Dear Michael Weintraub,

We are pleased to upload our revised manuscript in response to the comments of the three
reviewers. We have made a number of changes in the manuscript in order to address the concerns of
the reviewers, which we found very constructive, objective and of high quality. In our initial response
letters, we have included detailed answers to each concern including what we changed in the
manuscript as a result. Therefore, we will summarize here the most important changes from our
point of view.

As we understood it, the main concerns of Sander Bruun were, 1.1) whether the DRIFTS stability
index (DSI) changes with type of mid-infrared spectrometer bench used (in our experience it slightly
does), 1.2) why we used a statistical analysis of model error (mainly to interpret a temporal trend),
1.3) whether this Bayesian model calibration could be data limited (we rather think that it is due to
model structure) and 1.4) if we could include graphs of the DSI change over time of the long-term
experiments (we did so). To all these points we made changes in the text and added additional
figures where necessary to further elaborate our point.

Additionally to some concerns shared with Sander Bruun, the main concerns of reviewer 2 were, 2.1)
whether the DSI was a proxy supporting the hypothesis of resistance due to molecular properties of
SOC only (to our understanding the DSl is also related to other forms of stabilization), and 2.2)
whether the DSI might be also useful for models using microbial mineral models (to our
understanding yes, as it correlates also well with size density fractionation) and 2.3) that we change
the wording of some claims in the abstract, so that they are not misleading. To each of these
concerns we made changes in the text to address them. The suggested spell and language checking
was done.

As we understood it, the main concerns of Lauric Cécillon were: 3.1) whether the mineral
interference of the 1620 cm™® peak would mean that we only divide the 2930 cm™ peak by some
“artifact”. By carefully selecting integration limits, hence the part of the 1620 cm™ peak we use
relates mostly to carbon. 3.2) Whether the DSI was more informative than the SOC content alone
(the strong correlation to % of centennially persistent SOC across sites seems to indicate so) and 3.3)
that we should discuss the shortcomings and the “known unknowns” of the DSI, due to mineral
interference and other factors in more detail. We followed the advice by adding an additional figure
(Figure S1 in updated manuscript — correlations with CPsoc), as well as adding a thorough discussion
of the mineral, water and spectrometer interference that the DSl is subject to. We agree with you,
that these concerns are likely shared by other readers and found the discussion with Lauric to be
especially fruitful.

We thank you for handling the manuscript and are happy that it is considered to be of interest to the
readers of Biogeosciences.

With kind regards on behalf of all coauthors,

Moritz Laub



Responses to Reviewers:

We would like to thank the editor for taking the time to handle our manuscript and for finding three
very constructive reviewers. We also want to thank all reviewers for taking the time and reviewing
our manuscript to help improve its quality. We are grateful for the honest and thorough feedback.
The suggestions were highly useful and provided us with information, where misunderstandings
could be possible and where we needed to make our message clearer and to discuss the limitations
of the DSl in more detail. They helped to further improve the quality of this manuscript and we hope
that we addressed concerns to a satisfying extent. Our comments to the reviewers in the following
are in blue color. We made use of the constructive criticism and altered the text of the manuscript,
where applicable. We added screenshots of alterations in the text related to the comments. These
are displayed in green color.

1.1 Reviewer 1: Sander Bruun
General comments

The papers deals with initialization of pools in the soil organic matter model of Daisy. The paper is
using unique datasets for long-term fallow treatments to test a new way of initializing the soil organic
matter pools based on specific peaks in the DRIFTS specta of the soils. Pool initialization of SOM
model is an important issue that is still causing some difficulties with the currently used approaches.
The paper is therefore very timely and present an interesting approach that could be useful in many
situations. The work is of a high quality and based on high quality data and the manuscripts is well
written.

Specific comments

Line 78. | agree that the DSI can be better than the steady-state assumption, but perhaps it is worth
discussing this in a little more detail. If information about the history of the site is available then that
method should work. This require that the history is known for millennia, and that is rarely the case.

We added one more sentence as suggested, at line 56.
Line 118: Was soil samples from throughout the experimental period analyzed? Please specify.
Yes, from throughout the period. We specified this more.

Line 129: The spectra were not recorded in absorbance, but subsequently converted to absorbance
units, right?

Yes — wording changed

Line 130: | wonder how much this way of determining the DSl is affected by the instrument i.e. if
somebody took the same soils and did the measurement on another instrument would the get the
same DSl and pool sizes. | am afraid that it would be quite much affected by that especially if you use
other IR detection techniques. Maybe it would be worth addressing this in the discussion.

Indeed, at least to our experience, there are some differences between the spectra of different
spectrometers. We added a sentence addressing this in chapter 4.1. As we already tested different
temperatures for drying, which we found to be the most dominant factor affecting DSI, it was beyond
the scope of this publication to test the effect of the Spectrometer. We were first and foremost
interested in, whether the DSI approach adds value in general to SOM initialization, which we think it
does.



Line 181: It says 84% and not 83% in Table 2. Please correct where appropriate.
Done

Line 196 to 209: | am not entirely sure | understand what the point of analyzing the SMEx with a
statistical model is. | think you should consider whether it add enough understanding to warrant
inclusion. Alternatively explain the point a little better.

We wanted a more sophisticated analysis of the model error than and since in some experiments
(Swabian Jura and Kraichgau) we had several fields, make use of the statistical power provided by the
experimental design. The second advantage of a statistical analysis of model error was, that we could
analyze for a time trend (increase with time) of the model error. Obviously, the results still only hold
for the fields we analyzed.

Line 236-237. The necessity of constraints on the fSOM-Slow parameter is a little problematic. |
cannot help thinking that it means that the data, which is used for calibration, is insufficient. With
these restraints, | guess you are likely to end up with a value 0f0.35 which is rather arbitrarily chosen
by you.

We fully agree with this statement. Actually, we also found containing a bit problematic, but a
humification of 95% or more also did also not seem realistic. For us, this is an indicator how model
structure affect the results. This is why we came up with a possible alternative formulation of DAISY.
Actually, we tested the new structure of DAISY and found, that with this fSOM_s does not run into
the constraint anymore, even if we do not constrain it. See as an example the results of the new
structure with (2) and without (3) the fSOM_s constraints compared to (1) the initial BC of this study:
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Line 364-365. | agree that even though we have had the same management for a longtime the
steady-state assumption is not valid. However, | believe that the reason for this has to do with



longer-term effects rather than the smaller effects that you mention i.e. variation in climate
agricultural management. If you look at a longer terms, most sites would probably have been
deforested within the last 2000 years. Because of the high inputs from the forest, this could have
resulted in an unusually large fraction of resistant organic matter that has not been degraded from
that period. Also it is very common with drained soils soil. This means that the soil at some time it its
history has had a very high water table and perhaps even been inundated. We know that this can
result in significant accumulation of organic matter. After the soil has been drained, this has led to a
large residual of resistant C again. The same could happen if there has been a history of fires with
inputs of charcoal. Perhaps this is worth discussing a bit more.

We agree and added these possibilities to the main text.

Line 373: | cannot help it thinking that it is somewhat of a coincidence that you get better model
performance with the DSI as long as you have not recalibrated the model. Of course using more data
as for example DSI to restrain the model should improve the model, but only after it has been
recalibrated.

We interpreted the fact that SMB-C simulations were best when using the DSI as indicator that it is a
proxy of generally utility, even if the turnover rates are unclear. As SMB-C is a much faster reacting
pool than TOC, which did not change that much in our trials in Kraichgau and Swabian Jura. The DSI
at 105°C was consistently lower in model error for simulated SMB-C than the steady state
initialization, which we saw as an indicator that it is a useful proxy regardless of turnover rate, as long
as there is a clear distinction between fast and slow pools.

It is not entirely clear what data were used for the calibrations based on DSI. As far as | understand,
you measured DSI of all the soil samples and that means that you can compare the simulated
distribution between fast SOM1 and slow_SOM with the one measured and calculated using formula
(2) and a similar formula for fast_SOM. Is this the case? And if it is why have you not shown the
“measured” value of fast and slow SOM and compared it with the modelled?

You are correct, that we used the measured DSI throughout the simulation period for the Bayesian
calibration. We are happy to provide the modelled vs measured DSI throughout the simulation
period — we also added it to the manuscript as additional figure s7:
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Figure S 1 Development of simulated vs observed SOM in the slow pool, according to DSI division throughout the
simulation period (for brevity only for 105 °C). Bars indicate standard deviation of all plots per field.

Is it worth publishing the optimal parameters selected by the Baysian calibration based on DSI?

While we think that the ideal way to use our results is using the posterior probability distributions of
our parameters, we have mentioned the parameter set of the maximum likelihood from our



Bayesian calibration in chapter 3.3 (0.34, 2.29 * 10, 3.25 * 107 for the original weight calibration
and 0.06, 9.58 * 10° and 5.54 * 107 for the calibration using original weights and no DSI).

1.2 Reviewer 2:
General comments

Laub and Colleagues present interesting ideas how DRIFTS spectra could be used to initialize and
calibrate soil organic matter models. What warrants more discussion is that with their results we
should put again more emphasis on the chemical recalcitrance hypothesis, i.e. that molecular
properties determine the persistence of organic matter in soils. The literature seems to disagree
(Schmidt et al., 2011). If we indeed assign the aromatic peak to slow cycling pools with a turnover
time of 426 years and the aliphatic peak to a fast cycling pool with 47 to 90 years, the authors would
contradict the synthesis of Schmidt et al. (2011) (their Figure 1, for example).

We do not think, that it contradicts Schmidt et al. (2011). Rather the DSI seems to point towards the
same direction as other measures of SOM quality, such as the amount of SOM in different aggregate
sizes and fractions. This was actually shown in our previous works (Demyan et al., 2012). We have to
keep in mind that the DSl is still only a proxy and dividing the whole continuum of SOM quality into
two “qualities” is a strong simplification of the real world. However, we think it seems to be a valid
one, especially when two pools SOM models are to be used, which anyway divide SOM into two
pools.

In my opinion, it would be interesting if the authors could at least discuss how their DRIFTS peaks
could be useful for the new class of microbial-mineral models such as Tang and Riley (2015) or
Sulman et al., (2014)

We think that DRIFTS could also be useful for those models, because of a good correlation of the DSI
to size density fractionation (Demyan et al., 2012), which is thought more representative of
structural protection mechanisms. We added one sentence about this in the discussion. As Tang and
Riley (2015) stated, it is not likely that CUE and Q10 are static (or the same for different complexities
of SOM), which to our opinion points to the need of reliable pool partitioning proxies. As we already
addressed thin issue in the manuscript (line 528ff), we did not add anything new.

Specific comments

The authors state that “the DRIFTS initialization of SOM pools significantly reduced model errors of
poor performing model runs assuming steady state, irrespective of the turnover rates used, but the
faster turnover parameter set fit better to all sites except Bad Lauchstadt. This suggests that soils
under long-term agricultural use were not necessarily at steady state.” In my opinion this statement
is not backed up by their results. The Bruun parameters with steady state assumption perform better
at Ultuna and Kraichgau + Swabian Jura (Table 4) for SOC stocks.

We agree that it was a bit oversimplified, so we altered the wording. For this statement we placed
more weight on the Kraichgau + Swabian Jura sites than Ultuna, because those consisted of six fields.
What we saw there was a significant improvement of the sensitive SMB-C, for both turnover rates,
while for SOC stocks, there were only significant differences in model error between turnover rates
but not between initializations.

The authors also state that “[...] two approaches [...] significantly reduced parameter uncertainty and
equifinality”. One of the approaches was the inclusion of DRIFTS. But looking at the violin plots in
Figure 5, only the humification efficiency seems to be better constrained. | suggest modifying the
statement towards this direction.



It is true, that humification efficiency was the parameter most seriously constrained by the DSI, also
the turnover of the slow carbon pool was stronger constrained (standard deviation of 9.3 * 10 with
DSl vs 12.3 * 10°® without DSI). We altered the wording in the sentence, to be more accurate.

| agree with the other reviewer, Sander Bruun, that analyzing the squared model errors with a
statistical model should at least be better explained.

This was done, see the comment to Sander Bruun, above.
The manuscript would benefit from a thorough spell and language check.

This will be done on the final reviewed version manuscript.



Comments of Reviewer 3: Lauric Cécillon

"Reservation on the rationale of the DRIFTS stability index of soil organic matter (SOM) in mineral
soil, and its use for partitioning the C kinetic pools of SOM dynamics models" This draft by Laub and
colleagues describes a method to divide soil organic matter(SOM) into fast and slow cycling C pools
in the soil organic module of the DAISY model. This method is based on the characterization of bulk
mineral soil samples using mid-infrared diffuse reflectance spectroscopy (DRIFTS). DRIFTS spectra of
bulk mineral soils are used to compute the “DRIFTS stability index” of SOM, defined as the ratio of
aliphatic C-H (2930 cm-1) to aromatic C=C (1620 cm-1) stretching vibrations.

The DRIFTS stability index was previously published by Demyan et al. (2012) in the European Journal
of Soil Science.

