
 

Dear Editor, Dr. Michael Weintraub, 

Dear reviewers, 

 

We are happy to provide the revised version of the manuscript bg-2019-292. As a result of the 
reviewers’ comments, we made some major changes. These include the way we address DRIFTS 
“peak areas” which are now correctly called areas below absorbance bands. We also corrected the 
wording for the 1620 cm-1 band to aromatic/carboxylate which, due to higher specificity, we prefer 
to the suggestion of unsaturated carbon. In response to the comments of reviewer 4, we also 
clarified the concept of the DSI and how it is translated into an equation for SOM model pool 
partitioning. More details on the soil sampling and analysis were added, as was requested. We 
addressed all reviewers’ comments and made the required changes based on these comments to the 
manuscript. We hope that with these recent changes, the manuscript now has the quality to be 
accepted for Biogeosciences.  

We combined the responses to all authors in this PDF. Responses are in blue color, and a preview of 
changes made to the text in green color. The uploaded manuscript consists of a clean version, the 
version with tracked changes is attached at the end of this document. 

We thank you for your effort in handling the manuscript during the review process. 

On behalf of all coauthors, 

 

Moritz Laub 

  



Lauric Cécillon: 

Dear authors, dear colleagues, 
 
I thank you for your efforts to improve your revised draft and for testing new calculations (linking DSI 
and CPsoc). Incorporating such information as supplementary information is suitable to the readers 
of Biogeosciences. 
 
I have one "technical", yet important comment on your revised draft. 
 
In my view, naming as "aromatic C=C" the 1660-1580 cm-1 DRIFT region that is integrated around the 
1620 cm-1 peak is not acceptable. 
 
In my previous comments on your draft, I mostly emphasized on mineral artifacts in this DRIFT 
spectral region, so that the DSI is not carrying an information that is only linked to organic carbon.  
 
But we know that C=O bounds are also absorbing energy on the 1660 cm-1 side of this DRIFT spectral 
region (as acknowledged by Demyan et al., 2012 in EJSS, https://doi.org/10.1111/j.1365-
2389.2011.01420.x). 
So beside mineral (+ water) artifacts, the 1660-1580 cm-1 DRIFT region represent a mixture of C=C + 
C=O carbon.  
It thus not acceptable to name this region "aromatic carbon". This would make readers erroneously 
think that aromatic carbon is making the major part of stable carbon in soils, which is not true as 
stable carbon is generally richer in O than bulk SOM (except in soils rich in charcoals). 
 
Thus I ask you to change the naming of the DRIFT 1660-1580 cm-1 spectral region to a proper (and 
scientifically correct) one such as "unsaturated carbon" (with C=O and C=C bounds ; see e.g. the 
Figure 1 of Pengerud et al., 2013 in Ecosystems, https://doi.org/10.1007/s10021-013-9652-5). 
 

I am looking forward to reading the final and accepted version of your draft in Biogeosciences. 
 
Kind regards, 
 
Lauric Cécillon 

Dear Lauric Cécillon, 

Thank you for this very constructive and helpful suggestion. We agree that considering the 
involvement of C=O bonds in our defined 1620 cm-1 absorbance band is appropriate, and hence 
changed the name of the absorbance band to aromatic/carboxylate throughout the manuscript. 
While we recognize that chemically the different functional groups we use are either unsaturated 
(C=C/C=O) or saturated (C-H), we feel that, specifying the vibrational assignments (e.g. aliphatic and 
aromatic/carboxylate) may avoid confusion with additional unsaturated functional groups in addition 
to C=C/C=O groups and provide clarity. Additionally, our band area of 1660-1580 cm-1 does not 
correspond to the much larger band area of 1800 –1525 cm-1, used by (Pengerud et al., 2013). As 
previously mentioned, we have clarified that the 1620 cm-1 band includes both C=C and C=O 
functional groups. 

Regards  



Reviewer 2: 

I criticized in my earlier review that Laub and colleagues use the chemical recalcitrance hypothesis to 
explain SOM cycling. Now, they cite an earlier study that their index, which is based on the aromatic 
and aliphatic peaks, is correlated with aggregation. 
 
Mechanistically, the interpretation should be chemical recalcitrance. I don’t get what we learn from 
DRIFTS spectra when we deviate from the mechanistic interpretation. Demyan et al. (2012) suggest a 
relation to mineral-association (correlation to the sum of the heavy fraction > 1.8 g cm-3 and clay 
fraction compared to light fraction < 1.8 g cm-3) and not to aggregation (the occluded light fraction is 
not measured in that study). 
 
Arguably microaggegrate occluded soil organic matter can be a part of the abovementioned heavy 
fraction > 1.8 g cm-3 and clay fraction but is possibly only a smaller portion (Castellano et al., 2015) 
of physicochemically stabilized SOC. 
 
The sentences that Laub and colleagues added should reflect that the actual correlation is with 
physicochemically stabilized SOC (mainly mineral-association) and not aggregated SOC. 
Conceptually it is unclear for me why aliphatic SOC should not be preferentially found in the mineral-
associated fraction since this should be mainly microbial residues.  

We agree that this statement was oversimplified and not correct as it was. From our perspective, 
chemical recalcitrance is mostly related to attractiveness for microbial consumption, as all 
complexities of carbon can eventually be decomposed (Kallenbach et al., 2016). The sentence was 
removed and a larger discussion added. 

 
I would appreciate if the authors could discuss this a little bit more also in light of the results from 
13C-NMR which would suggest that the light fraction is enriched in aromatics (lignin) and the heavy 
fraction fractions in aliphatics (microbial cell walls). I think it might be worthwhile to discuss this 
further when I am missing it also other readers might. 

We agree that these are interesting points, but this could be highly site specific and depend on the 
soil and residue type. From what we found in the literature the light fraction is not only enriched in 
aromatics but contains a strong band from aliphatic compounds as well (Calderón et al., 2011). From 
our perspective, using 13C-NMR as a gold standard also has it’s drawbacks. The preparation requires 
completed demineralization of the soil, usually with HF acid. HF also destroys some of the SOM. Of 
course, it is then difficult to determine, which OM is destroyed. We hope that the paragraph we 
added to the discussion on this is to the liking of reviewer 2. 



Apart from a more open discussion in this direction, I am happy with the changes made to the 
manuscript. 

We are happy for this judgment of our article and would like to thank reviewer 2 for his constructive 
criticism during the review process of this paper. We think that the request for a more mechanistic 
understanding of the DSI helped to shape this article towards having a more process-oriented 
discussion. 

 

 
Castellano, M.J., Mueller, K.E., Olk, D.C., Sawyer, J.E., Six, J., 2015. Integrating Plant Litter Quality, Soil 
Organic Matter Stabilization and the Carbon Saturation Concept. Global Change Biology. 
Demyan, M.S., Rasche, F., Schulz, E., Breulmann, M., Müller, T., Cadisch, G., 2012. Use of specific 
peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the 
composition of organic matter in a Haplic Chernozem. 63, 189-199. 

