Slurry Applications

Modelled N₂O emissions closely followed measured values during a brief emission event
following slurry application in the drier spring of 2015 (Fig. 6a,b), driven by small rises and
declines in N2O_s (Fig. 3f). The smaller rise and decline in N₂O_s modelled with NI than without

- drove smaller N₂O emissions which declined more rapidly after application than did emissions 453 454 measured with DMPP (Fig. 6b).
- 455
- Emissions modelled without NI in the wetter spring of 2016 were larger than those in the 456 drier spring of 2015 (Fig. 7a,b), driven by a larger rise and decline in N_2O_s with lower θ_g (Fig. 457 3h). These emissions were suppressed by low θ_g with soil wetting during heavy rainfall on DOY 458 141 – 143 shortly after slurry application (Fig. 7a,b), but resumed when θ_{g} rose with soil 459 drainage thereafter (Fig. 7b). Emissions modelled without NI remained greater than those 460 measured until DOY 150, after which modelled values declined with soil drying while measured 461 value rose (Fig. 7b). Greater reductions in N_2O_8 (Fig. 3h) and hence in N_2O emissions were 462 modelled with NI after slurry application in the wetter spring of 2016 (Fig. 7b) than in the drier 463 spring of 2015 (Fig. 6b). In both years, emissions modelled and measured without slurry 464 465 remained very small, consistent with low N₂O_s (Fig. 3f,h). 466 5.4. NI Effects on Seasonal and Annual N₂O Emissions 467 5.4.1. Modelled vs. Measured N₂O Emissions after Spring Slurry Applications 468 469 Total N₂O emissions modelled without NI and with R_1 for DMPP or nitrapyrin (Sec. 2.9) were compared with those aggregated from automated chamber measurements over 30-day periods 470 471 after spring slurry applications in 2015 and 2016 (Table 5). Total emissions modelled and measured without NI were greater during the wetter spring of 2016 than during the drier spring 472 473 of 2015. Reductions in 30 d emissions modelled and measured with R_1 for DMPP and nitrapyrin were greater during the wetter spring in 2016 (53% and 41%) than during the drier spring in 474 2015 (35% and 30%). These reductions were somewhat smaller than those measured with DMPP 475 and nitrapyrin in 2016 (72% and 64%) and 2015 (45% and 36%). Emissions were not measured 476 477 with automated chambers after fall slurry applications, preventing comparisons with modelled 478 values. 479 5.4.2. Seasonal and Annual N₂O Emissions Modelled After Fall and Spring Slurry 480
- 481 **Applications**
- 5.4.2.1. Fall Slurry Applications 482

483	NI greatly reduced N ₂ O emissions modelled from fall applications during autumn (16 Sep
484	31 Dec. in Table 6) in 2014 and 2015, slightly reduced N_2O emissions modelled during the
485	following winter and early spring (1 Jan 30 Apr.), but slightly raised N ₂ O emissions modelled
486	during the following summer (1 May – 15 Sep.) in both 2015 and 2016. Annual emissions
487	modelled with NI were reduced from those without NI by 26% and 38% in 2014/2015 and
488	2015/2016 respectively (Table 6). The reduction modelled in 2014/2015 was similar to one of
489	23% estimated for DMPP from manual chamber measurements from 1 Oct. 2014 to 30 Sep.
490	2015 by Lin et al. (2018), although the reduction with NI modelled in 2015/2016 was greater
491	than one of 15% estimated from manual chamber measurements from 1 Oct. 2015 to 30 Sep.
492	2016.
493	
494	5.4.2.2. Spring Slurry Applications
495	Reductions in annual N ₂ O emissions modelled from spring slurry applications with DMPP
496	and nitrapyrin occurred almost entirely during late spring and summer (1 May – 15 Sep. in Table
497	6). These reductions were 22% and 40% from those modelled without NI in 2014/2015 and
498	2015/2016 respectively (Table 6). The reduction modelled with NI in 2014/2015 was greater
499	than one of 0% for DMPP estimated from manual chamber measurements from 1 Oct. 2014 to
500	30 Sep. 2015 by Lin et al. (2018), although the reduction modelled in 2015/2016 was similar to
501	one of 38% estimated from manual chamber measurements from 1 Oct. 2015 to 30 Sep. 2016.
502	
503	5.5. Effects of Management on Seasonal and Annual N2O Emissions Modelled After
504	Fall and Spring Slurry Applications
505	Advancing fall slurry application by 2 weeks increased N2O emissions modelled with and
506	without NI during autumn but reduced those during subsequent spring thaw (F -2 in Table 6) so
507	that annual emissions modelled with and without NI were similar to those in F with the
508	application dates in the experiment (Table 3). Delaying fall slurry application by 2 weeks
509	reduced N ₂ O emissions modelled with and without NI only slightly during autumn, but greatly
510	increased emissions modelled during subsequent spring thaw (F +2 in Table 6), particularly with
511	the later fall application in 2016 (Table 3). Consequently delaying fall slurry application by 2
512	weeks caused substantial increases in annual N_2O emissions. However reductions in N_2O
513	emissions modelled with NI in F +2 in 2015 and 2016 (34% and 47%) were greater than those in

18

514	F (26% and 38%), because inhibition declined more slowly in colder soil (Eq. 1), particularly
515	with later application in 2016.
516	
517	Increasing surface litter incorporation and soil mixing during fall slurry application raised
518	N ₂ O emissions modelled without NI only slightly during 2014/2015, but substantially during
519	2015/2016, particularly during spring thaw (F 0.5 and F 0.8 vs. F in Table 6). Increasing surface
520	litter incorporation and soil mixing during spring slurry application had limited effects on
521	emissions (S 0.5 and S 0.8 vs. S in Table 6). Greater mixing caused reductions in N_2O emissions
522	modelled with NI to be smaller relative to those without NI.
523	
524	5.6. NI Effects on Annual Mineral N Losses and NH ₃ Emissions
525	Injecting the slurry to 14 cm in the model suppressed NH ₃ emissions with limited soil mixing,
526	and caused only very small emissions with greater mixing (Table 7). Higher NH_4^+ concentrations
527	modelled with NI (Fig. 2a,b) increased net NH ₃ emission, particularly if fall slurry application
528	was delayed or soil mixing was increased in 2014/2015.
529	
530	The subhumid climate at Edmonton (Table 4) caused modelled NO ₃ ⁻ losses to remain small.
531	For both fall and spring applications, lower NO ₃ ⁻ concentrations modelled with NI (Fig. 2c,d)
532	caused small reductions in NO_3^- losses.
533	
534	5.7. NI Effects on Barley Silage Yields
535	Silage yields modelled with fall slurry application were smaller than those measured in
536	the drier year 2015, but those modelled with both applications were greater than those measured
537	in the wetter year 2016, likely because of lodging observed in the field plots following the
538	second year of heavy manure use (Table 8). Modelled yields were unaffected by NI for fall and
539	spring applications in both years, although measured yields were raised by NI with spring
540	application in 2015. Modelled yields were affected by the cutting height and harvest efficiency
541	set in the model runs (Sec. 4.2).
542	

