
Dear Michael Weintraub, 

 

We are pleased to upload our revised manuscript in response to the comments of the three 
reviewers. We have made a number of changes in the manuscript in order to address the concerns of 
the reviewers, which we found very constructive, objective and of high quality. In our initial response 
letters, we have included detailed answers to each concern including what we changed in the 
manuscript as a result. Therefore, we will summarize here the most important changes from our 
point of view.  

As we understood it, the main concerns of Sander Bruun were, 1.1) whether the DRIFTS stability 
index (DSI) changes with type of mid-infrared spectrometer bench used (in our experience it slightly 
does), 1.2) why we used a statistical analysis of model error (mainly to interpret a temporal trend), 
1.3) whether this Bayesian model calibration could be data limited (we rather think that it is due to 
model structure) and 1.4) if we could include graphs of the DSI change over time of the long-term 
experiments (we did so). To all these points we made changes in the text and added additional 
figures where necessary to further elaborate our point.  

Additionally to some concerns shared with Sander Bruun, the main concerns of reviewer 2 were, 2.1) 
whether the DSI was a proxy supporting the hypothesis of resistance due to molecular properties of 
SOC only (to our understanding the DSI is also related to other forms of stabilization), and 2.2) 
whether the DSI might be also useful for models using microbial mineral models (to our 
understanding yes, as it correlates also well with size density fractionation) and 2.3) that we change 
the wording of some claims in the abstract, so that they are not misleading. To each of these 
concerns we made changes in the text to address them. The suggested spell and language checking 
was done. 

As we understood it, the main concerns of Lauric Cécillon were: 3.1) whether the mineral 
interference of the 1620 cm-1 peak would mean that we only divide the 2930 cm-1 peak by some 
“artifact”. By carefully selecting integration limits, hence the part of the 1620 cm-1 peak we use 
relates mostly to carbon. 3.2) Whether the DSI was more informative than the SOC content alone 
(the strong correlation to % of centennially persistent SOC across sites seems to indicate so) and 3.3) 
that we should discuss the shortcomings and the “known unknowns” of the DSI, due to mineral 
interference and other factors in more detail. We followed the advice by adding an additional figure 
(Figure S1 in updated manuscript – correlations with CPsoc), as well as adding a thorough discussion 
of the mineral, water and spectrometer interference that the DSI is subject to. We agree with you, 
that these concerns are likely shared by other readers and found the discussion with Lauric to be 
especially fruitful. 

We thank you for handling the manuscript and are happy that it is considered to be of interest to the 
readers of Biogeosciences. 

 

 

With kind regards on behalf of all coauthors, 

Moritz Laub 

  



Responses to Reviewers: 

We would like to thank the editor for taking the time to handle our manuscript and for finding three 
very constructive reviewers. We also want to thank all reviewers for taking the time and reviewing 
our manuscript to help improve its quality. We are grateful for the honest and thorough feedback. 
The suggestions were highly useful and provided us with information, where misunderstandings 
could be possible and where we needed to make our message clearer and to discuss the limitations 
of the DSI in more detail. They helped to further improve the quality of this manuscript and we hope 
that we addressed concerns to a satisfying extent. Our comments to the reviewers in the following 
are in blue color. We made use of the constructive criticism and altered the text of the manuscript, 
where applicable. We added screenshots of alterations in the text related to the comments. These 
are displayed in green color.  

 

1.1 Reviewer 1: Sander Bruun 

General comments 

The papers deals with initialization of pools in the soil organic matter model of Daisy. The paper is 
using unique datasets for long-term fallow treatments to test a new way of initializing the soil organic 
matter pools based on specific peaks in the DRIFTS specta of the soils. Pool initialization of SOM 
model is an important issue that is still causing some difficulties with the currently used approaches. 
The paper is therefore very timely and present an interesting approach that could be useful in many 
situations. The work is of a high quality and based on high quality data and the manuscripts is well 
written. 

Specific comments 

Line 78. I agree that the DSI can be better than the steady-state assumption, but perhaps it is worth 
discussing this in a little more detail. If information about the history of the site is available then that 
method should work. This require that the history is known for millennia, and that is rarely the case. 

We added one more sentence as suggested, at line 56. 

Line 118: Was soil samples from throughout the experimental period analyzed? Please specify. 

Yes, from throughout the period. We specified this more. 

Line 129: The spectra were not recorded in absorbance, but subsequently converted to absorbance 
units, right? 

Yes – wording changed 

Line 130: I wonder how much this way of determining the DSI is affected by the instrument i.e. if 
somebody took the same soils and did the measurement on another instrument would the get the 
same DSI and pool sizes. I am afraid that it would be quite much affected by that especially if you use 
other IR detection techniques. Maybe it would be worth addressing this in the discussion. 

Indeed, at least to our experience, there are some differences between the spectra of different 
spectrometers. We added a sentence addressing this in chapter 4.1. As we already tested different 
temperatures for drying, which we found to be the most dominant factor affecting DSI, it was beyond 
the scope of this publication to test the effect of the Spectrometer. We were first and foremost 
interested in, whether the DSI approach adds value in general to SOM initialization, which we think it 
does.  



Line 181: It says 84% and not 83% in Table 2. Please correct where appropriate. 

Done 

Line 196 to 209: I am not entirely sure I understand what the point of analyzing the SMEx with a 
statistical model is. I think you should consider whether it add enough understanding to warrant 
inclusion. Alternatively explain the point a little better. 

We wanted a more sophisticated analysis of the model error than and since in some experiments 
(Swabian Jura and Kraichgau) we had several fields, make use of the statistical power provided by the 
experimental design. The second advantage of a statistical analysis of model error was, that we could 
analyze for a time trend (increase with time) of the model error. Obviously, the results still only hold 
for the fields we analyzed.  

 

Line 236-237. The necessity of constraints on the fSOM-Slow parameter is a little problematic. I 
cannot help thinking that it means that the data, which is used for calibration, is insufficient. With 
these restraints, I guess you are likely to end up with a value of0.35 which is rather arbitrarily chosen 
by you. 

We fully agree with this statement. Actually, we also found containing a bit problematic, but a 
humification of 95% or more also did also not seem realistic. For us, this is an indicator how model 
structure affect the results. This is why we came up with a possible alternative formulation of DAISY. 
Actually, we tested the new structure of DAISY and found, that with this fSOM_s does not run into 
the constraint anymore, even if we do not constrain it. See as an example the results of the new 
structure with (2) and without (3) the fSOM_s constraints compared to (1) the initial BC of this study:  

 

Line 364-365. I agree that even though we have had the same management for a longtime the 
steady-state assumption is not valid. However, I believe that the reason for this has to do with 



longer-term effects rather than the smaller effects that you mention i.e. variation in climate 
agricultural management. If you look at a longer terms, most sites would probably have been 
deforested within the last 2000 years. Because of the high inputs from the forest, this could have 
resulted in an unusually large fraction of resistant organic matter that has not been degraded from 
that period. Also it is very common with drained soils soil. This means that the soil at some time it its 
history has had a very high water table and perhaps even been inundated. We know that this can 
result in significant accumulation of organic matter. After the soil has been drained, this has led to a 
large residual of resistant C again. The same could happen if there has been a history of fires with 
inputs of charcoal. Perhaps this is worth discussing a bit more. 

We agree and added these possibilities to the main text. 

 

Line 373: I cannot help it thinking that it is somewhat of a coincidence that you get better model 
performance with the DSI as long as you have not recalibrated the model. Of course using more data 
as for example DSI to restrain the model should improve the model, but only after it has been 
recalibrated.  

We interpreted the fact that SMB-C simulations were best when using the DSI as indicator that it is a 
proxy of generally utility, even if the turnover rates are unclear. As SMB-C is a much faster reacting 
pool than TOC, which did not change that much in our trials in Kraichgau and Swabian Jura. The DSI 
at 105°C was consistently lower in model error for simulated SMB-C than the steady state 
initialization, which we saw as an indicator that it is a useful proxy regardless of turnover rate, as long 
as there is a clear distinction between fast and slow pools.   

It is not entirely clear what data were used for the calibrations based on DSI. As far as I understand, 
you measured DSI of all the soil samples and that means that you can compare the simulated 
distribution between fast_SOM1 and slow_SOM with the one measured and calculated using formula 
(2) and a similar formula for fast_SOM. Is this the case? And if it is why have you not shown the 
“measured” value of fast and slow SOM and compared it with the modelled?  

You are correct, that we used the measured DSI throughout the simulation period for the Bayesian 
calibration. We are happy to provide the modelled vs measured DSI throughout the simulation 
period – we also added it to the manuscript as additional figure s7: 



 

Figure S 1 Development of simulated vs observed SOM in the slow pool, according to DSI division throughout the 
simulation period (for brevity only for 105 °C). Bars indicate standard deviation of all plots per field. 

 

Is it worth publishing the optimal parameters selected by the Baysian calibration based on DSI? 

While we think that the ideal way to use our results is using the posterior probability distributions of 
our parameters, we have mentioned the parameter set of the maximum likelihood from our 



Bayesian calibration in chapter 3.3 (0.34, 2.29 * 10-4, 3.25 * 10-5 for the original weight calibration 
and 0.06, 9.58 * 10-5 and 5.54 * 10-5 for the calibration using original weights and no DSI). 

1.2 Reviewer 2: 

General comments 

Laub and Colleagues present interesting ideas how DRIFTS spectra could be used to initialize and 
calibrate soil organic matter models. What warrants more discussion is that with their results we 
should put again more emphasis on the chemical recalcitrance hypothesis, i.e. that molecular 
properties determine the persistence of organic matter in soils. The literature seems to disagree 
(Schmidt et al., 2011). If we indeed assign the aromatic peak to slow cycling pools with a turnover 
time of 426 years and the aliphatic peak to a fast cycling pool with 47 to 90 years, the authors would 
contradict the synthesis of Schmidt et al. (2011) (their Figure 1, for example).  

We do not think, that it contradicts Schmidt et al. (2011). Rather the DSI seems to point towards the 
same direction as other measures of SOM quality, such as the amount of SOM in different aggregate 
sizes and fractions. This was actually shown in our previous works (Demyan et al., 2012). We have to 
keep in mind that the DSI is still only a proxy and dividing the whole continuum of SOM quality into 
two “qualities” is a strong simplification of the real world. However, we think it seems to be a valid 
one, especially when two pools SOM models are to be used, which anyway divide SOM into two 
pools.  

In my opinion, it would be interesting if the authors could at least discuss how their DRIFTS peaks 
could be useful for the new class of microbial-mineral models such as Tang and Riley (2015) or 
Sulman et al., (2014) 

We think that DRIFTS could also be useful for those models, because of a good correlation of the DSI 
to size density fractionation (Demyan et al., 2012), which is thought more representative of 
structural protection mechanisms. We added one sentence about this in the discussion. As Tang and 
Riley (2015) stated, it is not likely that CUE and Q10 are static (or the same for different complexities 
of SOM), which to our opinion points to the need of reliable pool partitioning proxies. As we already 
addressed thin issue in the manuscript (line 528ff), we did not add anything new. 

Specific comments 

The authors state that “the DRIFTS initialization of SOM pools significantly reduced model errors of 
poor performing model runs assuming steady state, irrespective of the turnover rates used, but the 
faster turnover parameter set fit better to all sites except Bad Lauchstädt. This suggests that soils 
under long-term agricultural use were not necessarily at steady state.” In my opinion this statement 
is not backed up by their results. The Bruun parameters with steady state assumption perform better 
at Ultuna and Kraichgau + Swabian Jura (Table 4) for SOC stocks. 

We agree that it was a bit oversimplified, so we altered the wording. For this statement we placed 
more weight on the Kraichgau + Swabian Jura sites than Ultuna, because those consisted of six fields. 
What we saw there was a significant improvement of the sensitive SMB-C, for both turnover rates, 
while for SOC stocks, there were only significant differences in model error between turnover rates 
but not between initializations.  

The authors also state that “[...] two approaches [...] significantly reduced parameter uncertainty and 
equifinality”. One of the approaches was the inclusion of DRIFTS. But looking at the violin plots in 
Figure 5, only the humification efficiency seems to be better constrained. I suggest modifying the 
statement towards this direction.  



It is true, that humification efficiency was the parameter most seriously constrained by the DSI, also 
the turnover of the slow carbon pool was stronger constrained (standard deviation of 9.3 * 10-6 with 
DSI vs 12.3 * 10-6 without DSI). We altered the wording in the sentence, to be more accurate.  

I agree with the other reviewer, Sander Bruun, that analyzing the squared model errors with a 
statistical model should at least be better explained.  

This was done, see the comment to Sander Bruun, above. 

The manuscript would benefit from a thorough spell and language check. 

This will be done on the final reviewed version manuscript.   

  



 

Comments of Reviewer 3: Lauric Cécillon 

"Reservation on the rationale of the DRIFTS stability index of soil organic matter (SOM) in mineral 
soil, and its use for partitioning the C kinetic pools of SOM dynamics models" This draft by Laub and 
colleagues describes a method to divide soil organic matter(SOM) into fast and slow cycling C pools 
in the soil organic module of the DAISY model. This method is based on the characterization of bulk 
mineral soil samples using mid-infrared diffuse reflectance spectroscopy (DRIFTS). DRIFTS spectra of 
bulk mineral soils are used to compute the “DRIFTS stability index” of SOM, defined as the ratio of 
aliphatic C-H (2930 cm-1) to aromatic C=C (1620 cm-1) stretching vibrations.  

The DRIFTS stability index was previously published by Demyan et al. (2012) in the European Journal 
of Soil Science.  

The development of routine and operational method to initialize the relative size of C kinetic pools 
from SOM dynamics models is a very important and timely topic. Indeed, the accuracy of the 
simulations of SOM evolution in mineral soils by current models is strongly questioned, notably 
because a poor initialization of the size of C kinetic pools. The method proposed by Laub and 
colleagues, using the DRIFTS stability index to divide soil organic matter (SOM) into fast and slow 
cycling C pools in the soil organic module of the DAISY model is original and very interesting, and 
their draft is well structured and written. However, I have a major concern regarding the rationale of 
the DRIFTS stability index of SOM in mineral soil, and its use for partitioning the C kinetic pools of 
SOM dynamics models. In this review, I will only discuss this concern, though this stimulating and 
timely work would deserve many other comments, as highlighted by the two other reviewers of this 
draft. First, I would like to come back on the justification of the DRIFTS stability index by Demyan and 
colleagues in their 2012 paper. Demyan et al. (2012) searched for information related to SOM in 
DRIFTS spectra of bulk mineral soils, and its link to SOM stability as assessed by a SOM density 
fractionation scheme. In their search for SOM information in DRIFTS spectra of bulk mineral soils, 
they discarded “wavenumbers of functional groups associated with non-organic compounds such as 
silicates and alumino-iron oxides”. For them, “these criteria removed the peaks <1000 cm−1 and the 
peaks at 1980, 1870, 1792 and 1390 cm−1”, but not the 1620 cm−1 peak. For them, “the [DRIFTS] 
peak at 1620 cm−1 was assigned to predominately aromaƟc C =C stretching and/or asymmetric–
COO−stretching but possibly also C = O vibraƟons”. Demyan et al. (2012) show that “a positive 
relationship was found between the ratio of the peaks at 1620 and 2930 cm−1 (1620:2930) and the 
ratio of stable C (sum of C contained in clay and >1.8 g cm−3 fracƟons) to labile C (amount of C in the 
<1.8g cm−3 fraction) (R2= 0.62, P = 0.012).” For the authors, this result justifies that the DRIFTS 
stability index can reliably be “taken as an indicator of SOM stability” (Demyan et al., 2012).  