  



Reviewer 4: 

In general I like the idea of your study, however, (i) several mistaken terms need to be corrected 
(“vibrational peaks of absorbance”, peaks instead of bands, “ratio of.. stretching vibrations”), (ii) the 
innovative aspect, and importance need to be clarified, and (iii) lots of details need to be clarified 
within material and methods (:most important is the DSI suggested to be a measure for SMB-C or 
SOM pools?). The paper need a carful revision (e.g. correction of mistakes terms, clarification of 
innovative aspect and importance, and addition of missing/ incomplete information in material and 
methods) before a complete review will be possible.  
Some details: 
There are some sematic mistakes:  
a) the term “ratio of aliphatic C-H (2930 cm-1) to aromatic C=C (1620 cm-1) stretching vibrations” is 
not correct. According to textbooks on spectroscopy it should be called as a ratio between the area 
under aromatic and aliphatic absorption bands (which is also in accordance with the respective 
description in the materials and methods section in the manuscript under review.  

Thank you for pointing out these terminology differences. We initially adapted the terms peak and 
peak area as is used in many publications (Egli et al., 2010; Pengerud et al., 2013; Stevenson, 1994; 
Yang, 2014). As this term seems to be suboptimal and is not used in specialized spectroscopy 
textbooks, we switched to the use of “area below absorption bands” as was suggested. 

 
b) “vibrational peaks of absorbance (at L74 for example)”. Should be called absorption bands: Please 
note that if infrared light of a certain wavelength introduces a vibrations at molecular scale that light 
will loss intensity which is recorded in the (FTIR/DRIFT) spectra by respective signals. However, since 
that light is absorbed by the sample such signals are called absorption bands (not peaks since this 
term is in general used to describe much sharper signals (textbooks on spectroscopy). Mistaken 
terms like the ones mentioned above need to be corrected. Standard terms need to be used. An 
introduction of new (incorrect / mistaken) ones need to be avoided. 

We adapted the suggested terminology throughout the text. 

c) In the abstract the “ratio of aliphatic C-H (2930 cm-1) to aromatic C=C (1620 cm-1)” which means 
A1620 to A2930 ratio is mentioned as a measure for DSI, but according to equation (2) it is the ratio 
between (A1620) and (A1620 +A2930), THIS is different! Please revise the text accordingly 
throughout the whole manuscript. 

Thanks for this comment, we understand that this formulation could be confusing. We need to 
distinguish between the original definition of the DSI (A1620/A2930, Demyan eta al. 2012) and its 
corresponding use to partition SOM pools. We defined the DSI as the ratio of A2930/A1620 and set it 
to the ratio for SOM_fast/SOM_slow. Resulting from this, the fraction in the slow pool (analogous to 
the pool equation defined by Bruun and Jensen, 2002) is as the original equation: A1620/(A1620 
+A2930). The fraction in the fast pool would be A2930/(A1620 +A2930). We have now both 
equations in the manuscript and added some text to explain this in detail. 



 
 
Abstract 
- should consist of short statements on introduction, problem of interest, objective, material and 
methods, results, discussion and the conclusion. However, the problem of interest is missing. 

We rewrote the introduction of the abstract and now clearly state the problem of model 
initialization. 

L25-26. Please clarify the meaning of: “DRIFTS stability index ….., was used to divide SOM into fast 
and slow cycling pools in the soil organic module of the DAISY model.” How was this done? How 
could a ratio be used to divide different pools? It may be usable to reflect the RATIO between SLOW 
and FAST pool or the proportion.  

We now explicitly wrote, that 2930/1620 was set equal to fast/slow SOM, see comment to c). 
 
Introduction 
Clarify the innovative aspect and importance of your study. 

We added two sentences to clarify. 

1) 

  

2) 

 
L73 Clarify the meaning of the sentence: “The interaction of mid-infrared energy with molecular 
bonds in soil produces typical vibrational peaks of absorbance at distinct wavelengths.“ It seems to 
be incomplete, refer to textbooks on FTIR/DRIFTs? 

 
L74 note the term “vibrational peaks of absorbance” is wrong. Absorption bands results from 
vibrations at the molecular level, but they are called in any textbook as absorption bands. All 
statement like the one above need to be changed throughout the whole manuscript.. 



This was corrected throughout and addressed above in statement a) 

L74 Clarify the meaning of the term “These” 

We rewrote this section, see next comment. 
L75 This is incorrect, the wavelength of the CH absorption band is related to vibrations of C-H bonds 
in the SOM but NOT to elements. Please correct the wording and CLARIFY THE MEANING: 

 
L77 Stretching peak need to be corrected into absorption band thoughout the whole manuscript….. 

This was corrected and addressed above in statement a) 

L75 to 80 please clarify and consider that this problem is already described by textbooks on 
spectroscopy but also by authors (e.g. Capriel 1997, Celi et al. 1997 among others) who interpret the 
CH absorption bond with respect to soil wettability. These authors already mentioned the overlap of 
CH bands by those of OH bands. BUT they also stated that the OH bands are not only present in 
water the OH is also part of SOM, and soil minerals (e.g. clay minerals, oxides, hydroxides, etc.). 
These OH band will remain in air dried soil samples as well in the ones dried at 37 to 105°C. But 
drying at higher temperature may affect the OH content of SOM and soil minerals thereby affecting 
the absorption bands in DRIFT/FTIR spectra (see Yeasmin, Reeves among others). Please correct this 
statement AND clarify how you ensure that the drying procedure did not affect the spectral 
properties of your samples. Add respective spectra into the supplement.  

There is some evidence that the spectral properties of samples does not change after drying at 105°C 
(Duboc et al., 2016) as there were no significant differences between spectra of samples dried at 
different temperatures/methods when stored outside a desiccator. What we found, is that when 
drying at 105°C the 2930 cm-1 band area has the best visibility as the surrounding OH band 
absorption is reduced. We observed that leaving samples outside the desiccator for several hours led 
to a regain of OH band absorption, but we did not specifically measure this effect, as this was not our 
focus. We used different drying temperatures for deriving the DSI for the initial test of the DSI 
because we were not sure, if high temperatures would have negative effects for the utility of the DSI 
for modelling. Spectra and more detailed explanation below. 

L86 explain the background of the idea of SOM pool initialization. 
This is explained in detail in the first paragraph of the introduction. 

 
Material and Methods: 
PLEASE describe in more detail the soil sampling. Which soils were taken where, at which time? 
Which is the year of establishment for each of the experiments, at which year did the bare-fallow 
started, and which are the sampling year(s)? 

We added the season of sampling for Ultuna and Bad Lauchstädt, the frequency of measurements for 
the Kraichgau and Swabian Jura sites and wrote explicitly that experiment and bare fallow 
establishment were in the same years. For those interested in the exact sampling dates, we added 
the raw data of this study into the supplementary which includes dates of sampling. 