543 **6. DISCUSSION**

544 6.1. Process Modelling of N₂O Emissions

19

545	N_2O emissions were driven by declines in O_{2g} and O_{2s} modelled by equilibrating O_2 active
546	uptake by autotrophic and heterotrophic oxidation (Sec. 2.5 step 3 and Sec. 2.3 step 3) with O_2
547	diffusion and dissolution through gaseous and aqueous phases, and dissolution from gaseous to
548	aqueous phases, largely controlled by θ_g (Sec. 2.11 steps 1 - 3). These O ₂ transfers were
549	sustained by concentration gradients from O_{2g} to O_{2s} and from O_{2s} to O_{2m} , so that declines in O_{2s}
550	(Fig. 3) and O_{2m} were relatively larger than those in O_{2g} . These greater declines enabled N_2O
551	emissions to be modelled from O_2 deficits while O_{2g} remained above one-half of atmospheric
552	concentration, consistent with observations of O_{2g} during $\mathrm{N}_2\mathrm{O}$ emissions from incubation and
553	field experiments (Nguyen et al., 2017; Owens et al., 2017). These O ₂ deficits were modelled
554	using a K_m for O _{2m} of 10 μ M by nitrifiers (Sec. 2.5 step 3) and 2 μ M by denitrifiers (Sec. 2.3 step
555	3) derived from biochemical studies by Focht and Verstraete (1977). These $K_{\rm m}$ are less than 5%
556	and 1% of atmospheric equivalent concentration, indicating the importance of explicitly
557	simulating gaseous and aqueous transport processes (Sec. 2.11) when modelling N_2O emissions.
558	

O₂ deficits were modelled in spring thaw 2015 (Fig. 3a), when diffusion was sharply reduced 559 by soil saturation because drainage from snowmelt and soil thaw was impeded by underlying ice 560 layers. These declines drove N_2O generation (Fig. 3b) and emission (Fig. 4b) almost entirely 561 from NO_2^- reduced during spring thaw. O_2 deficits were also modelled during winter 2016 when 562 increased θ_i from soil freezing with lower T_s under a shallower snowpack caused near-surface 563 soil porosity to be fully occupied by ice and water. Consequent loss of θ_{g} greatly reduced 564 surface gas exchange (Sec. 2.11) and hence gradually reduced soil O₂ concentrations, 565 566 particularly with increased O_2 demand from fall slurry application (Fig. 3c). The extended period 567 of low O_{2s} prolonged overwinter accumulation of N₂O_s after fall slurry application (Fig. 3d). Transient increases in θ_{2} during soil freeze-thaw cycles caused several N₂O emission events to 568 be modelled during spring thaw in 2016, mostly from degassing through volatilization of 569 overwinter N₂O_s (Fig. 5b) (Sec. 2.11 step 1). Degassing events in the model were consistent with 570 571 field observations by Chantigny et al. (2017) that passive degassing of accumulated gases made a significant contribution to spring thaw emissions during which two or more consecutive emission 572 peaks were often observed. In the model, the contribution by degassing of overwinter N_2O_s to 573 spring thaw emissions increased with intensity and duration of soil freezing during the previous 574 575 winter. N₂O emissions simulated during spring thaw were thus driven by concurrent NO₂⁻

20

- reduction during spring thaw (2015) and by earlier NO₂⁻ reduction accumulated over the
 previous winter (2015/2016), as has been proposed from experimental observations (Teepe et al.,
 2004).
- 579

580 O_2 deficits were also caused by rapid increases in O_2 active uptake with addition of labile C in slurry, the rapid decomposition and oxidation of which (Sec. 2.3 step 1) caused transient 581 declines in O_{2s} with soil wetting from slurry application and precipitation (Fig. 3e,g). After slurry 582 583 application in the wetter spring of 2016, modelled O_{2g} declined to ca. one-half of atmospheric 584 concentration, driving the sharp declines in O_{2s} shown in Fig. 3g. The modelled declines in O_{2g} 585 were consistent with results from an incubation of wetted soil amended with cattle slurry by Nguyen et al. (2017) in which O_{2g} declined below one-half of atmospheric concentration within 586 587 one day of slurry application and gradually rose again after two days, while no decline occurred in an unamended soil. The period of low O_{2s} in this incubation study co-incided with peak 588 emissions of CO₂ and N₂O from the amended soil, as was modelled here in Fig. 3f,h and Fig. 6b 589 and 7b. This co-incidence indicated that NH4⁺ and DOC oxidation drove O₂ deficits from 590 demand for O_2 from oxidation vs. supply of O_2 through convection – dispersion, which caused 591 592 NO_2 reduction as represented in the model, again demonstrating the importance of simulating aqueous and gaseous O₂ transfers when modelling N₂O emissions. 593

- 594
- 595

6.2. Process Modelling of NI Effects on N₂O Emissions

596

6.2.1. Fall Slurry Application

 NH_4^+ oxidation in the model (Sec. 2.5 step 4) proceeded rapidly after fall slurry application 597 without NI as indicated by rapid declines in NH_4^+ (Fig. 2a), consistent with observations in other 598 studies that soil NH₄⁺ concentrations returned to background levels 30 d after fall slurry 599 600 application (Rochette et al., 2004). Slower NH₄⁺ oxidation modelled with NI (Eq. 3) during fall caused slower declines of soil NH_4^+ before and during freezing and hence larger NH_4^+ 601 602 concentrations during spring thaw (Fig. 2a). These slower declines were modelled from slower decline of I_t with low f_{Ts} in cold soils (Eq. 1) which slowed NH₄⁺ oxidation and thereby reduced 603 604 N₂O emissions simulated during late autumn and spring thaw (Figs. 4b and 5b), despite increased NH_4^+ concentrations (Fig. 3). These reductions were consistent with those from chamber 605 measurements at the Edmonton South Farm (Lin et al., 2017), and with those from a limited 606

21

number of studies elsewhere in which persistent effects of NI in reducing overwinter N₂O 607 emissions have been found (e.g. Pfab et al., 2012), indicating the importance of f_{Ts} in Eq. 1. 608 609 The slower decline of I_t from low f_{Ts} enabled *ecosys* to simulate larger reductions in N₂O 610 emissions with NI after fall slurry applications in cooler soil vs. spring slurry applications in 611 warmer soil during both years (F during autumn vs. S during late spring-summer in Table 6). 612 Reductions in N₂O emissions modelled with NI after fall slurry applications became greater 613 when fall applications were delayed (F +2 in Table 6), further reducing T_s and f_{Ts} during 614 615 subsequent nitrification. The greater reductions modelled with fall applications were consistent 616 with experimental observations by Merino et al. (2005) who attributed larger reductions in N₂O emissions measured with NI from fall- vs. spring-applied cattle slurry to slower NI degradation 617 in cooler soil. These modelled and experimental results indicated that NI effectiveness in 618 reducing N₂O emissions varies with the effect of fall slurry timing on f_{Ts} . 619 620