We originally stated (line 369ff) that the peaks were selected in order to have limited mineral 
interference (e.g. Demyan et al., 2012). In their original publication only soils from the same field 
experiment with the same texture and mineral background were taken as additional measure of 
caution. As this approach showed potential for the site at Bad Lauchstädt, we hypothesized that 
this could justify evaluating the use of the DRIFTS 1620:2930 ratio as a more general stability 
index. We are aware of the mineral signal in the vicinity of the 1620 cm-1 peak and this fact was 
also acknowledged in the original publication of Demyan et al. (2012). By carefully selecting the 
integration limits, it was possible to minimize the mineral interference and get a general 
applicable stability index (see evidence below). In the current study, we aimed to combine 
several sites with differing textures and mineralogies to have several test cases. The reason for 
the statistical analysis of the model error was exactly that we wanted to test whether the DSI is a 
useful proxy across a range of sites. We state some further reasoning below why we think the 



1620 cm-1 peak and the specific peak limits that we have used (1660 – 1580 cm-1) is 
representative of aromatic carbon and what was changed in the main text. 

However, a short look at the literature on DRIFTS of soils show that the 1620 cm-1 peak in bulk 
mineral soils cannot be exclusively assigned to absorption from SOM functional groups (C = C or C = 
O) as claimed by Demyan et al. 2012. I will only cite two important papers: Nguyen et al. (1991) and 
Reeves (2012).Nguyen and colleagues, based on DRIFTS spectra of pure mineral compounds and 
various soil samples demonstrated that “The DRIFT spectra of soils containing organic matter show 
considerable overlap of the silicate combination bands in the 2000-1600 cm-1 region”. I provide here 
the Figure 1 modified from Nguyen et al. (1991) showing the DRIFTS spectra of quartz (pure or 
diluted in KBr), highlighting the strong absorption of quartz at 1620 cm-1 (for the DRIFT spectra of 
pure quartz). They suggested that “Spectral subtraction techniques or prior chemical treatment may 
thus be required to resolve these peaks.” (Nguyen et al., 1991). 

Reeves (2012) based on works similar than Nguyen et al. (1991), concluded that “With the exception 
of the bands at 2930and 2850 cm−1 due to aliphaƟc CH [when the soil does not contain carbonates, 
added by me] and the large OH band spanning most of the region between 2700 and 3500cm−1, 
there is little that is obviously due to OM in the soil spectra”. Regarding the 1620cm-1 DRIFTS peak, 
he suggested, following Nguyen et al. (1991) that “the region between 1750–1600 cm−1 can be 
interpreted, despite the presence of strong silica bands, because silica can be ash subtracted quite 
well”. But he also concluded his paper with this warning regarding spectral subtraction: “It will detect 
not only whether your sample is changed by 0.1% at some point in time, but will also seem to detect 
the phases of the moon and the mood you were in while you were measuring the data.”(Hirschfeld, 
1984; cited by Reeves, 2012).I deduce from this short literature survey that in their 2012 paper, 
Demyan et al. incorrectly assigned to SOM compounds (C = C, C = O) exclusively the 1620 cm-1 
DRIFTS peak of bulk mineral soils, as this peak is also due to mineral compounds such as quartz (but 
also to water in some phyllosilicates). 

It is not correct that we claimed an “exclusive” assignment of the 1620 cm-1 peak to SOM 
functional groups, but rather that by carefully selected integration limits, the delimited area of 
the 1620 cm-1 is mostly representative of those organic groups.  

In fact, the different spectra of soils before and after ashing or pyrolysis (as the example below 
taken from the supplementary material of Nkwain et al. (2018)) demonstrate that a considerable 
part of the delimited 1620 cm-1 peak is lost. Demyan et al. (2013) found a decrease in absorbance 
intensity at 1620 cm-1 with maximum losses occurring between 400-500°C (Figure S8, Left) for 
bulk soils. In the same study separated fractions were also analyzed, with a similar 1620 cm-1 
peak loss found for particulate organic matter (POM) that was assumed to be mineral free. These 
consistent findings of the organic contribution to the 1620 cm-1 peak from both rapid pyrolysis 
and in situ thermal monitoring of soil samples up to 700 °C where also found when pretreating 
bulk soil or fractions with NaOCl (Yeasmin et al., 2017). 



 

Figure S7. DRIFTS spectra of (a) unpyrolyzed soil and (b) pyrolyzed soil from Bad Lauchstädt (FYM). From (Nkwain 
et al., 2018) 

 

Figure S8 Left: (a) Change of C-H (2930 cm−1 ) and (b) C = O/C = C (1620 cm−1 ) vibrations with heating as measured 
by in situT DRIFTS of bulk soil samples from Bad Lauchstadt, ¨ Kraichgau, and Swabian Alb. Right: (a) Change of 
C-H (2930 cm−1 ) and (b) C = O/C = C (1620 cm−1 ) vibrations measured in bulk soil and fractions of soils from 
Kraichgau and Swabian Alb (Demyan et al., 2013). *POM-particulate organic matter, Sa+A-sand and stable 
aggregates, Si+C-silt and clay, rSOC-resistant soil organic carbon.  

We would like to draw the attention to the fact that by a careful selection of the integration 
limits, we only take the top of the larger 1620 cm-1 peak (which in our samples made up 15 to 
33% of the whole peak area). As the three examples above demonstrate, this is mostly the part, 



which is removed by burning, pyrolyzing or NaOCl treatment. This is the same principle as used 
for the aliphatic peak area at 2930 cm-1, which is on top of a larger OH peak and to our 
knowledge, there is little debate about using this approach for the 2930 cm-1. See the picture 
below for typical peak areas from our samples. 

 

 

While we certainly do not claim that we can completely eliminate mineral interference, we think 
that the specifically delimited 1620 cm-1 peak that we use mostly consists of aromatic carbon i.e. 
the part of the peak that is selected is the part that disappears with the mentioned methods of 
SOC destruction. The finding, that it really is a meaningful proxy for carbon quality or stability is 
corroborated by the strong correlation (0.84) between the DSI and the percent of CPsoc, as was 
suggested to be computed by Lauric (new Figure S1 and comment below). As we recently 
demonstrated (Laub et al., 2019), and further found in the current study, the 2930 cm-1 peak is 
also subject to interference even in non-carbonate containing soils. This is mostly by water, which 
can partly be removed by higher drying temperatures. So, in summary we believe that there is 
sufficient evidence that, even though there is noise in the DSI at both peaks, DSI is still a 
meaningful and useful proxy, which is highly correlated to other measures of SOC composition 
but has the advantage of being cost/time effective to measure. 

To further illustrate how the 1620 cm-1 DRIFTS peak of bulk mineral soil is poorly related to SOM 
compounds, I provide the Figure 2 based on published and unpublished data from the paper of Barré 
et al. (2016) in Biogeochemistry showing the non-parametric Spearman’s Rho coefficient of DRIFTS 
spectra from soils coming from the Ultuna Fame trial, one site that was used in this reviewed work by 
Laub and colleagues, with SOC concentration. In Figure 2, we clearly see the strong and positive Rho 
coefficient of the 2900 cm-1 spectral region with SOC concentration while the 1620 cm-1spectral 
region show a Rho coefficient with SOC concentration close to 0, suggesting (though not 
demonstrating) that other compounds that organic matter absorb energy in the 1620 cm-1 spectral 
region of DRIFTS spectra, when scanning bulk mineral soils. From the above-mentioned information, I 
therefore question the rationale of the DRIFTS stability index of soil organic matter (SOM) in mineral 
soil samples.  

The result is strongly affected by the delineation of the peak area. We thus agree if the whole 
1620 cm-1 peak area (ca. 1755-1555 cm-1) is taken results may not be reliable.  



My interpretation is that this index is dividing a quantity that is highly correlated to SOC 
concentration (the 2900 cm-1 spectral region), by a quantity that is weakly changing when SOC 
concentration is modified (the 1620 cm-1 spectral region, provided a similar mineral composition). 
The DRIFTS stability index may thus show an increased SOC lability when SOC concentration is 
increased. I thus hypothesize that the DRIFTS stability index, as proposed by Demyan et al. (2012) 
and Laub and colleagues in this reviewed draft, may provide some information that is basically the 
same (though with added noise) than a variable much simpler than their index: total SOC 
concentration.  

We agree with the interpretation that the DSI is “dividing a quantity that is highly correlated to 
SOC concentration by a quantity that is weakly changing when SOC concentration is modified”, 
and as we demonstrate above, both quantities are linked to forms of SOC. The fact that the 
selected subregion of the 1620 cm-1 peak does not change strongly with SOC content, while, as 
destructive techniques demonstrate, it is still consisting mostly of aromatic carbon compounds 
(according to our integration limits), is exactly the reason why it is a very suitable proxy for slow 
turnover SOC.  

It is well documented that an increase in SOC concentration is associated with an increased in the 
labile/stable SOC ratio, and all proposed indicators of SOM stability should be compared to SOC 
concentration, the most simple and straightforward indicator of SOM stability (though not very 
accurate).  

What is the Spearman’s Rho coefficient of the DRIFTS stability index with SOC concentration in the 
dataset of Laub and colleagues?  

We calculated the Pearson`s correlation coefficient -0.57 and Spearman`s rank correlation 
coefficient to be -0.68 between OC content and the DSI (as in formula 2) for the whole dataset 
(n=50). See the plot below 

 

We think, that the nonlinearity of the relationship between the DSI and the SOC content, as 
indicated by a higher rank correlation coefficient, points towards the possibility, that as SOC 
increases, most of the carbon is added to the fast turnover pool and that this could potentially be 
lost rather fast again.   

I suggest that the authors (rather than using the spectral subtraction technique suggested by Nguyen 
et al., 1991 or Reeves, 2012), (i) test a soil dilution in KBr to reduce mineral artifacts in the 1620 cm-1 
spectral region of neat DRIFTS, (ii) or test attenuated total reflectance mid-infrared spectroscopy 
(MIR-ATR) as an alternative technique.  

y = -0.1601x + 1.0486
R² = 0.3274

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.500 1.000 1.500 2.000 2.500

SO
M

 in
 S

O
M

 1
 a

cc
or

di
ng

 to
 D

SI

SOC %



Dilution with KBr (1:3 and 1:100) had been tested by Demyan et al. (2012), mainly to determine 
whether there was specular reflectance in the 1159 cm-1 region, but was not found to yield better 
performances for deriving the DSI. Using neat samples avoids hygroscopic KBr which would have 
the potential to absorb water interfering with the 2930 cm-1 and 1620 cm-1 peaks and other non-
desired interactions with the sample. We think that the major advantage of the DSI and DRIFTS 
PLSR is that it is possible to use undiluted bulk soil samples, and that it is nondestructive (cost 
effective and other analysis can be done with the same samples). We see the major advantage 
also in large scale applications, such as regional simulations, where other techniques are either 
too expensive or time consuming.   

Indeed, MIR-ATR is a technique where the 1620 cm-1 peak region seems to be much less affected by 
quartz and other minerals that neat DRIFT signal, as illustrated in Figure 3 (Cécillon, Unpublished 
data). 

From our understanding, the issue with ATR usually is that the signal throughput to the detector 
is weaker, thus the overall spectral features stand out less and are dominated by the silica 
vibrations at <1500 cm-1, which is also shown in Figure 3 of Lauric Cécillon´s comment. The 
maximum absorbance in the DSI wavenumbers is almost an order of magnitude lower as 
compared to DRIFTS. If you zoom in on the figure, you can also see a small peak probably around 
1620 cm-1 in the silica sample, so it seems not to be free of mineral interference.  

It might be possible that MIR-ATR is an alternative to DRIFTS, if it can reduce mineral interference 
at the 1620 cm-1, but given the less strong signal of organic peaks it might be of limited use in low 
C soils. It could be worthwhile to do further research towards that direction and we think that 
this could be the content of another future publication. 

 

Finally, as Laub and colleagues benefit from soil samples from two long-term bare fallow sites in 
Europe, I suggest that they compute the Spearman’s Rho coefficient of their DRIFTS stability index 
with the proportion of centennially persistent soil organic carbon(CPsoc), that may be derived from 
the SOC evolution in the bare fallow plots, as shown by Cécillon et al. (2018).  

A higher Spearman’s rho coefficient of the DRIFTS stability index with CPsoc than the Spearman’s rho 
coefficient of SOC concentration with CP-soc, would suggest an added value of the index compared 
to SOC concentration, in its current state. 

Thanks for the discussion on this comment. We have now computed %CPsoc with the value of 
6.95 g kg-1 CPsoc from Ultuna derived by Cécillon et al. (2018) and 16.0 g kg-1 CPsoc from Franko 
and Merbach (2017) for the bare fallow data we have available. As shown below, when 
combining the two datasets of Bad Lauchstädt and Ultuna the correlation between SOC and 
CPsoc across sites is poor. This shows that SOC alone is not a sufficient indicator for SOC quality. 
The correlation between the DSI and CPsoc on the other hand is quite strong (0.84), which 
according to Laurics comment is a strong indicator of its added value. 

We think that it would be highly interesting to test this for other long-term bare fallows, where 
CPsoc could be mathematically derived (needing probably 30+ years of fallow) and this might 
help to optimize the DSI further. We think that a future publication could go into this direction 
and are excited about this finding. 



 

As the reasoning behind CPsoc comes from RothC type models, which assume that there is only 
one actively decomposing SOC pool and another passive or inert SOC pool which is NOT subject 
to decomposition, this could mean that the DSI might also be useful for these types of models. In 
this study, we worked with DAISY, which is a CENTURY type model, that has a fast and slow SOC 
pool, both subjected to decomposition. We think that this is in agreement with the principle 
behind DRIFTS, and that microorganisms primarily target high energy aliphatic SOC, but aromatic 
SOC is also decomposed at a much slower rate, probably as a byproduct of enzyme release. 

 

Overall, we very much acknowledge the issue of mineral interference addressed by the reviewer 
(see line 369 in the original manuscript) and the new addition: 

  

We have addressed this issue mainly by carefully delaminating the integration area and now have 
more clearly pointed to this in the methods: 
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We have further added a more detailed discussion on open questions of the DSI in the new 
manuscript version and finalize the section with the limitation that DSI should be tested before 
used with different soil types.  

 

 

 

In the quest to find measurable fractions for model pools, we think that the DSI is a useful proxy 
(carefully selected integration limits, nonlinear relation with SOC, evidence that our 1620 cm-1 is 
mostly from carbon, drying at 105 °C to reduce water interference at 2930 cm-1). We first and 
foremost consider the DSI as a potential proxy to help initializing two pool SOM models, and our 



question was, whether it was useful for this purpose or not, compared to steady state 
initializations. We think the value of this publication is to establish that the DSI has the potential 
to be a measurable fraction as a model pool proxy and thereby reducing model uncertainty, and 
show this to the scientific community. As any research this opens new questions which could lead 
to further development and refinement of the DSI. We think, that our study could demonstrate 
the DSI’s usefulness and that it might be worthwhile to put further efforts and research towards 
its validation, use or optimization, especially because of its ease of use and inexpensive nature. 
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Abstract. The initialization of soil organic matter (SOM) turnover models has been a challenge for decades. 

