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Abstract

The Sea Surface Microlayer (SML) is known to be enriched in trace metals relative to the underlaying
water and to harbor diverse microbial communities (i.e. neuston). However, the processes linking metals
and biota in the SML are not yet fully understood. In this study, we analyzed the metal (Cd, Co, Cu, Fe,
Ni, Mo, V, Zn and Pb) concentrations in aerosol samples, SML (dissolved and total fractions) and in
subsurface waters (SSW; dissolved fraction at ~1 m depth) from the Western Mediterranean Sea during
a cruise in May-June 2017. The bacterial community composition and abundance in the SML and SSW,
and the primary production and Chl-a in the SSW were measured simultaneously at all stations during the
cruise. Residence times of particulate metals derived from aerosols deposition ranged from a couple of
minutes for Co (2.7 £ 0.9 min; more affected by wind conditions) to a few hours for Cu (3.0 £ 1.9 h).
Concentration of most dissolved metals in both, the SML and SSW, were well correlated with the salinity
gradient and showed the characteristic eastward increase in surface waters of the Mediterranean Sea (MS).
Contrarily, the total fraction of some reactive metals in the SML (i.e. Cu, Fe, Pb and Zn) showed negative
trends with salinity, these trends of concentrations seem to be associate to microbial uptake. Our results
suggest a toxic effect of Ni on neuston and microbiology community’s abundance of the top meter of the

surface waters of the Western Mediterranean Sea.
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1. Introduction

The Mediterranean Sea (MS) is enriched in many trace metals relative to similar nutrient- depleted
waters in the open ocean (e.g. Cd, Cr, Co, Cu, Ni, Fe, Zn) (Bonnet et al., 2013; Boyle et al., 1985; Sarthou
and Jeandel, 2001; Sherrell and Boyle, 1988). The enrichment of metals in surface water has been
associated to different sources including atmospheric deposition, river inflows, groundwaters,
anthropogenic sources and the Atlantic Ocean inflow through the Gibraltar Strait (Boyle et al., 1985;
Elbaz-Poulichet et al., 2001; Migon, 2005; Trezzi et al., 2016). The MS has one of the highest rates of
aeolian deposition in the world with strong pulses of mineral dust from Africa, in addition to consistent
anthropogenic aerosol inputs from Europe. Therefore, atmospheric deposition, dry and wet, is the
dominant pathway for large scale transport of trace metals to the water column and sediments in MS
(Guieu et al., 2002, 2010; Jordi et al., 2012; Ternon et al., 2010; Tovar-Sanchez et al., 2010, 2014). Many
of these metals play an important role in biogeochemical processes of this sea. For example, it has been
hypothesized that the high Co concentrations in the MS stimulate “de novo” synthesis of vitamin B> as
Co i1s the central metal ion in the B> molecule (Bonnet et al., 2013). Although present in higher
concentration than in other oceans, Fe has been considered as an important factor controlling
phytoplankton growth (Sarthou and Jeandel, 2001). Copper from aerosol depositions has been
demonstrated to have toxic effects on marine phytoplankton (Jordi et al., 2012; Paytan et al., 2009) while
Ni and Zn have been considered as good geochemical tracers of aerosols impact in Posidonia oceanica
(Tovar-Sanchez et al., 2010).

Studying the Sea-Surface Microlayer (SML), especially in a region dominated by aeolian
deposition, is crucial for understanding trace metal dust solubility, ocean distribution, and the processes
influencing the primary production and the vertical particle fluxes in the water column. The SML is
considered the skin of the ocean as it serves as a boundary layer between the atmosphere and the ocean.
With a thickness of 1-1000 pm, it is a prevalent feature of the surface ocean that shows distinct physical,
chemical, and biological properties than the rest of the water column. This sea-air interface plays a key
role in regulating the exchanges of gases, solutes and energy between water and atmosphere and is central

to a wide range of global biogeochemical and climate regulation processes (Cunliffe et al., 2013).
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Characterized by the dominated abundance of microorganisms (called neuston and ranging from bacteria
to larger siphonophores (Wurl et al., 2017)), the SML is a particular marine ecosystem ecologically
regulated. Although neuston in SML is formed by recruitment from the underlying plankton, its
composition and activities are different and conditioned by meteorological conditions, intensity of UV
radiation, organic matter content and/or aerosol impact among others (Cunliffe et al., 2013; Engel et al.,
2017).