 
L145 ff seem mostly belong to the discussion. 



This detailed explanation of the integration process was added within the review process, as the 
clarification of this was a major request of the other reviewers. 
How did you ensure that drying at 105°C did not result in artifacts? Add references different to your 
own work. 

We tested the different temperatures to explore this issue. In our prior work (Laub et al., 2019) we 
found that there is a linear decrease with drying temperature of the broad OH band surrounding 
2930 cm-1, which goes along with a linear increase of absorption bands area related to carbon, which 
mainly comes from a reduction of clay OH signal. This smooth trend with temperature does from our 
perspective not point towards artifacts. Still we were not sure, whether 105°C is the best 
representation of organic absorption bands, which is the reason why we tested different 
temperatures for modeling, respective SOM pool initializations. Our reasoning for the modelling was 
as follows: If drying produces artifacts, then model performance should be reduced, but it improved. 
We can also refer to the work of Duboc et al. (2016), who found no differences in ATR spectra 
between freeze drying, 60 °C and 105°C when samples were not stored in a desiccator. We attach 
example spectra of different drying temperatures as well as the (3x scaled) difference between the 
absorbance at 105°C and 32°C (32-105 °C) to illustrate the development of absorption bands. As can 
be seen, there is a gain of absorbance with higher drying temperatures for the most part of the 
spectra, while absorbance from the broad OH band is reduced (positive difference). From our 
perspective, drying at 105 °C therefore makes the SOM related bands better visible due to the 
removal of interfering OH. Additionally, using a combined in situ thermal DRIFTS and evolved gas 
technique (Demyan et al., 2013), soil samples were heated incrementally from 25 to 700 °C and 
either the evolved gas quantified or the mid-infrared spectrum of the soil itself was measured. CO2 
evolution, which would imply combustion or off-gassing, was not found at temperatures up to 
105 °C. As the overall goal is to get the best representation of SOM within the DRIFTS spectra, 105 °C 
seems the most appropriate drying temperature for our application.  

 
Figure 1 Baseline corrected example DRIFTS Spectra of bulk soil from the Swabian Jura (Table S1), dried at different 
temperatures. The red line indicates the difference of the 32 °C–105 °C absorbance (3× scaled for better illustration). The 
integration limits of the peak areas of interest are shown by vertical lines. 
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Add the limits of the band areas, how did you chose them?  

The limits are stated (L143 of the prior version of the manuscript). They were initially chosen by 
Demyan et al. 2012; 2013, attempting to best resolve the 2930 and 1620 cm-1bands. This was based 
on isolated soil fractions, as well as spectra from substances rich in aromatic compounds, such as 
xylan and tannic acid. For the 2930 cm-1 band, the range 3010-2800 cm-1 was chosen as this avoids 
the aromatic C-H vibrations (if present) found around 3030 cm-1 (Stevenson, 1994) and in soils 
investigated the 2930 cm-1 aliphatic contribution (often a doublet on the very wide OH band) 
terminates at 2800 cm-1. For the 1620 cm-1, the limits of 1660-1580 cm-1 were chosen as to include 
the anticipated range of aromatic C=C vibration variations while avoiding the amide band at <1580 
cm-1 and C=) of COOH and ketones at >1660 cm-1 and significant mineral interference (e.g. Demyan et 
al., 2013)We fully recognize that including wavenumbers between 1630-1660 cm-1 will probably also 
include C=O stretching of H-bonded C=O (Bellamy, 1975; Stevenson, 1994), thus have added in the 
manuscript (which was also cited in the Demyan et al., 2012 paper) that there is also a contribution 
of C=O within the band limits we use .  

 
L171: meaning of the term “DAISY pools”? The ones mentioned in table 2 but table 2 show turnover 
rates, “maint” and “CUE”? 

These additional parameters (maintenance respiration and carbon use efficiency) are explained in 
detail in Mueller et al. (1997). They are normal parameters in SOM models, but we did not alter 
them. We included them for completeness of the parameter set but decided for the main text to only 
include the relevant parameters that were changed and are relevant for the message, as readers can 
go back to original publications. We added a sentence to the caption of figure 2, to explain the 
difference between microbial turnover and death. 
 
Describe the DSI evaluation, - initialization…. 

Those are described in chapter 2.3 and 2.4. 

 
L194: Where is the description of SMB-C measurement? Please add a short s of SMB-C 
determination. 

A description of SMB-C exists already at L 155 ff in the manuscript. 

Please explain your reasons for dividing SMB-C into a fast and a slow cycling microbial pool. Why are 
they important?  

This division is a default of DAISY. We added to the text, that we did a standard division, as this 
division is not the focus of this study.  

According to the statements at L194 to 203 the SMB-C seemed to be assumed here as a measure for 
SOM. Is this correct, please explain! Please clarify the differences between the SMB-C pools (L194) 
and the SOM pools (L199)! AND CLARIFY which pool ratios will be described when using the 
A1620/(A1620+A2930) ratio? 

We clarified in the text, that as bulk soil SOC included carbon from SMB-C, this needs to be 
subtracted from the amount of SOC that makes up the SOM pools carbon.  



 

We also added a more detailed explanation of the DAISY pool to the section, where the models are 
explained.  

 

 
L405 please add background information for this statement (table, Fig.?, ref). 
Did you consider somewhere in the discussion that the Bad Lauchstädt soil is a Chernozem? Please 
ad missing information, old carbon present in Chernozem may cause difference in SOM turn-over 
(papers on black carbon etc…). 

We added the reference to the figure 3, altered the text and added a new reference to this.  

 
 
I stopped reading here since lots of information need to be clarified and added before a careful 
review will be possible. 

We are grateful for the critical comments of the reviewer, who seems to be an expert in the field of 
SOM and soil spectroscopy. We think that addressing these, had further improved the quality of the 
manuscript.  
 
Table 1 please add the studied sites, AND note SOC stand for SOIL organic carbon content please 
correct the capture accordingly refer to standard captures… 
Explain the terms - UTM (abbreviation for ?), -“Depth of measurement” possibly the depth of 
sampling?, - the meaning of initial (SOC in soil in the year the bare fallow is established, of the SOC of 
soil in the year the experiment was established? 
Please add year of establishment and sampling; number of replicates 

We added experiment name and reference for Ultuna and Bad Lauchstädt, year of establishment 
abbreviation of UTM, changed to depth of sampling and that fallow establishment and experiment 
establishment were at the same time. 

 
Table 2 which of the pools are assumed to represent the fast/slow cycling SMB-C pools mentioned at 
L194? 



We added additional explanation for the SMB pools which are subject to maintenance respiration 
and microbial death at the same time. We noticed that the SMB pool was wrongly named in figure 1 
and changed this. The pools names are SMB and SOM – they contain C and N, but we did not focus 
on N simulation.  
Table 3 show starting and ending year of the field experiment as well as … SOC etc … of the soil 
sampled at….. site. Please correct accordingly. 