Instead of using laborious and error prone size-density fractionation for SOM pool partitioning, we propose the 

inexpensivea cost effective, rapid, and non-destructive Diffuse reflectance mid infrared Fourier transform 

spectroscopy (DRIFTS) technique on bulk soil samples to gain information on SOM pool partitioning from 25 

theinfrared spectra. Specifically, the DRIFTS stability index, defined as the ratio of aliphatic C-H (2930 cm-1) to 

aromatic C=C (1620 cm-1) stretching vibrations, was used to divide SOM into fast and slow cycling pools in the 

soil organic module of the DAISY model. Long-term bare fallow plots from Bad Lauchstädt (Chernozem, 25 

years) and the Ultuna frame trial in Sweden (Cambisol, 50 years) were combined with bare fallow plots of 7 years 

duration infrom the Kraichgau and Swabian Jura region in Southwest Germany (Luvisols). All fields had been in 30 

agricultural use for centuries before fallow establishment, so classical theory would suggest an initial steady state 

of SOM, which was hence used to compare the performance of DAISY initializations against the newly established 

DRIFTS stability index. The test was done using two different published parameter sets (2.7 *  * 10-6 d-1, 1.4 

*  * 10-4 d-1, 0.1 compared to 4.3 *  * 10-5 d-1, 1.4 *  * 10-4 d-1, 0.3 for the turnover rates of slow pool,and fast pool 

turnover rates and humification efficiency, respectively). The DRIFTS initialization of SOM pools significantly 35 

reduced DAISY model errors of poor performing model runserror (for soil total organic and microbial carbon) for 

cases where assuming steady state, led to poor model performance. This was irrespective of the turnover rates 

used, but the faster turnover parameter set fitfitted better to all sites except Bad Lauchstädt. This, which suggests 

that soils under long-term agricultural use were not necessarily at steady state. A Bayesian calibration was applied 
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in a next step to identify the best-fitting turnover rates for the DRIFTS stability index in DAISY, both for each site 40 

individually and for a combination of all sites. The two approaches which significantly reduced parameter 

uncertainty and equifinality were: 1) the addition of the physico-chemically basedphysicochemical DRIFTS 

stability index, (for humification and slow SOM turnover), and 2) combining several sites into one Bayesian 

calibration, as derived turnover rates can be strongly site specific. The combination of all four sites showed that 

SOM is likely lost at relatively fast turnover rates with the  95 % credibility intervals of the half-life of slow SOM 45 

pools half life ranging from 278 to 1095 years, with 426 years as a value of highest probability density. The 

credibility intervals of this study were consistent with several recently published Bayesian calibrations of similar 

two-pool SOM models, i.e. all turnover rates were considerably faster than earlier modelsmodel calibrations 

suggested. It is therefore likely that published turnover rates understimateunderestimate the potential loss of SOM. 

1 Introduction  50 

Process-based models of plant-soil ecosystems are used from plot to regional and global scales as tools of research 

and to support policy decisions (Campbell and Paustian, 2015). TheIn soil organic matter (SOM) in such models, 

SOM is traditionally divided into several pools, representing fast, and slow and for some modelscycling or even 

inert SOM (Hansen et al., 1990; Parton et al., 1993). Common methods of SOM pool initialization assumerequire 

that one assumes steady state conditions or performincludes a model spin-up run. In thea model spin-up run the 55 

user attempts to simulate the SOM dynamics according to history and carbon inputs for the decades to several 

millennia prior to the period of actual interest (eg. O’Leary et al., 2016)(e.g. O’Leary et al., 2016). Theoretically 

if the SOM pools are at steady state, models can be initialized, i.e. pool sizes calculated, either by simple equations 

(eg. DAISY, - S. Hansen et al., 2012) or by inverse modelling (RothC -(e.g. DAISY, Hansen et al., 2012) or by 

inverse modeling (RothC, Coleman and Jenkinson, 1996). In bothmost cases, data is insufficient to guarantee that 60 

the assumptions of SOM steady state or long-term knowledge of land use history and inputs are correct, given the 

lack of data of residue/manure input and weather datavariability for the required long-term timescales (> 200 

years). to millennia). Hence, while the approach should work in theory, the history of a site is usually not 

sufficiently known for the timescales that SOM needs to equilibrize. Therefore, the simulation of past carbon 

inputs and the assumption of steady state are a rough approximation at best. ItHence, it is therefore critical to find 65 

measurable proxies such as soil size density fractionation or infrared spectra, that can provide information on the 

quality of SOM and hence help in SOM pool initialization (Sohi et al., 2001). 

As was shown by Zimmermann et al. (2007), and recently confirmed by Herbst et al. (2018), a link exists between 

soil fractions obtained by size and /density fractionation and fast and slow cycling SOM pools. However, Poeplau 

et al. (2013) showed, that the same fractionation protocol led to considerably different results at six different 70 

laboratories which regularly applied the technique (coefficient of variation from 14 to 138 %). The resulting 

differences in the model initializations for simulated SOM loss after 40 years of fallow, leadled to differences in 

SOM losses that were to up to 30 % of initial SOM. Hence there is a need for a reproducible proxy for SOM pool 

initiation.  

We hypothesisedhypothesized that such a proxy could be obtaintedobtained from inexpensive, high-throughput 75 

Diffuse reflectance mid infrared Fourier transform spectroscopy (DRIFTS). DRIFTS can provide information on 

SOM quality, but also on texture and even mineralogy (Nocita et al., 2015; Tinti et al., 2015). The interaction of 
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mid-infrared energy with molecular bonds in soil produceproduces typical vibrational peaks of absorbance at 

distinct wavelengths, which. These can be linked to different bonds of carbon, nitogennitrogen, silicon and other 

elements. The vibrational peaks which relate to carbon of different complexities, such as the aliphatic C-H 80 

strechingstretching peak around 2930 cm-1 and the aromatic C=C strechingstretching peak at 1620 cm-1, provide 

information on SOM quality (Giacometti et al., 2013; Margenot et al., 2015). Demyan et al. (2012)While both 

peaks are subject to interference (2930 cm-1 mainly from water and 1620 cm-1 mainly from minerals (Nguyen et 

al., 1991)), it should be possible to limit the interference using subregions of the peaks with carefully selected 

integration limits, only selecting the specific peak area of interest. Indeed, Demyan et al. (2012) found 85 

aliphaticsaliphatic compounds to be enriched under long-term farmyard manure application and depleted in 

mineral fertilizer or control treatments, and showed that the ratio of the 2930 cm-1 to 1620 cm-1 peaks had a 

significant positive correlation with the ratio of labile to stable SOM obtained by size and density fractionation. 

Hence, we hypothesisedratios of the 1620 cm-1 to 2930 cm-1 peak had a significant positive correlation with the 

ratio of stable to labile SOM obtained by size and density fractionation. It was further corroborated that the specific 90 

integration limits of the peaks they used, which mainly selected the top subregion of the peak areas, are lost during 

combustion (Demyan et al., 2013). Hence, we hypothesized that the ratio of the aliphatic to aromatic DRIFTS 

peaks can be used as proxy for SOM pool initialization, thus providing a major improvement over assuming steady 

state SOM. This ratio of aliphatic to aromatic peaks, will be calledreferred to as the DRIFTS stability index (DSI) 

hereafter. Testing, improvement and proper use of the DSI was the central topic of this study. Recent findings have 95 

highlighted that the residual water content in bulk soil samples after drying at different temperatures affects the 

DSI considerably. Water has both an absorbance reducing impact onaffects significant parts of the wholemid-

infrared spectra and it does overshadeparticularly influences the 2930 and 1620 cm-1 peakpeaks (Laub et al., 2019). 

For this reason, we also tested how the drying temperature prior to DRIFTS measurements affectaffects the use of 

the DSI proxy, using 32, 65 and 105°C as pretreatment temperatures.  100 

WeTo test our hypotheses about DSI performance, we used the DAISY SOM model (Hansen et al., 2012) to test 

our hypotheses about the DSI performance.. DAISY is a commonly used SOM model (Campbell and Paustian, 

2015) with a typical multi-pool structure, which includes two soil microbial biomass pools, as well as two SOM 

pools (fast and slow). With first-order turnover kinetics and a humification efficiency valuesparameter (Figure 

1Fehler! Verweisquelle konnte nicht gefunden werden.),), the DAISY structure is similar to other widely used 105 

SOM models such as CENTURY (Parton et al., 1993) or ICBM (Andrén and Kätterer, 1997). In the current study 

onlyModel SOM pool initialization using the DSI was compared to initialization via a steady state assumption 

with different published turnover rates. For this comparison bare fallow experiments from a range of different sites 

and time scales from one to five decades were included. Bare fallow experiments were used to avoid the 

complicationadded complexity caused by the conversion of different plant compounds into SOM of 110 

differentvarying stabilities while being recycled at several stages. A range of different sites and time scales from 

one to five decades were included, and the SOM pool initialization by the use of the DSI was compared to 

initialization by assuming steady state with different published turnover rates.during decomposition.  

As SOM pool sizes and turnover rates are closely linked, it could also be necessary to recalibrate DAISY 

parameters for the use of the DSI. Therefore, a Bayesian calibration of turnover rates was done in orderused to 115 

adjust DAISY turnover rates to the pool division by the DSI and the changetime dynamics of the measured DSI 

throughout the fallow period. Thus, the DAISY parameterization inwas evaluated with respect to equifinality and 
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uncertainty as well as dependence on model structure was evaluated. The final hypothesis was, that through a 

Bayesian calibration using the DSI, DAISY pools will correspond to measured, i.e. physiochemically meaningful 

fractions thus reducing uncertainty. The posterior credibility intervals and optima of turnover rates should 120 

correspond to the results of other Bayesian calibrations done for models with similarsimilarly structured two-pool 

structures for relatively stable SOM poolsmodels. If such relations could be confirmed, this would point towards 

fundamental insights about the intrinsic speed of SOM turnover in temperate agroecosystems. 

2 Material and Methods 

2.1 Study sites and data used for modellingmodeling 125 

We used datasetsDatasets originating from bare fallow plotstreatments of four different sites with different 

observationalexperimental durations and measurement frequencies. Samples of the  were used in this study. 

Topsoil (0-20 cm topsoil) samples were available from the long-term experiments of (a) the Ultuna Frame trial 

(established in 1956, with additional data from 1979, 1995 and 2005; (Kätterer et al., 2011), four replicates), and 

(b) the Bad Lauchstädt Extreme Farmyard Manure Experiment (established in 1983, with additional data from 130 

2001, 2004 and 2008, two replicates) 

(https://www.ufz.de/index.php?de=37008(https://www.ufz.de/index.php?de=37008, date accessed 10.01.2019). 

Additional data from two medium-term experiments (2009 until 2016) from two Southwest German regions were 

available, i.e. of (c) the Kraichgau and (d) the Swabian Jura, representing different climatic and geological 

conditions. The bare fallow plots (of 5 x 5 m size) in the Southwest Germany experiments were established within 135 

agricultural fields (Ali et al., 2015) and had monthly to yearly measurement frequencies of samplings of the top 

soil samples taken from 0-30 cm. In both regions, three replicates of bare fallow plots were established in each of 

three different fields. Further details on all the sites can be found in Table 1. All sites had been under cultivation 

for at least several hundred years prior to establishing the bare fallow plots, which would suggest that steady state 

could be assumed. 140 

Bulk soil samples from the start and throughout the simulation period of all experiments were analyzed for total 

organic carbon and DRIFTS spectra; samples from the Kraichgau and Swabian Jura sites were additionally 

analysedanalyzed for soil microbial biomass carbon (SMB-C). After sampling, all bulk soil samples (except for 

SMB-C) were passed through a 2 mm sieve, then air dried, ball milled (for two minutes) to powder and stored 

until further analysis. Their soilSoil organic carbon (SOC) content was analyzed with a Vario Max CNS (Elementar 145 

Analysensysteme GmbH, Hanau, Germany). Soil samples for DRIFTS analysis were obtained after 24 hr drying 

at 32, 65 and 105°C. The dried samples were kept in a desiccator until measurement. DRIFTS spectra of bulk soil 

samples were obtained (with 4 repeated measurementsfour subsamples per sample) after 24 hr drying at 32, 65 

and 105°Cwere obtained using an HTS-XT microplate extension, mounted to a Tensor-27 spectrometer using the 

processing software OPUS 7.5 (equipment and software from Bruker Optik GmbH, Ettlingen, Germany). The 150 

details: aA potassium bromide (KBr) beam splitter with a nitrogen cooled HTS-XT reflection detector was used 

to record spectra in the mid infrared range (4000 – 400 cm−1); each). Each spectrum was a combination of 16 

co-added scans with a 4 cm-1 resolution 4 cm-1. Spectra were recorded inand then converted to absorbance units 

(AU); the acquisition mode “double-sided, forward-backward” and the apodization function Blackman-Harris-3 

were used. The dried samples were kept in a desiccator until measurements. After a baseline correction and a 155 

vector normalization of the spectra, peak areas of interest were obtained as the integral on top ofby integration 
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using a local baseline with the integration limits of Demyan et al. (2012) andDemyan et al. (2012) and integrated 

peak areas of the four subsamples averaged after that. The local baselines were drawn between the intersection of 

the spectra and a vertical line at the integration limits (3010 – 2800 cm-1 for the aliphatic C-H streching, 1660 – 

1580 cm-1 for aromatic C=C streching vibrations). stretching, 1660 – 1580 cm-1 for aromatic C=C stretching 160 

vibrations). Example spectra and integrated peak areas are displayed in Figure S 1. These carefully selected 

integration limits were critical to reducing signal interference from water and minerals. Particularly, the mineral 

interference close to the 1620 cm-1 peak makes accurate selection of integration limits necessary, so that only its 

top part (assumed to consist mostly of aromatic carbon) is selected. In the case of our samples, the selected specific 

peak area of the 1620 cm-1 peak accounted for approximately 10 to 30 % of the total peak area (ca. 1755-1555 cm-165 
1), and roughly corresponds to the peak portion that is lost with combustion or chemical oxidation (Demyan et al., 

2013; Yeasmin et al., 2017). A strong correlation between the DSI and the percentage of centennially persistent 

SOC (r = 0.84) from the combined long term experiments used in this study (using values of centennially persistent 

SOC from Cécillon et al., 2018; and Franko and Merbach, 2017), showed that the DSI selected in this manner did 

in fact explain a large portion of the SOC quality change across sites (Figure S 2).  170 

Additionally, soils from the experiments in Kraichgau and Swabian Jura were analyzed for SMB-C using the 

chloroform fumigation extraction method (Joergensen and Mueller, 1996). Briefly, field moist samples were 

transported to the lab in a cooler, with extractions beginning the next daywithin 24 hours after field sampling and 

the final SMB-C values corrected to an oven-dried (105° C) basis. The SMB-C was measured two to four times 

throughout the whole year. Stocks of SOC and SMB-C for the modelled layers0-30 cm were calculated by 175 

multiplying the percentage of SOC and SMB-C with the bulk density and depth of the modelledsampled layer 

thickness (Table 1).), respectively. Bulk density was assumed constant for Bad Lauchstädt, Kraichgau and 

Swabian Jura, while for Ultuna the initial 1.44 tMg m-3 (Kirchmann et al., 2004) in the beginning was used for all 

but the last measurement, where 1.43 Mg m-3 (Kätterer et al., 2011) was used. Due to low stonecoarse fragment 

contents (< 5 % for Swabian Jura 3, < 2 % for Swabian Jura 1 and < 1 % for the other six sites), and because 180 

changes in stone content throughout the simulation periods are unlikely, no correction for stonecoarse fragment 

content was done. 

2.2  Description of the simulation model: DAISY Expert-N 5.0 

All simulations were conducted using the DAISY SOM model (Hansen et al., 2012) integrated into the Expert-N 

5.0 modellingmodeling framework. Expert-N 5.0 is a flexible modelling framework, which allows a wide range 185 

of soil, plant and water models to be combined and interchanged (Heinlein et al., 2017; Klein et al., 2017; Klein, 

2018). ItExpert-N can be compiled both for Windows and Linux systems. A detailed description of the DAISY 

SOM submodule as it was implemented into the Expert-N 5.0 framework can be found in Mueller et al. (1997). A 

graphical representation of the DAISY pools considered in this study is shown in Figure 1. The additional modules 

available for selection in the Expert-N 5.0 framework are fromconsist of a rangeselection of established models 190 

for all simulated processes in the soil-plant continuum. The evaporation, ground heat, net radiation, and emissivity 

were simulated according to the Penman-Monteith equation (Monteith, 1976). Water flow through the soil profile 

was simulated by the Hydrus-flow module (van Genuchten, 1982) with the hydraulic functions according to 

Mualem (1976). Heat transfer through the soil profile was simulated with the DAISY heat module (Hansen et al., 

1990). In the first step of the DSI evaluation, simulations were conducted with two established parameter sets for 195 
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DAISY SOM. The first set was from Mueller et al. (1997) and was a modification of the original parameter set of 

turnover rates in Jensen et al. (1997) reported by Jensen et al. (1997). The second set was established after 

calibrations made by Bruun et al. (2003) using the Askov Long-Term Experiments and, in which they introduced 

considerable changes into the turnover rates of the slow pool and the humification efficiency. An equation 

developed by Bruun and Jensen (2002) was used to compute the sizesproportions of the slow and fast cycling 200 

SOM pools at steady state for both parameter sets at steady state (see next section). All the parametersParameters 

of both sets are displayedgiven in Table 2.  