Impacted by different allochthonous sources (e.g. aerosols, ice, rivers) the SML is enriched in
reactive trace metals (e.g. Cu, Fe, Pb) which metal stoichiometry signature is different from underlaying
waters (Tovar-Sénchez et al., 2019). For example, in regions under the influences of dust events such as
the North Atlantic Ocean or Mediterranean Sea, concentrations of Cu, Fe or Pb in the SML increase by a
factor of up to 800, 200 and 150 times compared with the underlaying water (Tovar-Sanchez et al., 2019).
It has been estimated that the SML in the MS contents around 2 tons of total Fe, and this amount could
be much higher during episodes of dust event (Tovar-Sanchez et al., 2014). However, despite of such
enrichment in trace metals concentrations, little is known about their residence times, their influence on
the active microbial community within the SML, or their release rates towards the underlaying waters.
Previous studies, from field sampling and laboratory microcosms, have estimated the residence times of
dissolved and particulate trace metals (e.g. Al, Fe, Mn, Ni, Cu, Zn, and Pb) in the SML to range from a
few minutes to a few hours. This is likely long enough to be chemically and biologically alter the SML
and affect the composition and activity of the neuston community (Ebling and Landing, 2017; Hardy et
al., 1985). However, estimates of residence times considering a variety of key field measurements that
directly affect the physical, chemical and biological composition of the surface microlayer, such as dry
and wet deposition fluxes, wind speeds, and neuston composition, have not been addressed yet.

Here, we studied the dissolved (<0.22 um) and particulate trace metal composition (Cd, Co, Cu,
Fe, Ni, Mo, V, Zn and Pb) of the SML in the central and Western MS. Aerosols were sampled and
analyzed for trace metals at the same stations and residence time of particulate aerosol metals in the SML
calculated. We analyzed the microbial composition and abundance in the SML and subsurface water
(SSW), and the primary production and Chl-a concentration in the subsurface water (1-5m), and examined

the relationships with trace metals concentration and distribution.
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2. Material and Methods

Samples from SML, SSW and aerosols were collected during the cruise PEACETIME (ProcEss
studies at the Air-sEa Interface after dust deposition in the MEditerranean sea) on board the French R/V
‘Pourquoi Pas?’ in the MS, from May 10% to June 11", 2017. Twelve stations were sampled (Figure 1).
Three of these stations were sampled twice (TYR 1-2, ION 1-2) or five times (FAST 1-5) at different
days, counting for a total of 17 groups of samples (Table 1).

2.1. Aerosol sampling and analysis

The PEGASUS container was installed aboard the R/V Pourquoi Pas?, this container is a mobile
platform equipped with a set of instruments optimized to collect and analyze in real time, gaseous
compounds and particles in the atmospheric boundary layer (Formenti et al., 2019). Atmospheric
sampling was performed using isokinetic and wind-oriented aerosol multi-samplers with a total sampled
flow rate around 400 L min"! per inlet. This inlet was developed for sampling both fine and coarse
particles, with particles of aerodynamic diameter of about 40 pm (Rajot et al., 2008). This total flow was
subdivided to various transmission lines which served the majority of the instrumentation. The aerosol
size distribution from 10 nm to 30 um was measured by a combination of standard optical and electrical
mobility analyzers. The total mass concentration was obtained by an on-line Tapering Element Oscillating
Microbalance (TEOM, model 1400a, Rupprecht and Patashnick).