The development of routine and operational method to initialize the relative size of C kinetic pools
from SOM dynamics models is a very important and timely topic. Indeed, the accuracy of the
simulations of SOM evolution in mineral soils by current models is strongly questioned, notably
because a poor initialization of the size of C kinetic pools. The method proposed by Laub and
colleagues, using the DRIFTS stability index to divide soil organic matter (SOM) into fast and slow
cycling C pools in the soil organic module of the DAISY model is original and very interesting, and
their draft is well structured and written. However, | have a major concern regarding the rationale of
the DRIFTS stability index of SOM in mineral soil, and its use for partitioning the C kinetic pools of
SOM dynamics models. In this review, | will only discuss this concern, though this stimulating and
timely work would deserve many other comments, as highlighted by the two other reviewers of this
draft. First, | would like to come back on the justification of the DRIFTS stability index by Demyan and
colleagues in their 2012 paper. Demyan et al. (2012) searched for information related to SOM in
DRIFTS spectra of bulk mineral soils, and its link to SOM stability as assessed by a SOM density
fractionation scheme. In their search for SOM information in DRIFTS spectra of bulk mineral soils,
they discarded “wavenumbers of functional groups associated with non-organic compounds such as
silicates and alumino-iron oxides”. For them, “these criteria removed the peaks <1000 cm-1 and the
peaks at 1980, 1870, 1792 and 1390 cm-1", but not the 1620 cm-1 peak. For them, “the [DRIFTS]
peak at 1620 cm-1 was assigned to predominately aromatic C =C stretching and/or asymmetric—
COO-stretching but possibly also C = O vibrations”. Demyan et al. (2012) show that “a positive
relationship was found between the ratio of the peaks at 1620 and 2930 cm-1 (1620:2930) and the
ratio of stable C (sum of C contained in clay and >1.8 g cm-3 fractions) to labile C (amount of C in the
<1.8g cm-3 fraction) (R2=0.62, P = 0.012).” For the authors, this result justifies that the DRIFTS
stability index can reliably be “taken as an indicator of SOM stability” (Demyan et al., 2012).

We originally stated (line 369ff) that the peaks were selected in order to have limited mineral
interference (e.g. Demyan et al., 2012). In their original publication only soils from the same field
experiment with the same texture and mineral background were taken as additional measure of
caution. As this approach showed potential for the site at Bad Lauchstadt, we hypothesized that
this could justify evaluating the use of the DRIFTS 1620:2930 ratio as a more general stability
index. We are aware of the mineral signal in the vicinity of the 1620 cm™ peak and this fact was
also acknowledged in the original publication of Demyan et al. (2012). By carefully selecting the
integration limits, it was possible to minimize the mineral interference and get a general
applicable stability index (see evidence below). In the current study, we aimed to combine
several sites with differing textures and mineralogies to have several test cases. The reason for
the statistical analysis of the model error was exactly that we wanted to test whether the DSl is a
useful proxy across a range of sites. We state some further reasoning below why we think the



1620 cm™ peak and the specific peak limits that we have used (1660 — 1580 cm™) is
representative of aromatic carbon and what was changed in the main text.

However, a short look at the literature on DRIFTS of soils show that the 1620 cm-1 peak in bulk
mineral soils cannot be exclusively assigned to absorption from SOM functional groups (C=CorC=
0) as claimed by Demyan et al. 2012. | will only cite two important papers: Nguyen et al. (1991) and
Reeves (2012).Nguyen and colleagues, based on DRIFTS spectra of pure mineral compounds and
various soil samples demonstrated that “The DRIFT spectra of soils containing organic matter show
considerable overlap of the silicate combination bands in the 2000-1600 cm-1 region”. | provide here
the Figure 1 modified from Nguyen et al. (1991) showing the DRIFTS spectra of quartz (pure or
diluted in KBr), highlighting the strong absorption of quartz at 1620 cm-1 (for the DRIFT spectra of
pure quartz). They suggested that “Spectral subtraction techniques or prior chemical treatment may
thus be required to resolve these peaks.” (Nguyen et al., 1991).

Reeves (2012) based on works similar than Nguyen et al. (1991), concluded that “With the exception
of the bands at 2930and 2850 cm-1 due to aliphatic CH [when the soil does not contain carbonates,
added by me] and the large OH band spanning most of the region between 2700 and 3500cm-1,
there is little that is obviously due to OM in the soil spectra”. Regarding the 1620cm-1 DRIFTS peak,
he suggested, following Nguyen et al. (1991) that “the region between 1750-1600 cm-1 can be
interpreted, despite the presence of strong silica bands, because silica can be ash subtracted quite
well”. But he also concluded his paper with this warning regarding spectral subtraction: “It will detect
not only whether your sample is changed by 0.1% at some point in time, but will also seem to detect
the phases of the moon and the mood you were in while you were measuring the data.”(Hirschfeld,
1984; cited by Reeves, 2012).1 deduce from this short literature survey that in their 2012 paper,
Demyan et al. incorrectly assigned to SOM compounds (C = C, C = O) exclusively the 1620 cm-1
DRIFTS peak of bulk mineral soils, as this peak is also due to mineral compounds such as quartz (but
also to water in some phyllosilicates).

It is not correct that we claimed an “exclusive” assignment of the 1620 cm™ peak to SOM
functional groups, but rather that by carefully selected integration limits, the delimited area of
the 1620 cm™ is mostly representative of those organic groups.

In fact, the different spectra of soils before and after ashing or pyrolysis (as the example below
taken from the supplementary material of Nkwain et al. (2018)) demonstrate that a considerable
part of the delimited 1620 cm™ peak is lost. Demyan et al. (2013) found a decrease in absorbance
intensity at 1620 cm™ with maximum losses occurring between 400-500°C (Figure S8, Left) for
bulk soils. In the same study separated fractions were also analyzed, with a similar 1620 cm™®
peak loss found for particulate organic matter (POM) that was assumed to be mineral free. These
consistent findings of the organic contribution to the 1620 cm™ peak from both rapid pyrolysis
and in situ thermal monitoring of soil samples up to 700 °C where also found when pretreating
bulk soil or fractions with NaOCI (Yeasmin et al., 2017).



& 0151 1
c
=
8 0.10 - (b)
-
© (a) L
=
O 0.05
0
o)
< 1 |
0.00 -
4000 3000 2000 1000

Wavenumber (cm'1)

Figure S7. DRIFTS spectra of (a) unpyrolyzed soil and (b) pyrolyzed soil from Bad Lauchstidt (FYM). From (Nkwain
et al., 2018)
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Figure S8 Left: (a) Change of C-H (2930 cm™ ) and (b) C = O/C = C (1620 cm™! ) vibrations with heating as measured
by in situT DRIFTS of bulk soil samples from Bad Lauchstadt, ” Kraichgau, and Swabian Alb. Right: (a) Change of
C-H (2930 cm™ ) and (b) C = O/C = C (1620 cm™ ) vibrations measured in bulk soil and fractions of soils from
Kraichgau and Swabian Alb (Demyan et al., 2013). *POM-particulate organic matter, Sa+A-sand and stable
aggregates, Si+C-silt and clay, rSOC-resistant soil organic carbon.

We would like to draw the attention to the fact that by a careful selection of the integration
limits, we only take the top of the larger 1620 cm™ peak (which in our samples made up 15 to
33% of the whole peak area). As the three examples above demonstrate, this is mostly the part,



which is removed by burning, pyrolyzing or NaOCI treatment. This is the same principle as used
for the aliphatic peak area at 2930 cm™, which is on top of a larger OH peak and to our
knowledge, there is little debate about using this approach for the 2930 cm™. See the picture
below for typical peak areas from our samples.
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While we certainly do not claim that we can completely eliminate mineral interference, we think
that the specifically delimited 1620 cm™ peak that we use mostly consists of aromatic carbon i.e.
the part of the peak that is selected is the part that disappears with the mentioned methods of
SOC destruction. The finding, that it really is a meaningful proxy for carbon quality or stability is
corroborated by the strong correlation (0.84) between the DSI and the percent of CPsoc, as was
suggested to be computed by Lauric (new Figure S1 and comment below). As we recently
demonstrated (Laub et al., 2019), and further found in the current study, the 2930 cm™ peak is
also subject to interference even in non-carbonate containing soils. This is mostly by water, which
can partly be removed by higher drying temperatures. So, in summary we believe that there is
sufficient evidence that, even though there is noise in the DSI at both peaks, DSl is still a
meaningful and useful proxy, which is highly correlated to other measures of SOC composition
but has the advantage of being cost/time effective to measure.

To further illustrate how the 1620 cm-1 DRIFTS peak of bulk mineral soil is poorly related to SOM
compounds, | provide the Figure 2 based on published and unpublished data from the paper of Barré
et al. (2016) in Biogeochemistry showing the non-parametric Spearman’s Rho coefficient of DRIFTS
spectra from soils coming from the Ultuna Fame trial, one site that was used in this reviewed work by
Laub and colleagues, with SOC concentration. In Figure 2, we clearly see the strong and positive Rho
coefficient of the 2900 cm-1 spectral region with SOC concentration while the 1620 cm-1spectral
region show a Rho coefficient with SOC concentration close to 0, suggesting (though not
demonstrating) that other compounds that organic matter absorb energy in the 1620 cm-1 spectral
region of DRIFTS spectra, when scanning bulk mineral soils. From the above-mentioned information, |
therefore question the rationale of the DRIFTS stability index of soil organic matter (SOM) in mineral
soil samples.

The result is strongly affected by the delineation of the peak area. We thus agree if the whole
1620 cm-1 peak area (ca. 1755-1555 cm?) is taken results may not be reliable.



My interpretation is that this index is dividing a quantity that is highly correlated to SOC
concentration (the 2900 cm-1 spectral region), by a quantity that is weakly changing when SOC
concentration is modified (the 1620 cm-1 spectral region, provided a similar mineral composition).
The DRIFTS stability index may thus show an increased SOC lability when SOC concentration is
increased. | thus hypothesize that the DRIFTS stability index, as proposed by Demyan et al. (2012)
and Laub and colleagues in this reviewed draft, may provide some information that is basically the
same (though with added noise) than a variable much simpler than their index: total SOC
concentration.

We agree with the interpretation that the DSl is “dividing a quantity that is highly correlated to
SOC concentration by a quantity that is weakly changing when SOC concentration is modified”,
and as we demonstrate above, both quantities are linked to forms of SOC. The fact that the
selected subregion of the 1620 cm™ peak does not change strongly with SOC content, while, as
destructive techniques demonstrate, it is still consisting mostly of aromatic carbon compounds
(according to our integration limits), is exactly the reason why it is a very suitable proxy for slow
turnover SOC.

It is well documented that an increase in SOC concentration is associated with an increased in the
labile/stable SOC ratio, and all proposed indicators of SOM stability should be compared to SOC
concentration, the most simple and straightforward indicator of SOM stability (though not very
accurate).

What is the Spearman’s Rho coefficient of the DRIFTS stability index with SOC concentration in the
dataset of Laub and colleagues?

We calculated the Pearson’s correlation coefficient -0.57 and Spearman’s rank correlation
coefficient to be -0.68 between OC content and the DSI (as in formula 2) for the whole dataset
(n=50). See the plot below
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We think, that the nonlinearity of the relationship between the DSI and the SOC content, as
indicated by a higher rank correlation coefficient, points towards the possibility, that as SOC
increases, most of the carbon is added to the fast turnover pool and that this could potentially be
lost rather fast again.

| suggest that the authors (rather than using the spectral subtraction technique suggested by Nguyen
et al., 1991 or Reeves, 2012), (i) test a soil dilution in KBr to reduce mineral artifacts in the 1620 cm-1
spectral region of neat DRIFTS, (ii) or test attenuated total reflectance mid-infrared spectroscopy
(MIR-ATR) as an alternative technique.



Dilution with KBr (1:3 and 1:100) had been tested by Demyan et al. (2012), mainly to determine
whether there was specular reflectance in the 1159 cm™ region, but was not found to yield better
performances for deriving the DSI. Using neat samples avoids hygroscopic KBr which would have
the potential to absorb water interfering with the 2930 cm™ and 1620 cm™ peaks and other non-
desired interactions with the sample. We think that the major advantage of the DSI and DRIFTS
PLSR is that it is possible to use undiluted bulk soil samples, and that it is nondestructive (cost
effective and other analysis can be done with the same samples). We see the major advantage
also in large scale applications, such as regional simulations, where other techniques are either
too expensive or time consuming.

Indeed, MIR-ATR is a technique where the 1620 cm-1 peak region seems to be much less affected by
quartz and other minerals that neat DRIFT signal, as illustrated in Figure 3 (Cécillon, Unpublished
data).

From our understanding, the issue with ATR usually is that the signal throughput to the detector
is weaker, thus the overall spectral features stand out less and are dominated by the silica
vibrations at <1500 cm, which is also shown in Figure 3 of Lauric Cécillon’s comment. The
maximum absorbance in the DSI wavenumbers is almost an order of magnitude lower as
compared to DRIFTS. If you zoom in on the figure, you can also see a small peak probably around
1620 cm™ in the silica sample, so it seems not to be free of mineral interference.

It might be possible that MIR-ATR is an alternative to DRIFTS, if it can reduce mineral interference
at the 1620 cm™?, but given the less strong signal of organic peaks it might be of limited use in low
C soils. It could be worthwhile to do further research towards that direction and we think that
this could be the content of another future publication.