Climatic driving variablesFor simulating soil temperature and moisture in Expert-N, daily averages of radiation, 

temperature, precipitation, relative humidity and wind speed, are needed for Expert-N simulations. For the 

long-term experiments they were extracted from the nearest weather station with complete data (Ultuna source: 205 

Swedish Agricultural University (SLU), ECA Station ID #5506, Elevation: 15 m, Lat: 59.8100 N, Long: 17.6500 

E; Bad Lauchstädt source: Deutsche Wetter Dienst (DWD) Station #2932, Elevation: 131 m, Lat: 51.4348 N, 

Long: 12.2396 E, Locality name: Leipzig/Halle). For the fields of the Kraichgau and Swabian Jura, the driving 

variables were measured by weather stations installed next to eddy covariance stations located at the center of each 

field. Details on the measurements, instrumentation as well as gap filling methods of those eddy covariance 210 

weather stations are described byin Wizemann et al. (2015).  

2.3 SOM pool initializations with the DRIFTS stability index and at steady state  

Measured SMB-C was divided into the slow and fast cycling microbial pools, with 10 % in the fast (8 % in Mueller 

et al., 1998) and 90 % in the slow pool. The remaining part of carbon (difference between total SOC and SMB-C) 

was divided either by the DRIFTS stability index (DSI), or according to the steady state assumption. For runs with 215 

theusing a steady state assumption, the equation of Bruun and Jensen (2002) was used, which directly 

computesestimates the fraction of SOM in the slow pool at steady state from the model parameters:  

slow SOM fraction =
ଵ

ଵା 
ೖೄೀಾ_ೞ೗೚ೢ

೑ೄೀಾ_ೞ೗೚ೢ∗ ೖೄೀಾ_೑ೌೞ೟

        (1) 

with kSOM_slow and kSOM_fast representing the turnover (per day) of the slow and fast SOM pools respectively, and 

fSOM_slow representing the amountfraction of fast SOM directed towards the slow SOM pool at turnover of fast SOM 220 

(humification efficiency). This resulted in 83 % of SOM being in the slow pool for the original DAISY turnover 

rates and 49 % in the slow pool for the Bruun et al. (2003) turnover rates (Table 2). For the DSI initialization, the 

amountfraction of SOM in the slow pool was calculated with the formula  

slow SOM fraction =
୅ଵ଺ଶ଴ୡ୫షభ

୅ଵ଺ଶ଴ୡ୫షభା୅ଶଽଷ଴ୡ୫షభ         (2) 

With A2930 cm-1 and A1620 cm-1 being the extracted peak areasspecific peak area of the aliphatic and aromatic 225 

peaks (described in section 2.1). The remaining carbon was allocated to the fast pool. As was mentioned before, 

three different data inputs for the DSI were used, withobtained at drying temperatures of 32, 65 and 105°C, in 

order to test which drying temperature isderived the best proxy for modellingmodeling. An example of the change 

of DRIFTS spectra occurring after several years of bare fallow can be found in Figure 2.  Each of the threeAll 

DSI model initializations waswere then run with both published sets of model parameters. Steady state 230 
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initializations using Equation 1 were only conducted with the corresponding parameter set from which they were 

calculated. 

2.4 Statistical evaluation of model performance 

Statistical analysis was performed with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). To compare different 

model initializations, a statistical analysis of squared model errors (SME) was conducted:   235 

𝑆𝑀𝐸௫ = (𝑜𝑏𝑠௫ − 𝑝𝑟𝑒𝑑௫)ଶ         (3) 

with obsx being the observed value, predx the predicted value and x the simulated variable of interest. A linear 

mixed model with SMEx as response was then used to test for significant differences between initialization 

methods. This approach allowed us to make use of the statistical power of the three Kraichgau and Swabian Jura 

fields to analyze which initialization was most accurate and to evaluate the trend of the model error with increasing 240 

simulation time.  In some cases, SMEx was transformed to ensure a normal distribution of residuals (square root 

transformation for Ultuna SOC and Kraichgau/Swabian Jura SMB-C and forthfourth root for Kraichgau/Swabian 

Jura SOC), which was checked by a visual inspection of the normal QQ plots and histograms of residuals (Kozak 

and Piepho, 2018). Random effects were included to account for temporal autocorrelation of SMEx within (a) the 

same field and (b) the same simulation. The model reads as follows: 245 

𝑦௜௝௞௟ = 𝜙଴ +  𝛼଴௜ +  ß଴௝ + 𝛾଴௜௝ + 𝜙ଵ𝑡௞ + 𝛼ଵ௜𝑡௞ + ßଵ௝𝑡௞ + 𝛾ଵ௜௝𝑡௞ + 𝑢௞௟ + 𝑢௜௝௞௟     (4) 

where 𝑦௜௝௞௟ is the SMEx of the simulation using the ith initialization with the jth parameter set, at the kth time on 

the lth field,  𝜙଴ is an overall intercept, 𝛼଴௜ is the main effect of the ith initialization, ß଴௝ is the main effect jth 

parameter set, 𝛾଴௜௝ is the ijth interaction effect of initialization x parameter set, 𝜙ଵis the slope of the time variable 

𝑡௞, 𝛼ଵ௜𝑡௞ is the interaction of the ith initialization with time, ßଵ௝𝑡௞  is the interaction of the jth parameter set with 250 

time, 𝛾ଵ௜௝𝑡௞  is the ijth interaction effect of initialization x parameter set x time, 𝑢௞௟ is the autocorrelated random 

deviation on the kth time in the lth field and 𝑢௜௝௞௟  is the autocorrelated residual error term corresponding to 𝑦௜௝௞௟ . 

The detailed SAS code can be found in the supplementary material.  

For Ultuna and Bad Lauchstädt, the 𝑢௞௟ term was left out, as both trials only had one field. As the Kraichgau and 

Swabian Jura had the exact same experimental setup and time frameduration, these sites were jointly analyzed in 255 

the statistic model, but due to completely different setups and time framesdurations, this was not possible for Bad 

Lauchstädt and Ultuna. The full models with all fixed effects were used to compare different correlation structures 

for the random effects including (i) temporal autocorrelation (exponential, spherical, Gaussian), (ii) compound 

symmetry, (iii) a simple random effect for each different field and simulation, (iv) a random intercept and slope of 

the time variable (with allowed covariance between both) for each field and initialization method. A residual 260 

maximum likelihood estimation of model parameters was used and the best fitting random effect structure for this 

model was selected using the Akaike Information Criterion as specified by Piepho et al. (2004). Then a stepwise 

model reduction was conducted until only the significant effects (p < 0.05) remained in the final statistical model. 

Because a mixed model was used, the Kenward-Roger method was usedapplied for estimating the degrees of 

freedom (Piepho et al., 2004) and to compute post hoc Tukey-Kramer pairwise comparisons of means. 265 
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2.5 Model optimization and observation weighting for Bayesian calibration 

The optimization with Bayesian calibration was done for Optimization of parameters kSOM_slow, kSOM_fast and the 

humification efficiency (fSOM_slow),) was performed using a Bayesian calibration approach. These parameters were 

chosen as only those three parameters they have a considerable impact on the rate of native SOM loss (we provide 

a detailed explanation why this is the casesee further details in the supplementary materialchapter S 12.2 ). The 270 

Bayesian calibration method uses an iterative process to simulate what the distribution of parameters would be, 

given the data and the model would be, combining. It combines a random walk through the parameter space with 

a probabilisitcprobabilistic approach on parameter selection.  

The Differential Evolution Adaptive Metropolis algorithimalgorithm (Vrugt, 2016) implemented in UCODE_2014 

(Lu et al., 2014; Poeter et al., 2014) was used for the Bayesian calibration in this study. As no Bayesian calibration 275 

of DAISY SOM parameters has been done before, we used noninformative priors were used. The main drawback 

of noninformative priors is that they can have longer computing times, but as was shown by Lu et al. (2012) with 

enoughsufficient data and long enough running periodssimulation durations, the posterior distributions are very 

similar to using informed priors. Ranges were set far beyond published parameters with 1.4 *  * 10-2 to 1.4 *  * 10-6 

d-1 for kSOM_fast and 1.4 * 10-3 to 5 *  * 10-7 d-1 for kSOM_slow. The parameter fSOM_slow had to be more strongly 280 

constrained as without constraints it tended to run into unreasonable values up to 99 % humification. The 

limtslimits were therefore set to 0.05 to 0.35 for, which is +/- 5 % of the two published parameter sets and also 

represents the upper boundaries of other similar models (eg. Ahrens et al., 2014). As convergence criteria the(e.g. 

Ahrens et al., 2014). The default UCODE_2014 Gelman-Rubin criterion (Gelman and Rubin, 1992) with a value 

of 1.2 was chosen for the convergence criteria. A total of 15 chains were run in parallel with a timestep of 0.09 285 

days in Expert-N 5.0 (this was the largest timestep and fastest computation, where the simulation results of water 

flow, temperature and hence SOM pools was unaltered compared to smaller timesteps). It was ensured that at least 

300 runs per chain were done after the convergence criterion was satisfied.  

In Bayesian calibration, a proper weighing of observations is needed in order to achieve a diagonal weight matrix 

of residuals (proportional to the inverse of the variance covariance matrix), and to ensure that residuals are in the 290 

same units (Poeter et al., 2005, p18 ff). This included several steps. A differencing removed autocorrelation in the 

individual errors in each model run of the Bayesian calibration itself (the first measurement of each kind of data 

at each field was taken as raw data, for any repetedrepeated measurement the difference from this first 

measurement was taken instead of the raw data). Details on differencing are provided in chaperchapter 3 of the 

UCODE_2005 manual (Poeter et al., 2005). To account for differentvarying levels of heterogeneity of different 295 

fields in the weighting, a mixed linear model was used to separate the variance of observations from different 

fields originating from natural field heterogeneity from the variance originating from measurement error. To do 

so, a linear mixed model with random slope and intercept of the time effect for each experimental plot was fitted 

to the SOC, SMB-C and DSI data for each field individually: 

𝑦௞௟ = 𝜙଴ +  𝜙ଵ𝑡௞ + 𝑢௟ + 𝑢௞ + 𝑢௞௟         (5) 300 

where 𝑦௞௟  is the modelledmodeled variable at the kth time on the lth plot,  𝜙଴ is the intercept, 𝜙ଵis the slope of the 

time variable 𝑡௞, 𝑢௟ is the random intercept, 𝑢௞ is the autocorrelated random deviation of the slope and  𝑢௞௟ is the 

autocorrelated residual error term corresponding to 𝑦௞௟ . 
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The error variance of each type of measurement (DSI, SMC-C, SOC) at each field  𝜎௙ெ
ଶ = 𝜎𝑢𝑘

ଶ + 𝜎𝑢𝑘𝑙
ଶ  was then 

used for weighting of obsevationsobservations, excluding the field variance 𝜎𝑢𝑙
ଶ  from the weighting scheme. This 305 

error variance was used in UCODE_2014 to compute weighted model residuals for each observation as follows: 

 𝑤_𝑆𝑀𝐸௫ =
(௢௕௦ೣି௣௥௘ௗೣ)మ

ఙ²೑ಾ
          (6) 

where w_SMEx is the weighted squared model residual , obsx is the observed value, predx is the predicted value 

and 𝜎²௙ெ is the error variance of the Mth type of measuremetmeasurement at each field. All w_SMEx are combined 

to the sum of squared weighted residuals, which is the objective function used in UCODE_2014 (Poeter et al., 310 

2014). By this procedure, observations with higher measurement errors have a lower influence in the Bayesian 

calibration.  

Since the medium-term experiments had a much higher measurement frequency, it was also tested if giving each 

experiment the same weight would improve the results of the Bayesian calibration (equal weight calibration). In 

this case an additional group weighting term was introduced for groups of observations, representing different 315 

datasets at the different sites. This weighting term is internally multiplied with each w_SMEx in UCODE_2014 

and was calculated as 

𝑤_𝐺௫ =
ଵ

(௡೚್ೞ∗௡೛ೌೝ∗௡೑)
             (7) 

where w_Gx is the weight multiplier for each observation, nobs is the number of observations per parameter, npar is 

the number of parameters per field, and nf is the number of fields per site. This weighing assures that with the exact 320 

same percentage of errors, each site would have the exact weight of 1.  

The influence of several factors was assessed in this Bayesian calibration: the use of individual sites compared to 

combining sites, including an equal weight (as described above) vs weighting only by error variance, and the effect 

of in/excluding the DSI in the BayesionBayesian calibration. Therefore, seven Bayesian calibrations were 

conducted in total: four for each individual site with original weight and DSI, i.e., 1) Ultuna, 2) Bad Lauchstädt, 325 

3) Kraichgau, 4) and Swabian Jura, 5) equal weight calibration for all sites combined with equal weightingusing 

DSI, 6) original weight calibration for all sites combined without using DSI use in the Bayesian calibration (only 

for initial pool partitioning) and finally 7)7) original weight calibration for all sites combined using the DSI and 

original weight. The comparison of these seven Bayesian calibrations was designed to assess the effect of the site 

on the calibration, as well as the effect of the DSI and of user weighting decisions.  330 

3 Results 

3.1 Dynamics of SOC, SMB-C and DRIFTS during bare fallows  

All bare fallow plots lost SOC over time with the severity of SOC loss varying between soils and climates at the 

different sites. The Bad Lauchstädt site experienced the slowest carbon loss (7% of initial SOC in 26 years), while 

SOC at Ultuna and Kraichgau SOC was lost at much faster rates (Ultuna - 39% of initial SOC in 50 years  ̧335 

Kraichgau on average 9% of initial SOC in 7 years) (Table 3). In the Swabian Jura field 1 the SOC loss was 

comparable to that of the Kraichgau (about 10% of initial SOC in 7 years), but was much less in fields 2 and 3. 

Some miscommunications with the field owner’s contractors led to unwanted manure addition and fields ploughing 
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in Swabian Jura field 2 and 3 in 2013, hence results of these two fields after the incident in 2013 were excluded. 

The DRIFTS spectra revealed that the aliphatic peak area (2930 cm-1) decreased rather fast after the establishment 340 

of the bare fallow plotplots while the aromatic peak area (1620 cm-1) had only minor changes and no consistent 

trend (Figure 2). The resulting amountfraction of SOC in the slow pool according to the computed DSI changed 

from the initial range of 54 to 80 % to the range of 76 to 99% at the end of the observational period. (Table 3, 

Figure S 3). The SMB-C reacted even more rapidly to the establishment of fallows and halved on average for all 

fields within 7 years duration. (Table 3).  345 

3.2 Comparison of the different model initializations  

The observed trend of SOC loss with ongoing bare fallow duration was also found in all simulations (Figure 3). 

and Figure S 4). For Ultuna, simulated SOC loss in all cases underestimated measured loss, while for Bad 

Lauchstädt, simulated SOC losses consistently overestimated measured losses. At Kraichgau sites SOC loss was 

underestimated by the models, but usingwith the Bruun (2003) parameter set yieldedyielding simulated values 350 

closer to what was measuredactual measurements. In the Swabian Jura, both parameter sets underestimated SOC 

loss. The decline of SMB-C in the Kraichgau and Swabian Jura (Figure 4) occurred more rapidly than that of 

SOC, though SMB-C had higher variability of measurements. The parameter sets with steady state assumptions 

marked the upper and lower boundaries of the SMB-C simulations but the DRIFTS stability index (DSI) 

initializations were closer to the measured values (with exception of Swabian Jura field 3). For brevity only 355 

simulations of field 1 for Kraichgau and Swabian Jura are displayed here.shown. Simulation results for fields 2 

and 3 are found in the supplemental material (Figure S 5 for SOC simulations and Figure S 6 for SMB-C).  