621 The greater reductions in N₂O emissions modelled from delayed fall applications with NI were associated with much greater N₂O emissions modelled from delayed fall applications 622 without NI (F+2 in Table 6). These greater emissions were attributed to less NH_4^+ oxidation 623 before freeze up in fall, resulting in more NH₄⁺ remaining to drive NH₄⁺ oxidation and hence 624 N₂O emissions during spring thaw. These model findings were consistent with field results from 625 Chantigny et al. (2017) in Quebec, and Kariyapperuma et al. (2012) in Ontario, where greater 626 627 spring N_2O emissions were measured when fall slurry was applied in late November than in early November. These greater spring thaw N₂O emissions were attributed by Kariyapperuma et 628 al. (2012) to greater mineral N concentrations during spring thaw caused by less nitrification 629 before freeze up during the previous fall, as modelled here. The greater N₂O emissions modelled 630 631 with later slurry application were also driven by more rapid DOC oxidation from more labile manure C remaining during spring thaw that reduced $[O_{2s}]$ below that simulated after earlier fall 632 633 applications (Fig. 3d). NI may therefore be particularly effective in reducing N₂O emissions during spring thaw following late fall slurry applications. 634 635

The decreases in N₂O emissions modelled with NI from greater soil mixing (F 0.5 and F 0.8 vs. F in Table 6) were affected by how the redistribution of NI activity with soil mixing was

22

638	modelled. Simulating this redistribution during tillage requires further consideration and
639	corroboration from observations. These decreases in N_2O emissions with NI were associated
640	with greater N_2O emissions modelled from greater soil mixing without NI in 2016 (F 0.5 and F
641	0.8 in Table 6). These greater emissions were attributed in the model to longer periods with high
642	θ_{i} and low θ_{g} in the upper soil profile caused by greater heat loss through reduced insulation
643	from less surface litter under a shallow snow pack [D12, D13]. This longer period further
644	reduced overwinter $[O_{2s}]$ from that modelled in F (Fig. 3c), causing greater accumulation of
645	$\mathrm{N_2O_s}$ and hence greater emissions during thaw. These model findings were consistent with field
646	observations by Congreves et al. (2017) and Wagner-Riddle et al. (2010) that overwinter N_2O
647	emissions increased with greater freezing under conventional vs. no tillage, particularly with
648	surface residue removal. Model findings were also consistent with observations by Teepe et al.
649	(2004) that N_2O emissions during soil thawing rose sharply with increased duration of soil
650	freezing. Consequent changes in T_s with freezing may alter NI effectiveness with tillage.

- 651
- 652

6.2.2. Spring Slurry Application

653 Annual N₂O emissions modelled without NI from spring applications were smaller than those from fall applications in 2014/2015 with a wetter early spring and drier late spring, and slightly 654 655 greater in 2015/2016 with a drier early spring and wetter late spring (Table 4), except when fall application was delayed (e.g. F+2 in Table 6). These modelled differences in emissions were 656 consistent with experimental findings that drier springs reduce N2O emissions from fall 657 applications relative to those from spring (e.g. Cambareri et al., 2017). These model results 658 indicate that effects of spring vs. fall slurry applications on annual N₂O emissions may not be 659 consistent, but rather will depend on the timing of fall application relative to freeze up, and on 660 precipitation during the following winter and spring. 661

662

664 comparably to those measured (Fig. 2b). These slower declines were caused by slower NH_4^+

oxidation that reduced nitrifier growth (Sec. 2.9 Eq. 3) and active O₂ uptake (Sec. 2.5 step 3).

666 Consequently smaller nitrifier biomass and greater [O_{2s}] were modelled with vs. without NI (Fig.

3e,g), particularly with rainfall after spring application in 2016 (Fig. 7a). The smaller nitrifier

biomass modelled with NI was consistent with the findings of Dong et al. (2013) that DMPP

23

669	reduced populations of ammonia oxidizing bacteria in soil incubations. Greater [O _{2s}] modelled
670	with NI was consistent with greater $\left[\mathrm{O}_{2g}\right]$ measured in an incubation of wetted soil amended with
671	cattle slurry with vs. without DMPP by Nguyen et al. (2017). Slower nitrifier growth and greater
672	$[O_{2s}]$ both contributed to reductions in N_2O emissions modelled with NI beyond those from the
673	direct effects of I_t on nitrification in Eq. 1, indicating additional effects of NI on N ₂ O emissions
674	that should be considered in NI models.
675	
676	The reductions in N ₂ O emissions modelled for 30 d after spring slurry applications with R_{I}
677	for DMPP and nitrapyrin in 2015 (35% and 30%) and 2016 (53% and 41%) were less than those
678	measured with automated chambers (Table 5), but within the range of 31% to 44% in meta-
679	analyses of NI research by Akiyama et al. (2010) and Ruser and Schultz (2015). The greater
680	reductions modelled in 2016 vs. 2015 (Fig. 7 vs. Fig. 6) were consistent with findings in meta-
681	analyses by Akiyama et al. (2010) and Gilsanz et al. (2016) that NI was more effective in
682	reducing N_2O emissions from a given land use when emissions were greater. These greater
683	reductions were attributed in the model to heavy rainfall several days after application in 2016
684	(Fig. 7a) that extended the N_2O emission period (Fig. 7b). During this extension I_t remained high
685	because $[NH_4^+]$ had declined from the large values modelled immediately after application (Eq.
686	3).

687

The effects of NI on N₂O emissions modelled with greater soil mixing during spring 688 689 applications (S 0.5 and S 0.8 vs. S in Table 6) were affected by how the redistribution of NI activity with soil mixing was modelled, as were those during fall applications. The effects of soil 690 mixing on N2O emissions without NI modelled from slurry applications in spring were smaller 691 692 than those in fall in the absence of soil freezing effects on O_{2s}. These smaller effects were 693 modelled because tillage in this study involved mixing of injected manure rather than incorporation of surface-applied manure. These small effects were consistent with an observation 694 by VanderZaag et al. (2011) that tillage was less important than timing and placement for N2O 695 emissions from slurry applications. 696 697

The reductions in annual N₂O emissions modelled after spring slurry applications with $R_{\rm I}$ for DMPP and nitrapyrin in 2015 (22% and 17%) and 2016 (40% and 27%) (Table 6) were smaller