One of the sampling lines was equipped with filtration unit to collect the aerosols on 47-mm
polycarbonate membranes of 0.4 um pore size (Whatman Nuclepore ™). The volume flow rate was set
at 20 L.min"!. All the filters were previously cleaned by immersion in ultrapure HC1 (2%) during 2 hours
and rinsing with ultrapure waters. A sampling strategy was made to avoid the contamination by the cruise
smoking, firstly when the vessel was in station, the R/V was systematically positioned such as inlets were
facing the wind (PEGASUS container and boat's chimney are on the opposite side of the deck). On the
route, contamination-free sampling was operated when the relative wind direction was not in the direction
of chimney exhaust. In total, 36 series of filters were collected which 17 filters during the stations and 5

blanks of filters were also prepared. The sampling locations for each filter is presented in Figure 1.
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Aerosols filters were first analyzed by X-ray fluorescence spectrometry (SFX, spectrometer PW-2404,
Panalytical™) for measuring chemical markers of particles origin sources (as Al and Ca). Filters were
then leached by ultrapure water in order to determine the soluble fraction of metals. Finally, the filters
were mineralized using an acid digestion protocol adapted from (Heimburger et al., 2013) in order to
quantify the insoluble (particulate) fraction of metals. The dissolved and digested samples were analyzed
by HR-ICP-MS (Neptune Plus, Thermo Scientific ™) for trace metals: Cd, Co, Cr, Cu, Fe, Mn, Mo, Nd,
Ni, Pb, V, Zn. The total concentration of metals corresponds to the sum of dissolved and particulate
fraction of metals. Rain sampling was also operated during the cruise with on-line filtration collector
(0.2um, polycarbonate, Nuclepore Whatman™) (Heimburger et al., 2013) and the analysis of particulate
and dissolved metals were carried out by HR-ICP-MS.

2.2. Water sampling and analysis
2.2.1. Trace metals

Surface samples, i.e. SML and subsurface water (SSW: ~1 m depth), were collected from a
pneumatic boat deployed 0.5 — 1 mile away from the research vessel in order to avoid contamination of
the samples from the vessel's influence. SML samples were collected using a glass plate sampler (Stortini
et al., 2012; Tovar-Sanchez et al., 2019) which had been previously cleaned with acid overnight and
rinsed thoroughly with ultrapure water (MQ-water). The 39 x 25 cm silicate glass plate had an effective
sampling surface area of 1950 cm? considering both sides. In order to check for procedural contamination,
we collected SML blanks in some stations on board of the pneumatic boat by rinsing the glass plate with
ultra-pure water and collecting 0.5 L using the glass plate system. The surface microlayer thickness was
calculated following the formula of Wurl (2009) (Wurl, 2009). Total fraction of SML (i.e. T-SML) were
directly collected from the glass plate system without filtration in a 0.5 L acid cleaned LDPE bottles,
while that the dissolved fraction in the SML (i.e. D-SML) was rapidly filtered on board the pneumatic
boat through an acid-cleaned polypropylene cartridge filter (0.22pm; MSI, Calyx®). SSW were collected
using an acid-washed Teflon tubing connected to a peristaltic pump and directly filtered on the same
cartridge to collect the dissolved fraction (D-SSW). All samples were acidified on board to pH< 2 with
Ultrapure-grade HCl in a class-100 HEPA laminar flow hood. Metals (i.e. Cd, Co, Cu, Fe, Ni, Mo, V, Zn
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and Pb) were pre-concentrated using an organic extraction method (Bruland et al., 1979) and quantified
by ICP-MS (Perkin Elmer ELAN DRC-e). Prior to the preconcentration and for the breakdown of metal-
organic complexes and the removal of organic matter (Achterberg et al., 2001; Milne et al., 2010), total
fraction samples (i.e. T-SML) were digested using an UV system consisting in one UV (80 W) mercury
lamp that irradiated the samples (contained in quartz bottles) during 30 min. The accuracy of the pre-
concentration method and analysis for trace metals was established using Seawater Reference Material

for Trace Elements (CASS 6, NRC-CNRC) with recoveries ranging from 89% for Mo to 108% for Pb.

2.2.2. Ancillary parameters

Temperature and Salinity of surface seawater were measured with the underway
thermosalinograph (TSG) system of the R/V Pourquoi Pas? which was composed of a Seabird® SBE 21
seaCAT associated to a SBE 38 thermometer situated at the seawater inlet. The seawater inlet was situated
3 meters under the sea surface. The wind speed at 10 meters was measured with a Gill Windsonic
ultrasonic anemometer from the on-board BATOS station deployed by the French meteorological agency
Meétéo France on the vessel. Temperature, salinity and wind data were averaged on 30 seconds timelapses
by the ship data management system TECHSAS (TECHnical Sensor Acquisition System). Average values
of temperature, salinity and wind speed on a time period of 1 hour around the time of SML sampling are

reported in table 1.