Finally, as Laub and colleagues benefit from soil samples from two long-term bare fallow sites in
Europe, | suggest that they compute the Spearman’s Rho coefficient of their DRIFTS stability index
with the proportion of centennially persistent soil organic carbon(CPsoc), that may be derived from
the SOC evolution in the bare fallow plots, as shown by Cécillon et al. (2018).

A higher Spearman’s rho coefficient of the DRIFTS stability index with CPsoc than the Spearman’s rho
coefficient of SOC concentration with CP-soc, would suggest an added value of the index compared
to SOC concentration, in its current state.

Thanks for the discussion on this comment. We have now computed %CPsoc with the value of
6.95 g kg CPsoc from Ultuna derived by Cécillon et al. (2018) and 16.0 g kg* CPsoc from Franko
and Merbach (2017) for the bare fallow data we have available. As shown below, when
combining the two datasets of Bad Lauchstadt and Ultuna the correlation between SOC and
CPsoc across sites is poor. This shows that SOC alone is not a sufficient indicator for SOC quality.
The correlation between the DSI and CPsoc on the other hand is quite strong (0.84), which
according to Laurics comment is a strong indicator of its added value.

We think that it would be highly interesting to test this for other long-term bare fallows, where
CPsoc could be mathematically derived (needing probably 30+ years of fallow) and this might
help to optimize the DSI further. We think that a future publication could go into this direction
and are excited about this finding.
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As the reasoning behind CPsoc comes from RothC type models, which assume that there is only
one actively decomposing SOC pool and another passive or inert SOC pool which is NOT subject
to decomposition, this could mean that the DSI might also be useful for these types of models. In
this study, we worked with DAISY, which is a CENTURY type model, that has a fast and slow SOC
pool, both subjected to decomposition. We think that this is in agreement with the principle
behind DRIFTS, and that microorganisms primarily target high energy aliphatic SOC, but aromatic
SOC is also decomposed at a much slower rate, probably as a byproduct of enzyme release.

Overall, we very much acknowledge the issue of mineral interference addressed by the reviewer
(see line 369 in the original manuscript) and the new addition:

information on SOM quality (Giacometti et al . 2013; Margenot et al., 2015). Desssan et al (2010 While both

peaks are subject to interference (2930 cm'! mainly from water and 1620 cn! mainly from minerals (Nguven et

al._ 1991)). 1t should be possible to limit the interference using subregions of the peaks with carefully selected

85 integration limits, only selecting the specific peak area of interest Indeed. Demvan et al. (2012) found

aliphatiesaliphatic compounds to be enriched under long-term farmyard manure application and depleted in
mineral fertilizer or control treatments, and showed that the ratic of the 2030 cm™ 1o 1620 em™ peales had a

Hence we hypothesisedratios of the 1620 cm! to 2930 cm! peak had a significant positive correlation with the

Q0 ratio of stable to labile SOM obtained by size and density fractionation. It was further corroborated that the specific

mtegration limits of the peaks they used, which mainly selected the top subregion of the peak areas_ are lost during

combustion (Demvan et al., 2013). Hence, we hypothesized that the ratio of the aliphatic to aromatic DRIFTS

We have addressed this issue mainly by carefully delaminating the integration area and now have
more clearly pointed to this in the methods:
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peak areas of the four subsamples averaged after that. The local baselines were drawn between the intersection of
the spectra and a vertical line at the integration limits (3010 — 2800 cm™ for the aliphatic C-H strechins 1660 —

1580 em* for arematic C=Cstreching vibrations)—stretching, 1660 — 1580 cm™! for aromatic C=C stretching
vibrations). Example spectra and integrated peak areas are displaved in Figure S 1. These carefully selected

integration limits were critical to reducing signal mterference from water and minerals. Particularly, the mineral

interference close to the 1620 cm! peak makes accurate selection of integration limits necessary, so that only its

top part (assumed to consist mostly of aromatic carbon) 1s selected. In the case of our samples_ the selected specific

peak area of the 1620 cm! peak accounted for approximately 10 to 30 % of the total peak area (ca. 1755-1555 em-

1), and roughly corresponds to the peak portion that is lost with combustion or chemical oxidation (Demyan et al.

2013; Yeasmin et al.. 2017). A strong correlation between the DSI and the percentage of centenmially persistent

S0C from Cécillon et al.. 2018; and Franko and Merbach_ 2017), showed that the DSI selected in this manner did

in fact explain a large portion of the SOC quality change across sites (Figure S 2).

We have further added a more detailed discussion on open questions of the DSl in the new
manuscript version and finalize the section with the limitation that DSI should be tested before
used with different soil types.
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Compared with the other proxies for SOM quality discussed above, the measurements by DRIFTS are inexpensive,
relatively simple, and the equipment of the same manufacturer is standardized. This should also constrain
variability between different laboratories and be attractive for large-scale applications with large sample size fesr

axample-tonbialize symulations-at the ressenal seale-numbers_ for example to imtialize simulations at the regional

scale. However, for standardization of the DSI for model imtialization one needs to address how the type of

spectrometer (e detector type) influences the spectra_ 1f water and muneral interferences (Nouyven et al . 1991) in

the spectra can be further reduced and if a mathematical standardization of the spectra and DSI (across instruments

and water contents) is possible. While a complete elimination of mineral interference 1s not possible, a careful

selection of integration limits and the use of a local baseline minimizes mineral interference of DRIFS spectra

from bulk soils. This mostly selects the top part of the 1620 cm™! peak, which corresponds to the part that is reduced
or completely lost when SOC 15 destroved (Demvan et al., 2013; Yeasmun et al _ 2017). Other approaches such as
spectral subtraction of samples or HF destruction of minerals prior DRIFTS analysis have been developed

1n the attempt to obtain spectra of pure SOC. All are rather labor intensive and still produce artifacts_ as it 1s not

possible to destroy only the minerals or only the SOC without altering the respective other fraction (Yeasmin et

al.. 2017). Hence_ we think that the selected imntegration limits might represent at this point the most feasible option

for obtaining a robust and cost-effective proxy of SOC quality for modeling. The strong correlation of DSI and

centenmially persistent SOC as well as the model results of this study seem to corroborate this. The method of DSI

estimation might be improved by a study of the best integration limits optimizing the fit of the DSI and centenmally
persistent SOC. which would require more bare fallow experiments than in this study. It could be worthwhile to

use a purely mineral peak to correct for the mineral interference at 1620 cm! similar to what was done to correct

for carbonates in the 2930 cm! peak by Mirzacitalarposhti et al. (2016). The recent coupling of pyrolysis with

In the quest to find measurable fractions for model pools, we think that the DSl is a useful proxy
(carefully selected integration limits, nonlinear relation with SOC, evidence that our 1620 cm™ is
mostly from carbon, drying at 105 °C to reduce water interference at 2930 cm™). We first and

foremost consider the DSI as a potential proxy to help initializing two pool SOM models, and our



question was, whether it was useful for this purpose or not, compared to steady state
initializations. We think the value of this publication is to establish that the DSI has the potential
to be a measurable fraction as a model pool proxy and thereby reducing model uncertainty, and
show this to the scientific community. As any research this opens new questions which could lead
to further development and refinement of the DSI. We think, that our study could demonstrate
the DSI’s usefulness and that it might be worthwhile to put further efforts and research towards
its validation, use or optimization, especially because of its ease of use and inexpensive nature.
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Abstract. The initialization of soil organic matter (SOM) turnover models has been a challenge for decades.
Instead of using laborious and error prone size-density fractionation for SOM pool partitioning, we propose the
inexpensivea cost effective, rapid, and non-destructive Diffuse reflectance mid infrared Fourier transform
spectroscopy (DRIFTS) technique on bulk soil samples to gain information on SOM pool partitioning from
theinfrared spectra. Specifically, the DRIFTS stability index, defined as the ratio of aliphatic C-H (2930 cm™) to
aromatic C=C (1620 cm'") stretching vibrations, was used to divide SOM into fast and slow cycling pools in the
soil organic module of the DAISY model. Long-term bare fallow plots from Bad Lauchstidt (Chernozem, 25
years) and the Ultuna frame trial in Sweden (Cambisol, 50 years) were combined with bare fallow plots of 7 years
duration #=from the Kraichgau and Swabian Jura region in Southwest Germany (Luvisols). All fields had been in
agricultural use for centuries before fallow establishment, so classical theory would suggest an initial steady state
of SOM, which was hence used to compare the performance of DAISY initializations against the newly established
DRIFTS stability index. The test was done using two different published parameter sets (2.7-* * 10° d!, 1.4
# % 10*d", 0.1 compared to 4.3 * 107 d!, 1.4 * 10 d", 0.3 for the turnover rates of slow peoland fast pool

turnover rates and humification efficiency, respectively). The DRIFTS initialization of SOM pools significantly

reduced DAISY model errorsof S pertor o =lyunserror (for soil total organic and microbial carbon) for

cases where assuming steady state; led to poor model performance. This was irrespective of the turnover rates

used, but the faster turnover parameter set fitfitted better to all sites except Bad Lauchstidt—Fhis. which suggests

that soils under long-term agricultural use were not necessarily at steady state. A Bayesian calibration was applied

1
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in a next step to identify the best-fitting turnover rates for the DRIFTS stability index in DAISY, both for each site
individually and for a combination of all sites. The two approaches which significantly reduced parameter

uncertainty and equifinality were: 1) the addition of the

=dphysicochemical DRIFTS

stability index; (for humification and slow SOM turnover), and 2) combining several sites into one Bayesian

calibration, as derived turnover rates can be strongly site specific. The combination of all four sites showed that
SOM is likely lost at relatively fast turnover rates with the -95 % credibility intervals of the half-lifc of slow SOM
pools-hatitite ranging from 278 to 1095 years, with 426 years as a value of highest probability density. The
credibility intervals of this study were consistent with several recently published Bayesian calibrations of similar
two-pool SOM models, i.c. all turnover rates were considerably faster than earlier sodelsmodel calibrations

suggested. It is therefore likely that published turnover rates understimateunderestimate the potential loss of SOM.

1 Introduction

Process-based models of plant-soil ecosystems are used from plot torecienaland global scales as tools of research
and to support policy decisions (Campbell and Paustian, 2015). Theln soil organic matter (SOM) #1-sueh-models,
SOM is traditionally divided into several pools, representing fast; and slow and-forsome-modelscycling or even
inert SOM (Hansen et al., 1990; Parton et al., 1993). Common methods of SOM pool initialization assurmercquire

that one assumes steady state conditions or performincludes a model spin-up run. In thea model spin-up run the

user attempts to simulate-the SOM dynamics according to history and carbon inputs for the decades to several

millennia prior to the period of actual interest (e.g. O’Leary et al., 2016). Theoretically

if the SOM pools are at steady state, models can be initialized, i.e. pool sizes calculated, either by simple equations

~—(e.g. DAISY. Hansen et al., 2012) or by

DAY S = » S £

inverse modeling (RothC, Coleman and Jenkinson, 1996). In bethmost cases, data is insufficient to guarantee that

the assumptions of SOM steady state or long-term knewledge of land use history and inputs are correct, given the

lack of data of residue/manure input and weather datavariability for the required long-term timescales (> 200

years)._to millennia). Hence, while the approach should work in theory, the history of a site is usually not

sufficiently known for the timescales that SOM needs to equilibrize. Therefore, the simulation of past carbon

inputs and the assumption of steady state are a rough approximation at best. ftHence, it is-therefore critical to find
measurable proxies such as soil size density fractionation or infrared spectra, that can provide information on the

quality of SOM and hence help in SOM pool initialization (Sohi et al., 2001).

As was shown by Zimmermann et al. (2007), and recently confirmed by Herbst et al. (2018), a link exists between
soil fractions obtained by sizea#é-/density fractionation and fast and slow cycling SOM pools. However, Poeplau
et al. (2013) showed, that the same fractionation protocol led to considerably different results at six different
laboratories which regularly applied the technique (coefficient of variation from 14 to 138 %). The resulting
differences in the model initializations for simulated SOM loss after 40 years of fallow, leadled to differences in
SOM losses that were to up to 30 % of initial SOM. Hence there is a need for a reproducible proxy for SOM pool

initiation.