24

700	than those modelled after 30 d (Table 5) due to gradual degradation of NI effectiveness modelled
701	with time since application (Eq. 1), indicating the importance of year-round modelling and
702	measurements to fully assess NI effects on N2O emission factors for IPCC Tier 3 methodology.
703	However most of the datasets used in meta-analyses of these assessments did not include
704	emissions during autumn, winter and spring thaw (Ruser and Schulz, 2015) which are
705	particularly important for estimating emission factors for NI effects from fall slurry applications
706	in cold climates (Table 6). Ecosystem modelled with well tested simulation of NI effects may
707	make a valuable contribution to these assessments.
708	
709	6.3.Modelling NI Effects on NH ₃ Emissions and Mineral N Losses
710	The small NH ₃ emissions modelled from slurry injection with limited soil mixing (Table 7)
711	were consistent with observations of almost no NH3 volatilization from closed-slot injection of
712	slurry by Rodhe et al. (2006). In the model, NH_3 emissions with or without NI were sharply
713	reduced by NH_4^+ adsorption (Sec. 2.10) with diffusion of NH_3 and NH_4^+ from the injection site
714	(Sec. 2.11). Greater soil mixing brought more NH_4^+ closer to the surface, reducing NH_4^+
715	adsorption and thereby increasing NH3 emission, particularly from fall applications with NI
716	(Table 7). Consequently only small net increases in NH ₃ emissions (Table 7) were modelled
717	with NI from increased volatilization of aqueous NH ₃ (Sec. 2.11 step 1) in equilibrium with
718	increased NH_4^+ concentrations (Fig. 2). However these increases were large in relative terms
719	particularly following fall applications, consistent with increases of $33 - 67\%$ and $3 - 65\%$
720	relative to emissions without NI derived from meta-analyses of field experiments by Qiao et al.
721	(2015) and Lam et al. (2017) respectively. Increases in NH ₃ emissions with NI will thus depend
722	on soil adsorptive properties and depth of slurry incorporation.
723	

724 The small losses of NO₃⁻, and consequently the small reductions in these losses with NI, modelled in the subhumid climate at the Edmonton South Farm (Table 7) conform to the 725 assumption by De Klein et al. (2006) that NO3⁻ leaching is an insignificant source of indirect 726 727 N₂O emission from dryland cropping systems in subhumid climates. Consequently reductions in leaching have minimal impact on the overall effect of NI on N2O emission in these climates 728 (Lam et al., 2017). Reductions in NO3⁻ losses modelled with NI would be larger at sites with 729

- better drainage and more excess precipitation, although even under these conditions such 730 731 reductions may be small and inconsistent (Smith et al., 2002). 732 The increases in NH_3 emissions modelled with NI were larger than reductions in NO_3^- 733 leaching (Table 7), indicating that net increases in N₂O emissions from indirect effects of NI will 734 partially offset decreases in N₂O emissions from direct effects. This offset must be included 735 when estimating changes in N_2O emission factors attributed to NI in IPCC Tier 3 methodology. 736 737 6.4. Modelling NI Effects on N₂O Emissions: Parameter Evaluation 738 739 The simulation of N₂O emissions from nitrification and denitrification in *ecosys* is based on a comprehensive representation of biological and physical processes governing production and 740 741 transport of N₂O. Parameters used in these processes are well constrained from basic research so 742 that the model may provide a robust means to predict emissions under diverse climates, soils and land use practices. These processes in *ecosys* were not changed when adding the algorithm for 743 inhibiting NH_4^+ oxidation by nitrifiers proposed in Eqs. 1 and 2 (Sec. 2.9). This algorithm used 744 three parameters, $I_{t=0}$ and R_{I} in Eq. [1] and K_{iNH4} in Eq. [2] with values of 1.0, 2.0 x 10⁻⁴ h⁻¹, and 745 7000 g N m^{-3} to simulate the time course of NI activity following slurry application. The first 746 two parameters correspond to ones in earlier models of NI for inhibition effectiveness (0.5 - 0.9)747 and duration (30 – 60 days) (Cui et al., 2014; Del Grosso et al., 2009). These models have given 748 reductions in N₂O emissions with NI in agricultural crops of ca. 25% (Cui et al., 2014), 10% 749 750 (Del Grosso et al., 2009) or less (Abalos et al., 2016), that are frequently smaller than reductions of 26% - 43% and 24% - 46% derived from meta-analyses of NI effects in agricultural crops by 751 Akiyama et al. (2010) and Gilsanz et al. (2016) respectively. 752 753 754 Each of the parameters used to model NI in *ecosys* requires further evaluation. A larger R_{I} , such as that used for nitrapyrin vs. DMPP (Sec. 2.9), caused a more rapid decline of NI activity 755 756 in soil, and hence greater N₂O emissions with time after slurry application that were consistent with measurements (Tables 5 and 6; Lin et al., 2018). This larger value might represent more 757 758 rapid degradation of nitrapyrin through volatilization (Ruser and Schulz, 2015), although metaanalyses of N₂O reductions with NI indicate that those with nitrapyrin are similar to those with 759
- DMPP. The value of $R_{\rm I}$ used for NI in the model will thus likely be product specific. The effect

26

of $T_{\rm s}$ on $R_{\rm I}$ might reasonably be represented by $f_{\rm Ts}$ as is the effect of $T_{\rm s}$ on all other biological 761 reactions in the model. This function allowed modelled NI activity to persist overwinter (Fig. 2) 762 and hence reduce N₂O emissions modelled during spring thaw (Fig. 6 and Fig. 7). However the 763 effects of temperature on reductions in N2O emission with NI over time are sometimes unclear in 764 765 controlled studies (Kelliher et al., 2008). 766 The value of $I_{t=0}$ set the value of I_t at the time of slurry application, after which I_t 767 underwent first order decline over time according to Eq. 1 (Sec. 2.9). However I_t had to remain 768 769 large enough to reduce N₂O emissions from nitrification for several weeks after application 770 (Figs. 6 and 7) even with higher soil NH_4^+ concentrations (Fig. 2). Lowering $I_{t=0}$ from 1.0 to 0.8, similar to that in earlier NI models in which I_t decline was not simulated, increased N₂O 771 emissions modelled over 30 days after spring slurry applications by 7% in 2015 and 25% in 2016 772

773 (Table 9).

The value of K_{iNH4} in Eq. 2 reduced I_t with the very large NH₄⁺ concentrations modelled 774 immediately after injecting slurry with large NH_4^+ content (Table 3) into small bands (Sec. 3.1). 775 The use of K_{iNH4} was suggested by the findings of Janke et al. (2019) that NI may not have the 776 777 expected impacts on N transformations and availability when applied in a concentrated band with large NH_4^+ concentrations (up to 12 kg N Mg⁻¹), similar to those modelled immediately 778 after slurry application in this study. The modelled NH₄⁺ concentrations declined rapidly after 779 application through diffusion (Sec. 2.11), adsorption (Sec. 2.10) and nitrification (Sec. 2.5), and 780 thus so did K_{iNH4} effects on inhibition. The value of K_{iNH4} in Eq. 2 therefore governed NI effects 781 782 modelled during the brief periods of rapid N_2O emissions following application (ca. 3 days in 783 Figs. 6 and 7), but had sharply diminishing impacts on NI effects modelled thereafter. An alternative hypothesis for reduced inhibition by NI immediately after application might be more 784 rapid diffusion of NH4⁺ than NI from the band, leading to spatial separation (Ruser and Schulz, 785 786 2015), although parameterization of this hypothesis is uncertain. Halving or doubling K_{iNH4} from the value set in Sec. 2.9 raised or lowered N₂O emissions modelled over 30 days after spring 787 slurry applications by 7 - 8% in 2015 and 2016 (Table 9), indicating some latitude in evaluating 788 789 this parameter.