2.3. Biological sampling and analysis
2.3.1. Neuston

Microorganism inhabiting the SML are collectively referred to as the “neuston” (Engel et al.,
2017). At the same time than trace metal samples collection, microorganism in the SML were sampled
also using a glass plate system (50 x 26 cm silicate glass plate with an effective sampling surface area of
2600 ¢cm? considering both sides). The water from the SSW was manually collected in acid clean
borosilicate bottles at around 20 cm depth. Bacterial numbers were determined using flow cytometry from
a 4 mL sample that was fixed with 200 mL glutaraldehyde (GDA, 1% final concentration). Samples were

stored at -20 °C for at most 2.5 months until analysis and were stained with SYBR Green I (Molecular
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Probes) prior to quantification using a flow cytometer equipped with a 488 nm laser (Becton & Dickinson
FACScalibur). A plot of side scatter (SSC) vs. green fluorescence (FL1) was used to detect the unique
signature of the bacterial cells. The internal standard consisted of yellow-green latex beads (Polysciences,
0.5 mm). Abundance and area of Transparent Exopolymer Particles (TEP) were measured

microscopically following a previously described method (Engel, A., 2009).

2.3.2. Phytoplankton and Primary Production

Chl-a concentration and primary production were measured in the SSW at 5 m depth. Primary
production was measured with the '*C-uptake technique. Seawater samples, collected from Niskin bottles
at dawn, were dispensed into four (3 light and 1 dark) polystyrene bottles of 70 mL in volume, which
were amended with 15 pCi of NaH!*COs and incubated for 24 h inside a deck incubator refrigerated with
surface seawater from the continuous water supply. The incubator was covered with a neutral density
filter that provided an irradiance level of 70% of incident PAR. After incubation, samples were filtered,
using low vacuum pressure, through 0.2-pm polycarbonate filters, which were exposed to HCI fumes
overnight to remove non-fixed, inorganic '*C. After adding 5 mL of liquid scintillation cocktail to the
filters, the radioactivity on each sample was determined on-board with a liquid scintillation counter. To
compute the rates of carbon fixation, the dark-bottle DPM value was subtracted from the light-bottle DPM
value and a value of 26,000 ugC L' was used for the concentration of dissolved inorganic carbon. Chla
concentratios were measured by HPLC (HPLC Agilent Technologies 1200) following the method
described by Ras et al. (2008) (Ras et al., 2008).

2.4. Statistical analyses

Spearman rank correlation coefficient (rs) was used to determine significant relationships (p<
0.05) between the parameters measured in the different compartments (air, SML and SSW) and
parameters. Coefficient of determination (R?) between the selected parameters were also calculated in
order to determine how well correlations fit with a linear regression relationship. Statistical analysis was

performed with the aid of the statistical software package SPSS 25.
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3. Results and Discussion

3.1. Aerosols deposition

Metal aerosols composition is shown in Table 1. Average concentrations in our study were in the
same order of magnitude, than previous measurements collected in the same region and season (Becagli
et al., 2012; Calzolai et al., 2015; Tovar-Sanchez et al., 2014), and hence were consistent with Western
Mediterranean background concentrations. No clear gradient (North-South or East-West) in atmospheric
metals concentrations was observed during the cruise. Here, metal aerosols composition was mainly
influenced by air masses from North of Europe and Atlantic Ocean (Figure S1), except between June 1%
and June 4™, i.e for the stations St 9 and Fast 1-4 where African air masses loaded by dust were observed
(Figure S1-2). During this period, the aerosol mass concentrations were the highest observed during the
cruise with a maximum around 25 pg.m>, nevertheless these concentrations were typical of a moderate
dust event (Pey et al., 2013). Aerosol Fe concentrations were the highest measured during the cruise, in
average 245 ng.m? during this period. The same observation was done for Co. A good correlation between
Ni and V in the collected aerosols all along the cruise, suggest a common source associated to heavy oil
combustion; i.e. marine ship traffic (Becagli et al., 2012). Some rains occurred during the cruise, but only
one was measured when the vessel was in station, June 5™ from 2:36 am to 3:04 am between Fast 3 and
Fast 4 samples. However, all the zone around the Fast station was rainy from the 3™ of June (Figure S3).
As the collected rain composition was typical to dust wet deposition with high particulate concentrations
of Al, Fe and Ca (Fu et al., in preparation), we suppose the rain-out of dust in the atmospheric column