We hypethesisedhypothesized that such a proxy could be ebtaintedobtained from inexpensive, high-throughput
Diffuse reflectance mid infrared Fourier transform spectroscopy (DRIFTS). DRIFTS can provide information on

SOM quality, but also on texture and even mineralogy (Nocita et al., 2015; Tinti et al., 2015). The interaction of
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mid-infrared energy with molecular bonds in soil preduceproduces typical vibrational peaks of absorbance at
distinct wavelengths;which. These can be linked to different bonds of carbon, nitegesnnitrogen, silicon and other
elements. The vibrational peaks which relate to carbon of different complexities, such as the aliphatic C-H
strechingstretching peak around 2930 cm™ and the aromatic C=C strechingstretching peak at 1620 cm™, provide
information on SOM quality (Giacometti et al., 2013; Margenot et al., 2015). Demyan-et-al(20412)While both

peaks are subject to interference (2930 cm’! mainly from water and 1620 cm™! mainly from minerals (Nguyen et

al., 1991)). it should be possible to limit the interference using subregions of the peaks with carefully selected

integration limits, only selecting the specific peak area of interest. Indeed, Demyan et al. (2012) found

aliphatiesaliphatic compounds to be enriched under long-term farmyard manure application and depleted in
mineral fertilizer or control treatments, and showed that the ratio-of the 2930-em™ to-1620-em™ peaks had-a

Heneewe -hypothesisedratios of the 1620 cm™ to 2930 cm™! peak had a significant positive correlation with the

ratio of stable to labile SOM obtained by size and density fractionation. It was further corroborated that the specific

integration limits of the peaks they used, which mainly selected the top subregion of the peak areas, are lost during

combustion (Demyan et al., 2013). Hence, we hypothesized that the ratio of the aliphatic to aromatic DRIFTS

peaks can be used as proxy for SOM pool initialization, thus providing a major improvement over assuming steady
state SOM. This ratio of aliphatic to aromatic peaks, will be eatledreferred to as the DRIFTS stability index (DSI)
hereafter. Testing, improvement and proper use of the DSI was the central topic of this study. Recent findings have
highlighted that the residual water content in bulk soil samples after drying at different temperatures affects the
DSI considerably. Water kas-both-an-absorbance redueinsimpact-enaffects significant parts of the whelemid-
infrared spectra and i+-doesovershadeparticularly influences the 2930 and 1620 cm™ peakpeaks (Laub et al., 2019).

For this reason, we also tested how the drying temperature prior to DRIFTS measurements affeetaffects the use of

the DSI proxy, using 32, 65 and 105°C as pretreatment temperatures.

WeTo test our hypotheses about DSI performance, we used the DAISY SOM model (Hansen et al., 2012) to test

5 se-. DAISY is a commonly used SOM model (Campbell and Paustian,
2015) with a typical multi-pool structure, which includes two soil microbial biomass pools, as well as two SOM
pools (fast and slow) With first-order turnover kinetics and a humification efficiency valuesparameter (Figure

). the DAISY structure is similar to other widely used

SOM models such as CENTURY (Parton et al., 1993) or ICBM (Andrén and Kitterer, 1997). lu-the current study

entyModel SOM pool initialization using the DSI was compared to initialization via a steady state assumption

with different published turnover rates. For this comparison bare fallow experiments from a range of different sites

and time scales from one to five decades were included. Bare fallow experiments were used to avoid the

complicationadded complexity caused by the conversion of different plant compounds into SOM of
differentvarying stabilities :

s-during decomposition.

As SOM pool sizes and turnover rates are closely linked, it could also be necessary to recalibrate DAISY
parameters for the use of the DSI. Therefore, a Bayesian calibration of turnover rates was desne-in-orderused to
adjust DAISY turnover rates to the pool division by-the-DSkand the-changsetime dynamics of the measured DSI

throughout the fallow period. Thus, the DAISY parameterization i=was evaluated with respect to equifinality and

3
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uncertainty as well as dependence on model structure-—was-evaluated. The final hypothesis was, that through a
Bayesian calibration using the DSI, DAISY pools will correspond to measured, i.e. physiochemically meaningful
fractions thus reducing uncertainty. The posterior credibility intervals and optima of turnover rates should

correspond to the results of other Bayesian calibrations done for medelswith-similarsimilarly structured two-pool

resforrelatively-stable-SO! smodels. If such relations could be confirmed, this would point towards

fundamental insights about the intrinsic speed-o£- SOM turnover in temperate agroecosystems.

2 Material and Methods

2.1  Study sites and data used for modellingmodeling
We-used-datasetsDatascts originating from bare fallow pletstreatments of four different sites with different
observationalexperimental durations and measurement frequencies—Samples—of-the— were used in this study.

Topsoil (0-20 cm-tepseil) samples were available from the long-term experiments of (a) the Ultuna Frame trial
(established in 1956, with additional data from 1979, 1995 and 2005; (Kitterer et al., 2011), four replicates), and
(b) the Bad Lauchstiddt Extreme Farmyard Manure Experiment (established in 1983, with additional data from
2001, 2004 and 2008, two replicates)
(https://www.ufz.de/index.php?de=37008, date accessed 10.01.2019).

Additional data from two medium-term experiments (2009 until 2016) from t+e-Southwest German regions were
available. i.c. of (c) the Kraichgau and (d) the Swabian Jura, representing different climatic and geological
conditions. The bare fallow plots (645 x 5 m size) in the Southwest Germany experiments were established within
agricultural fields (Ali et al., 2015) and had monthly to yearly measurement frequencies of samplings-of-thetop

soil samples taken from 0-30 cm. In both regions, three replicates of bare fallow plots were established in each of

three different fields. Further details on all the sites can be found in Table 1. All sites had been under cultivation

for at least several hundred years prior to establishing the bare fallow plots, which would suggest that steady state

could be assumed.

Bulk soil samples from the start and throughout the simulation period of all experiments were analyzed for total
organic carbon and DRIFTS spectra; samples from the Kraichgau and Swabian Jura sites were additionally
analysedanalyzed for soil microbial biomass carbon (SMB-C). After sampling, all bulk soil samples (except for
SMB-C) were passed through a 2 mm sieve, then air dried, ball milled (for two minutes) to powder and stored
until further analysis. TheirseilSoil organic carbon (SOC) content was analyzed with a Vario Max CNS (Elementar

Analysensysteme GmbH, Hanau, Germany). Soil samples for DRIFTS analysis were obtained after 24 hr drying

at 32, 65 and 105°C. The dried samples were kept in a desiccator until measurement. DRIFTS spectra of bulk soil

samples were-obtained(with 4

sfour subsamples per sample) aff y
and-H05°Cwere obtained using an HTS-XT microplate extension, mounted to a Tensor-27 spectrometer using the

processing software OPUS 7.5 (equipment and software from Bruker Optik GmbH, Ettlingen, Germany). The
details=a/A potassium bromide (KBr) beam splitter with a nitrogen cooled HTS-XT reflection detector was used
to record spectra in the mid infrared range (4000 — 400 cm');-each). Each spectrum was a combination of 16

co-added scans with a 4 ¢! resolution-4-em:. Spectra were recorded irand then converted to absorbance units

(AU); the acquisition mode “double-sided, forward-backward” and the apodization function Blackman-Harris-3

were used. —After a-baseline correction and &

vector normalization of the spectra, peak areas of interest were obtained as-the-intesral-en-top-efby integration

4
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using a local baseline with the integration limits of Demsyan-etal (2012 andDemyan et al. (2012) and integrated
peak areas of the four subsamples averaged after that. The local baselines were drawn between the intersection of
the spectra and a vertical line at the integration limits (3010 — 2800 cm! for the aliphatic C-H streching, 1660—
1580-em™

sy—stretching, 1660 1580 cm™! for aromatic C=C stretching

vibrations). Example spectra and integrated peak areas are displayed in Figure S 1. These carefully selected

integration limits were critical to reducing signal interference from water and minerals. Particularly, the mineral

interference close to the 1620 cm™' peak makes accurate selection of integration limits necessary, so that only its

top part (assumed to consist mostly of aromatic carbon) is selected. In the case of our samples, the selected specific

peak area of the 1620 cm™! peak accounted for approximately 10 to 30 % of the total peak area (ca. 1755-1555 cm

1, and roughly corresponds to the peak portion that is lost with combustion or chemical oxidation (Demyan et al.,

2013; Yeasmin et al., 2017). A strong correlation between the DSI and the percentage of centennially persistent

SOC (r=0.84) from the combined long term experiments used in this study (using values of centennially persistent

SOC from Cécillon et al., 2018; and Franko and Merbach, 2017). showed that the DSI selected in this manner did

in fact explain a large portion of the SOC quality change across sites (Figure S 2).

Additionally, soils from the experiments in Kraichgau and Swabian Jura were analyzed for SMB-C using the
chloroform fumigation extraction method (Joergensen and Mueller, 1996). Briefly, field moist samples were

transported to the lab in a cooler, with extractions beginning the-rext-daywithin 24 hours after field sampling and

the final SMB-C values corrected to an oven-dried (105° C) basis. The SMB-C was measured two to four times
throughout the whole year. Stocks of SOC and SMB-C for the-medelledlayers0-30 cm were calculated by
multiplying the percentage of SOC and SMB-C with the bulk density and depth-of the-modelledsampled layer

thickness (Table 13.). respectively. Bulk density was assumed constant for Bad Lauchstddt, Kraichgau and

Swabian Jura, while for Ultuna the initial 1.44 Vg m~ (Kirchmann et al., 2004) in the beginning was used for all

but the last measurement, where 1.43 Mg m™ (Kitterer et al., 2011) was used. Due to low stenecoarse fragment

contents (<5 %_for Swabian Jura 3, <2 % for Swabian Jura 1 and <1 % for the other six sites), and because
changes in stone content throughout the simulation periods are unlikely, no correction for stenecoarse fragment

content was done.

2.2 Description of the simulation model: DAISY Expert-N 5.0
All simulations were conducted using the DAISY SOM model (Hansen et al., 2012) integrated into the Expert-N
5.0 medelhinemodeling framework. Expert-N 5.0 is-a-flexi e fre otk —which-allows a wide range

of soil, plant and water models to be combined and interchanged (Heinlein et al., 2017; Klein et al., 2017; Klein,

2018). tExpert-N can be compiled both for Windows and Linux systems. A detailed description of the DAISY
SOM submodule as it was implemented into the Expert-N 5.0 framework can be found in Mueller et al. (1997). A
graphical representation of the DAISY pools considered in this study is shown in Figure 1. The additional modules

available for selection in the Expert-N 5.0 framework are-fromconsist of a ransesclection of established models

for all simulated processes in the soil-plant continuum. The evaporation, ground heat, net radiation, and emissivity
were simulated according to the Penman-Monteith equation (Monteith, 1976). Water flow through the soil profile
was simulated by the Hydrus-flow module (van Genuchten, 1982) with the hydraulic functions according to
Mualem (1976). Heat transfer through the soil profile was simulated with the DAISY heat module (Hansen et al.,

1990). In the first step of the DSI evaluation, simulations were conducted with two established parameter sets for



DAISY SOM. The first set was from Mueller et al. (1997) and was a modification of the original parameter set of
turnover rates—in—Jensen—et-al—(1997) reported by Jensen et al. (1997). The second set was established after

calibrations made by Bruun et al. (2003) using the Askov Long-Term Experiments-an¢, in which they introduced
considerable changes i#:to the turnover rates of the slow pool and the humification efficiency. An equation

200 developed by Bruun and Jensen (2002) was used to compute the sizesproportions of the slow and fast cycling
SOM pools atsteady-state-for both parameter sets at steady state (see next section). Atl-the parametersParameters
of both sets are displayedgiven in Table 2.

o >sFor simulating soil temperature and moisture in Expert-N, daily averages of radiation,

temperature, precipitation, relative humidity and wind speed: are neededfor Expert-N-simulations. For the

205 long-term experiments they were extracted from the nearest weather station with complete data (Ultuna source:
Swedish Agricultural University (SLU), ECA Station ID #5506, Elevation: 15 m, Lat: 59.8100 N, Long: 17.6500
E; Bad Lauchstddt source: Deutsche Wetter Dienst (DWD) Station #2932, Elevation: 131 m, Lat: 51.4348 N,
Long: 12.2396 E, Locality name: Leipzig/Halle). For the fields of the Kraichgau and Swabian Jura, the driving
variables were measured by weather stations installed next to eddy covariance stations located at the center of each
210 field. Details on the measurements, instrumentation as well as gap filling methods of those eddy covariance

weather stations are described byin Wizemann et al. (2015).

2.3 SOM pool initializations with the DRIFTS stability index and at steady state

Measured SMB-C was divided into the slow and fast cycling microbial pools, with 10 % in the fast (8 % in Mueller

et al., 1998) and 90 % in the slow pool. The remainingpart-of carbon (difference between total SOC and SMB-C)
215 was divided either by the DRIFTS stability index (DSI), or according to the steady state assumption. For runs with

theusing a steady state assumption. the equation of Bruun and Jensen (2002) was used, which directly

cemputesestimates the fraction of SOM in the slow pool at steady state from the model parameters:

. 1 . ) .
slow SOM fraction = T Teowsow (1) | hat formatiert: Englisch (Vereinigte Staaten)
fsom_slow* kKsoM_fast

with ksom siow and ksour s representing the turnover (per day) of the slow and fast SOM pools respectively, and

220 fsom siowrepresenting the amountfraction of fast SOM directed towards the slow SOM pool at turnover of fast SOM

(humification efficiency). This resulted in 83 % of SOM being in the slow pool for the original DAISY turnover
rates and 49 % in the slow pool for the Bruun et al. (2003) turnover rates (Table 2). For the DSI initialization, the

ameuntiraction of SOM in the slow pool was calculated with the formula

slow SOM fraction = __ At620em (‘2) /{ hat formatiert: Englisch (Vereinigte Staaten)

A1620cm~1+A2930cm™1

225 With A2930 cm™ and A1620 cm™! being the extracted peak areasspecific peak area of the aliphatic and aromatic

peaks (described in section 2.1). The remaining carbon was allocated to the fast pool. As was mentioned before,
three different data inputs for the DSI were used, wwithobtained at drying temperatures of 32, 65 and 105°C, in
order to test which drying temperature isderived the best proxy for medellingmodeling. An example of the change
of DRIFTS spectra occurring after several years of bare fallow can be found in Figure 2. Each-ofthe threeAll

230 DSI model initializations waswere then run with both published sets of model parameters. Steady state
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initializations using Equation 1 were only conducted with the corresponding parameter set from which they were

calculated.