27

790	Reductions in N ₂ O emissions modelled with all proposed values of $I_{t=0}$ and K_{iNH4} varied from
791	27% to 41% in 2015, and from 38% to 57% in 2016 (Table 9), close to the range of 42.6% \pm
792	5.5% derived from meta-analyses of NI effects with cattle slurry by Gilsanz et al. (2016). Further
793	evaluation of these parameters should be undertaken in future studies in which measurements are
794	taken at higher frequencies (e.g. Figs. 6 and 7) required to assess N_2O emissions and NI effects
795	on them.
796	
797	7. CONCLUSIONS
798	(a) A simple, time-dependent algorithm for adding NI effects on N ₂ O emissions into the
799	existing model ecosys has been presented.
800	(b) The direct effect of NI on N ₂ O emissions in the model was confined to the inhibition
801	of NH_4^+ oxidation
802	(c) Additional effects of NI on N ₂ O emissions were caused by slower nitrifier growth and
803	O ₂ uptake
804	(d) Slower nitrification modelled with this algorithm caused increases in soil NH_4^+
805	concentrations and reductions in soil NO_3^- concentrations and N_2O fluxes that were
806	consistent with those measured following fall and spring applications of slurry over
807	two years.
808	(e) NI in the model remained effective in reducing N_2O emissions modelled during
809	spring thaw, particularly when these emissions were increased by delaying fall slurry
810	applications or increasing fall tillage intensity
811	(f) NI in the model increased NH_3 emissions more than it reduced NO_3^- leaching, causing
812	indirect effects on N ₂ O emissions that partially offset direct effects.
813	(g) NI had no significant effect on modelled or measured barley silage yields.
814	(h) Some further work is needed to corroborate parameters in the NI algorithm under a
815	wider range of site conditions.
816	(i) The addition of NI to ecosys may allow emission factors for different NI products to
817	be derived from annual N_2O emissions modelled under diverse site, soil, land use and
818	weather as required in IPCC Tier 3 methodology.

28

820 ACKNOWLEDGEMENTS

- 821 High performance computing facilities for *ecosys* were provided by Compute Canada
- 822 (<u>www.computecanada.ca</u>) through the WestGrid computing network (https://www.westgrid.ca). Field
- measurements were supported by the Alberta Livestock and Meat Agency Ltd. (2014E017R),
- 824 Climate Change and Emissions Management Corporation (0019083), Dow AgroSciences
- 825 (0022950), and Eurochem Agro (0027592).
- 826

827 LIST OF REFERENCES

- Abalos , D., Smith, W.N., Grant, B.B., Drury, C.F., MacKell, S. and Wagner-Riddle, C.:
- Scenario analysis of fertilizer management practices for N₂O mitigation from corn
 systems in Canada. Science of the Total Environ. 573, 356–365, 2016.
- Akiyama, H., Yan, X. and Yagi, K.: Evaluation of effectiveness of enhanced efficiency fertilizers
 as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis.
- Glob. Change Biol. 16,1837–1846. doi:10.1111/j.1365-2486.2009.02031.x, 2010.
- 834 Cambareri, G., Drury, C., Lauzon, J., Salas, W. and Wagner-Riddle, C.: Year-round nitrous
- 835 oxide emissions as affected by timing and method of dairy slurry application to corn. Soil
 836 Sci. Soc. Am. J. 81, 166–178, 2017.
- 837 Chantigny, M.H., Rochette, P., Angers, D.A., Goyer, C., Brin, L.D. and Bertrand. N.:
- Nongrowing season N₂O and CO₂ emissions Temporal dynamics and influence of soil
 texture and fall-applied slurry. Can. J. Soil Sci. 97(3), 452-464, 2017.

840 Congreves, K.A., Brown, S.E., Németh, D.D., Dunfield K.E. and Wagner-Riddle, C.:

- B41 Differences in field-scale N₂O flux linked to crop residue removal under two tillage
 systems in cold climates. GCB Bioenergy 9, 666–680, doi: 10.1111/gcbb.12354, 2017.
- 843 Cui, F., Zheng, X., Liu, C., Wang, K., Zhou, Z. and Deng, J.: Assessing biogeochemical effects
- and best management practice for a wheat–maize cropping system using the DNDC
 model. Biogeosci. 11, 91–107, 2014.
- De Klein C., Novoa, R.S.A., Ogle, S. et al.: N₂O emissions from managed soils, and CO₂
 emissions from lime and urea application. Chapter 11. In: 2006 IPCC Guidelines for

848	National Greenhouse Gas Inventories (eds Eggleston HS, Buendia L, Miwa K, Ngara T,
849	Tanabe K). IGES, Hayama, Japan, 2006.
850	Del Grosso, S.J., Ojima, D.S., Parton, W.J., Stehfest, E., Heistemann , M., DeAngelo, B. and
851	Rose, S.: Global scale DAYCENT model analysis of greenhouse gas emissions and
852	mitigation strategies for cropped soils. Global and Planetary Change 67, 44-50, 2009.
853	Dong, X.X., Zhang, L.L., Wu, Z.J., Zhang, H.W. and Gong, P.: The response of nitrifier, N-fixer
854	and denitrifier gene copy numbers to the nitrification inhibitor 3,4-dimethylpyrazole
855	phosphate . Plant, Soil Environ. 59(9), 398-403, 2013
856	Dungan, R.S., Leytem, A.B., Tarkalson, D.D., Ippolito, J.A. and Bjorneberg, D.L.: Dairy forage
857	rotation as influenced by fertilizer and slurry applications. Soil Sci. Soc. Amer. J. 81,
858	537–545, 2017.
859	Focht, D.D. and Verstraete, W.: Biochemical ecology of nitrification and denitrification. Adv.
860	Micro. Ecol. 1, 135-214, 1977.
861	Gao, W. and Bian, X.: Evaluation of the agronomic impacts on yield-scaled N_2O emission from
862	wheat and maize fields in China. Sustainability 9, 1201; doi:10.3390, 2017.
863	Gilsanz, C., Báez, D., Misselbrook, T.H., Dhanoa, M.S. and Cárdenas, L.M.: Development of
864	emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agric,
865	Ecosyst. Environ. 216, 1-8, 2016.
866	Giltrap, D.L., Saggar, S., Singh, J., Harvey, M., McMillan, A, and Laubach, J.: Field-scale
867	verification of nitrous oxide emission reduction with DCD in dairy-grazed pasture using
868	measurements and modelling. Soil Res. 49, 696–702 http://dx.doi.org/10.1071/SR11090,
869	2011.
870	Grant, R.F.: A technique for estimating denitrification rates at different soil temperatures, water
871	contents and nitrate concentrations. Soil Sci. 152, 41-52, 1991
872	Grant, R.F.: Simulation of ecological controls on nitrification. Soil Biol. Biochem. 26, 305-315,
873	1994.
874	Grant, R.F.: Mathematical modelling of nitrous oxide evolution during nitrification. Soil Biol.
875	Biochem. 27, 1117-1125, 1995.
876	Grant, R.F. and Pattey, E.: Mathematical modelling of nitrous oxide emissions from an
877	agricultural field during spring thaw. Global Biogeochem. Cycles. 13, 679-694, 1999.