around this station occurred between the 3™ to the 5™ of June.

3.2. Biochemical composition and distribution of the surface water

Trace metals concentrations in the surface waters of the MS varied depending on the

compartmentation (i.e. SML or SSW) and along a longitudinal gradient (Table 1).

3.2.1. Trace metals in the SML
Trace metals concentrations of T-SML (Table 1) were lower, although, with the exception of Pb,

of the same order of magnitude than those measured in the previous studies carried out in the MS (Tovar-
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Sanchez et al., 2014). This lower content of metals in the SML is likely related with the lower dust
aerosol’s deposition during our sampling period and by the lack of influence of desert dust aerosols except
for Fast station. T-SML concentration of Pb (average 663 + 320 pM) was one order of magnitude lower
than in previous studies impacted by pulses of both mineral African dust and anthropogenic aerosols
coming from Europe (5596 + 1589 pM) (Tovar-Sanchez et al., 2014). The highest concentrations of some
metals were measured at the station FAST-3 (Co: 773,6 pM; Cu: 20.1 nM; Fe: 1433.3 nM and Pb: 1294.7
pM), likely impacted by the dusty rain events on this area.

Dissolved concentrations of Co, Zn, Pb, Cu and Ni showed a decreasing trend from the SML to
the SSW, with concentrations 10.4 +0.7; 9.3 +5.5; 4.2+ 1.8; 3.1 + 1.5; and 1.2 + 0.1 times higher in the
SML than in the SSW, respectively. Vanadium (1.2 £ 0.42) and Fe (1.3 £+ 1.5) varied lightly between
SML and underlayer water, and Mo (1.0 = 0.1) did not showed any differences (Table 1). Only Cd
concentrations were consistently lower in the SML compared to the underlayer water (0.8 £ 0.2 times
lower). Such depletion of dissolved metals in the SML compared to the underlayer water has been
previously observed in areas with no significant aerosols inputs (Ebling and Landing, 2015, 2017).
Although not fully understood, some mechanisms such as dominance of removal mechanisms versus
diffusion, or higher influence of underlaying metal sources have been previously suggested to explain this
metal depletion (Ebling and Landing, 2017; Hunter, 1980).

Spatial distribution of Co and Ni concentrations in the D-SML were well correlated with those
measured in the D-SSW (Spearman's correlation coefficient (rs): 0.87 for Co and 0.91 for Ni; p<0.01,
Table 2), indicating for these elements an efficient diffusive mixing between these two compartments.
These elements were also well correlated with the surface salinity distribution (rs: 0.62 for Co and 0.93
for Ni; p<0.01, Table 2), and presented an eastward trend of increasing concentration, which is consistent
with the characteristic distribution of metals on the surface of the MS (see section 3.2.4. below).
Variations in concentrations for the rest of the elements (i.e. Cd, Cu, Fe, Pb, V and Zn) in the D-SML
were not correlated either with the underlayer water or salinity gradient. Multiple physical, chemical and
biological processes taking place in the SML could be affecting and controlling the mobility and diffusion
of these elements between compartments. However, the concentrations of Cu, Fe and Zn in the T-SML

showed an opposite trend with a longitudinal gradient inversely correlated with the salinity (rs: -0.59 for
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Cu; -0.69 for Fe, and -0.61 for Zn; p<0.01, Table 2). Since aerosols metal concentrations did not show
any longitudinal trend and no other natural or anthropogenic sources were identified in the region,
gradient concentration of these reactive trace elements in the T-SML must be influenced by other factors

different than sources inputs, water exchange or dilution with Atlantic waters.