We added a longer heading, to explain the meaning of experiment start and simulation end etc. 
Correct the capture of table 4 and 5 accordingly… 

We assessed and corrected the Table 4 and 5 once more.  

 
Fig. 1 explain the meaning of the term “A_XXXX” 

Was done. 
Fig. 2 I assume the capture should be: baseline corrected and vector normalized DRIFT spectra of 
105°C dried soil samples from soils under bare fallow at … site. Please indicate which figure shows 
what kind of spectrum. How did you ensure that drying at 105°C did not result in artifacts? If these 
spectra are baseline correct WHY did they start at different Y-axis values? 

We changed the caption as requested. In the caption it is stated that the Y-axis offset was merely 
added for a better visibility. We added the size of offset (+0.02 for samples from the start). 
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Abstract.[g1][ML2] The initialization of soil organic matter (SOM) turnover models has been a challenge for 

decades. Soil organic matter (SOM) turnover models predict changes in SOM due to management and 

environmental factors. Their initialization remains challenging as partitioning of SOM into different hypothetical 

pools is intrinsically linked to model assumptions. Therefore, measurable pool partitioning proxies are needed. 25 

Diffuse reflectance mid infrared Fourier transform spectroscopy (DRIFTS) provides information on SOM quality 

and could yield abe suitable for measureable pool partitioning proxy for SOM. This study tested DRIFTS derived 

SOM pool partitioning using theInstead of using laborious and error prone size-density fractionation for SOM pool 

partitioning, we propose a cost effective, rapid, and non-destructive Diffuse reflectance mid infrared Fourier 

transform spectroscopy (DRIFTS) technique on bulk soil samples to gain information on  DAISY model. DRIFTS 30 

spectra were from SOM pool partitioning from infrared spectra.bulk soil samples. Specifically, tThe DRIFTS 

stability index (DSI) of bulk soil samples was, defined as the ratio of the area below the aliphatic absorption band 

C-H (2930 cm-1[g3][ML4]) to the area below the aromatic/carboxylateto  absorption band aromatic C=C 

(1620  cm-1[g5]) corresponding to C=O and aromatic C=C bonds stretching vibrations. For pool partitioning, the 

DSI (area ratioshort,= 2930 cm-1/1620 cm-1) was usedset equal to the ratio of fast/slow cycling SOM.  to divide 35 

SOM into fast and slow cycling pools in the soil organic module of the DAISY model. Performance was tested by 

simulating Llong-term bare fallow plots from the “Bad Lauchstädt extreme farmyard manure experiment” in 



 
2 

 
 

Germany (Chernozem, 25 years), the  and the “Ultuna continuous soil organic matter field experiment” Ultuna 

frame trial in Sweden (Cambisol, 50 years) were combined withand 7 year duration bare fallow plots of 7 years 

duration from the regions Kraichgau and Swabian Jura regions region in Southwest Germany (Luvisols). All fields 40 

All experiments had been inwere agricultural fields use for centuries before fallow establishment, so classical 

theory would suggest an initialthat  steady state can be assumed for initializing of SOM pools. , which was 

hHence,ence used to compare the performance of DAISY steady state and DSI initializations against the newly 

established DRIFTS stability indexinitializations were compared, using in combination with . The test was done 

using tTtwo different published parameter sets, (2.7 * 10-6 d-1, 1.4 * 10-4 d-1, 0.1 compared to 4.3 * 10-5 d-1, 45 

1.4 * 10-4 d-1, 0.3 fordiffering in the turnover rates slow and fast ands , fast SOM pool turnover rates and 

humification efficiency, respectively) were considered. The Initialization using DRIFTSDSI significantly 

initialization of SOM pools significantly reduced DAISY model error (for soil total soil organic carbon and 

microbial carbon) significantly for  cases where assuming steady state led tohad poor model performance. This 

was irrespective of the turnover rates usedparameter set, but the faster turnover performedparameter set fitted 50 

better forto all sites except for Bad Lauchstädt. , whichThese results suggests that soils, although under long-term 

agricultural use, were not necessarily at steady state. In thea next step, A Bayesian calibration was applied in a 

next step to identify inferred the best-fitting turnover rates for DAISY using the DRIFTS stability indexDSI were 

evaluated either in DAISY, both for each each individual site individually and or for all sites combined a 

combination of all sites. The tTwo approaches which significantly reduceded parameter uncertainty and 55 

equifinality in Bayesian calibrations were: 1) the addingition of the physicochemical meaning with the DRIFTS 

stability indexDSI  (for for humification efficiency and slow SOM turnover), and 2) combining several all sites 

into one Bayesian calibration (for all parameters). , asIndividual site derived turnover rates can bewere strongly 

site specific. The The Bayesian calibration combining ation of all four sites showedsuggested a potential for rapid 

that SOM loss is likely lost at relatively fast with turnover rates with the 95  % credibility intervals ofor the slow 60 

SOM pools’ the half-life of the slow SOM pools ranging from being 278 to 1095 years (, with highest probability 

density at 426 years) as a value of highest probability density. The credibility intervals of this study were consistent 

with several recently published Bayesian calibrations of similar two-pool SOM models, i.e. all turnover rates being 

were considerably faster than earlier model calibrations suggested, hencethoseed. It is therefore likely that they 

likely published turnover rates underestimated the potential SOM losses. of SOM. 65 

1 Introduction  

Process-based models of plant-soil ecosystems are used from plot to global scales as tools of research and to 

support policy decisions (Campbell and Paustian, 2015). In soil organic matter (SOM) models, SOM is 

traditionally divided into several pools, representing fast and slow cycling or even inert SOM (Hansen et al., 1990; 

Parton et al., 1993). However, these theoretical SOM pools cannot easily be linked to measurable fractions. As a 70 

workaround,  Ccommon methods of SOM pool initialization require that one assumes SOM at steady state 

conditions or includes a model spin-up run, . In a model spin-up run the user attemptings to simulate SOM 

dynamics according to history and carbon inputs for the decades to several millennia prior to the period of actual 

interest (e.g. O’Leary et al., 2016). Theoretically if the SOM pools are at steady state and the turnover times of 

SOM pools are known, models can could be initialized, i.e. pool sizes calculated, either by simple equations (S. 75 



 
3 

 
 

Hansen et al., 2012)(e.g. for DAISY, Bruun and Jensen, 2002) or by inverse modeling (for RothC, Coleman and 

Jenkinson, 1996). In most cases, data is insufficient to guarantee that the assumptions of SOM steady state or long-

term land use history and inputs are correct, given the lack of data of residue/manure input and weather variability 

for the required long-term timescales (> 200 years to millennia). Furthermore, exact turnover times of different 

SOM pools are unknown, which makes the results of inverse modelling and steady state initializations a direct 80 

result of model assumptions (Bruun and Jensen, 2002). Hence, while the approach should work in theory, the 

history of a site is usually not sufficiently known for the timescales that SOM needs to equilibrize. Therefore, the 

simulation of past carbon inputs and the assumption of steady state are a rough approximation at best. Hence, it is 

critical to find measurable proxies such as soil size density fractionation or infrared spectra (Sohi et al., 2001), that 

can provide information on the quality of SOM and help to disconnect the intrinsic link between turnover times 85 

and SOM pool division  and hence help in SOMfor  SOM pool initialization (Sohi et al., 2001). 