2.4  Statistical evaluation of model performance
Statistical analysis was performed with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). To compare different

model initializations, a statistical analysis of squared model errors (SME) was conducted:

SME, = (obs, — pred,)* () I /[ hat formatiert: Englisch (Vereinigte Staaten)

with obs;, being the observed value, pred, the predicted value and x the simulated variable of interest. A linear

mixed model with SME, as response was then used to test for significant differences between initialization _///[ hat formatiert: Schriftart: Kursiv

methods. This approach allowed us to make use of the statistical power of the three Kraichgau and Swabian Jura

fields to analyze which initialization was most accurate and to evaluate the trend of the model error with increasing

simulation time. In some cases, SME, was transformed to ensure a normal distribution of residuals (square root ,//[ hat formatiert: Schriftart: Kursiv

transformation for Ultuna SOC and Kraichgau/Swabian Jura SMB-C and festhfourth root for Kraichgau/Swabian

Jura SOC), which was checked by a visual inspection of the normal QQ plots and histograms of residuals (Kozak

and Piepho, 2018). Random effects were included to account for temporal autocorrelation of SME, within (a) the _///[ hat formatiert: Schriftart: Kursiv

same field and (b) the same simulation. The model reads as follows:

Vijie = Po + Aoi + Boj + Voi; + Prty + ayity + Bty + Vagjte + i + Ui @ //’[ hat formatiert: Englisch (Vereinigte Staaten)

where Y;jy; is the SME; of the simulation using the ith initialization with the jth parameter set, at the kth time on //[ hat formatiert: Schriftart: Kursiv

the /th field, ¢, is an overall intercept, ay; is the main effect of the ith initialization, 3; is the main effect jth
parameter set, ¥q;; is the jth interaction effect of initialization x parameter set, ¢, is the slope of the time variable
ty, @y;ty is the interaction of the ith initialization with time, 3, ;¢ is the interaction of the jth parameter set with
time, yy;ty is the ijth interaction effect of initialization x parameter set x time, uy, is the autocorrelated random

deviation on the kth time in the /th field and w;, is the autocorrelated residual error term corresponding to Y.

The detailed SAS code can be found in the supplementary materialL_///[ hat formatiert: Schriftart: 10 Pt.

For Ultuna and Bad Lauchstédt, the y; term was left out, as both trials only had one field. As the Kraichgau and - /[ hat formatiert: Schriftart: 10 Pt.

Swabian Jura had the exact same experimental setup and tseframeduration, these sites were jointly analyzed in \\‘[ hat formatiert: Schriftart: 10 Pt.

the statistic model, but due to completely different setups and ime-framesdurations, this was not possible for Bad
Lauchstddt and Ultuna. The full models with all fixed effects were used to compare different correlation structures
for the random effects including (i) temporal autocorrelation (exponential, spherical, Gaussian), (ii) compound
symmetry. (iii) a simple random effect for each different field and simulation, (iv) a random intercept and slope of
the time variable (with allowed covariance between both) for each field and initialization method. A residual
maximum likelihood estimation of model parameters was used and the best fitting random effect structure for this
model was selected using the Akaike Information Criterion as specified by Piepho et al. (2004). Then a stepwise
model reduction was conducted until only the significant effects (p < 0.05) remained in the final statistical model.
Because a mixed model was used, the Kenward-Roger method was usedapplied for estimating the degrees of

freedom (Piepho et al., 2004) and to compute post hoc Tukey-Kramer pairwise comparisons of means.
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2.5  Model optimization and observation weighting for Bayesian calibration

or-Optimization of parameters Ksoum stows Ksom fase and the

humification efficiency (fsoum siow}:) was performed using a Bayesian calibration approach. These parameters were

s-they have a considerable impact on the rate of native SOM loss (we-provide

chosen as only

>-casesce further details in the supplementary materialchapter S 12.2 ). The
Bayesian calibration method uses an iterative process to simulate what the distribution of parameters would be,

given the data and the model-would-be,combining. It combines a random walk through the parameter space with

a probabilisiteprobabilistic approach on parameter selection.
The Differential Evolution Adaptive Metropolis algesithimalgorithm (Vrugt, 2016) implemented in UCODE 2014

(Lu et al., 2014; Poeter et al., 2014) was used for the Bayesian calibration in this study. As no Bayesian calibration
of DAISY SOM parameters has been done before, wwe-tsed-noninformative priors were used. The main drawback
of noninformative priors is that they can have longer computing times, but as was shown by Lu et al. (2012) with

enoughsufficient data and

ssimulation durations, the posterior distributions are very
similar to using informed priors. Ranges were set far beyond published parameters with 1.4 * 102 to 1.4 * 10
d! for ksoa juse and 1.4 * 103 to 5% * 107 d'! for ksou siow. The parameter fsom siow had to be more strongly
constrained as without constraints it tended to run into unreasonable values up to 99 % humification. The

hmtslimits were therefore set to 0.05 to 0.35-fe+, which is +/- 5 % of the two published parameter sets and-also

o}

represents the upper boundaries of other similar models =

Ahrens et al., 2014). The default UCODE_2014 Gelman-Rubin criterion (Gelman and Rubin, 1992) with-a-value

of 1.2 was chosen for the convergence criteria. A total of 15 chains were run in parallel with a timestep of 0.09

days in Expert-N 5.0 (this was the largest timestep and fastest computation, where the simulation results of water
flow, temperature and hence SOM pools was unaltered compared to smaller timesteps). It was ensured that at least

300 runs per chain were done after the convergence criterion was satistied.

In Bayesian calibration, a proper weighing of observations is needed in order to achieve a diagonal weight matrix
of residuals (proportional to the inverse of the variance covariance matrix), and to ensure that residuals are in the
same units (Poeter et al., 2005, p18 ff). This included several steps. A differencing removed autocorrelation in the
individual errors in each model run of the Bayesian calibration itself (the first measurement of each kind of data
at each field was taken as raw data, for any repetedrepeated measurement the difference from this first
measurement was taken instead of the raw data). Details on differencing are provided in ehaperchapter 3 of the
UCODE_2005 manual (Poeter et al., 2005). To account for differentvarying levels of heterogeneity of different
fields in the weighting, a mixed linear model was used to separate the variance of observations from different
fields originating from natural field heterogeneity from the variance originating from measurement error. To do
so, a linear mixed model with random slope and intercept of the time effect for each experimental plot was fitted

to the SOC, SMB-C and DSI data for each field individually:

Yir = o + Prti + U+ up + upg M[ hat formatiert: Englisch (Vereinigte Staaten)

where yy,; is the modelledmodeled variable at the kth time on the /th plot, ¢, is the intercept, ¢, is the slope of the
time variable t, u; is the random intercept, uy, is the autocorrelated random deviation of the slope and uy, is the

autocorrelated residual error term corresponding to yy,;.




The error variance of each type of measurement (DSI, SMC-C, SOC) at each field o'fMZ = aﬁk + aﬁkl was then
305 used for weighting of ebsevationsobservations, excluding the field variance Jﬁl from the weighting scheme. This

error variance was used in UCODE_2014 to compute weighted model residuals for each observation as follows:

_ (obsx—predx)z

w_SME,

(6) //{ hat formatiert: Englisch (Vereinigte Staaten)

2
oM

where w_SME, is the weighted squared model residual-, pbs, is the observed value, pred, is the predicted value /,,,./[ hat formatiert: Schriftart: Kursiv

~
and 0%y is the error variance of the Mth type of measuremetmeasurement at each field. All w_SME, are combined \[ hat formatiert: Schriftart: Kursiv

.
310 to the sum of squared weighted residuals, which is the objective function used in UCODE_2014 (Poeter et al., \‘[ hat formatiert: Schriftart: Kursiv

2014). By this procedure, observations with higher measurement errors have a lower influence in the Bayesian

calibration.

Since the medium-term experiments had a much higher measurement frequency, it was also tested if giving each
experiment the same weight would improve the results of the Bayesian calibration (equal weight calibration). In
315 this case an additional group weighting term was introduced for groups of observations, representing different
datasets at the different sites. This weighting term is internally multiplied with each w_SME\ in UCODE_2014

and was calculated as

1
Gy =—— 7 ~ iert: i ini
w_G, EaE— 7 hat formatiert: Englisch (Vereinigte Staaten)

where w_G., is the weight multiplier for each observation, . is the number of observations per parameter, 1, is
320 the number of parameters per field, and nyis the number of fields per site. This weighing assures that with the exact

same percentage of errors, each site would have the exact weight of 1.

The influence of several factors was assessed in this Bayesian calibration: the use of individual sites compared to
combining sites, including an equal weight (as described above) vs weighting only by error variance, and the effect
of in/excluding the DSI in the BayesienBayesian calibration. Therefore, seven Bayesian calibrations were
325 conducted in total: four for each individual site with original weight and DS, i.e., 1) Ultuna, 2) Bad Lauchstadt,

3) Kraichgau, 4) and Swabian Jura, 5) equal weight calibration for all sites combined with-equal-weightingusing

DSI, 6) original weight calibration for all sites combined without using DSI-use in the Bayesian calibration (only

for initial pool partitioning) and finally-—7)7) original weight calibration for all sites combined using the DSI-and

originalweight. The comparison of these seven Bayesian calibrations was designed to assess the effect of the site

330 on the calibration, as well as the effect of the DSI and of user weighting decisions.

3 Results

3.1  Dynamics of SOC, SMB-C and DRIFTS during bare fallows

All bare fallow plots lost SOC over time with the severity of SOC loss varying between soils and climates at the

different sites. The Bad Lauchstidt site experienced the slowest carbon loss (7% of initial SOC in 26 years), while
|335 SOC at Ultuna and Kraichgau SOC was lost at much faster rates (Ultuna - 39% of initial SOC in 50 years,

Kraichgau on average 9% of initial SOC in 7 years) (Table 3). In the Swabian Jura field 1 the SOC loss was
| comparable to that of the-Kraichgau (about 10% of initial SOC in 7 years), but was much less in fields 2 and 3.

Some miscommunications with the field owner’s contractors led to unwanted manure addition and fields ploughing
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in Swabian Jura field 2 and 3 in 2013, hence results of these two fields after the incident in 2013 were excluded.

The DRIFTS spectra revealed that the aliphatic peak area (2930 cm™") decreased rather fast after the establishment
of the bare fallow pletplots while the aromatic peak area (1620 cm™') had only minor changes and no consistent

trend (Figure 2). The resulting ameuntiraction of SOC in the slow pool according to the computed DSI changed

from the initial range of 54 to 80 % to the range of 76 to 99% at the end of the observational period-_(Table 3.
Figure S 3). The SMB-C reacted even more rapidly to the establishment of fallows and halved on average for all

fields within 7 years duration- (Table 3).

3.2 Comparison of the different model initializations

The observed trend of SOC loss with ongoing bare fallow duration was also found in all simulations (Figure 3)-
and Figure S 4). For Ultuna, simulated SOC loss in all cases underestimated measured loss, while for Bad
Lauchstadt, simulated SOC losses consistently overestimated measured losses. At Kraichgau sites SOC loss was
underestimated by the models, but-usingwith the Bruun (2003) parameter set yieldedyielding simulated values
closer to what-was-measuredactual measurements. In the Swabian Jura, both parameter sets underestimated SOC
loss. The decline of SMB-C in the Kraichgau and Swabian Jura (Figure 4) occurred more rapidly than that of
SOC, though SMB-C had higher variability of measurements. The parameter sets with steady state assumptions
marked the upper and lower boundaries of the SMB-C simulations but the DRIFTS stability index (DSI)
initializations were closer to the measured values (with exception of Swabian Jura field 3). For brevity only
simulations of field 1 for Kraichgau and Swabian Jura are displayed-here.shown. Simulation results for fields 2

and 3 are found in the supplemental material (Figure S 5 for SOC simulations and Figure S 6 for SMB-C).