3.2.2. Residence time of trace metals in the SML

Estimates of the residence times of metals from aerosols inputs in the SML are critical to better
understand the biogeochemical processes that affect the fate and distribution of trace metals in the surface
ocean. To estimate the residence time (¢) of particulate metals in the SML, we used the equation proposed
by Ebling and Landing (2017) (Ebling and Landing, 2017):
= [TE]smr X d/Jacrosol
where [TE]smr is the concentration of trace element (TE) in the T-SML, d is the thickness of the SML
and, and Jaerosol 1S the measured aerosol trace metal flux. Jaerosol Was estimated by multiplying the metals
aerosol concentrations with the sedimentation velocity, which is dependent on aerosols size. Thus, we
used a velocity of mineral dust deposition for Fe (1 cm.s!) and an average velocity of fine anthropogenic
particles for the other metals, i.e. 0.1 cm.s! (Baker et al., 2010; Duce et al., 1991). For the calculations of
the residence times along our different stations we used simultaneous empirical measurements of metals
concentrations in the SML and metals aerosol fluxes (Table 3). Residence time of particulate metals (T-
SML) ranged from 12 min for Co and Fe to 7.6 h for Cu. Since Mo and Cd are not enriched in the SML
they were not considered in this calculation. Although variable among stations, residence time of Cu (3.0
+1.9h),Zn (2.1 +£0.8 h), V(1.7£0.4 h), Pb (1.4 £ 0.7 h), Ni (55 £ 14 min), Fe (5.0 + 3.1 min, excluding
the station Fast 3) and Co (2.7 = 0.9 min, excluding the station Fast 3) were relatively consistent with
previous estimates in regions under low aerosols inputs (Ebling and Landing, 2017). Our results indicate
that Fast 3 station was affected by the dusty rain events, which increased the concentration of some metals
in the T-SML. Iron and Co were the elements that increased the most with major impact on their residence
time for that station, i.e. multiplied by a factor 10 (Table 3). On average, while the highest residence times
obtained for Cu, Pb and Zn are in agreement with their strong affinity to particles and therefore with a

high probability of retention in the SML, other reactive elements such as Co and Fe presented, the shortest

10
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residence time. Since, such fast transfer of these particle metals to the underlayer water (in the order of
1-3 min) is unlikely (mainly due their affinities to organic ligands), and dissolution is not immediately
reflected in an increase of concentration in the dissolved fraction (i.e. D-SML), other parameters (linked
to dynamic or biological activity) would be affecting the residence time of these elements in the SML. In
the case of Co, wind seems to partly explain this short residence time. Wind speed showed high and
significant negative correlation with the residence time of Co (rs. -0.67, p<0.01), Ni (rs: -0.76 p< p<0.01)
and V (rs: -0.80 p<p<0.01) in the SML, suggesting an influence of wind on the diffusion of these elements
to the underlayer water (Table 2).

3.2.3. Neuston composition

The microbial composition (Bacteria; High nucleid acid-content bacteria: HNA; Low nucleid
acid-content bacteria: LNA; phytoplankton; phytoplankton small; phytoplankton middle; phytoplankton
large; Small cyanobacteria like cells: CBL-small; middle-large cyanobacteria like cells: CBL-middle-
large) and abundance in the SML are shown in Table 1. Bacterial abundance in the SML ranged from
2x10° to 1x10° cell mL-! (average: 5.1x10° + 2.2x10° cell mL™!) that is of the same order of magnitude
than abundance measured in the SML of other regions (e.g. in the Peruvian Coast with average of 8.9x10°
+ 4.3x10° cell mL!) (Zancker et al., 2018). Bacterial community was dominated by low nucleid acid-
content bacteria (LNA) with an average concentration of 2.8 x10°+ 1.0x10° cell mL!. In general, and
with the exception of phytoplankton middle and CBL-small, microbial abundance was higher in the SML
than in the SSW with abundances ranging from 1 to 6 times higher for bacteria and CBL-middle-large,
respectively (Table 1).