As was shown by Zimmermann et al. (2007), and recently confirmed by Herbst et al. (2018), a link exists between 

soil fractions obtained by size/density fractionation and fast and slow cycling SOM pools. However, Poeplau et 

al. (2013) showed, that the same fractionation protocol led to considerably different results at six different 

laboratories which regularly applied the technique (coefficient of variation from 14 to 138 %). The resulting 90 

differences in the model initializations for simulated SOM loss after 40 years of fallow, led to differences in SOM 

losses that were to up to 30 % of initial SOM. Hence there is a need for a reproducible proxy for SOM pool 

initialization to reduce the high uncertainty of SOM modelsinitiation.  

We hypothesized that such a proxy could be obtained from inexpensive, high-throughput Diffuse Rreflectance mid 

infrared Infrared Fourier transform Transform spectroscopy Spectroscopy (DRIFTS).  95 

As a novel approach, this study uses information gained from DRIFTS spectra to partition measured SOM into  

pools of different complexity. DRIFTS can provide information on SOM quality, but also on texture and even 

mineralogy (Nocita et al., 2015; Tinti et al., 2015). The interaction absorbance of mid-infrared energy light with 

by molecular bonds in the soil sample vibrating at the same frequency in soil producess typical  vibrational peaks 

of absorbanceabsorption bands  at distinct wavelengths (Stevenson, 1994).  The area below absorption bands (in 100 

short – band area),se can be linked to different molecular bonds of carbohydratesn, nitrogenamides,, silicates 

silicon and other elementsand others. The vibrational peaks which relate to carbon of different complexities, such 

as the aliphatic C-H stretching Two important absorption bandspeak that provide information on SOM quality are 

the aliphatic carbon band (in short 2930 cm-1, limits:  around 29303010 - 2800 cm-1 ) and the aromatic/carboxylate 

band (in short 1620 cm-1, limits: 1660 – 1580 cm-1 aromatic C=C stretching) peak at 1620 cm-1, provide 105 

information on SOM quality (Giacometti et al., 2013; Margenot et al., 2015; Pengerud et al., 2013).  While both 

bandpeaks are subject to interference (2930 cm-1 mainly from water and 1620 cm-1 mainly from minerals (Nguyen 

et al., 1991)), it should be possible to limit the interference using subregions of the absorption peaks bands with 

carefully selected integration limits, only selecting the specific peak area of interest. Indeed, Demyan et al. (2012) 

[g6]found aliphatic aliphatic compounds carbon to be enriched under long-term farmyard manure application and 110 

depleted in mineral fertilizer or control treatments, and showed that the ratios of the 1620 cm-1 to 2930 cm-1 peak 

band area had a significant positive correlation with the ratio of stable to labile SOM obtained by size and density 

fractionation. It was further corroborated that  the specific integration limits of the peaksband area they used, which 
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mainly selected the top subregion of the peak areasabsorption bands, are lost strongly reduced or lost during 

combustion (Demyan et al., 2013). Hence, we hypothesized that the ratio of areas below the aliphatic aliphatic to 115 

aromatic aromatic/carboxylate carbon DRIFTS peakabsorption bands s can be used as proxy for the ratio of fast 

to slow cycling SOM for pool initialization, thus providing a major improvement over assuming steady state SOM. 

Theis ratio of areas below absorbance bands of aliphatic to aromatic/carboxylate of aliphatic to aromatic 

peakscarbon, will be referred to as the DRIFTS stability index (DSI) hereafter. Testing, improvement and proper 

use of the DSI was the central topic of this study. Recent findings have highlighted that the residual water content 120 

in bulk soil samples after drying at different temperatures affects the DSI considerably. Water absorbance affects 

significant parts of the mid-infrared spectra and particularly influences the 2930 and 1620 cm-1 peakband areas 

(Laub et al., 2019). For this reason, we also tested how the drying temperature prior to DRIFTS measurements 

affects the use of the DSI proxy, using 32, 65 and 105°C as pretreatment temperatures.  

To test our hypotheses about DSI performance, we used the DAISY SOM model (Hansen et al., 2012). DAISY is 125 

a commonly used SOM model (Campbell and Paustian, 2015) with a typical multi-pool structure, which includes 

two soil microbial biomass (SMB) pools, as well as two pools for stabilized SOM pools (fast and slow cycling). 

With first-order turnover kinetics and a humification efficiency parameter (Figure 1Figure 1), the DAISY 

structure is similar to other widely used SOM models such as CENTURY (Parton et al., 1993) or ICBM (Andrén 

and Kätterer, 1997). Model SOM pool initialization using the DSI was compared to initialization via a steady state 130 

assumption with different published turnover rates. For this comparison bare fallow experiments from a range of 

different sites and time scales from one to five decades were included. Bare fallow experiments were used to avoid 

the added complexity caused by the conversion of different plant compounds into SOM of varying stabilities 

during decomposition.  

As SOM pool sizes and turnover rates are closely linked, it could also be necessary to recalibrate DAISY 135 

parameters for the use of the DSI. Therefore, a Bayesian calibration of turnover rates was used to adjust DAISY 

turnover rates to the pool division and time dynamics of the measured DSI throughout the fallow period. Thus, the 

DAISY parameterization was evaluated with respect to equifinality and uncertainty as well as dependence on 

model structure. The final hypothesis was, that through a Bayesian calibration using the DSI, DAISY pools will 

correspond to measured, i.e. physiochemically meaningful fractions thus reducing uncertainty. The posterior 140 

credibility intervals and optima of turnover rates should correspond to the results of other Bayesian calibrations 

done for similarly structured two-pool models. If such relations could be confirmed, this would point towards 

fundamental insights about the intrinsic SOM turnover in temperate agroecosystems. 

2 Material and Methods 

2.1 Study sites and data used for modeling 145 

Datasets originating from bare fallow treatments of four different sites with different experimental durations and 

measurement frequencies were used in this study. Topsoil (0-20 cm) samples were available received from the 

long-term experiments of (a) the “Ultuna continuous soil organic matter field experiment” Ultuna Frame trial 

(established in 1956, with additional data samples from 1979, 1995 and 2005; samples always taken in autumn 

(Kätterer et al., 2011), four replicates), and (b) the Bad Lauchstädt eExtreme Ffarmyard Mmanure Eexperiment 150 
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(established in 1983, with additional data samples from 2001, 2004 and 2008 samples always taken in autumn 

(Blair et al., 2006), two replicates) (https://www.ufz.de/index.php?de=37008, date accessed 10.01.2019). 