The statistical analysis of the model error revealed a site dependency of the effect of the parameter set. The 

three-way interaction of initialization, parameter set and time 𝛾ଵ௜௝𝑡௞ was significant for all but Bad Lauchstädt 

SOC, where only the parameter set had a significant effect. In the case of Bad Lauchstädt, the model error was 360 

significantly lower with the slower Mueller (1997) SOM turnover parameter set, while for the rest of tested cases, 

the faster Bruun (2003) set performed significantly better (Table 4). For Ultuna and for Kraichgau + Swabian Jura 

SOC, the steady state assumption with Mueller (1997) parameters had the highest model error, while the steady 

state assumption with Bruun (2003) parameters had the lowest model error of all simulations, but the there was 

only a statistical significant difference to the DRIFTS initializationof DSI using 105°C drying temperature was 365 

only significant for to DSI using other 32°C and 65°C for the Ultuna and not for the other sites.site. For the SMB-C 

simulations inat the Kraichgau + Swabian Jura sites, however, the errors were lowest for the DRIFTSDSI 

initialization using the 105° C drying temperature with Bruun (2003) parameters and significantly lower than both 

steady state initializations. Of the DRIFTSDSI initializations using different drying temperatures, the model error 

was always lowest when using the 105°C drying temperature initialization compared to 32°C and 65°C (significant 370 

for Ultuna, as well as for Kraichgau + Swabian Jura SMB-C using Mueller (1997) parameters). As initializations 

with DRIFTSDSI using 105°C drying temperature consistently performed the best of all three DRIFTSDSI 

initializations, it was chosen to continue only with DRIFTSDSI spectra of soils dried at 105°C were used for the 

Bayesian calibration. 

3.3 Informed turnover rates of the Bayesian calibration 375 

The posterior distribution of parameters from the Bayesian calibration differed considerably between the different 

calibrations for individual sites, but there were also differences between different weighting schemes and toor 
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when performing the Bayesian calibration without DSI when using all sitesthe DSI (Figure 5). The highest 

probability turnover of the fast SOM pool (kSOM_fast) was 1.5 and 3 times faster for Ultuna and Kraichgau, 

respectively, when compared to initial rates (1.4 * 10-4 d-1 for both parameters sets), which fitted well for Bad 380 

Lauchstädt and Swabian Jura. For the slow SOM pools (kSOM_slow) the Bad Lauchstädt, Kraichgau and Swabian 

Jura site calibrations were in between the two published parameter sets, but tended towards the slower rates (2.7 * 

10-6 d-1 by Mueller (1997)), while the optimum for Ultuna was exactly at the fast rates of Bruun (2003) (4.3 * 10-5 

d-1). The humification efficiency (fSOM_slow) was not strongly constrained in the Bayesian calibration, except for the 

Kraichgau site, where it ran into the upper boundary of 0.35. This trend towards higher humification existed also 385 

for the other sites, but with much less strengthto a lesser extent than for Kraichgau.  

The different calibrations of the combination of all sites under different weightings and with or without the DSI 

also led to considarableconsiderable differences in the posteriors. When combining the sites with the artificial 

equal weighting, the posterior distribution of all three parameters was the widest, basically covering the range of 

all four sitessite calibrations. With the original weighting scheme, only informed by the variance of the data, the 390 

posteriors were much more narrownarrower for all parameters, with the optima of kSOM_fast being slightly faster 

than the two (similar) published rates. The optima of kSOM_slow were slightly slower than that of Bruun (2003) but 

much faster than that of Mueller (1997) and fSOM_slow was even above the higher Bruun (2003) value of 0.3 by 

Bruun (2003).. The use of the original weighting scheme but without the use of the DSI in the Bayesian calibration 

did not constrain the fSOM_slow at all and had faster kSOM_slow and slower kSOM_fast than the one using the DSI. Both 395 

these Bayesian calibrations using the original weighting (with and without DSI) showed a trend towards slightly 

faster turnover than was suggested by Bruun (2003).  

There was a strong negative correlation between kSOM_fast and kSOM_slow parameters for all but the Bad Lauchstädt 

calibration (Figure S 7). When DSI was not included in the Bayesian calibration, this negative correlation was 

stronger than when it was included in the Bayesian calibration (Figure 6). The parameters kSOM_fast and fSOM_slow 400 

were always positively correlated positively, most strongly for Kraichgau (0.49) and Swabian Jura (0.38), but only 

weakly for the long-term sites. The correlations between the parameters kSOM_slow and fSOM_slow were generally low 

and both positive and negative. The parameters with the highest probability density of the calibrations combining 

all sites for fSOM_slow , kSOM_fast and kSOM_slow in that order were 0.34, 2.29 * 10-4, 3.25 * 10-5 for the original weight 

calibration and 0.06, 9.58 * 10-5 and 5.54 * 10-5 for the calibration using original weights and no DSI, showing. 405 

These results suggest that turnover rates of kSOM_slow of verycould be similar magnitude asor faster than kSOM_fast 

were possible without the use of the DSI. About 10 % of simulations of the Bayesian calibration without DSI had 

even a faster kSOM_slow than kSOM_fast.  

4 Discussion 

4.1 How useful is the DRIFTS stability index? 410 

The results of this study confirm the hypothesized usefulness of the DRIFTS stability index for SOM pool 

partitioning for a number of soils across Europe. The DSI therefore is a proxy of the current state of SOM in a 

particular field. This is particularly relevant, given that the changes in genotypes of crops, agricultural 

management, crop rotations and the rise of average temperatures in recent decades probably have affected the past 

quality and quantity of carbon inputs to soil. Consequently, the steady state assumption for model initialization is 415 
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not likely to be valid. A search for suitable proxies for SOM pool partitioning into SOM model pools that 

correspond to measurable and physiochemicallyphysicochemical meaningful quantities is therefore of high interest 

(Abramoff et al., 2018; Bailey et al., 2018; Segoli et al., 2013). The results of this study confirm the hypothesized 

usefulness of the DSI proxy assessing the current state of SOM for pool partitioning to model SOC for several 

soils across Europe. This is particularly relevant, given that changes in crop genotype and rotation, agricultural 420 

management, and the rise of average temperatures in recent decades as well as land use changes, such as draining 

of soils or deforestation, in recent centuries have altered the quality and quantity of carbon inputs to soil. 

Consequently, the steady state assumption for model initialization is not likely to be valid. Despite the 

acknowledged mineral interference of the DSI, Demyan et al. (2012) showed that with a careful selection of peak 

integration limits, the DSI through identifying organic contributions in DRIFTS spectra is a sensitive indicator of 425 

SOM stability if mineralogy is similar. With (despite acknowledged mineral interference). Combined with a higher 

temperature (105 oC) for soil drying prior to DRIFTS analysis, a strong correlation between the resultsportion of 

centennially persistent SOC and the DSI (Figure S 2) was found which supports the hypothesis that it might be of 

general applicability across sites. Results from our study we could not reject the hypothesizedmodeling 

corroborated the usefulness of the DSI for SOM pool partitioning for soils of different properties across Europe. 430 

The statistical analysis of the model error for both SOC and SMB-C showed clearly that the DSI doescan improve 

poor model performance, especially with the slower turnover rates of Mueller (1997). When model performance 

is already satisfactory, the natural variability of the DSI can make model performance worse, as in the case of 

Ultuna SOC with Bruun (2003) parameters, but this reduction was minor compared to the improvement the DSI 

had over steady state assumptions at Ultuna with Mueller (1997) rates. The better results for Ultuna with the Bruun 435 

(2003) steady state might also just be an effect of turnover times still being too slow and hence the more SOC in 

the fast pool, the faster the turnover is in general turnoverand the lower the model error. This was also indicated 

by faster optima by the Bayesian calibration compared to both published turnover rates. Also inIn the case of Bad 

Lauchstädt, only turnover rates had a highan influence on model performance. The properties of athe Chernozem 

were generally not well captured with botheither parameter setsset, and it has probably has a slower overall SOM 440 

decomposition asthan many other agricultural soils. Nevertheless, the use of DSI also was suitable for Bad 

Lauchstädt, as it did also not reduce model performance. 

The results for SMB-C, typically the pool that reacts fastest to changes of input, corroborated the evidence that the 

DSI initialization is a more realistic estimation of SOM pools than the steady state assumption. The range of 

different sites, soils, and climatic conditions of Europe represented within this study suggest the robustness of the 445 

DSI as a proxy for SOM quality and SOM pool division for a large environmental gradient. Hence, it would be an 

improvement over assuming steady state of SOM wherever there is a lack of detailed information of carbon inputs 

and climatic conditions. Considering the timescales at which SOM develops, this is almost anywhere, as detailed 

data is available at best for <200 years, which is not even one half-life of the slow SOM pool.  

So far, studies that assessed SOM quality and pool division proxies, either using thermal stability of SOM (Cécillon 450 

et al., 2018) or size-density fractionation (Zimmermann et al., 2007), only indirectly related the proxies to inversely 

modelledmodeled SOM pool distributions, using machine learning and rank correlations. In contrast, our study 

showed that the DSI is a proxy which can be directly used for pool initialization. As for other proxies such as 

thermal stability (Demyan et al., 2013) and size density fractionation (Puttaso et al., 2013), the relationship between 

SOM quality and the DSI is only indirect as e.g. determined by comparing high/low SOM treatments in 455 
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manipulation experiments. However, the DSI also makes sense from the perspective of energy content of the 

molecules that create the peaks of absorption, as microorganisms can obtain more energy from the breakdown of 

aliphatics are compared to aromaticsThe DSI also makes sense from the perspective of energy content, as 

microorganisms can obtain more energy from the breakdown of aliphatic than aromatic compounds (e.g. Good 

and Smith, 1969), and therefore aliphaticsaliphatic compounds are primarily targeted by microorganisms (hence 460 

have faster turnover) as previously shown for bare fallows (Barré et al., 2016).  

The two distinct peaks for aliphatic and aromatic carbon bonds of the DSI fit well to the two SOM pool structure 

of DAISY and the simulation of carbon flow through the soil in DAISY is very similar to several established SOM 

models such as SoilN, ICBM and CENTURY. It is therefore likely that with calibration, the DSI could be used as 

a general proxy for SOM models with two SOM pools and a humification efficiency (fSOM_slow  in DAISY). The 465 

parameter correlations between kSOM_slow, kSOM_fast and fSOM_slow according to the Bayesian calibrations also showed 

clearly that, assuggest that without a pool partitioning proxy, modifying any one parameter can lead to similar 

results in terms of SOC and SMB-C simulation. A clear distinction between fast and slow pools needs a pool 

partitioning proxy as can be seen by faster kSOM_slow than kSOM_fast for some of the simulations of the Bayesian 

calibration without using DSI. Assigning the DSI to DAISY reduced parameter correlations and led to clear 470 

distinction between fast and slow pools.  

The aliphatic molecular vibrational peak of DRIFTS is most resolved when applying a 105°C drying temperature 

to samples prior to analysis Bruun and Jensen (2002) postulated, the three parameters are strongly related, and 

without the DSI modifying anyone of them can lead to the same results in terms of SOC and SMB-C simulation. 

Without the DSI, no clear distinction between fast and slow pools in the calibration was given as can be seen by 475 

sometimes faster kSOM_slow than kSOM_fast. Assigning the DSI to DAISY not only reduced the correlations, but also 

made this clear distinction between fast and slow pool in the Bayesian calibration.  

The aliphatic carbon peak of DRIFTS is most resolved when applying a 105°C drying temperature (Laub et al., 

2019). The current study’s modeling results from modelling corroborated the finding that the DSI should be 

obtained from measurements after drying at 105 °C with the performance of the DRIFTS initializations being 480 

always in the order 105°C > 65°C > 32°C drying temperature (differences being sometimes but not always 

significant).  

Compared with the other proxies for SOM quality discussed above, the measurements by DRIFTS are inexpensive, 

relatively simple, and the equipment of the same manufacturer is standardized. This should also constrain 

variability between different laboratories and be attractive for large-scale applications with large sample size, for 485 

example to initialize simulations at the regional scale.numbers, for example to initialize simulations at the regional 

scale. However, for standardization of the DSI for model initialization one needs to address how the type of 

spectrometer (e.g. detector type) influences the spectra, if water and mineral interferences (Nguyen et al., 1991) in 

the spectra can be further reduced and if a mathematical standardization of the spectra and DSI (across instruments 

and water contents) is possible. While a complete elimination of mineral interference is not possible, a careful 490 

selection of integration limits and the use of a local baseline minimizes mineral interference of DRIFS spectra 

from bulk soils. This mostly selects the top part of the 1620 cm-1 peak, which corresponds to the part that is reduced 

or completely lost when SOC is destroyed (Demyan et al., 2013; Yeasmin et al., 2017). Other approaches such as 

spectral subtraction of ashed samples or HF destruction of minerals prior DRIFTS analysis have been developed 
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in the attempt to obtain spectra of pure SOC. All are rather labor intensive and still produce artifacts, as it is not 495 

possible to destroy only the minerals or only the SOC without altering the respective other fraction (Yeasmin et 

al., 2017). Hence, we think that the selected integration limits might represent at this point the most feasible option 

for obtaining a robust and cost-effective proxy of SOC quality for modeling. The strong correlation of DSI and 

centennially persistent SOC as well as the model results of this study seem to corroborate this. The method of DSI 

estimation might be improved by a study of the best integration limits optimizing the fit of the DSI and centennially 500 

persistent SOC, which would require more bare fallow experiments than in this study. It could be worthwhile to 

use a purely mineral peak to correct for the mineral interference at 1620 cm-1 similar to what was done to correct 

for carbonates in the 2930 cm-1 peak by Mirzaeitalarposhti et al. (2016). The recent coupling of pyrolysis with 

DRIFTS (Nkwain et al., 2018) might be a further analytical advancement of the DSI, as it overcomes mineral 

interferences in the spectra. However, this technique is more complex due to a larger number of visible organic 505 

peaks, including CO2 that develops from the pyrolysis, which makes it not easily applicable to established two-

pool models such as DAISY. In addition, a considerable portion (30 – 40 %) of SOM is not pyrolyzed and therefore 

not recorded in the spectra. In summary, it was found that the DSI can be directly used to distribute SOM between 

pools in two pool models, though there is some mineral interference. Furthermore, DSI was suitable for a wide 

range of soils and improved model performance. Hence, DSI seems to be a more robust proxy for pool initialization 510 

then methods such as steady state or long-term spin-up runs which rely on strong assumptions to which they are 

very sensitive though there is very limited data to prove them. In summary, even despite of the acknowledged 

shortcomings, the DSI was useful to partition SOM between pools. It seems more robust than steady state or 

long-term spin-up runs which rely on strong assumptions. Further tests are needed before using the DSI for 

mineralogy that differs considerably from the soils of this study. Finally, the DSI is not purely related to chemical 515 

recalcitrance of SOM, as it also correlates with the level of SOC protected by aggregation (Demyan et al., 2012). 

Hence, it is likely that aggregation and chemical recalcitrance are related. 