A microbial abundance decreases from west to east related to the increasing oligotrophy
(explained though an increased P limitation) of the surface Mediterranean waters has been described
(Pulido-Villena E. et al., 2012). In this study, microbial abundance in the SML and T-SML reactive
elements (i.e. Cu, Fe, and Zn) showed the same longitudinal gradients with decreasing eastward
concentration along the southern coast of the MS. In fact, bacterial abundances were significantly and
positively correlated with these bioactive T-SML metals (i.e. r5: Cu: 0.65 p<0.01; Fe: 0.53 p<0.05; and
Zn: 0.49 p<0.05), suggesting that bacterioneuston could be affecting the concentration and fate of Cu, Fe

11
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and Zn in the SML. Bacteria would efficiently assimilate the available fraction of Cu, Fe and Zn, resulting
in a decrease and increase of the D-SML and T-SML fractions, respectively (Table 1). No general
relationship between concentrations of metals and TEPs (high molecular weight polymers released by
phytoplankton and bacteria and with high metal binding capacity (Passow, 2002)) were found in the SML,
although both showed strongly increased values after a dust deposition event at FAST 3 (Table 4). We
therefore assume that metal assimilation by microbial communities would also explain the higher
residence time of Cu and Zn (in the order of hours) in the SML. However, in the case of Fe with an
estimated residence time of a few minutes, other processes different than wind speed and neuston uptake,
should be contributing to facilitate the transfer from the SML to the underlayer water. For example,
photochemical reactions drive by intense solar radiation exposure in the SML could play an important
role in the dissolution processes of this metal (Boyd et al., 2010). On the other hand, Ni was strongly and
negatively correlated with bacteria abundance in the D-SML (rs = -0.93, p<0.01; R? = 0.74, p<0.01)
suggesting, contrarily to Cu, Fe and Zn, a possible inhibiting role on the microbiology growth (Table 4

and Figure 2) (see next section for more discussion).

3.2.4. Subsurface water

The D-SSW concentrations of Cd, Co, Cu, Ni, Mo and Zn showed a longitudinal gradient of
concentrations increasing from west to east, with strong significant positive correlations with longitude
for Cd, Co and Ni (Figure 3). This trend is consistent with previous studies where the increased eastward
concentration along the southern coast of the MS is indicated to be due to factors such as: more intense
Saharan deposition on the eastern MS (Guieu et al., 2002); more rapid exchange of water masses and
margin inputs in the Western part (Yoon et al., 1999) or, as suggested for Co, the regeneration of biogenic
particulate eastward that yields a westward decreased of the dissolved Co in surface (Dulaquais et al.,
2017). Since surface salinity showed the same eastward increase and was close correlated with those
metals (rs ranged from 0.51 p<0.05 for Mo to 0.97 p<0.01 for Ni; Table 2), the exchange with the surface
Atlantic Ocean waters seems to be the main cause of this gradient of concentrations in our study, although
higher aerosol inputs in the western MS could also contribute to this gradient. Other metals (i.e. Fe, Pb

and V) did not show any clear geographical trend and variations in surface concentrations could be
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influenced by several factors other than dilution or exchange, such as vertical diffusive fluxes or, specific
metal sources, as it is in the case of Fe and Pb that has been suggested to be more affected by atmospheric
inputs (Nicolas et al., 1994; Yoon et al., 1999). In fact, Pb was the only element that showed significant
positive correlation with latitude (rs: 0.88 p<0.01, Table 2) suggesting an influence of the northern region
of the MS.