878	Grant, R.F. and Pattey, E.: Temperature sensitivity of N2O emissions from fertilized agricultural
879	soils: mathematical modelling in ecosys. Global Biogeochem. Cycles 22, GB4019,
880	doi:10.1029/2008GB003273, 2008.
881	Grant, R.F., Pattey, E.M., Goddard, T.W., Kryzanowski, L.M. and Puurveen, H. Modelling the
882	effects of fertilizer application rate on nitrous oxide emissions from agricultural fields.
883	Soil Sci Soc. Amer. J. 70,: 235-248, 2006.
884	Grant, R.F., Neftel, A. and Calanca, P.: Ecological controls on N ₂ O emission in surface litter and
885	near-surface soil of a managed pasture: modelling and measurements. Biogeosci. 13,
886	3549–3571, 2016.
887	Guardia, G., Cangani, M.T., Sanz-Cobena, A., Junior, J.L. and Vallejo, A.: Management of pig
888	slurry to mitigate NO and yield-scaled N2O emissions in an irrigated Mediterranean crop.
889	Agric. Ecosyst. Environ. 238, 55-66, 2017.
890	Guardia, G., Marsden, K.A., Vallejo, A., Jones, D.L. and Chadwick, D.R.: Determining the
891	influence of environmental and edaphic factors on the fate of the nitrification inhibitors
892	DCD and DMPP in soil. Sci. Total Environ. 624, 1202-1212, 2018.
893	IPCC. 2019. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas
894	inventories. https://www.ipcc.ch/. accessed 9 July 2019.
895	Janke, C.K., Fujinuma, R., Moody, P. and Bell, M.J.: Biochemical effects of banding limit the
896	benefits of nitrification inhibition and controlled-release technology in the fertosphere of
897	high N-input systems. Soil Res. 57, 28–40 https://doi.org/10.1071/SR18211, 2019.
898	Kariyapperuma, K. A., Furon, A. and Wagner-Riddle, C.: Non-growing season nitrous oxide
899	fluxes from an agricultural soil as affected by application of liquid and composted swine
900	slurry. Can. J. Soil Sci. 92, 315,327, 2012.
901	Kelliher, F. M., Clough, T.J., Clark, H., Rys, G. and Sedcole, J.R.: The temperature dependence of
902	dicyandiamide (DCD) degradation in soils: a data synthesis. Soil Biol. Biochem. 40, 878-
903	1882, 2008.
904	Lam S.K., Suter, H., Mosier, A.R. and Chen, D.: Using nitrification inhibitors to mitigate
905	agricultural N2O emission: a double-edged sword? Global Change Biol. 23, 485-489,
906	2017.

907	Lam, S.K., Suter, H., Davies, R., Bai, M., Mosier, A.R., Sun, J. and Chen, D.: Direct and indirect
908	greenhouse gas emissions from two intensive vegetable farms applied with a nitrification
909	inhibitor. Soil Biol. Biochem. 116, 48-51, 2018.
910	Lin, S., Hernandez-Ramirez, G., Kryzanowski, L., Wallace, T., Grant, R., Degenhardt, R.,
911	Berger, N., Lohstraeter, G. and Powers, LA.: Timing of Slurry Injection and
912	Nitrification Inhibitors Impacts on Nitrous Oxide Emissions and Nitrogen
913	Transformations in a Barley Crop. Soil Sci. Soc. Amer. J. 81,1595-1605
914	doi:10.2136/sssaj2017.03.0093, 2018.
915	Merino, P., Menéndez, S., Pinto, M., González-Murua, C. and Estavillo, J.M.: 3, 4-
916	Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry
917	application. Soil Use Manage. 21, 53–57, 2005.
918	Metivier, K.A., Pattey, E. and Grant, R.F.: Using the ecosys mathematical model to simulate
919	temporal variability of nitrous oxide emissions from a fertilized agricultural soil. Soil
920	Biol. Biochem. 41, 2370–2386, 2009.
921	Nguyen, Q.V., Wu, D., Kong, X., Bol, R., Petersen, S.O., Jensen, L.S., Liu, S., Brüggemann, N.,
922	Glud, R.N., Larsen, M. and Bruun, S.: Effects of cattle slurry and nitrification inhibitor
923	application on spatial soil-dynamics and N2O production pathways. Soil Biol. Biochem.
924	11, 200-209, 2017.
925	Owens, J., Clough, T.J., Laubach, J., Hunt, J.E. and Venterea, R.T.: Nitrous oxide fluxes and soil
926	oxygen dynamics of soil treated with cow urine. Soil Sci. Soc. Amer. J. 81, 289-298,
927	doi:10.2136/sssaj2016.09.0277, 2017.
928	Qiao C., Liu, L., Hu, S., Compton, J.E., Greaver, T.L. and Li, Q.: How inhibiting nitrification
929	affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen
930	input. Global Change Biol. 21,1249–1257, 2015.
931	Pfab, H., Palmer, I., Buegger, F., Fiedler, S., Muller, T. and Ruser, R.: Influence of a nitrification
932	inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy
933	soil. Agric. Ecosyst. Environ. 150, 91-101, 2012.
934	Rochette, P., Angers, D.A., Chantigny, M.H., Bertrand, N. and Côté, D.: Carbon dioxide and
935	nitrous oxide emissions following fall and spring applications of pig slurry to an
936	agricultural soil. Soil Sci. Soc. Amer. J. 68,1410-1420, 2004.