The statistical analysis of the model error revealed a site dependency of the effect of the parameter set. The
three-way interaction of initialization, parameter set and time yy;;t, was significant for all but Bad Lauchstédt
SOC, where only the parameter set had a significant effect. In the case of Bad Lauchstddt, the model error was
significantly lower with the slower Mueller (1997) SOM turnover parameter set, while for the rest of tested cases,
the faster Bruun (2003) set performed significantly better (Table 4). For Ultuna and {6+ Kraichgau + Swabian Jura
SOC, the steady state assumption with Mueller (1997) parameters had the highest model error, while the steady
state assumption with Bruun (2003) parameters had the lowest model error of all simulations, but the-there was
only a statistical significant difference to-the DRIFTSinitializationof DSI using 105°C drying temperature was
onby-signifieant-forto DSI using other 32°C and 65°C for the Ultuna and-netforthe-othersites:site. For the SMB-C

simulations irat the Kraichgau + Swabian Jura sites, however, the errors were lowest for the DRIETSDSI
initialization using the 105° C drying temperature with Bruun (2003) parameters and significantly lower than both
steady state initializations. Of the DRIFTSDSI initializations using different drying temperatures, the model error
was always lowest when using the 105°C drying temperature initialization compared to 32°C and 65°C (significant
for Ultuna, as well as for Kraichgau + Swabian Jura SMB-C using Mueller (1997) parameters). As initializations
with BRIFFSDSI using 105°C drying temperature consistently performed the-best of all three DRIEFSDSI
initializations, #-waschosento-continue-only with- BRIETSDSI spectra of soils dried at 105°C were used for the

Bayesian calibration.

3.3  Informed turnover rates of the Bayesian calibration
The posterior distribution of parameters from the Bayesian calibration differed considerably between the different

calibrations for individual sites, but there were also differences between different weighting schemes and-teor

10
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when performing the Bayesian calibration without BSlwhen-using all-sitesthe DSI (Figure 5). The highest
probability turnover of the fast SOM pool (ksoum jus) Was 1.5 and 3 times faster for Ultuna and Kraichgau,
respectively, when compared to initial rates (1.4 * 10 d"' for both parameters sets), which fitted well for Bad
Lauchstddt and Swabian Jura. For the slow SOM pools (ksou siow) the Bad Lauchstédt, Kraichgau and Swabian
Jura site calibrations were in between the two published parameter sets, but tended towards the slower rates (2.7 *
10 d"! by Mueller (1997)), while the optimum for Ultuna was exactly at the fast rates of Bruun (2003) (4.3 * 107
d"). The humification efficiency (fsou siow) Was not strongly constrained in the Bayesian calibration, except for the
Kraichgau site, where it ran into the upper boundary of 0.35. This trend towards higher humification existed also

for the other sites, but with-much-lessstrengthio a lesser extent than for Kraichgau.

The different calibrations of the combination of all sites under different weightings and with or without the DSI
alse-led to eonsidarableconsiderable differences in the posteriors. When combining the sites with the artificial
equal weighting, the posterior distribution of all three parameters was the widest, basically covering the range of
all four sitessite calibrations. With the original weighting scheme, only informed by the variance of the data, the
posteriors were much-more-narrownarrower for all parameters. with the optima of ksou s being slightly faster
than the two (similar) published rates. The optima of ksoa si0w Were slightly slower than that-of Bruun (2003) but
much faster than that-of-Mueller (1997) and fsoum siow Was even above the higher Bruun (2003) value of 0.3-by
Bruun(2003).. The use of the original weighting scheme-but without the use of the DSI in the Bayesian calibration
did not constrain the fsou siow at all and had faster ksos siow and slower ksou jus than the one using the DSI. Both
these Bayesian calibrations using the original weighting (with and without DSI) showed a trend towards slightly

faster turnover than wwas-suggested by Bruun (2003).

There was a strong negative correlation between ksowy us: and ksoum siow parameters for all but the Bad Lauchstédt

calibration (Figure S 7). When DSI was not included in the Bayesian calibration, this negative correlation was

stronger than when it was included- e (Figure 6). The parameters ksou fuse and fsou siow
were always positively correlated pesitively, most strongly for Kraichgau (0.49) and Swabian Jura (0.38), but only
weakly for the long-term sites. The correlations between the parameters kso siow and fsou siow Were generally low
and both positive and negative. The parameters with the highest probability density of the calibrations combining
all sites for fsou siow » ksom ast and ksowm siow in that order were 0.34, 2.29 * 104, 3.25 * 10 for the original weight

calibration and 0.06, 9.58 * 10~ and 5.54 * 10~ for the calibration using original weights and no DSL-shewing,

These results suggest that turnover rates of ksoy siow 0fverycould be similar magnitude-asor faster than ksou fast
were-possible-without the use of the DSI. About 10 % of simulations of the Bayesian calibration without DSI had

even a faster ksou siow than ksou fast.

4 Discussion

4.1  How useful is the DRIFTS stability index?

jaality-and-quantity-of carbon inputsto-soil G fu the steads stat tonf delinitializat
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likely—te-b Ld—A search for suitable proxies for SOM pool partitioning into SOM model pools that
correspond to measurable and physiochemicallyphysicochemical meaningful quantities is-therefore of high interest
(Abramoff et al., 2018; Bailey et al., 2018; Segoli et al., 2013). The results of this study confirm the hypothesized

usefulness of the DSI proxy assessing the current state of SOM for pool partitioning to model SOC for several

soils across Europe. This is particularly relevant, given that changes in crop genotype and rotation, agricultural

management, and the rise of average temperatures in recent decades as well as land use changes, such as draining

of soils or deforestation, in recent centuries have altered the quality and quantity of carbon inputs to soil.

Consequently, the steady state assumption for model initialization is not likely to be valid. Despite—the

cdee Cr cricrence Sk-Demyan et al. (2012) showed that with a careful selection of peak

integration limits, the DSI through identifying organic contributions in DRIFTS spectra is a sensitive indicator of

SOM stability if mineralogy is similar—With (despite acknowledged mineral interference). Combined with a higher

temperature (105 °C) for soil drying prior to DRIFTS analysis, a strong correlation between the resultsportion of

centennially persistent SOC and the DSI (Figure S 2) was found which supports the hypothesis that it might be of

general applicability across sites. Results from —stdy—we—e refee sizedmodeling

corroborated the usefulness of the DSI for SOM pool partitioning for soils of different properties across Europe.

The statistical analysis of the model error for both SOC and SMB-C showed clearly that the DSI deescan improve

poor model performance, especially with the slower turnover rates of Mueller (1997). When model performance
is already satisfactory, the natural variability of the DSI can make model performance worse, as in the case of
Ultuna SOC with Bruun (2003) parameters, but this reduction was minor compared to the improvement the DSI
had over steady state assumptions at Ultuna with Mueller (1997) rates. The better results for Ultuna with the Bruun

(2003) steady state might also just be an effect of turnover times still being too slow and hence the more SOC in

the fast pool, the faster the-turnover is in general turnoverand the lower the model error. This was also indicated
by faster optima by the Bayesian calibration compared to both published turnover rates. Also-inln the case of Bad
Lauchstadt, only turnover rates had & highan influence on model performance. The properties of athe Chernozem

were generally not well captured with betheither parameter setssct, and it has-probably has a slower overall SOM

decomposition asthan many other agricultural soils. Nevertheless, the use of DSI also was suitable for Bad

Lauchstidt, as it did alse-not reduce model performance.

—The range of

different sites, soils, and climatic conditions of Europe represented within this study suggest the robustness of the

DSI as a proxy for SOM quality and SOM pool division for a large environmental gradient. Hence, it would be an
improvement over assuming steady state of SOM wherever there is a lack of detailed information of carbon inputs
and climatic conditions. Considering the timescales at which SOM develops, this is almost anywhere, as detailed

data is available at best for <200 years, which is not even one half-life of the slow SOM pool.

So far, studies that assessed SOM quality and pool division proxies, either using thermal stability of SOM (Cécillon
etal., 2018) or size-density fractionation (Zimmermann et al., 2007), only indirectly related the proxies to inversely
modelledmodeled SOM pool distributions, using machine learning and rank correlations. In contrast, our study

showed that the DSI is a proxy which can be directly used for pool initialization. As—
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aliphaties—are—compared—to—arematiesThe DSI also makes sense from the perspective of energy content, as

microorganisms can obtain more energy from the breakdown of aliphatic than aromatic compounds (e.g. Good

and Smith, 1969), and therefore aliphatiesaliphatic compounds are primarily targeted by microorganisms (hence

have faster turnover) as previously shown for bare fallows (Barr¢ et al., 2016).

The two distinct peaks for aliphatic and aromatic carbon bonds of the DSI fit well to the two SOM pool structure
of DAISY and the simulation of carbon flow through the soil in DAISY is very similar to several established SOM
models such as SoilN, ICBM and CENTURY. It is therefore likely that with calibration, the DSI could be used as
a general proxy for SOM models with two SOM pools and a humification efficiency (fsou siow-in DAISY). The
parameter correlations between kso siow, ksou fase and fson siow according to the Bayesian calibrations also showed

elearly-that-assuggest that without a pool partitioning proxy, modifying any one parameter can lead to similar

results in terms of SOC and SMB-C simulation. A clear distinction between fast and slow pools needs a pool

partitioning proxy as can be seen by faster ksoum siow than ksou sus: for some of the simulations of the Bayesian

calibration without using DSI. Assigning the DSI to DAISY reduced parameter correlations and led to clear

distinction between fast and slow pools.

The aliphatic molecular vibrational peak of DRIFTS is most resolved when applying a 105°C drying temperature

to samples prior to analysis=B

S : e e = (Laub et al.,
2019). The current study’s modeling results—from-meodelling corroborated the finding that the DSI should be

obtained from measurements after drying at 105 °C with the performance of the DRIFTS initializations being
always in the order 105°C > 65°C > 32°C drying temperature (differences being sometimes but not always

significant).

Compared with the other proxies for SOM quality discussed above, the measurements by DRIFTS are inexpensive,
relatively simple, and the equipment of the same manufacturer is standardized. This should also constrain
variability between different laboratories and be attractive for large-scale applications with large sample sizefor

example-to-initialize simulations-at the regional seale-numbers, for example to initialize simulations at the regional

scale. However, for standardization of the DSI for model initialization one needs to address how the type of

spectrometer (e.g. detector type) influences the spectra, if water and mineral interferences (Nguyen et al., 1991) in

the spectra can be further reduced and if a mathematical standardization of the spectra and DSI (across instruments

and water contents) is possible. While a complete elimination of mineral interference is not possible, a careful

selection of integration limits and the use of a local baseline minimizes mineral interference of DRIFS spectra

from bulk soils. This mostly selects the top part of the 1620 cm™' peak, which corresponds to the part that is reduced

. Other a

or completely lost when SOC is destroyed (Demyan et al., 2013; Yeasmin et al., 2017 roaches such as

spectral subtraction of ashed samples or HF destruction of minerals prior DRIFTS analysis have been developed
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in the attempt to obtain spectra of pure SOC. All are rather labor intensive and still produce artifacts, as it is not

possible to destroy only the minerals or only the SOC without altering the respective other fraction (Yeasmin et

al., 2017). Hence, we think that the selected integration limits might represent at this point the most feasible option

for obtaining a robust and cost-effective proxy of SOC quality for modeling. The strong correlation of DSI and

centennially persistent SOC as well as the model results of this study seem to corroborate this. The method of DSI

estimation might be improved by a study of the best integration limits optimizing the fit of the DSI and centenniall

persistent SOC, which would require more bare fallow experiments than in this study. It could be worthwhile to

use a purely mineral peak to correct for the mineral interference at 1620 cm’! similar to what was done to correct

for carbonates in the 2930 cm’' peak by Mirzaeitalarposhti et al. (2016). The recent coupling of pyrolysis with

DRIFTS (Nkwain et al., 2018) might be a further analytical advancement of the DSI, as it overcomes mineral
interferences in the spectra. However, this technique is more complex due to a larger number of visible organic
peaks, including COs that develops from the pyrolysis, which makes it not easily applicable to established two-
pool models such as DAISY. In addition, a considerable portion (30 — 40 %) of SOM is not pyrolyzed and therefore

not recorded in the spectra.

—In summary, even despite of the acknowledged

shortcomings, the DSI was useful to partition SOM between pools. It seems more robust than steady state or

long-term spin-up runs which rely on strong assumptions. Further tests are needed before using the DSI for

mineralogy that differs considerably from the soils of this study. Finally, the DSI is not purely related to chemical

recalcitrance of SOM, as it also correlates with the level of SOC protected by aggregation (Demyan et al., 2012).

Hence, it is likely that aggregation and chemical recalcitrance are related.

4.2  Parameter uncertainty as estimated with Bayesian calibration

According to our Bayesian calibrations, a wide range of parameter values are possible for DAISY going far beyond
the initial published parameter sets. By combining various sites and including meaningful proxies, such as the DSI,
the parameter uncertainty and equifinality could be reduced and the credibility intervals narrowed. The predictions
of mechanistic models usually fail to account for the three main statistical uncertainties of (1) inputs, (2) scientific
judgments resulting in different model setups and (3) driving data (Wattenbach et al., 2006). However, with a
Bayesian calibration framework such as implemented in UCODE 2014, almost any model can be made
probabilistic—Fhen-the, so uncertainties of parameters and outputs can be assessed, even for projections into the
future (Clifford et al., 2014). As this study focused on Bayesian calibration and we used an established model, we
mainly address—sainby—the parameter uncertainty, although input uncertainty was also included through the
weighting process. We clearly demonstrated an effect of the individual site used for Bayesian calibration on the
resulting model parameters and uncertainties. Similarly diverging site specific turnover rates were also found by
Ahrens et al. (2014) in a study of soil carbon in forests. Diverging results for different sites generally point towards
a need for a better understanding of the modelledmodeled system and model improvements (Poeter et al., 2005),
but this often requires a deeper understanding of the system and new measurements — hence it is not always
feasible. A Bayesian calibration asks the question: “What would be the probability distribution of parameters,

given that the measured data should be represented by the selected model?*-?”". Hence, if only one site is used, it
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can only answer this question for that specific site. As this study showed, the parameter set could then be highly
biased for other sites. For a more robust calibration, several sites should be combined to obtain posterior
distributions of parameters for a gradient of sites, though this might reduce model performance for individual sites.
The introduction of the equal weighting scheme, which gave similar weights to the different sites, highlights how
much bias may be introduced by user decisions of artificial weighting: this Bayesian calibration parameter set had
the highest uncertainties and it appears as if the Ultuna site had by far the strongest influence. In contrast to that,
the combination of all four sites with the original weights based on the error variances or measurements led to a
very clear reduction of parameter uncertainty and the narrowest parameter credibility intervals (Figure 6 a

compared to b and ¢).