D-SSW concentrations of Ni were strongly and negatively correlated with microbial abundance
(mainly with heterotrophic bacterial) in the underlaying water (s : -0.91, p<0.01; R? = 0.87, p<0.01)
(Figure 2 and Table 4) suggesting a potential negative role of this metal on bacteria and small
phytoplankton on the top meter of the surface western MS, including the SML. Toxicity by Ni at
concentrations of ~50 nM has been previously demonstrated in the western MS, with inhibitions of 10%
(ECi0) in phycoerythrin and Chl-a signals of natural population of the picoplankter Synechococcus sp.
(Debelius et al., 2011). Although that toxicity concentration (tested in picoplankton), is around 13 time
higher than average values measured in our samples (T-SML: 4.1 £ 0.5 nM, D-SML: 3.9 + 0.6 nM and
D-SSW: 3.2 £ 0.6 nM; Table 1), deleterious effects on the neuston and microbial communities to lower
concentrations could be feasible in the top meter of the surface sea. Indeed, UV radiations in this surface
layer are highly intense and can acts as a biochemical microreactor where many transformations and
photochemical reaction occurs (Wurl et al, 2017) affecting complexation, solubilization,
bioaccumulation and/or toxicity of many trace elements. Even if a general decreasing trend from west to
east of microbial abundance due to the increasing oligotrophy has been described, it is interesting to
mention that primary production and Chl-a concentration (measured a 5 m depth), did not show significant
correlations with Ni (Table 4). We therefore assume that toxicity of Ni is mainly affecting the bacterial
community and/or on the top meter of the surface ocean. Nickel, as other transition metals, is an essential
cofactor of several enzymes, however, it becomes toxic when homeostasis fails. Multiple potential
mechanisms of Ni toxicity to aquatic organisms, and in particular to bacteria, have been identified
(Macomber and Hausinger, 2016). Among the different possible toxicity mechanisms (including
inhibition of Zn and Fe metalloenzymes and non-metalloenzymes) the toxicity involving reactive oxygen
species (ROS) is likely the most feasible in surface seawater. While Ni itself is a poor generator of reactive

oxygen species (ROS) when compared to other metals like Fe or Cu, its reactivity and ROS productions
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can be enhanced by the displacement of redox-active iron from iron metallocenters (Macomber and
Hausinger, 2016) or when chelated by oligopeptides and histidine (Brix et al., 2017), which are abundant
in the SML. It appears that Nickel-dependent toxicity involving ROS may be likely mechanism of
oxidative stress in marine microbial organism of the surface ocean. There is many information on the
effect of Ni on insolate laboratory microalgae experiments, however its toxicity role in oceans have been
poorly explored. Therefore, additional studies on Ni diffusion from SML, solubility, speciation, and the

effects on phytoplankton at the species level are required to fully understand the magnitude of this finding.

4. Conclusions

Our results show that the SML in the MS is enriched in trace metals relative to the SSW even under low
aerosols deposition rates. While some metals entering in the SML (e.g. Cd, Co, Ni and V) show efficient
diffusive mixing from SML to SSW, other more reactive metals such as Cu, Fe, Pb and Zn affected by
chemical and biological processes show a major difficulty of mobility. A strong negative correlation
between Ni concentration and heterotrophic bacterial abundance in the SML and SSW suggest an

inhibiting role of this element on the microbial growth in the top meter of the surface.
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Figure 2. Concentration of Dissolved Ni plotted against bacterial abundance in the SML (black dots) and

in the Subsurface water (red open dots). The lines represent linear regression equations.
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Figure 3. Salinity and dissolved trace metals concentration in the subsurface waters plotted against

longitude. The dashed lines represent linear regression equations.
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Table 3. Residence times (hours) of particulate metals derived for aerosols deposition

Satationl Co Cu Fe Ni Pb \" Zn
St. 1 002 08 009 07 16 10 15
St. 3 005 28 013 10 20 19 27
St. 4 006 47 006 11 20 21 27
St.5 003 11 004 06 13 14 14

TYR-1 005 44 010 10 11 19 16
TYR-2 005 20 015 09 10 19 17
St. 6 003 12 006 07 13 13 15
SAV 006 19 005 13 24 21 17
St.7 006 31 009 12 09 19 23
ION-1 005 26 004 12 12 18 20
ION-2 004 17 004 09 02 16 22
St. 8 005 13 002 10 09 22 09
St. 9 004 22 011 07 14 12 19
FAST-1 0.08 3.9 022 07 20 12 26
FAST-3 025 76 253 12 30 20 26
FAST-4 003 64 011 08 15 16 44
FAST-5 0.02 31 003 05 10 13 23
Avergae 0.06 3.00 0.23 0.92 145 168 211
S.D. 0.05 1.89 0.59 0.23 0.66 0.37 0.79
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