Additional data  from two medium-term bare fallow experiments (established in autumn 2009 with data until 

2016,) from Southwest German regions were availablewas included., In these experiments i.e. of (c)three fields in 

the region of (c) the Kraichgau and three fields in the region (d) the Swabian Jura, representing different climatic 155 

and geological conditions were intensely monitored. The bare fallow plots (5 x 5 m size) in these Southwest 

Germany experiments were established within the agricultural fields with three replicates per field (Ali et al., 

2015).  and Up to four topsoil samples (0-30 cm) were taken of tophad monthly to yearly measurement frequencies 

of soil samples (0-30 cm) throughout the year per season were taken from 0-30 cm throughout the year in these. 

In both regions, three replicates of bare fallow plots were established in each of three different fields. . Further 160 

details on all the sites can be found in Table 1Table 1. All sites had been under cultivation for at least several 

hundred years prior to establishing the bare fallow plots, which would suggest that steady state could be assumed. 

All available bBulk soil samples from the start and throughout the simulation period of all experimentsUltuna and 

Bad Lauchstädt were analyzed for total organic carbon and DRIFTS spectra. For Kraichgau and Swabian Jura 

sites, total organic carbon and DRIFTS spectra were only measured about once every two years, while ; samples 165 

from the Kraichgau and Swabian Jura sites were additionally analyzed for soil microbial biomass carbon (SMB-C) 

was measured up to four times per year. After sampling, aAll bulk soil samples (except for SMB-C) were passed 

through a 2 mm sieve, then air dried, ball milled (for two minutes) to powder and stored until further analysis. Soil 

organic carbon (SOC) content was analyzed with a Vario Max CNS (Elementar Analysensysteme GmbH, Hanau, 

Germany). Soil samples for DRIFTS analysis were obtained after 24  hr drying at 32, 65 and 105°C. The dried 170 

samples were kept in a desiccator until measurement. DRIFTS spectra of bulk soil samples (with four subsamples 

per sample) were obtained using an HTS-XT microplate extension, mounted to a Tensor-27 spectrometer using 

the processing software OPUS 7.5 (equipment and software from Bruker Optik GmbH, Ettlingen, Germany). A 

potassium bromide (KBr) beam splitter with a nitrogen cooled HTS-XT reflection detector was used to record 

spectra in the mid infrared range (4000 – 400 cm−1). Each spectrum was a combination of 16 co-added scans with 175 

a 4 cm-1 resolution. Spectra were recorded and then converted to absorbance units (AU); the acquisition mode 

“double-sided, forward-backward” and the apodization function Blackman-Harris-3 were used. After baseline 

correction and vector normalization of the spectra, peak areas below absorptions bands of interest were obtained 

by integration using a local baseline with the integration limits of Demyan et al. (2012). and iIntegrated peak band 

areas of the four subsamples were then averaged. after that. The local baselines were drawn between the 180 

intersection of the spectra and a vertical line at the integration limits (3010 – 2800 cm-1 for the aliphatic carbon 

bandaliphatic C-H stretching, 1660 – 1580  cm--1 for aromatic C=C stretching vibrations). the aromatic/carboxylate 

carbon band). Example spectra and integrated bandpeak areas are displayed in Figure S 1Figure S 1. These carefully 

selected integration limits were selected critical with the goal to reduceing signal interference from water and 

minerals, using spectra of pure substances, clay minerals and from DRIFTS spectra gained during heating samples 185 

up to 700°C (Demyan et al., 2013). Particularly, the mineral interference close to the 1620 cm-1 bandpeak makes 

accurate selection of integration limits necessary, so that only its top part (assumed to consist mostly of aromatic 

aromatic/carboxylate carbon) is selected. In the case of our samples, the selected specific bandpeak area of the 

1620  cm--1 bandpeak accounted for approximately 10 to 30 % of the total bandpeak area of the  larger surrounding 
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band (Figure S 1, ca. 1755-1555 cm-1).,  and roughly Integration limits were chosen so that the band area best 190 

correspond s to the peak portion that is lost with combustion or chemical oxidation (Demyan et al., 2013; Yeasmin 

et al., 2017). A strong correlation between the DSI and the percentage of centennially persistent SOC (r = 0.84) 

from the combined long term experiments used in this study (using values of centennially persistent SOC from 

Cécillon et al., 2018; and Franko and Merbach, 2017), showed that the DSI selected in this manner did in fact 

explain a large portion of the SOC quality change across sites (Figure S 2Figure S 2).  195 

Additionally, soils from the experiments in Kraichgau and Swabian Jura were analyzed for SMB-C using the 

chloroform fumigation extraction method (Joergensen and Mueller, 1996). Briefly, field moist samples were 

transported to the lab in a cooler, with extractions beginning within 24 hours after field sampling and the final 

SMB-C values corrected to an oven-dried (105° C) basis. The SMB-C was measured two to four times throughout 

the whole year. Stocks of SOC and SMB-C for 0-30 cm were calculated by multiplying the percentage of SOC 200 

and SMB-C with the bulk density and sampled layer thickness (Table 1Table 1), respectively. Bulk density was 

assumed constant for Bad Lauchstädt, Kraichgau and Swabian Jura, while for Ultuna the initial 1.44 Mg m-3 

(Kirchmann et al., 2004) in the beginning was used for all but the last measurement, where 1.43 Mg m-3 (Kätterer 

et al., 2011) was used. Due to low coarse fragment contents (< 5 % for Swabian Jura 3, < 2 % for Swabian Jura 1 

and < 1 % for the other six sites), and because changes in stone content throughout the simulation periods are 205 

unlikely, no correction for coarse fragment content was done. 

2.2  Description of the simulation model: DAISY Expert-N 5.0 
All simulations were conducted using the DAISY SOM model (Hansen et al., 2012) integrated into the Expert-N 

5.0 modeling framework. Expert-N 5.0 allows a wide range of soil, plant and water models to be combined and 

interchanged (Heinlein et al., 2017; Klein et al., 2017; Klein, 2018). Expert-N can be compiled both for Windows 210 

and Linux systems. The DAISY model consists of two pools (fast and slow cycling) for each of the measurable 

fractions of 1) litter, 2) SMB and 3) stabilized SOM (Figure 1). Due to bare fallow, litter pools were disregarded 

in this study and the focus was on initializing the two SOM pools. A detailed description of the DAISY SOM 

submodule as it was implemented into the Expert-N 5.0 framework can be found in Mueller et al. (1997). A 

graphical representation of the DAISY pools considered in this study is shown in Figure 1. The additional modules 215 

available for selection in the Expert-N 5.0 framework consist of a selection of established models for all simulated 

processes in the soil-plant continuum. The evaporation, ground heat, net radiation, and emissivity were simulated 

according to the Penman-Monteith equation (Monteith, 1976). Water flow through the soil profile was simulated 

by the Hydrus-flow module (van Genuchten, 1982) with the hydraulic functions according to Mualem (1976). 