4.2 Parameter uncertainty as estimated with Bayesian calibration 

According to our Bayesian calibrations, a wide range of parameter values are possible for DAISY going far beyond 

the initial published parameter sets. By combining various sites and including meaningful proxies, such as the DSI, 520 

the parameter uncertainty and equifinality could be reduced and the credibility intervals narrowed. The predictions 

of mechanistic models usually fail to account for the three main statistical uncertainties of (1) inputs, (2) scientific 

judgments resulting in different model setups and (3) driving data (Wattenbach et al., 2006). However, with a 

Bayesian calibration framework such as implemented in UCODE 2014, almost any model can be made 

probabilistic. Then the, so uncertainties of parameters and outputs can be assessed, even for projections into the 525 

future (Clifford et al., 2014). As this study focused on Bayesian calibration and we used an established model, we 

mainly address mainly the parameter uncertainty, although input uncertainty was also included through the 

weighting process. We clearly demonstrated an effect of the individual site used for Bayesian calibration on the 

resulting model parameters and uncertainties. Similarly diverging site specific turnover rates were also found by 

Ahrens et al. (2014) in a study of soil carbon in forests. Diverging results for different sites generally point towards 530 

a need for a better understanding of the modelledmodeled system and model improvements (Poeter et al., 2005), 

but this often requires a deeper understanding of the system and new measurements – hence it is not always 

feasible. A Bayesian calibration asks the question: “What would be the probability distribution of parameters, 

given that the measured data should be represented by the selected model?“.?”. Hence, if only one site is used, it 
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can only answer this question for that specific site. As this study showed, the parameter set could then be highly 535 

biased for other sites. For a more robust calibration, several sites should be combined to obtain posterior 

distributions of parameters for a gradient of sites, though this might reduce model performance for individual sites. 

The introduction of the equal weighting scheme, which gave similar weights to the different sites, highlights how 

much bias may be introduced by user decisions of artificial weighting: this Bayesian calibration parameter set had 

the highest uncertainties and it appears as if the Ultuna site had by far the strongest influence. In contrast to that, 540 

the combination of all four sites with the original weights based on the error variances or measurements led to a 

very clear reduction of parameter uncertainty and the narrowest parameter credibility intervals (Figure 6 a 

compared to b and c).  

The results of the statistical analysis of model errors (Table 4) suggests that the DSI is suitable for pool 

initialization. This was corroborated by the Bayesian calibration, as the inclusion of the DSI narrowed credibility 545 

intervals for the slow SOM pool turnover and humification efficiency and reduced the correlation between fast 

and slow SOM turnover compared to the simulation without the DSI as constraint. Especially the clear distinction 

between kSOM_slow and kSOM_fast shows the advantage of attaching a physiochemical meaning to the pools that was 

not given before. Finding new and meaningful proxies is therefore crucial in addressing the equifinality originating 

from the complex model structures and hence to reduce model uncertainty. While we demonstrated this with the 550 

DSI, it is a general principle which others have used in similarly effective approaches, for example within a time 

series of 14C data (Ahrens et al., 2014) and the combination of several meaningful proxies would likely lead to the 

bestEspecially in the case of the clear differentiation between kSOM_slow and kSOM_fast, our results show the advantage 

of attaching a physiochemical meaning to the pools that was not provided before. Other effective approaches, such 

as time series of 14C data could be combined with the DSI for better results. 555 

Of all three parameters, the humification efficiency (fSOM_slow) was the only parameter that consistently ran into the 

upper boundaries, set to 35 %. In fact, initial calibrations were done where fSOM_slow was constrained to 95 %; even 

then, it tended to run into that constraint (Figure S 8) and led to much faster turnover rates (kSOM_slow) than were 

published before. These high values of fSOM_slow were so far abovemuch greater than the published 10 % for the 

Mueller (1997) dataset and, 30 % for Bruun (2003) but also any ), and other published model, that thistwo pool 560 

models. Therefore, the poorly constrained fSOM_slow parameter was considered as caused by a model formulation 

problem, which did not depend on whether the DSI was included in the Bayesian calibration or not. Only when 

the humification efficiency was restricted in the Bayesian calibration, the turnover of fast and slow SOM aligned 

with the earlier published rates.Only when the humification efficiency was restricted in the Bayesian calibration, 

the turnover of fast and slow SOM aligned with the earlier published rates. If a parameter is problematic, such as 565 

fSOM_slow it could mean that there is a lack of data. However, if parameters are constrained, but run into implausible 

values, it usually means that the model structure is suboptimal (Poeter et al., 2005) and should be altered.   

4.3 Model structure determines SOM turnover times in two-pool models  

The rate of SOM decomposition remains of major interest, especially with respect to the potential of SOM as a 

global carbon sink (Minasny et al., 2017). FirstSome of the first conceptual approaches proposed SOM pools with 570 

residence times of 1000 years and longer (e.g. in CENTURY, Parton et al., 1987)Parton et al., 1987), but the SOM 

models were calibrated to fit data measured in long-term experiments that included vegetation. The pool structure 

of early SOM models such as DAISY and CENTURY were rather similar as were the turnover rates of SOM pools 
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(see summary in Table 5). An improved understanding of actual amounts of carbon inputs to the soil, which still 

remain challenging to measure, led to faster turnover rates in more recent model versions (e.g. by Bruun, 2003). 575 

The reason is probably that inputs of carbon and nitrogen to the soil were ofteninitially underestimated as it is very 

difficult to measure root turnover and rhizosphere exudation inputs without expensive in situ 13C or 14C labeling. 

The underestimated inputs were then likely counterbalanced in the model calibration by slower turnover rates 

resulting in acceptable model outputs (SOM dynamics and CO2 emissions) for the time being. However, as our 

summary of more recent studies underlines (Table 5), the earlier published turnover rates seem to be subject to a 580 

systematic underestimation. As the comparison of our Bayesian calibration to other recent Bayesian calibration 

studies suggest, the relatively fast turnover rates of this study are in alignment with other recent findings (Table 

5), as all five examples have published turnover rates for the slow SOM pool, which are at least one order of 

magnitude faster than early assumptions from the 1980s and 90s. 

This also shows howIt is critical it is to understand model uncertainties and to test fundamental assumptions of 585 

how SOM is transferred between the pools (Sulman et al., 2018). The comparison between constrained and 

unconstrained humification efficiency in the Bayesian calibrations suggest that the sequential flow of carbon 

through the system might be assuming a condensation of stabile carbon that does not actually explain the vast 

majority of slowmore stable SOM formation.  

From a theoretical perspective, one may wonder how large amounts of less complex SOM should become complex 590 

SOM without any involvement of living soil organisms. The way that the formation of complex carbon is 

represented in DAISY is probably a remainder of earlier humification theories from the 1990s that mostly ignored 

microbe involvement, while most of the recent studies suggest that the vast majority of SOM is of microbial origin 

(Cotrufo et al., 2013). A simple adaption for two-pool SOM models such as DAISY that include SMB pools could 

acknowledge this paradigm shift: The partitioning between slow and fast turnover SOM could be at the death of 595 

the microbial biomass (Figure 7) without any transfer of SOM from fast to slow pools. (a brief test of this new 

structure is provided in the supplementary material Figure S 10). This would also be in alignment with the DSI 

concept, as aliphatic carbon should not spontaneously transform to aromatic carbon on its own. Then DAISY 

would fit better to the DSI and other proxies linking measurable fractions to SOM pools (the same is true for 

CENTURY and other models, which apply the same humification principle). The way that pools are linked in the 600 

current setup, the actual turnover time of recalcitrant SOM consists of the turnover of the fast pool and the slow 

pool combined as it moves through these pools sequentially (Figure 1).  

How strongly the basic assumptions influence SOM simulation is also reflected when differences between one- 

and two-SOM pool models are compared. The turnover rates of the one-pool models are in between those of slow 

and fast pools. However, our comparison shows that models with similar structure come to similar conclusions for 605 

SOM turnover. For example, the one-pool model in Clifford et al. (2014) was quite similar in turnover rates to that 

in Luo et al. (2016), but does not match well with two-pool models. Then again the rates for the two-pool models 

of this study, and the studies by Ahrens et al. (2014) and Hararuk et al. (2017) were very similar in their minima 

and maxima, for both the slow and fast SOM pools, which shows that only models with a similar number of pools 

and transformations could be compared. 610 

The 95 % credibility intervals of half-lives in DAISY were in the range from 278 to 1095 years for the slow pool 

and from 47 to 90 years for the fast pool for the combination of sites presented here.in this study. If these values 
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were reasonable – and as the three recent Bayesian calibrations including this study are quite close in turnover 

rates (Table 5), this seems to be the case, SOM could be lost at much faster rates under mismanagement and global 

warming than earlier modeling results suggest. The rates stillmay also be biased towards an underestimation of 615 

turnover, as even with intense efforts it is next to impossible to keep bare fallow plots completely free of vegetation 

(weeds) and roots from neighboring plots. Recent studies are in alignment with the possibility of relatively fast 

SOC loss across various scales from field scale (Poyda et al., 2019) to country scale, for. For example in Germany, 

agricultural soils are much more often a carbon source than a sink (Jacobs et al., 2018). This highlights the 

importance of properadequate SOM management and a deeper understanding of the processes at different scales. 620 

Especially in the context of understanding the response of SOM to climate change it is not enough if the SOM 

balance is simulated appropriately, but also fluxes within the plant-soil system need to be quantified. The reason 

is that under a warmer climate and dryer soilschanging soil moisture levels, the plant-derived carbon inputs will 

change. Furthermore, soil enzymatic analysis at regional and field level (Ali et al., 2015, 2018) suggest that pools 

of different complexity have different temperature sensitivities (Lefèvre et al., 2014), which is also realized in new 625 

models (Hararuk et al., 2017). If the different pools would have different responses to temperature, the formula by 

Bruun and Jensen (2002) for SOM pool distribution could not be used anymore, as it implicitly assumes a similar 

temperature sensitivity for all pools. In the light of this, new proxies such as the DSI, soil fractionation or 14C use  

(Menichetti et al., 2016), which could also be combined, are crucial for making SOM pools chemically or 

physically meaningful and to reduce model uncertainty and equifinality. As the DSI also had a good correlation 630 

with structurally protected SOM (Demyan et al., 2012) it could also fit very well to models that directly simulate 

the protection of SOM as a function of microbial activity (Sulman et al., 2014). A better understanding and the use 

of meaningful proxies such as DRIFTS, pyrolysis with DRIFTS (Nkwain et al., 2018) or thermal deconvolution 

(Cécillon et al., 2018; Demyan et al., 2013) in combination with Bayesian calibration and a wide range of long-term 

experiments are needed. The discrepancy between simulating SOM of tropical and temperate soils, which still 635 

points towards a lack of understanding of fundamental difference in processes at work on the global scale would 

be the best test for future proxies and SOM models, which should be facilitated by freely available datasets for 

model testing and calibration. 

5 Conclusion 

We tested the use of the DRIFTS stability index as a proxy for initializing the two SOM pools in the DAISY model 640 

and used a Bayesian calibration to implement this proxy. A statistical analysis of model errors suggested that the 

DRIFTS stability index initialization significantly reduced model errors in most cases, especially those with 

initially poor performance. It therefore seems to be a robust proxy to distinguish between fast and slow cycling 

SOM in order to initialize two-pool models, and also adds physiochemicalphysicochemical meaning to the pools. 

As also other studies showhave also shown, statistically sound approaches such as Bayesian calibration are needed 645 

to grasp the high uncertainty of SOM turnover, which is often neglected in modellingmodeling exercises. 

Meaningful proxies such as DRIFTS, physical/chemical fractionation or 14C are likely to be the most robust way 

to initialize SOM pools. but their measurement method needs to be optimized to overcome known constraints, 

such as water and mineral interference in the case of DSI. The results of this study suggest that the turnover of 

SOM could be much faster than assumed by most commonly used SOM models. For example, the 95 % credibility 650 

intervals of theDAISY slow SOM pool half-live of thislife estimated in our study ranged from 278 to 1095 years. 
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(95 % credibility intervals). The variability of parameters highlights the importance to include meaningful proxies 

into SOM models and to conduct research on a larger gradient of soils with bare fallow and planted sites, and over 

longer time frames. 

6 Acknowledgements 655 

This work and manuscript wereresearch was supported by the German Research Foundation (DFG) under the 

projectprojects PAK 346 and the following FOR1695 “Agricultural Landscapes under Global Climate Change – 

Processes and Feedbacks on a Regional Scale” within subproject P3 (CA 598/6-1). We would like to thank Elke 

Schulz from the Department of Soil Ecology, Helmholtz Centre for Environmental Research in Halle/Saale for the 

provision of samples from Bad Lauchstädt. We would also like to thank Steffen Mehl, from the UCODE 660 

development team, for his help with the weighing of observations and the troubleshooting during the setup of 

UCODE_2014 on the bWUniCluster. Finally, we thank the editor and all reviewers, especially Lauric Cécillon for 

the fruitful discussions during the review process. The authors acknowledge support by the state of Baden-

Württemberg through bwHPC.  

7 Data availability 665 

Data of SOC from Ultuna and Bad Lauchstädt hashave already been published in the last decades and isare cited 

in the text. The data of Kraichgau and Swabian Jura has not been published yet, but is provided in the graphs. All 

measurements of DRIFTS are unpublished to this point. We are happy to make the full dataset publicly available, 

once accepted for publication. 

 670 

8 References 

 

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, 
M. and Mayes, M. A.: The Millennial model: in search of measurable pools and transformations for modeling soil 
carbon in the new century, Biogeochemistry, 137(1–2), 51–71, doi:10.1007/s10533-017-0409-7, 2018. 675 

Ahrens, B., Reichstein, M., Borken, W., Muhr, J., Trumbore, S. E. and Wutzler, T.: Bayesian calibration of a soil 
organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint 
constraints, Biogeosciences, 11(8), 2147–2168, doi:10.5194/bg-11-2147-2014, 2014. 

Ali, R. S., Ingwersen, J., Demyan, M. S., Funkuin, Y. N., Wizemann, H.-D., Kandeler, E. and Poll, C.: Modelling in 
situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems, Soil 680 
Biol. Biochem., 81, 291–303, doi:10.1016/j.soilbio.2014.12.001, 2015. 

Ali, R. S., Kandeler, E., Marhan, S., Demyan, M. S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G. and 
Poll, C.: Controls on microbially regulated soil organic carbon decomposition at the regional scale, Soil Biol. 
Biochem., 118(December 2017), 59–68, doi:10.1016/j.soilbio.2017.12.007, 2018. 

Andrén, O. and Kätterer, T.: ICBM: The introductory carbon balance model for exploration of soil carbon balances, 685 
Ecol. Appl., 7(4), 1226–1236, doi:10.1890/1051-0761(1997)007[1226:ITICBM]2.0.CO;2, 1997. 

Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., 
Sulman, B. N., Todd-Brown, K. E. O. and Wallenstein, M. D.: Soil carbon cycling proxies: Understanding their 

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigte Staaten)

hat formatiert: Englisch (Vereinigte Staaten)



 

 
19 

 

critical role in predicting climate change feedbacks, Glob. Chang. Biol., 24(3), 895–905, doi:10.1111/gcb.13926, 
2018. 690 

Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F., Bernard, S., Christensen, B. T., Eglin, T., Fernandez, J. 
M., Houot, S., Kätterer, T., Le Guillou, C., Macdonald, A., van Oort, F. and Chenu, C.: The energetic and chemical 
signatures of persistent soil organic matter, Biogeochemistry, 130(1–2), 1–12, doi:10.1007/s10533-016-0246-0, 
2016. 

Bruun, S. and Jensen, L. S.: Initialisation of the soil organic matter pools of the Daisy model, Ecol. Modell., 153(3), 695 
291–295, doi:10.17665/1676-4285.20155108, 2002. 

Bruun, S., Christensen, B. T., Hansen, E. M., Magid, J. and Jensen, L. S.: Calibration and validation of the soil 
organic matter dynamics of the Daisy model with data from the Askov long-term experiments, Soil Biol. Biochem., 
35(1), 67–76, doi:10.1016/S0038-0717(02)00237-7, 2003. 

Campbell, E. E. E. and Paustian, K.: Current developments in soil organic matter modeling and the expansion of 700 
model applications: a review, Environ. Res. Lett., 10(12), 123004, doi:10.1088/1748-9326/10/12/123004, 2015. 

Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kätterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, 
A. F., Savignac, F., Soucémarianadin, L. N. and Barré, P.: A model based on Rock-Eval thermal analysis to quantify 
the size of the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15(9), 2835–2849, 
doi:10.5194/bg-15-2835-2018, 2018. 705 

Clifford, D., Pagendam, D., Baldock, J., Cressie, N., Farquharson, R., Farrell, M., Macdonald, L. and Murray, L.: 
Rethinking soil carbon modelling: a stochastic approach to quantify uncertainties, Environmetrics, 25(4), 265–
278, doi:10.1002/env.2271, 2014. 