The results of the statistical analysis of model errors (Table 4) suggests that the DSI is suitable for pool
initialization. This was corroborated by the Bayesian calibration, as the inclusion of the DSI narrowed credibility
intervals for the slow SOM pool turnover and humification efficiency and reduced the correlation between fast
and slow SOM turnover compared to the simulation without the DSI as constraint. £
betweenksou son-andksom s

bestEspecially in the case of the clear differentiation between ksowm siow a0d ksour usi, OUr results show the advantage

of attaching a physiochemical meaning to the pools that was not provided before. Other effective approaches, such

as time series of "*C data could be combined with the DSI for better results.

Of all three parameters, the humification efficiency (fsou siow) Was the only parameter that consistently ran into the
upper boundaries, set to 35 %. In fact, initial calibrations were done where fso siow Was constrained to 95 %; even
then, it tended to run into that constraint (Figure S 8) and led to much faster turnover rates (ksowm siow) than were
published before. These high values of fsou sow Were so-far-abevemuch greater than the published-10 % for the
Mueller (1997) dataset-ane, 30 % for Bruun (2003)-but-alse-any-), and other published medelthat-thistwo pool

models. Therefore, the poorly constrained fsois w0 parameter was considered as caused by a model formulation

problem, which did not depend on whether the DSI was included in the Bayesian calibration or not. Only—when

ates:Only when the humification efficiency was restricted in the Bayesian calibration,

the turnover of fast and slow SOM aligned with the earlier published rates. If a parameter is problematic, such as

fsom sion it could mean that there is a lack of data. However, if parameters are constrained, but run into implausible

values, it usually means that the model structure is suboptimal (Poeter et al., 2005) and should be altered.

4.3  Model structure determines SOM turnover times in two-pool models

The rate of SOM decomposition remains of major interest, especially with respect to the potential of SOM as a
global carbon sink (Minasny et al., 2017). FirstSome of the first conceptual approaches proposed SOM pools with
residence times of 1000 years and longer (e.g. in CENTURY, Parton-etal+987)Parton et al., 1987), but the SOM
models were calibrated to fit data measured in long-term experiments that included vegetation. The pool structure

of early SOM models such as DAISY and CENTURY were rather similar as were the turnover rates of SOM pools
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(see summary in Table 5). An improved understanding of actual amounts of carbon inputs to the soil, which sttt
remain challenging to measure, led to faster turnover rates in more recent model versions (e.g. by Bruun, 2003).

The reason is probably that inputs of carbon and nitrogen to the soil were ofterinitially underestimated as it is very

difficult to measure root turnover and rhizosphere exudation inputs without expensive in situ '*C or '*C labeling.
The underestimated inputs were then likely counterbalanced in the model calibration by slower turnover rates
resulting in acceptable model outputs (SOM dynamics and CO, emissions) for the time being. However, as our
summary of more recent studies underlines (Table 5), the earlier published turnover rates seem to be subject to a
systematic underestimation. As the comparison of our Bayesian calibration to other recent Bayesian calibration
studies suggest, the relatively fast turnover rates of this study are in alignment with other recent findings (Table
5), as all five examples have published turnover rates for the slow SOM pool, which are at least one order of

magnitude faster than early assumptions from the 1980s and 90s.

This-also-shews-hewlt is critical-#t-is to understand model uncertainties and to test fundamental assumptions of
how SOM is transferred between the pools (Sulman et al., 2018). The comparison between constrained and
unconstrained humification efficiency in the Bayesian calibrations suggest that the sequential flow of carbon
through the system might be assuming a condensation of stabile carbon that does not actually explain the vast

majority of stewmore stable SOM formation.

From a theoretical perspective, one may wonder how large amounts of less complex SOM should become complex
SOM without any involvement of living soil organisms. The way that the formation of complex carbon is
represented in DAISY is probably a remainder of earlier humification theories from the 1990s that mostly ignored
microbe involvement, while most of the recent studies suggest that the vast majority of SOM is of microbial origin
(Cotrufo et al., 2013). A simple adaption for two-pool SOM models such as DAISY that include SMB pools could
acknowledge this paradigm shift: The partitioning between slow and fast turnover SOM could be at the death of

the microbial biomass (Figure 7) without any transfer of SOM from fast to slow pools- (a brief test of this new

structure is provided in the supplementary material Figure S 10). This would also be in alignment with the DSI
concept, as aliphatic carbon should not spontaneously transform to aromatic carbon on its own. Then DAISY
would fit better to the DSI and other proxies linking measurable fractions to SOM pools (the same is true for
CENTURY and other models, which apply the same humification principle). The way that pools are linked in the
current setup, the actual turnover time of recalcitrant SOM consists of the turnover of the fast pool and the slow

pool combined as it moves through these pools sequentially (Figure 1).

How strongly the basic assumptions influence SOM simulation is also reflected when differences between one-
and two-SOM pool models are compared. The turnover rates of the one-pool models are in between those of slow
and fast pools. However, our comparison shows that models with similar structure come to similar conclusions for
SOM turnover. For example, the one-pool model in Clifford et al. (2014) was quite similar in turnover rates to that
in Luo et al. (2016), but does not match well with two-pool models. Then again the rates for the two-pool models
of this study, and the studies by Ahrens et al. (2014) and Hararuk et al. (2017) were very similar in their minima
and maxima, for both the slow and fast SOM pools, which shows that only models with a similar number of pools

and transformations could be compared.

The 95 % credibility intervals of half-lives in DAISY were in the range from 278 to 1095 years for the slow pool

and from 47 to 90 years for the fast pool for the combination of sites presented here-in this study. If these values
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were reasonable — and as the three recent Bayesian calibrations including this study are quite close in turnover
rates (Table 5), this seems to be the case, SOM could be lost at much faster rates under mismanagement and global
warming than earlier modeling results suggest. The rates stitimay also be biased towards an underestimation of
turnover, as even with intense efforts it is next to impossible to keep bare fallow plots completely free of vegetation
(weeds) and roots from neighboring plots. Recent studies are in alignment with the possibility of relatively fast
SOC loss across various scales from field scale (Poyda et al., 2019) to country scale.for. For example in Germany,
agricultural soils are much more often a carbon source than a sink (Jacobs et al., 2018). This highlights the
importance of preperadequate SOM management and a deeper understanding of the processes at different scales.
Especially in the context of understanding the response of SOM to climate change it is not enough if the SOM
balance is simulated appropriately, but also fluxes within the plant-soil system need to be quantified. The reason

is that under a warmer climate and dryerseilschanging soil moisture levels, the plant-derived carbon inputs will

change. Furthermore, soil enzymatic analysis at regional and field level (Ali et al., 2015, 2018) suggest that pools
of different complexity have different temperature sensitivities (Lefévre et al., 2014), which is also realized in new
models (Hararuk et al., 2017). If the-different pools-weld have different responses to temperature, the formula by
Bruun and Jensen (2002) for SOM pool distribution could not be used anymore, as it implicitly assumes a similar
temperature sensitivity for all pools. In-the light of this, new proxies such as the DSI, soil fractionation or *C use
(Menichetti et al., 2016), which could also be combined, are crucial for making SOM pools chemically or

physically meaningful and to reduce model uncertainty and equifinality. As the DSI also had a good correlation

with structurally protected SOM (Demyan et al., 2012) it could also fit very well to models that directly simulate

the protection of SOM as a function of microbial activity (Sulman et al.. 2014). A better understanding and the use

of meaningful proxies such as DRIFTS, pyrolysis with DRIFTS (Nkwain et al., 2018) or thermal deconvolution
(Cécillon et al., 2018; Demyan et al., 2013) in combination with Bayesian calibration and a wide range of long-term
experiments are needed. The discrepancy between simulating SOM of tropical and temperate soils, which-still
points towards a lack of understanding of fundamental difference in processes at work on the global scale would
be the best test for future proxies and SOM models, which should be facilitated by freely available datasets for

model testing and calibration.

5 Conclusion

We tested the use of the DRIFTS stability index as a proxy for initializing the two SOM pools in the DAISY model
and used a Bayesian calibration to implement this proxy. A statistical analysis of model errors suggested that the
DRIFTS stability index initialization significantly reduced model errors in most cases, especially those with
initially poor performance. It therefore seems to be a robust proxy to distinguish between fast and slow cycling
SOM in order to initialize two-pool models: and alse-adds physiechemicalphysicochemical meaning to the pools.
As also-other studies showhave also shown, statistically sound approaches such as Bayesian calibration are needed
to grasp the high uncertainty of SOM turnover, which is often neglected in medellingmodeling exercises.
Meaningful proxies such as DRIFTS, physical/chemical fractionation or '*C are likely to be the most robust way

to initialize SOM pools: but their measurement method needs to be optimized to overcome known constraints,

such as water and mineral interference in the case of DSI. The results of this study suggest that the turnover of

SOM could be much faster than assumed by mest-commonly used SOM models. For example, the 95-% credibility
intervalsof theDAISY slow SOM pool half-hve-efthislife estimated in our study ranged from 278 to 1095 years-
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The variability of parameters highlights the importance to include meaningful proxies
into SOM models and to conduct research on a larger gradient of soils with bare fallow and planted sites, and over

longer time frames.
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9 Tables

Table,l Locations, descriptions, and initial soil organic carbon (SOC) stocks of Study Sitesused study sites — 4[ hat formatiert: Englisch (Vereinigte Staaten)
Initial SOC
stocks in the
UTM UTM Depth of Initial Bulk measured
Degrees Degrees measurements Clay Silt SOC density depth Years of bulk soil Types of available - 4[ hat formatiert: Englisch (Vereinigte Staaten)
Study Site Lat Long Soil type (cm) (%) (%) (Mg/m?® (Mg/ha) availability measurements o
Ultuna 59.821879  17.656348 Eutric Cambisol 0-20 37 41 150 1.4 43.22 1956, 79, 95,2005 SOC, DRIFTS {"at formatiert: Englisch (Vereinigte Staaten)
Bad Lauchstidt  51.391605  11.877028 Haplic Chernozem 0 - 20 21 68 1.82 1.24 45.08 1985,2001, 04, 08, SOC, DRIFTS Formatierte Tabelle
Kraichgau 1 48.928517 8.702794 Stagnic Luvisol 0-30 18 97  0.90 1.37 37.10 2009 - 16 SOC, DRIFTS, SMB-C hat formatiert: Englisch (Vereinigte Staaten)
Kraichgau 2 48.927748 8.708884 Stagnic Luvisol 0-30 18 80 1.04 1.33 41.61 2009 - 16 SOC, DRIFTS, SMB-C \ \_ | hat formatiert: Englisch (Vereinigte Staaten)
Kraichgau 3 48.927197  8.715891 Stagnic Luvisol 0-30 17 81 089 1.4 38.50 2009 - 16 SOC, DRIFTS, SMB-C \ | hat formatiert: Englisch (Vereinigte Staaten)
\
Swabian Jura 1 48.527510 9.769429 Calcic Luvisol 0-30 38 56 1.78 1.32 70.33 2009 - 16 SOC, DRIFTS, SMB-C \\\ hat formatiert: Englisch (Vereinigte Staaten)
Swabian Jura 2 48.529857 9.773253 Anthrosol 0-30 29 68 1.95 1.38 80.85 2009 - 13 SOC, DRIFTS, SMB-C \ \\ hat formatiert: Englisch (Vereinigte Staaten)
Swabian Jura 3 48.547035 9.773176 Rendzic Leptosol 0-30 45 51 1.91 1.07 61.27 2009 -13 SOC, DRIFTS, SMB-C \

SOC = soil organic carbon, DRIFTS = Diffuse reflectance mid infrared Fourier transform spectroscopy, SMB-C = soil microbial biomass carbon
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Table 2 Values of the two initial parameter sets for the DAISY SOM model that were used in this study. A graphical

display of the model structure related to these pools andwith the most important parameters for this study is found in

—————— /{ hat formatiert: Englisch (Vereinigte Staaten)