Heat transfer through the soil profile was simulated with the DAISY heat module (Hansen et al., 1990). In the first 220 

step of the DSI evaluation, simulations were conducted with two established parameter sets for DAISY SOM. The 

first set was from Mueller et al. (1997) and was a modification of the original parameter set of turnover rates 

reported by Jensen et al. (1997). The second set was established after calibrations made by Bruun et al. (2003) 

using the Askov Long-Term Experiments, in which they introduced considerable changes to the turnover rates of 

the slow SOM pool and the humification efficiency. An equation developed by Bruun and Jensen (2002) was used 225 

to compute the proportions of the slow and fast cycling SOM pools for both parameter sets at steady state (see 

next section). Parameters of both sets are given in Table 2Table 2.  
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For simulating soil temperature and moisture in Expert-N, daily averages of radiation, temperature, precipitation, 

relative humidity and wind speed are needed. For the long-term experiments they were extracted from the nearest 

weather station with complete data (Ultuna source: Swedish Agricultural University (SLU), ECA Station ID 230 

#5506, Elevation: 15 m, Lat: 59.8100 N, Long: 17.6500 E; Bad Lauchstädt source: Deutsche Wetter Dienst (DWD) 

Station #2932, Elevation: 131 m, Lat: 51.4348 N, Long: 12.2396 E, Locality name: Leipzig/Halle). For the fields 

of the Kraichgau and Swabian Jura, the driving variables were measured by weather stations installed next to eddy 

covariance stations located at the center of each field. Details on the measurements, instrumentation as well as gap 

filling methods of those eddy covariance weather stations are described in Wizemann et al. (2015).  235 

2.3 SOM pool initializations with the DRIFTS stability index and at steady state  

Measured bulk soil SOC includes SMB-C, therefore the amount of SOC in the fast and slow cycling SOM pools 

combined consists of bulk soil SOC minus measured SMB-C. As not focus of this study,Partitioning a standard 

division of Mmeasured SMB-C was divided into the slow (90%) and fast (10%) cycling microbial pools was done 

similar to , with 10 % in the fast (8 % in Mueller et al., (1998) and 90 % in the slow SMB pool.  240 

The remaining carbon (difference between total bulk soil SOC and SMB-C) was divided between fast and slow 

cycling SOM pools either by either the DRIFTS stability index (DSI), or according to the steady state assumption. 

For runs using a steady state assumptiondivision, the equation of Bruun and Jensen (2002) was used, which 

estimates the fraction of SOM in the slow pool at steady state from the model parameters under an assumed steady 

state:  245 slow SOM fraction = ଵଵା ೖೄೀಾ_ೞೢೄೀಾ_ೞೢ∗ ೖೄೀಾ_ೌೞ        (1) 

with kSOM_slow and kSOM_fast representing the turnover (per day) of the slow and fast SOM pools respectively, and 

fSOM_slow representing the fraction of the fast SOM pool directed towards the slow SOM pool at turnover of fast 

SOM (humification efficiency). This resulted in 83 % of SOM being in the slow pool for the original DAISY 

turnover rates and 49 % in the slow pool for the Bruun et al. (2003) turnover rates (Table 2Table 2). For the DSI 250 

initialization, the ratio of the area below the aliphatic absorption bands to the area below the aromatic/carboxylate 

absorption band was used as the ratio of SOM in the fast to SOM in the slow cycling SOM pool: 

ୟୱ୲ ୗ ୱ୪୭୵ ୗ =  _ଶଽଷୡ୫షభ_ଵଶୡ୫షభ = 𝐷𝑆𝐼         (2) 

Thus, analogous to Equation 1,  the fraction of SOM in the slow pool was calculated with the formula  

slow SOM fraction = _ଵଶୡ୫షభ_ଵଶୡ୫షభା_ଶଽଷୡ୫షభ        255 

 (32) 

With A_2930 cm-1 and A_1620 cm-1 being the specific peak area of under the aliphatic and aromatic/carboxylate 

aliphatic and aromatic peaksband (described in section 2.1). The remaining carbon was allocated to the fast SOM 

pool. As was mentioned before, three different data inputs for the DSI were used, obtained at drying temperatures 

of 32, 65 and 105°C, in order to test which drying temperature derived the best proxy for modeling. An example 260 

of the change of DRIFTS spectra occurring after several years of bare fallow can be found in Figure 2Figure 2.  
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All DSI model initializations were then runsimulated with both published sets of model parameters. Steady state 

initializations using Equation 1 were only conducted simulated with the corresponding parameter set from which 

they were calculated. 

2.4 Statistical evaluation of model performance 265 

Statistical analysis was performed with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). To compare different 

model initializations, a statistical analysis of squared model errors (SME) was conducted:   𝑆𝑀𝐸௫ = (𝑜𝑏𝑠௫ − 𝑝𝑟𝑒𝑑௫)ଶ         (43) 

with obsx being the observed value, predx the predicted value and x the simulated variable of interest. A linear 

mixed model with SMEx as response was then used to test for significant differences between initialization 270 

methods. This approach allowed us to make use of the statistical power of the three Kraichgau and Swabian Jura 

fields to analyze which initialization was most accurate and to evaluate the trend of the model error with increasing 

simulation time.  In some cases, SMEx was transformed to ensure a normal distribution of residuals (square root 

transformation for Ultuna SOC and Kraichgau/Swabian Jura SMB-C and fourth root for Kraichgau/Swabian Jura 

SOC), which was checked by a visual inspection of the normal QQ plots and histograms of residuals (Kozak and 275 

Piepho, 2018). Random effects were included to account for temporal autocorrelation of SMEx within (a) the same 

field and (b) the same simulation. The model reads as follows: 𝑦 = 𝜙 +  𝛼 +  ß + 𝛾 + 𝜙ଵ𝑡 + 𝛼ଵ𝑡 + ßଵ𝑡 + 𝛾ଵ𝑡 + 𝑢 + 𝑢     (54) 

where 𝑦 is the SMEx of the simulation using the ith initialization with the jth parameter set, at the kth time on 

the lth field,  𝜙 is an overall intercept, 𝛼 is the main effect of the ith initialization, ß is the main effect jth 280 

parameter set, 𝛾 is the ijth interaction effect of initialization x parameter set, 𝜙ଵis the slope of the time variable 𝑡, 𝛼ଵ𝑡 is the interaction of the ith initialization with time, ßଵ𝑡 is the interaction of the jth parameter set with 

time, 𝛾ଵ𝑡 is the ijth interaction effect of initialization x parameter set x time, 𝑢 is the autocorrelated random 

deviation on the kth time in the lth field and 𝑢  is the autocorrelated residual error term corresponding to 𝑦. 
The detailed SAS code can be found in the supplementary material. For Ultuna and Bad Lauchstädt, the 𝑢 term 285 

was left out, as both trials only had one field. As the Kraichgau and Swabian Jura had the exact same experimental 

setup and duration, these sites were jointly analyzed in the statistic model, but due to completely different setups 

and durations, this was not possible for Bad Lauchstädt and Ultuna. The full models with all fixed effects were 

used to compare different correlation structures for the random effects including (i) temporal autocorrelation 