937	Rodhe, L., Pell, M. and Yamulki, S.: Nitrous oxide, methane and ammonia emissions following
938	slurry spreading on grassland. Soil Use Manage. 22, 229–237. doi:10.1111/j.1475-
939	2743.2006.00043.x, 2006.
940	Ruser, R. and Schulz, R.: The effect of nitrification inhibitors on the nitrous oxide (N ₂ O) release
941	from agricultural soils—a review. J. Plant Nutr. Soil Sci. 178, 171–188, 2015.
942	Smith, K. A., Beckwith, C. P., Chalmers, A. G., Jackson, D. R.: Nitrate leaching following
943	autumn and winter application of animal manures to grassland. Soil Use Manage. 18,
944	428–434, 2002.
945	Subbarao G.V., Ito, O., Sahrawat, K.L. et al.: Scope and strategies for regulation of nitrification
946	in agricultural systems: challenges and opportunities. Crit. Rev. Plant Sci. 25, 303-335,
947	2006.
948	Teepe, R., Vor, A., Beese, F. and Ludwig, B.: Emissions of N ₂ O from soils during cycles of
949	freezing and thawing and the effects of soil water, texture and duration of freezing. Euro.
950	J. Soil Sci. 55, 357–365, 2004.
951	VanderZaag, A.C., Jayasundara, S. and Wagner-Riddle, C.: Strategies to mitigate nitrous oxide
952	emissions from land applied manure. Animal Feed Sci. Tech. 166–167, 464-479, 2011.
953	Wagner-Riddle, C., Rapai, J., Warland, J. and Furon, A.: Nitrous oxide fluxes related to soil
954	freeze and thaw periods identified using heat pulse probes. Can. J. Soil Sci. 90, 409-418,
955	2010.
956	Wagner-Riddle, C. and Thurtell, G.W.: Nitrous oxide emissions from agricultural fields during
957	winter and spring thaw as affected by management practices. Nutr. Cycl. Agroecosyst.
958	52, 151–163, 1998.
959	Zhu, K., Bruun, S. and Jensen, L.S.: Nitrogen transformations in and N ₂ O emissions from soil
960	amended with slurry solids and nitrification inhibitor. Euro. J. Soil Sci. 67, 792-803.
961	2016.

33

Table 1: List of supplements in the Supporting Material

Supplement	Title	Equations
S1	Microbial C, N and P Transformations	[A1] – [A39]
S2	Soil-Plant Water Relations	[B1] – [B14]
S3	Gross Primary Productivity, Autotrophic Respiration, Growth	[C1] – [C53]
	and Litterfall	
S4	Soil Water, Heat, Gas and Solute Fluxes	[D1] – [D21]
S5	Solute Transformations	[E1] – [E57]
S6	Symbiotic N ₂ Fixation	[F1] – [F26]
S7	CH ₄ Production and Consumption	[G1] – [G27]
S8	Inorganic N Transformations	[H1] – [H21]

34

Table 2: Key soil properties of the Black Chernozem soil at the South Edmonton Farm used in

964 <i>ecosys</i> .	
---------------------	--

Depth	BD	FC	WP	Ksat	Sand	Silt	Clay	pН	SOC	SON
m to	Mg	m ³ m ⁻³		mm	g kg ⁻¹ mineral soil			g kg ⁻¹ soil		
bottom	m ⁻³			h^{-1}						
0.01	1.15	0.34	0.15	18.0	280	450	270	6.3	57.1	5.74
0.025	1.15	0.34	0.15	18.0	280	450	270	6.3	57.1	5.74
0.05	1.15	0.34	0.15	18.0	280	450	270	6.3	57.1	5.74
0.10	1.15	0.34	0.15	18.0	280	450	270	6.3	57.1	5.74
0.15	1.35	0.34	0.15	18.0	280	450	270	6.3	40.7	3.80
0.30	1.40	0.34	0.15	7.5	250	470	280	6.3	40.7	3.80
0.60	1.50	0.35	0.17	2.5	270	420	310	7.1	3.2	0.3
0.90	1.50	0.35	0.17	2.5	270	420	310	7.1	3.2	0.3
1.20	1.50	0.35	0.17	2.5	270	420	310	7.1	3.2	0.3
1.50	1.50	0.35	0.17	2.5	270	420	310	7.1	3.2	0.3

35

966

967 Table 3. Plant and soil management schedule at the Edmonton South Campus Farm

968

Year	Date	Management	Amount				
				g N m ⁻²		g C m ⁻²	
			Urea	NH4 ⁺	Organic N	Organic C	
2014	15 May	fertilizer	7.2				
	15 May	planting					
	21 Aug.	harvest					
	30 Sep.	fall slurry		21.7	16.4	229.4	
2015	11 May	planting					
	12 May	spring slurry		19.4	20.5	176.9	
	28 Jul.	harvest					
	07 Oct.	fall slurry		21.3	19.0	198.5	
2016	14 May	planting					
	16 May	spring slurry		27.2	18.6	227.5	
	15 Aug.	harvest					

36

970

- 971 **Table 4**. Average temperatures and total precipitation measured at the Edmonton South Farm
- 972 during autumn/winter, winter/spring and spring/summer in 2014/2015 and 2015/2016.

	2014	20	15	2014/5	2015	20	16	2015/6
from	16 Sep	1 Jan	1 May	Average	16 Sep	1 Jan	1 May	Average
to	31 Dec	30 Apr	15 Sep	or Total	31 Dec	30 Apr	15 Sep	or Total
Temp. (°C)	0.4	-1.8	16.0	5.6	0.8	0.1	15.8	6.3
Precip. (mm)	50	75	195	320	41	38	402	481

37

- **Table 5**: Seasonal N₂O emissions measured and modelled during late spring in 2015 and 2016
- 975 without slurry (C) or with slurry applied in spring (S) without NI, with nitrapyrin or with DMPP
- 976 on dates in the field study (Table 3). Negative values denote emissions, positive values uptake.

977

	Year	2015		2016		
	Period	12 May – 11 June		17 May – 16 June		
		Measured	Modelled	Measured	Modelled	
Treat.	Amend.	mg N m ⁻²				
С		+3	-1	+14	-5	
S	none	-88	-89	-160	-153	
S	DMPP	-48	-58	-45	-72	
S	nitrapyrin	-56	-62	-57	-91	

978

38

980	Table 6: Seasonal and annual N2O emissions modelled during autumn/winter, winter/spring and
981	spring/summer in 2014/2015 and 2015/2016 without slurry (C) or with slurry applied in fall (F)

spring/summer in 2014/2015 and 2015/2016 without slurry (C) or with slurry applied in fall (F) or spring (S) without NI or with \underline{R}_1 for DMPP on dates in the field study (Table 3), and in fall on

dates 2 weeks before (F-2) or after (F+2) those in the field study, and with soil mixing during

slurry application (M) increased to 0.4 and 0.6 from 0.2 in the field study. Negative values

985 denote emissions.