Figure 1.
Larameter Default DAISY _ Bruun (2003) Unit > /{ hat formatiert: Englisch (Vereinigte Staaten)
* -6 # * -5 X -1

kSOM slow 2.70 * 10 4.30*10°% d Formatierte Tabelle
kSOM _fast 1.40 * 104 1.40 * 10*# g - - o —
KSMB_slow 185 % 104 * 185% 104 % g1 at formatiert: Englisch (Vereinigte Staaten)
KSMB _fast 1.00 * 102 * 1.00 * 102 * g hat formatiert: Englisch (Vereinigte Staaten)
KkAOM slow 0.012 * 0.012* d*! hat formatiert: Englisch (Vereinigte Staaten)
KAOM _fast 0.05 * 0.05* d! \ hat formatiert: Englisch (Vereinigte Staaten)
jmaint SMB slow 1.80 * 1073 * 1.80 * 103 * d! \ N : .

i \ hat formatiert: Englisch (Vereinigte Staaten)
Jmaint SMB _fast 1.00 * 102 * 1.00 * 102 * d!
CUE_SMB 0.60 # 0.60 # kgkg! hat formatiert: Englisch (Vereinigte Staaten)

1
CUE SOM slow 0.40 * 040 * kgkg . hat formatiert: Englisch (Vereinigte Staaten)
CUE_SOM _fast 0.50 * 0.50 * kgkg - - —
CUE_AOM._slow 013 * 013 * kgkg' \\ hat formatiert: Englisch (Vereinigte Staaten)
CUE AOM fast 0.69 * 0.69 * kgkg! \\\\ hat formatiert: Englisch (Vereinigte Staaten)
fsou siow (humification efficiency) 0.10#% 0.30% kgkg! \ . : —
< 5 hat formatiert: Englisch (Vereinigte Staaten

part SMB > SOM_fast 0.40% 0.40% kgkg' \\\\ ! glisch (Vereinig )
fraction of SOM_slow at steady state AW \( hat formatiert: Englisch (Vereinigte Staaten)
Bruun (2002) equation 0.8483, 0.49 kgkg! AN \

k = turnover rate, maint = maintenance respiration, CUE = carbon use efficiency, AOM = added organic matter (not considered
in this study), part = partitioning; Source: * original Jensen (1997), * modified by Miiller (1997), * modified by Bruun (2003)
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Table 3 Soil properties at the start and end of the bare fallow experiment at each site

DRIFTS DRIFTS

—————— ’[ hat formatiert: Englisch (Vereinigte Staaten)

SOMin SOM in %SOMSOC
Depth of Bulk density of SOCat SOCat SMB-C SMB-C slow % slow % %SOMSOC lossper »[ hat formatiert: Englisch (Vereinigte Staaten)
Start End medelledmodeled meodeHedmodeled start end atstart  at end at start  at end loss of Number year of \
Site (year) (year) layer (cm) layer (tVig/m®) tMg/ha tMgo/ha  tMo/ha  Mo/ha  (105°C)  (105°C) initial of years initial { hat formatiert: Englisch (Vereinigte Staaten)
Ultuna 19562005 0-20 1.44 43.22 26.51 XNA, XNA, 54 91 39% 50 0.8% \f hat formatiert: Englisch (Vereinigte Staaten)
Bad Lauchstidt 1983 2008 0-20 1.24 45.08 4191 XNA, XNA 70 80 7% 26 0.3% \ \£ hat formatiert: Engllsch (Verelnlgte Staaten)
aichgau 1
Kr 2009 2015 0-30 1.37 37.10 32.59 0.847 0.408 80 98 12% 7 1.7% \ hat formatiert: Schriftart: Nicht Fett, Englisch
Kraichgau 2 2009 2015 0-30 1.33 41.61 38.66 0.853 0.314 73 93 7% 7 1.0% \\\\ Vere|n|gte Staaten)
Kraichgau 3 2009 2015 0-30 1.44 38.50 35.06 0.672 0.261 76 99 9% 7 1.3% \ \\ hat formatiert: Englisch (Vereinigte Staaten)
bian Jura 1

Swabian Jura 2009 2015 0-30 1.32 70.33 63.29 1.566 0.654 64 83 10% 7 1.49 A hat formatiert: Englisch (Vereinigte Staaten)
SwabianJura2 5009 2013 (0.-30 1.38 80.85 79.61 1.805 0.970 66 83 2% 5 0.3% \ \\\\ \ . . .

) \\\ \ \\ \\ hat formatiert: Englisch (Vereinigte Staaten)
Swabian Jura3 2009 2013 0-30 1.07 61.27 70,29 1.350 0.990 61 76 -15% 5 -2.99 W\

XNA =no data available for this site

\ \ \ \ \T hat formatiert: Englisch (Vereinigte Staaten)
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Table 4. Least square means of the (backtransformedback transformed) absolute error of DAISY bare-fallow

simulations for SOC and SMB-C for Ultuna, Bad Lauchstiidt and Kraichgau + Swabian Jura combined. The values are
the estimate for the end of the simulation period (number of years in brackets). Different capital letters indicate
significant differences (p< < 0.05) within columns (not tested between sites). For Bad Lauchstidt, the initialization effect

was nonsignifieantnon-significant, so only the least square means for the effect of the parameter set is displayed.

JUltuna (50yr)

Kraichgau + Swabian
Jura
ayn

Kraichgau +
Swabian Jura

{ hat formatiert: Englisch (Vereinigte Staaten)

Least square

BaektransformedBack BaektransformedBack
transformed least transformed least

square means of

y0 <\/{ hat formatiert: Englisch (Vereinigte Staaten)

Least square

(SMB-C (Mg h?—')f”"{ hat formatiert:

Formatierte Tabelle

Englisch (Vereinigte Staaten)

{ hat formatiert:

Englisch (Vereinigte Staaten)

? /{ hat formatiert:

Englisch (Vereinigte Staaten)

~
ARG \{ hat formatiert:

Englisch (Vereinigte Staaten)

[ { hat formatiert:

Englisch (Vereinigte Staaten)

° /{ hat formatiert:

Englisch (Vereinigte Staaten)

(]
D»/‘{ hat formatiert:

Englisch (Vereinigte Staaten)

DE»/‘{ hat formatiert:

means of errors errors means of errors
Parameter set Initialization (SOC ¢Mg/ha) (SOC tMg/ha)
ratio of steady
state assumption 391 A 4.50 A 0354 A
peak ratio of
° B A
Mueller (1997) DRIFTS at 32°C .10.86 4.50 0.317
peak ratio of
DRIFTS at 65°C J10.06 € 442 A 0.274
peak ratio of
DRIFTS at 105°C 852 P 4.28 A 0.205
ratio of steady
state assumption 584 H 3.12 B 0.231
peak ratio of
0, E B
Bruun (2003) DRIFTS at 32°C .06 o1 3.31 0.179
peak ratio of
DRIFTS at 65°C 675 F 330 B 0.160
peak ratio of
DRIFTS at 105°C 6.15 6 325 B 0.131

Englisch (Vereinigte Staaten)

bE \{ hat formatiert:

Englisch (Vereinigte Staaten)

-_,‘,_‘[ hat formatiert:

Englisch (Vereinigte Staaten)

{ hat formatiert:
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Table S Optimized turnover rates and humification efficiency of this study using the combined site analysis with original
weighting and DSI compared to other Bayesian calibrations and standard values of commonly used models. If the
temperature function was given or site temperature specified, the turnover rates were normalized with an exponential

equation to 10°C which is standard in DAISY.

CBM-

modelModel, DAISY ICBM CFS3 _ APSIM __ own creation CENTURY _ DAISY %}“{ hat formatiert: Englisch (Vereinigte Staaten)
refereneeReference,  This study Ahrens Hararuk Luo Clifford Parton Mueller Bi Formatierte Tabelle
yearYear, 2019 2014 2017 2016 2014 1993 1997 - —

hat formatiert: Englisch (Vereinigte Staaten)
turnover Turnover rates of the fast pool (recalculated to d! at 10°C) R , .

hat formatiert: Englisch (Vereinigte Staaten)
minimum 1.07 *10*  4.57 *10* 6.30 * 10* NA NA-no - —
optimum 229 %104 457*10° 1.97*10% NA temperature 932 * 105 1.40* 104 140 * 1 hat formatiert: Englisch (Vereinigte Staaten)
maximum 327%10% 228%102 1.05* 107 NA found i hat formatiert: Englisch (Vereinigte Staaten)
turnover Turnover rates of the slow pool (recalculated to d”! at 10°C) \£ hat formatiert: Englisch (Vereinigte Staaten)
minimum 2.99*10° 457*107 9.86* 106 1.00 * 10 1.10 * 10+ /{ hat formatiert: Englisch (Vereinigte Staaten)
Loptimum 3.25%10° 228*105 1.10* 105  3.00 * 10 1.67 *10* 2,10 * 10° 2.70 * 10 43,(_)j_l[ hat formatiert: Englisch (Vereinigte Staaten)
jmaximum 6.14*10° 4.57*10° 1.32*10° 6.00* 10* 2.19 * 10* 4[ hat f ; Englisch (Vereini S
portionPortion of fast to slow pool (humification efficiency) at formatiert: Englisch (Vereinigte Staaten)
minimum 0.05 0.05 /{ hat formatiert: Englisch (Vereinigte Staaten)
optimum 0.34 0.2 03 0.1 ""{ hat formatiert: Englisch (Vereinigte Staaten)
maximum 0.35 0.35

References: (Ahrens et al., 2014; Bruun et al., 2003; Clifford et al., 2014; Hararuk et al., 2017; Luo et al., 2016; Mueller et al.,

1997; Parton et al., 1993)
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10 Figures

//‘/{ hat formatiert: Englisch (Vereinigte Staaten)

’,{ hat formatiert: Englisch (Vereinigte Staaten)
Microbes Microbes

slow fast
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o U
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A"—A
Figure 1 Original structure of the internal cycling of SOM in the DAISY model, as it was used in this study. A XXXX - 4{ hat formatiert: Englisch (Vereinigte Staaten)
cm'! is the area of each peak obtained by DRIFTS;. xSOM and SMB are turnover rates of the pools and fSOM _sloyw is -
the humification efficiency. Other model par ters arecan be found in Table 2. >._,{ hat formatiert: Schriftart: Kursiv
\ hat formatiert: Schriftart: Kursiv
T hat formatiert: Schriftart: Kursiv
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Figure2 DRIFTS baseline corrected and vector normalized exampleexamples of spectra of bulk soil les (dried at /{ hat formatiert: Englisch (Vereinigte Staaten)

105°C) of the first and last year of the bare fallow plots at four sites. Fallow periods were 50 years (Ultuna), 24 years
(Bad Lauchstidt) and 7 years (Kraichgau and Swabian Jura). Small pictures on the top left and right, are zoomed in
versions of the 2930cm! peak and the 1620cm™ peak, respectively For better visibility. the full spectra pictures have a
v-axis offset, while zoomed in versions share a common baseline. More details on the sites in Table 3.
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Figure 3 Example of SOC simulations from Ultuna (top left), Bad Lauchstiidt (top right), Kraichgau field 1 (hollom/{ hat formatiert: Englisch (Vereinigte Staaten)

left) and Swabian Jura Field 1 (bottom right). Initializations were done (i) assuming steady state using the formula of
Bruun and Jensen (2002) (equation 1) with both turnover rates of Mueller et al. (1997) and Bruun et al. (2003) and (ii)
by the DRIFTS stability index (DSI) at 105°C drying temperature using both turnover rates for simulations (simulations

using the other drying temperatures for DSI in the supplementary). The site specific and the combination of all sites

Bayesian calibrations (BC) are also displayed.. > >
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Figure 4 Example SMB-C simulations for Kraichgau field 1 (left) and Swabian Jura Field 1 (right). Initializations were

done (i) assuming steady state using the formula of with turnover rates of Mueller et al. (1997

and Bruun et al. (2003) and (ii) by the DRIFTS stability index (DSI)_at 105°C drying temperature using both turnover
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Figure 5 Violin plots of the par

ter distributions, obtai

d by the Bayesian calibration using only the individual sites

(OW =

original weight, EW =

equal weight

(1-4) and all sites combined (5-7) with different weighing sch
calibration: +/- DSI indicates, whether the DSI data was used for calibration). The black line corresponds to the
parameters of Mueller (1997), the blue dashed line to the parameters of Bruun (2003). Note: The turnover & SOM fast
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parameter (top figure) is the same in both Mueller (1997) and Bruun (2003)
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dual site simulations (1-4) can be found in the supplemental materlal

using the DSI: (7). The plots of the rest-of theindivi

33

hat formatiert: Englisch (Vereinigte Staaten)




Microbes .a Microbes

slow fast

Kswip_siow Kswip_fast

aromatic carbon
A_1620 cm™ SOM_slow

aliphatic carbon
A_2930 cm™

72930 cm1+A_1620
Kiow Koo i ‘

SOM_fast

Fsom_siow

~A2930 cm 1+ A_1620 ¢

Figure,7 Suggested improvements to the internal cycling structure of SOM in the DAISY model. The division into fast
and slow cycling SOM, corresponding to aliphatic and aromatic carbon happens at the death of microbes. Aliphatic

carbon no longer becomes complex carbon without the involvement of microbes.

34



	bg-2019-292-author_response-version1.pdf (p.1-17)
	bg-2019-292_tracked_changes.pdf (p.18-51)