Coleman, K. and Jenkinson, D. S.: RothC-26.3 - A Model for the turnover of carbon in soil, in Evaluation of Soil 
Organic Matter Models, pp. 237–246, Springer Berlin Heidelberg, Berlin, Heidelberg., 1996. 710 

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. and Paul, E.: The Microbial Efficiency-Matrix Stabilization 
(MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant 
inputs form stable soil organic matter?, Glob. Chang. Biol., 19(4), 988–995, doi:10.1111/gcb.12113, 2013. 

Demyan, M. S., Rasche, F., Schulz, E., Breulmann, M., Müller, T. and Cadisch, G.: Use of specific peaks obtained 
by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter 715 
in a Haplic Chernozem, Eur. J. Soil Sci., 63(2), 189–199, doi:10.1111/j.1365-2389.2011.01420.x, 2012. 

Demyan, M. S., Rasche, F., Schütt, M., Smirnova, N., Schulz, E. and Cadisch, G.: Combining a coupled FTIR-EGA 
system and in situ DRIFTS for studying soil organic matter in arable soils, Biogeosciences, 10(5), 2897–2913, 
doi:10.5194/bg-10-2897-2013, 2013. 

Franko, U. and Merbach, I.: Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central 720 
Germany, Geoderma, 303(May), 93–98, doi:10.1016/j.geoderma.2017.05.013, 2017. 

Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using Multiple Sequences, Stat. Sci., 7(4), 457–
472, doi:10.1214/ss/1177011136, 1992. 

van Genuchten, M. T.: A comparison of numerical solutions of the one-dimensional unsaturated—saturated flow 
and mass transport equations, Adv. Water Resour., 5(1), 47–55, doi:10.1016/0309-1708(82)90028-8, 1982. 725 

Giacometti, C., Demyan, M. S., Cavani, L., Marzadori, C., Ciavatta, C. and Kandeler, E.: Chemical and 
microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate 
agroecosystems, Appl. Soil Ecol., 64, 32–48, doi:10.1016/j.apsoil.2012.10.002, 2013. 

Good, W. D. and Smith, N. K.: Enthalpies of combustion of toluene, benzene, cyclohexane, cyclohexene, 
methylcyclopentane, 1-methylcyclopentene, and n-hexane, J. Chem. Eng. Data, 14(1), 102–106, 730 
doi:10.1021/je60040a036, 1969. 

Hansen, S., Jensen, L. S., Nielsen, N. E. and Svendsen, H.: DAISY - Soil Plant Atmosphere System Model., 
Copenhagen: The Royal Veterinary and Agricultural University., 1990. 

Hararuk, O., Shaw, C. and Kurz, W. A.: Constraining the organic matter decay parameters in the CBM-CFS3 using 



 

 
20 

 

Canadian National Forest Inventory data and a Bayesian inversion technique, Ecol. Modell., 364, 1–12, 735 
doi:10.1016/j.ecolmodel.2017.09.008, 2017. 

Heinlein, F., Biernath, C., Klein, C., Thieme, C. and Priesack, E.: Evaluation of Simulated Transpiration from Maize 
Plants on Lysimeters, Vadose Zo. J., 16(1), 0, doi:10.2136/vzj2016.05.0042, 2017. 

Herbst, M., Welp, G., Macdonald, A., Jate, M., Hädicke, A., Scherer, H., Gaiser, T., Herrmann, F., Amelung, W. and 
Vanderborght, J.: Correspondence of measured soil carbon fractions and RothC pools for equilibrium and non-740 
equilibrium states, Geoderma, 314(November 2017), 37–46, doi:10.1016/j.geoderma.2017.10.047, 2018. 

Jacobs, A., Flessa, H., Don, A., Heidkamp, A., Prietz, R., Dechow, R., Gensior, A., Poeplau, C., Riggers, C., Schneider, 
F., Tiemeyer, B., Vos, C., Wittnebel, M., Müller, T., Säurich, A., Fahrion-Nitschke, A., Gebbert, S., Hopfstock, R., 
Jaconi, A., Kolata, H., Lorbeer, M., Schröder, J., Laggner, A., Weiser, C. and Freibauer, A.: Landwirtschaftlich 
genutzte Böden in Deutschland – Ergebnisse der Bodenzustandserhebung - Thünen Report 64, Johann Heinrich 745 
von Thünen-Institut, Bundesallee 50, 38116 Braunschweig, Germany., 2018. 

Jensen, L. S., Mueller, T., Nielsen, N. E., Hansen, S., Crocker, G. J., Grace, P. R., Klír, J., Körschens, M. and Poulton, 
P. R.: Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model 
DAISY, Geoderma, 81(1), 5–28, doi:http://dx.doi.org/10.1016/S0016-7061(97)88181-5, 1997. 

Joergensen, R. G. and Mueller, T.: The fumigation-extraction method to estimate soil microbial biomass: 750 
Calibration of the kEC value, Soil Biol. Biochem., 28(1), 25–31, doi:10.1016/0038-0717(95)00102-6, 1996. 

Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H. and Menichetti, L.: Roots contribute more to refractory 
soil organic matter than above-ground crop residues, as revealed by a long-term field experiment, Agric. Ecosyst. 
Environ., 141(1–2), 184–192, doi:10.1016/j.agee.2011.02.029, 2011. 

Kirchmann, H., Haberhauer, G., Kandeler, E., Sessitsch, A. and Gerzabek, M. H.: Effects of level and quality of 755 
organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment, Global 
Biogeochem. Cycles, 18(4), n/a-n/a, doi:10.1029/2003GB002204, 2004. 

Klein, C., Biernath, C., Heinlein, F., Thieme, C., Gilgen, A. K., Zeeman, M. and Priesack, E.: Vegetation Growth 
Models Improve Surface Layer Flux Simulations of a Temperate Grassland, Vadose Zo. J., 16(13), 0, 
doi:10.2136/vzj2017.03.0052, 2017. 760 

Klein, C. G.: Modeling fluxes of energy and water between land surface and atmosphere for grass- and cropland 
system, Fakultät Wissenschaftszentrum Weihenstephan., 2018. 

Kozak, M. and Piepho, H. P.: What’s normal anyway? Residual plots are more telling than significance tests when 
checking ANOVA assumptions, J. Agron. Crop Sci., 204(1), 86–98, doi:10.1111/jac.12220, 2018. 

Laub, M., Blagodatsky, S., Nkwain, Y. F. and Cadisch, G.: Soil sample drying temperature affects specific organic 765 
mid-DRIFTS peaks and quality indices, Geoderma, 355, 113897, doi:10.1016/j.geoderma.2019.113897, 2019. 

Lefèvre, R., Barré, P., Moyano, F. E., Christensen, B. T., Bardoux, G., Eglin, T., Girardin, C., Houot, S., Kätterer, T., 
van Oort, F. and Chenu, C.: Higher temperature sensitivity for stable than for labile soil organic carbon - Evidence 
from incubations of long-term bare fallow soils, Glob. Chang. Biol., 20(2), 633–640, doi:10.1111/gcb.12402, 2014. 

Lu, D., Ye, M. and Hill, M. C.: Analysis of regression confidence intervals and Bayesian credible intervals for 770 
uncertainty quantification, Water Resour. Res., 48(9), 1–20, doi:10.1029/2011WR011289, 2012. 

Lu, D., Ye, M., Hill, M. C., Poeter, E. P. and Curtis, G. P.: A computer program for uncertainty analysis integrating 
regression and Bayesian methods, Environ. Model. Softw., 60(October), 45–56, 
doi:10.1016/j.envsoft.2014.06.002, 2014. 

Luo, Z., Wang, E., Shao, Q., Conyers, M. K. and Liu, D. L.: Confidence in soil carbon predictions undermined by the 775 
uncertainties in observations and model parameterisation, Environ. Model. Softw., 80, 26–32, 
doi:10.1016/j.envsoft.2016.02.013, 2016. 

Margenot, A. J., Calderón, F. J., Bowles, T. M., Parikh, S. J. and Jackson, L. E.: Soil Organic Matter Functional Group 
Composition in Relation to Organic Carbon, Nitrogen, and Phosphorus Fractions in Organically Managed Tomato 
Fields, Soil Sci. Soc. Am. J., 79(3), 772, doi:10.2136/sssaj2015.02.0070, 2015. 780 



 

 
21 

 

Menichetti, L., Kätterer, T. and Leifeld, J.: Parametrization consequences of constraining soil organic matter 
models by total carbon and radiocarbon using long-term field data, Biogeosciences, 13(10), 3003–3019, 
doi:10.5194/bg-13-3003-2016, 2016. 

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., 
Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., 785 
McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., 
Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B. and 
Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, doi:10.1016/j.geoderma.2017.01.002, 2017. 

Mirzaeitalarposhti, R., Demyan, M. S., Rasche, F., Cadisch, G. and Müller, T.: Overcoming carbonate interference 
on labile soil organic matter peaks for midDRIFTS analysis, Soil Biol. Biochem., 99, 150–157, 790 
doi:10.1016/j.soilbio.2016.05.010, 2016. 

Monteith, J. L.: Evaporation and surface temperature, Q. J. R. Meteorol. Soc., 12, 513–522, 
doi:10.1002/qj.49710745102, 1976. 

Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. 
Res., 12(3), 513–522, doi:10.1029/WR012i003p00513, 1976. 795 

Mueller, T., Jensen, L. S. S., Magid, J. and Nielsen, N. E. E.: Temporal variation of C and N turnover in soil after 
oilseed rape straw incorporation in the field: simulations with the soil-plant-atmosphere model DAISY, Ecol. 
Modell., 99(2), 247–262, doi:http://dx.doi.org/10.1016/S0304-3800(97)01959-5, 1997. 

Mueller, T., Magid, J., Jensen, L. S., Svendsen, H. and Nielsen, N. E.: Soil C and N turnover after incorporation of 
chopped maize, barley straw and blue grass in the field: Evaluation of the DAISY soil–organic-matter submodel, 800 
Ecol. Modell., 111(1), 1–15, doi:10.1016/S0304-3800(98)00094-5, 1998. 

Nguyen, T., Janik, L. and Raupach, M.: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil 
studies, Soil Res., 29(1), 49, doi:10.1071/SR9910049, 1991. 

Nkwain, F. N., Demyan, M. S., Rasche, F., Dignac, M.-F., Schulz, E., Kätterer, T., Müller, T. and Cadisch, G.: Coupling 
pyrolysis with mid-infrared spectroscopy (Py-MIRS) to fingerprint soil organic matter bulk chemistry, J. Anal. Appl. 805 
Pyrolysis, 133(April 2017), 176–184, doi:10.1016/j.jaap.2018.04.004, 2018. 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., 
Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., 
Noon, C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-Disla, J. M., Shepherd, K. D., Stenberg, B., Towett, E. 
K., Vargas, R. and Wetterlind, J.: Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring, in 810 
Advances in Agronomy, vol. 132, pp. 139–159., 2015. 

O’Leary, G. J., Liu, D. L., Ma, Y., Li, F. Y., McCaskill, M., Conyers, M., Dalal, R., Reeves, S., Page, K., Dang, Y. P. and 
Robertson, F.: Modelling soil organic carbon 1. Performance of APSIM crop and pasture modules against long-
term experimental data, Geoderma, 264(November 2015), 227–237, doi:10.1016/j.geoderma.2015.11.004, 
2016. 815 

Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S.: Analysis of Factors Controlling Soil Organic Matter Levels 
in Great Plains GrasslandsGrasslands1, Soil Sci. Soc. Am. J., 51(5), 1173, 
doi:10.2136/sssaj1987.03615995005100050015x, 1987. 

Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T., Menaut, 
J.-C., Seastedt, T., Garcia Moya, E., Kamnalrut, A. and Kinyamario, J. I.: Observations and modeling of biomass 820 
and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7(4), 785–809, 
doi:10.1029/93GB02042, 1993. 

Piepho, H. P., Büchse, A. and Richter, C.: A Mixed Modelling Approach for Randomized Experiments with 
Repeated Measures, J. Agron. Crop Sci., 190(4), 230–247, doi:10.1111/j.1439-037X.2004.00097.x, 2004. 

Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J., Senapati, N. and Wiesmeier, M.: 825 
Reproducibility of a soil organic carbon fractionation method to derive RothC carbon pools, Eur. J. Soil Sci., 64(6), 
735–746, doi:10.1111/ejss.12088, 2013. 



 

 
22 

 

Poeter, E. P., Hill, M. C., Banta, E. R., Mehl, S. and Christensen, S.: UCODE_2005 and six other computer codes for 
universal sensitivity analysis, inverse modeling, and uncertainty evaluation, U.S. Geological Survey Techniques 
and Methods 6-A11, 283p. (As updated in Feb 2008)., 2005. 830 

Poeter, E. P., Hill, M. C., Lu, D., Tiedeman, C. R. and Mehl, S.: UCODE_2014, with New Capabilities to Define 
Parameters Unique to Predictions, Calculate Weights using Simulated Values, Estimate Parameters with SVD, 
Evaluate Uncertainty with MCMC, and More, Integrated Groundwater Modeling Center Report Number: GWMI 
2014-02., 2014. 

Poyda, A., Wizemann, H.-D., Ingwersen, J., Eshonkulov, R., Högy, P., Demyan, M. S., Kremer, P., Wulfmeyer, V. 835 
and Streck, T.: Carbon fluxes and budgets of intensive crop rotations in two regional climates of southwest 
Germany, Agric. Ecosyst. Environ., 276, 31–46, doi:10.1016/j.agee.2019.02.011, 2019. 

Puttaso, A., Vityakon, P., Rasche, F., Saenjan, P., Treloges, V. and Cadisch, G.: Does Organic Residue Quality 
Influence Carbon Retention in a Tropical Sandy Soil?, Soil Sci. Soc. Am. J., 77(3), 1001, 
doi:10.2136/sssaj2012.0209, 2013. 840 

S. Hansen, P. Abrahamsen, C. T. Petersen and M. Styczen: Daisy: Model Use, Calibration, and Validation, Trans. 
ASABE, 55(4), 1317–1335, doi:10.13031/2013.42244, 2012. 

Segoli, M., De Gryze, S., Dou, F., Lee, J., Post, W. M., Denef, K. and Six, J.: AggModel: A soil organic matter model 
with measurable pools for use in incubation studies, Ecol. Modell., 263, 1–9, 
doi:10.1016/j.ecolmodel.2013.04.010, 2013. 845 

Sohi, S. P., Mahieu, N., Arah, J. R. M., Powlson, D. S., Madari, B. and Gaunt, J. L.: A Procedure for Isolating Soil 
Organic Matter Fractions Suitable for Modeling, Soil Sci. Soc. Am. J., 65(4), 1121, 
doi:10.2136/sssaj2001.6541121x, 2001. 

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. and Pacala, S. W.: Microbe-driven turnover offsets 
mineral-mediated storage of soil carbon under elevated CO2, Nat. Clim. Chang., 4(12), 1099–1102, 850 
doi:10.1038/nclimate2436, 2014. 

Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B., Hartman, M. D., Wang, 
G., Wieder, W. R., Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar, A., Schimel, J. P., Tang, 
J. and Classen, A. T.: Multiple models and experiments underscore large uncertainty in soil carbon dynamics, 
Biogeochemistry, 141(2), 109–123, doi:10.1007/s10533-018-0509-z, 2018. 855 

Tinti, A., Tugnoli, V., Bonora, S. and Francioso, O.: Recent applications of vibrational mid-infrared (IR) 
spectroscopy for studying soil components: A review, J. Cent. Eur. Agric., 16(1), 1–22, 
doi:10.5513/JCEA01/16.1.1535, 2015. 

Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and 
MATLAB implementation, Environ. Model. Softw., 75, 273–316, doi:10.1016/j.envsoft.2015.08.013, 2016. 860 

Wattenbach, M., Gottschalk, P., Hattermann, F., Rachimow, C., Flechsig, M. and Smith, P.: A framework for 
assessing uncertainty in ecosystem models, in (eds). Proceedings of the iEMSs Third Biennial Meeting: “Summit 
on Environmental Modelling and Software”. International Environmental Modelling and Software Society, 
Burlington, USA, July 2006. CD ROM. Internet: http://www.iemss.org/iemss2006/sessions/all., 2006. 

Wizemann, H.-D., Ingwersen, J., Högy, P., Warrach-Sagi, K., Streck, T. and Wulfmeyer, V.: Three year observations 865 
of water vapor and energy fluxes over agricultural crops in two regional climates of Southwest Germany, 
Meteorol. Zeitschrift, 24(1), 39–59, doi:10.1127/metz/2014/0618, 2015. 

Yeasmin, S., Singh, B., Johnston, C. T. and Sparks, D. L.: Evaluation of pre-treatment procedures for improved 
interpretation of mid infrared spectra of soil organic matter, Geoderma, 304, 83–92, 
doi:10.1016/j.geoderma.2016.04.008, 2017. 870 

Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P. and Fuhrer, J.: Measured soil organic matter fractions 
can be related to pools in the RothC model, Eur. J. Soil Sci., 58(3), 658–667, doi:10.1111/j.1365-
2389.2006.00855.x, 2007. 

 



 

 
23 

 

 

9 Tables 

Table 1 Locations, descriptions, and initial soil organic carbon (SOC) stocks of Study Sitesused study sites 

Study Site 

UTM 
Degrees 
Lat 

UTM 
Degrees 
Long Soil type 

Depth of 
measurements 
(cm) 

Clay 
(%) 

Silt 
(%) 

Initial 
SOC 
(%) 

Bulk 
density 
(Mg/m³) 

Initial SOC 
stocks in the 
measured 
depth 
(Mg/ha) 

Years of bulk soil 
availability 

Types of available 
measurements 

Ultuna 59.821879 17.656348 Eutric Cambisol 0 - 20 37 41 1.50 1.44 43.22 1956, 79, 95, 2005 SOC, DRIFTS 

Bad Lauchstädt  51.391605 11.877028 Haplic Chernozem 0 - 20 21 68 1.82 1.24 45.08 1985, 2001, 04, 08 SOC, DRIFTS 

Kraichgau 1 48.928517 8.702794 Stagnic Luvisol 0 - 30 18 97 0.90 1.37 37.10 2009 - 16 SOC, DRIFTS, SMB-C 

Kraichgau 2 48.927748 8.708884 Stagnic Luvisol 0 - 30 18 80 1.04 1.33 41.61 2009 - 16 SOC, DRIFTS, SMB-C 

Kraichgau 3 48.927197 8.715891 Stagnic Luvisol 0 - 30 17 81 0.89 1.44 38.50 2009 - 16 SOC, DRIFTS, SMB-C 

Swabian Jura 1 48.527510 9.769429 Calcic Luvisol 0 - 30 38 56 1.78 1.32 70.33 2009 - 16 SOC, DRIFTS, SMB-C 

Swabian Jura 2 48.529857 9.773253 Anthrosol 0 - 30 29 68 1.95 1.38 80.85 2009 - 13 SOC, DRIFTS, SMB-C 

Swabian Jura 3 48.547035 9.773176 Rendzic Leptosol 0 - 30 45 51 1.91 1.07 61.27 2009 - 13 SOC, DRIFTS, SMB-C 

SOC = soil organic carbon, DRIFTS = Diffuse reflectance mid infrared Fourier transform spectroscopy, SMB-C = soil microbial biomass carbon 
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Table 2 Values of the two initial parameter sets for the DAISY SOM model that were used in this study. A graphical 
display of the model structure related to these pools andwith the most important parameters for this study is found in 
Figure 1. 

Parameter  Default DAISY Bruun (2003) Unit 

kSOM_slow 2.70 * 10-6 # 4.30 * 10-5 x d-1 

kSOM_fast 1.40 * 10-4 # 1.40 * 10-4 # d-1 

kSMB_slow 1.85 * 10-4 * 1.85 * 10-4 * d-1 

kSMB_fast 1.00 * 10-2 * 1.00 * 10-2 * d-1 

kAOM_slow 0.012 * 0.012 * d-1 

kAOM_fast 0.05 * 0.05 * d-1 

maint_SMB_slow 1.80 * 10-3 * 1.80 * 10-3 * d-1 

maint_SMB_fast 1.00 * 10-2 * 1.00 * 10-2 * d-1 
CUE_SMB 0.60 #  0.60 #  kg kg-1 
CUE_SOM_slow 0.40 *  0.40 *  kg kg-1 

CUE_SOM_fast 0.50 *  0.50 *  kg kg-1 

CUE_AOM_slow 0.13 *  0.13 *  kg kg-1 

CUE_AOM_fast 0.69 *  0.69 *  kg kg-1 

 fSOM_slow (humification efficiency) 0.10 #  0.30 x  kg kg-1 

part SMB > SOM_fast 0.40 # 0.40 #  kg kg-1 
fraction of SOM_slow at steady state 
Bruun (2002) equation 0.8483  0.49  kg kg-1 

k = turnover rate, maint = maintenance respiration, CUE = carbon use efficiency, AOM = added organic matter (not considered 
in this study), part = partitioning; Source: # original Jensen (1997), * modified by Müller (1997), x modified by Bruun (2003) 
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Table 3 Soil properties at the start and end of the bare fallow experiment at each site 

Site 
Start 
(year) 

End 
(year) 

Depth of 
modelledmodeled 
layer (cm) 

Bulk density of 
modelledmodeled 
layer (tMg/m³) 

SOC at 
start 
tMg/ha 

SOC at 
end 
tMg/ha   

SMB-C 
at start 
tMg/ha 

SMB-C 
at end 
tMg/ha 

DRIFTS 
SOM in 
slow % 
at start 
(105°C) 

DRIFTS 
SOM in 
slow % 
at end 
(105°C) 

%SOMSOC 
loss of 
initial 

Number 
of years 

%SOMSOC 
loss per 
year of 
initial 

Ultuna 1956 2005 0 - 20 1.44 43.22 26.51 XNA XNA 54 91 39% 50 0.8% 

Bad Lauchstädt  1983 2008 0 - 20 1.24 45.08 41.91 XNA XNA 70 80 7% 26 0.3% 

Kraichgau 1 2009 2015 0 - 30 1.37 37.10 32.59 0.847 0.408 80 98 12% 7 1.7% 

Kraichgau 2 2009 2015 0 - 30 1.33 41.61 38.66 0.853 0.314 73 93 7% 7 1.0% 

Kraichgau 3 2009 2015 0 - 30 1.44 38.50 35.06 0.672 0.261 76 99 9% 7 1.3% 

Swabian Jura 1 2009 2015 0 - 30 1.32 70.33 63.29 1.566 0.654 64 83 10% 7 1.4% 

Swabian Jura 2 2009 2013 0 - 30 1.38 80.85 79.61 1.805 0.970 66 83 2% 5 0.3% 

Swabian Jura 3 2009 2013 0 - 30 1.07 61.27 70.29 1.350 0.990 61 76 -15% 5 -2.9% 

 XNA = no data available for this site          
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Table 4. Least square means of the (backtransformedback transformed) absolute error of DAISY bare-fallow 
simulations for SOC and SMB-C for Ultuna, Bad Lauchstädt and Kraichgau + Swabian Jura combined. The values are 
the estimate for the end of the simulation period (number of years in brackets). Different capital letters indicate 
significant differences (p< < 0.05) within columns (not tested between sites). For Bad Lauchstädt, the initialization effect 
was nonsignificantnon-significant, so only the least square means for the effect of the parameter set is displayed. 

 

  Ultuna (50yr) 
Bad Lauchstädt 

(23yr) 

Kraichgau + Swabian 
Jura  
(7 yr) 

Kraichgau + 
Swabian Jura  

(7 yr) 

Parameter set Initialization 

Least square 
means of errors 
(SOC tMg/ha) 

BacktransformedBack 
transformed least 
square means of 

errors  
(SOC tMg/ha) 

BacktransformedBack 
transformed least 
square means of 

errors  
(SOC tMg/ha) 

Least square 
means of errors 

(SMB-C tMg/ha) 

Mueller (1997) 

ratio of steady 
state assumption 13.91 A 

2.22 A 

4.50 A 0.354 A 

peak ratio of 
DRIFTS at 32°C 10.86 B 4.50 A 0.317 AB 

peak ratio of 
DRIFTS at 65°C 10.06 C 4.42 A 0.274 ABC 

peak ratio of 
DRIFTS at 105°C 8.52 D 4.28 A 0.205 CD 

Bruun (2003) 

ratio of steady 
state assumption 5.84 H 

6.01 B 

3.12 B 0.231 BCD 

peak ratio of 
DRIFTS at 32°C 7.06 E 3.31 B 0.179 CDE 

peak ratio of 
DRIFTS at 65°C 6.75 F 3.30 B 0.160 DE 

peak ratio of 
DRIFTS at 105°C 6.15 G 3.25 B 0.131 E 
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Table 5 Optimized turnover rates and humification efficiency of this study using the combined site analysis with original 
weighting and DSI compared to other Bayesian calibrations and standard values of commonly used models. If the 
temperature function was given or site temperature specified, the turnover rates were normalized with an exponential 
equation to 10°C which is standard in DAISY. 

modelModel DAISY ICBM 
CBM-
CFS3 APSIM own creation CENTURY DAISY DAISY 

referenceReference This study Ahrens  Hararuk Luo  Clifford  Parton Mueller Bruun 

yearYear 2019 2014 2017 2016 2014 1993 1997 2003 

turnoverTurnover rates of the fast pool (recalculated to d-1 at 10°C)        

minimum 1.07 * 10-4 4.57 * 10-4 6.30 * 10-4 NA NA - no    

optimum 2.29 * 10-4 4.57 * 10-3 1.97 * 10-4 NA  temperature 9.32 * 10-5 1.40 * 10-4 1.40 * 10-4 

maximum 3.27 * 10-4 2.28 * 10-2 1.05 * 10-3 NA found    

turnoverTurnover rates of the slow pool (recalculated to d-1 at 10°C)        

minimum 2.99 * 10-6 4.57 * 10-7 9.86 * 10-6 1.00 * 10-4 1.10 * 10-4    

optimum 3.25 * 10-5 2.28 * 10-5 1.10 * 10-5 3.00 * 10-4 1.67 * 10-4 2.10 * 10-6 2.70 * 10-6 4.30 * 10-5 

maximum 6.14 * 10-5 4.57 * 10-5 1.32 * 10-5 6.00 * 10-4 2.19 * 10-4    
portionPortion of fast to slow pool (humification efficiency) 

minimum 0.05 0.05       

optimum 0.34 0.2    0.3 0.1 0.3 

maximum 0.35 0.35       
References: (Ahrens et al., 2014; Bruun et al., 2003; Clifford et al., 2014; Hararuk et al., 2017; Luo et al., 2016; Mueller et al., 
1997; Parton et al., 1993)  
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10 Figures 

 

 

Figure 1 Original structure of the internal cycling of SOM in the DAISY model, as it was used in this study. A_XXXX 
cm-1 is the area of each peak obtained by DRIFTS,. kSOM and SMB are turnover rates of the pools and fSOM_slow is 
the humification efficiency. Other model parameters arecan be found in Table 2. 
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Figure 2  DRIFTS baseline corrected and vector normalized exampleexamples of spectra of bulk soil samples (dried at 
105°C) of the first and last year of the bare fallow plots at four sites. Fallow periods were 50 years (Ultuna), 24 years 
(Bad Lauchstädt) and 7 years (Kraichgau and Swabian Jura). Small pictures on the top left and right, are zoomed in 
versions of the 2930cm-1 peak and the 1620cm-1 peak, respectively For better visibility, the full spectra pictures have a 
y-axis offset, while zoomed in versions share a common baseline. More details on the sites in Table 3. 
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Figure 3 Example of SOC simulations from Ultuna (top left), Bad Lauchstädt (top right), Kraichgau field 1 (bottom 
left) and Swabian Jura Field 1 (bottom right). Initializations were done (i) assuming steady state using the formula of 
Bruun and Jensen (2002) (equation 1) with both turnover rates of Mueller et al. (1997) and Bruun et al. (2003) and (ii) 
by the DRIFTS stability index (DSI) at 105°C drying temperature using both turnover rates for simulations (simulations 
using the other drying temperatures for DSI in the supplementary). The site specific and the combination of all sites 
Bayesian calibrations (BC) are also displayed.  Example of SOC simulations from Ultuna (top left), Bad Lauchstädt 
(top right), Kraichgau field 1 (bottom left) and Swabian Jura Field 1 (bottom right). Initializations were done (i) 
assuming steady state using the formula of Bruun and Jensen, (2002) (equation 1) with both turnover rates of Mueller 
et al., (1997) and Bruun et al., (2003) and (ii) by the ratio of the 2930 cm-1 to the 1620 cm-1 peak of DRIFTS spectraBars 
indicate the standard deviation of measured values of all plots (n = 3) per field. 

 

 at 105°C drying temperature using both turnover rates for simulations (simulations using the other drying 
temperatures for DRIFTS in the supplementary). The site specific and the combination of all sites Bayesian calibrations 
(BC) are also displayed. Bars indicate standard deviation of all plots per field. 
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Figure 4 Example SMB-C simulations for Kraichgau field 1 (left) and Swabian Jura Field 1 (right). Initializations were 
done (i) assuming steady state using the formula of Bruun and Jensen (2002) with turnover rates of Mueller et al. (1997) 
and Bruun et al. (2003) and (ii) by the DRIFTS stability index (DSI) at 105°C drying temperature using both turnover 
rates for simulations (simulations using the other drying temperatures for DRIFTS in the supplementary). The site 
specific and the combination of all sites Bayesian calibrations (BC) are also displayed.  Example SMB-C simulations 
from Kraichgau field 1 (left) and Swabian Jura Field 1 (right). Initializations were done (i) assuming steady state using 
the formula of Bruun and Jensen, (2002) with turnover rates of Mueller et al., (1997) and Bruun et al., (2003) and (ii) 
by the ratio of the 2930 cm-1 to the 1620 cm-1 peak of DRIFTS spectra at 105° C drying temperature using both turnover 
rates for simulations (simulations using the other drying temperatures for DRIFTS in the supplementary). Bars indicate 
the standard deviation of measured values of all plots (n =3) per field. 

 

The site specific and the combination of all sites Bayesian calibrations (BC) are also displayed. Bars indicate standard 
deviation of all plots per field. 
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Figure 5 Violin plots of the parameter distributions, obtained by the Bayesian calibration using only the individual sites 
(1-4) and all sites combined (5-7) with different weighing schemes. (OW = original weight, EW = equal weight 
calibration; +/- DSI indicates, whether the DSI data was used for calibration). The black line corresponds to the 
parameters of Mueller (1997), the blue dashed line to the parameters of Bruun (2003). Note: The turnover k_SOM_fast 
parameter (top figure) is the same in both Mueller (1997) and Bruun (2003) 

 

  

Figure 6 Correlation matrices of posterior distributions from the Bayesian calibrations of a) Allequal weight calibration 
for all sites combined with equal weights using the DSI (5), b) Alloriginal weight calibration for all sites combined with 
original weights without using DSI (6), and c) Alloriginal weight calibration for all sites combined with original weights 
using the DSI. (7). The plots of the rest of theindividual site simulations (1-4) can be found in the supplemental material. 
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Figure 7 Suggested improvements to the internal cycling structure of SOM in the DAISY model. The division into fast 
and slow cycling SOM, corresponding to aliphatic and aromatic carbon happens at the death of microbes. Aliphatic 
carbon no longer becomes complex carbon without the involvement of microbes.  
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