986

	Year	2014	20	15	2014/5	2015	20	16	2015/6
	from	16 Sep	1 Jan	1 May	Total	16 Sep	1 Jan	1 May	Total
	to	31 Dec	30 Apr	15 Sep		31 Dec	30 Apr	15 Sep	
Treat.	Amend.				- mg N m	-2			
С		-2	-10	-14	-26	-2	-11	-13	-26
F	none	-93	-74	-17	-184	-93	-74	-27	-194
F	DMPP	-39	-68	-29	-136	-41	-50	-30	-121
F	nitrapyrin	-50	-101	-20	-171	-48	-61	-29	-136
S	none	-2	-10	-119	-131	-3	-25	-182	-210
S	DMPP	-2	-10	-90	-102	-3	-18	-106	-127
S	nitrapyrin	-2	-10	97	-109	-3	-24	-126	-153
F -2	none	-102	-64	-17	-183	-137	-47	-26	-210
F -2	DMPP	-56	-63	-19	-138	-55	-34	-23	-112
F +2	none	-92	-111	-17	-220	-84	-189	-52	-325
F +2	DMPP	-28	-78	-39	-145	-29	-99	-43	-171
F 0.5	none	-97	-71	-16	-184	-93	-168	-22	-283
F 0.5	DMPP	-58	-77	-17	-152	-59	-111	-20	-190
F 0.8	none	-102	-81	-21	-204	-98	-184	-19	-301
F 0.8	DMPP	-65	-76	-18	-159	-69	-138	-18	-225
S 0.5	none	-2	-10	-129	-141	-3	-27	-168	-198
S 0.5	DMPP	-2	-10	-98	-110	-3	-21	-124	-147
S 0.8	none	-2	-10	-138	-150	-3	-25	-168	-196
S 0.8	DMPP	-2	-10	-102	-114	-3	-19	-123	-145

39

- **Table 7**: Annual NO_3^- discharge and NH_3 emissions modelled from 16 Sep. to 15 Sep. in
- 990 2014/2015 and 2015/2016 without slurry (C) or with slurry applied in fall (F) or spring (S)
- without NI and with DMPP on dates in the field study (Table 3), and in fall on dates 2 weeks
- before (F-2) or after (F+2) those in the field study, and with soil mixing during slurry application
- 993 (M) increased to 0.5 and 0.8 from 0.2 in the field study. For NH_3 positive values indicate
- 994 deposition, negative values emission.

9	9	5	
9	9	5	

	Year	2014	4/5	2015/6		
Treat.	Amend.					
		NH ₃	NO ₃ ⁻	NH ₃	NO_3^-	
			mg N	m ⁻²		
С		+14	277	+34	421	
F	none	+7	330	+29	691	
F	DMPP	-147	317	+13	662	
S	none	+8	279	+21	617	
S	DMPP	+4	279	+14	598	
F -2	none	+4	336	+26	678	
F -2	DMPP	-9	326	+12	658	
F +2	none	+3	336	+28	697	
F +2	DMPP	-194	321	+10	662	
F 0.5	none	-9	321	+17	558	
F 0.5	DMPP	-79	314	-3	554	
F 0.8	none	-34	500	+1	368	
F 0.8	DMPP	-101	473	-29	370	
S 0.5	none	-3	279	+1	490	
S 0.5	DMPP	-7	279	-8	493	
S 0.8	none	-15	279	-15	361	
S 0.8	DMPP	-21	279	-26	365	

40

Table 8: Barley silage yields modelled and measured without slurry (C) or with slurry applied in
fall (F) or spring (S) with and without NI applied on dates in the field study (Table 3)

	Year	2015		2016	
Treat.	Amend.				
		Mod.	Mes. [†]	Mod.	Mes. ^{† ‡}
		g C m ⁻²			
С		154	198 ± 24	128	124 ± 9
F	none	284	355 ± 4	344	242 ± 45
F	DMPP	283	360 ± 25	343	255 ± 15
S	none	293	267 ± 12	334	195 ± 33
S	DMPP	297	317 ± 17	344	189 ± 32

1000 [†] calculated as 45% DM

1001 [†] measured yields reduced by lodging

1002

41

- 1004 **Table 9**: Sensitivity of seasonal N_2O emissions modelled during late spring in 2015 and 2016 to
- 1005 changes in initial inhibition ($I_{t=0}$ in Eq. 1) and inhibition constant (K_{iNH4} in Eq. 2) following
- spring slurry application on dates in the field study (Table 3). Negative values denote emissions.

1007

Year		2015	2016
Period		12 May –	17 May – 16
		11 June	June
		mg	N m ⁻²
No NI		-89 [‡]	-153 [‡]
I _{t=0}	K _{iNH4}		
1.0	7000	-58 [‡]	-72 [‡]
0.9	7000	-60	-80
0.8	7000	-62	-90
1.0	3500	-62	-78
0.9	3500	-64	-86
0.8	3500	-65	-95
1.0	14000	-54	-66
0.9	14000	-57	-75
0.8	14000	-59	-85

1008 [†] from Table 5

42

1009

1011

- Fig. 1. Key transformations governing N₂O emissions as represented in *ecosys*. Expressions in 1012
- square brackets refer to equations in the Supplement as described in Sec. 2. 1013

43

1015

Fig. 2. Soil NH_4^+ and NO_3^- concentrations measured (symbols) and modelled (lines) at 0 - 10 cm depth following applications of dairy slurry without and with DMPP. Arrows indicate dates of application.

Fig. 3. Aqueous concentrations of O₂ and N₂O modelled at depth of slurry injection (14 cm)
during emission events in early spring of (a,b) 2015 and (c,d) 2016 after fall slurry applications
with or without DMPP on DOY 273 in 2014 and DOY 280 in 2015, and in later spring of (e,f)

1024 2015 and (g,h) 2016 after spring slurry applications on DOY 132 in 2015 and DOY 137 in 2016.

45

Fig. 4. (a) Air temperature and precipitation, and (b) N₂O fluxes measured (symbols) and
modelled (lines) during early spring 2015 with no slurry (control), and following slurry
application on DOY 273 in 2014 with or without DMPP. Filled symbols represent manual
chamber measurements by Lin et al. (2018). Negative values denote emissions.

46

1031Fig. 5. (a) Air temperature and precipitation, and (b) N_2O fluxes measured (symbols) and1032modelled (lines) during early spring 2016 with no slurry (control), and following slurry1033application on DOY 280 in 2015 with or without DMPP. Filled symbols represent manual1034chamber measurements. Negative values denote emissions.

47

1035

1036

Fig. 6. (a) Air temperature and precipitation, and (b) N₂O fluxes measured (symbols) and

1038 modelled (lines) during spring 2015 with no slurry (control), and following slurry application on

1039 DOY 132 in 2015 with or without DMPP. Negative values denote emissions.

48

1040

1041 Fig. 7. (a) Air temperature and precipitation, and (b) N_2O fluxes measured (symbols) and

- 1042 modelled (lines) during spring 2016 with no slurry (control), and following slurry application on
- 1043 DOY 137 in 2016 with or without DMPP. Negative values denote emissions.