(exponential, spherical, Gaussian), (ii) compound symmetry, (iii) a simple random effect for each different field 290 

and simulation, (iv) a random intercept and slope of the time variable (with allowed covariance between both) for 

each field and initialization method. A residual maximum likelihood estimation of model parameters was used and 

the best fitting random effect structure for this model was selected using the Akaike Information Criterion as 

specified by Piepho et al. (2004). Then a stepwise model reduction was conducted until only the significant effects 

(p < 0.05) remained in the final statistical model. Because a mixed model was used, the Kenward-Roger method 295 

was applied for estimating the degrees of freedom (Piepho et al., 2004) and to compute post hoc Tukey-Kramer 

pairwise comparisons of means. 
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2.5 Model optimization and observation weighting for Bayesian calibration 

Optimization of parameters kSOM_slow, kSOM_fast and the humification efficiency (fSOM_slow) was performed using a 

Bayesian calibration approach. These parameters were chosen as only they have a considerable impact on the rate 300 

of native SOM loss (see further details in the supplementary chapter S 12.2 ). The Bayesian calibration method 

uses an iterative process to simulate what the distribution of parameters would be, given the data and the model. 

It combines a random walk through the parameter space with a probabilistic approach on parameter selection.  

The Differential Evolution Adaptive Metropolis algorithm (Vrugt, 2016) implemented in UCODE_2014 (Lu et 

al., 2014; Poeter et al., 2014) was used for the Bayesian calibration in this study. As no Bayesian calibration of 305 

DAISY SOM parameters has been done before, noninformative priors were used. The main drawback of 

noninformative priors is that they can have longer computing times, but as was shown by Lu et al. (2012) with 

sufficient data and simulation durations, the posterior distributions are very similar to using informed priors. 

Ranges were set far beyond published parameters with 1.4 * 10-2 to 1.4 * 10-6 d-1 for kSOM_fast and 1.4 * 10-3 to 

5 * 10-7 d-1 for kSOM_slow. The parameter fSOM_slow had to be more strongly constrained as without constraints it tended 310 

to run into unreasonable values up to 99 % humification. The limits were therefore set to 0.05 to 0.35, which is +/- 

5 % of the two published parameter sets and represents the upper boundaries of other similar models (e.g. Ahrens 

et al., 2014). The default UCODE_2014 Gelman-Rubin criterion (Gelman and Rubin, 1992) value of 1.2 was 

chosen for the convergence criteria. A total of 15 chains were run in parallel with a timestep of 0.09 days in Expert-

N 5.0 (this was the largest timestep and fastest computation, where the simulation results of water flow, 315 

temperature and hence SOM pools was unaltered compared to smaller timesteps). It was ensured that at least 300 

runs per chain were done after the convergence criterion was satisfied.  

In Bayesian calibration, a proper weighing of observations is needed in order to achieve a diagonal weight matrix 

of residuals (proportional to the inverse of the variance covariance matrix), and to ensure that residuals are in the 

same units (Poeter et al., 2005, p18 ff). This included several steps. A differencing removed autocorrelation in the 320 

individual errors in each model run of the Bayesian calibration itself (the first measurement of each kind of data 

at each field was taken as raw data, for any repeated measurement the difference from this first measurement was 

taken instead of the raw data). Details on differencing are provided in chapter 3 of the UCODE_2005 manual 

(Poeter et al., 2005). To account for varying levels of heterogeneity of different fields in the weighting, a mixed 

linear model was used to separate the variance of observations from different fields originating from natural field 325 

heterogeneity from the variance originating from measurement error. To do so, a linear mixed model with random 

slope and intercept of the time effect for each experimental plot was fitted to the SOC, SMB-C and DSI data for 

each field individually: 𝑦 = 𝜙 +  𝜙ଵ𝑡 + 𝑢 + 𝑢 + 𝑢         (65) 

where 𝑦 is the modeled variable at the kth time on the lth plot,  𝜙 is the intercept, 𝜙ଵis the slope of the time 330 

variable 𝑡, 𝑢 is the random intercept, 𝑢 is the autocorrelated random deviation of the slope and  𝑢 is the 

autocorrelated residual error term corresponding to 𝑦 . 
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The error variance of each type of measurement (DSI, SMC-C, SOC) at each field  𝜎ெଶ = 𝜎𝑢𝑘ଶ + 𝜎𝑢𝑘𝑙ଶ  was then 

used for weighting of observations, excluding the field variance 𝜎𝑢𝑙ଶ  from the weighting scheme. This error variance 

was used in UCODE_2014 to compute weighted model residuals for each observation as follows: 335 

 𝑤_𝑆𝑀𝐸௫ = (௦ೣିௗೣ)మఙ²ಾ           (76) 

where w_SMEx is the weighted squared model residual, obsx is the observed value, predx is the predicted value and 𝜎²ெ is the error variance of the Mth type of measurement at each field. All w_SMEx are combined to the sum of 

squared weighted residuals, which is the objective function used in UCODE_2014 (Poeter et al., 2014). By this 

procedure, observations with higher measurement errors have a lower influence in the Bayesian calibration.  340 

Since the medium-term experiments had a much higher measurement frequency, it was also tested if giving each 

experiment the same weight would improve the results of the Bayesian calibration (equal weight calibration). In 

this case an additional group weighting term was introduced for groups of observations, representing different 

datasets at the different sites. This weighting term is internally multiplied with each w_SMEx in UCODE_2014 

and was calculated as 345 𝑤_𝐺௫ = ଵ(್ೞ∗ೌೝ∗)             (87) 

where w_Gx is the weight multiplier for each observation, nobs is the number of observations per parameter, npar is 

the number of parameters per field, and nf is the number of fields per site. This weighing assures that with the exact 

same percentage of errors, each site would have the exact weight of 1.  

The influence of several factors was assessed in this Bayesian calibration: the use of individual sites compared to 350 

combining sites, including an equal weight (EW, as described above) vs original weight (OW) weighting only by 

error variance, and the effect of in/excluding the DSI (+/- DSI) in the Bayesian calibration. Therefore, seven 

Bayesian calibrations were conducted in total: four for each individual site with original weight and DSI, i.e., 1) 

Ultuna, 2) Bad Lauchstädt, 3) Kraichgau, 4) and Swabian Jura, 5) equal weight calibration for all sites combined 

using DSI, 6) original weight calibration for all sites combined without using DSI in the Bayesian calibration (only 355 

for initial pool partitioning) and 7) original weight calibration for all sites combined using the DSI. The comparison 

of these seven Bayesian calibrations was designed to assess the effect of the site on the calibration, as well as the 

effect of the DSI and of user weighting decisions.  

3 Results 

3.1 Dynamics of SOC, SMB-C and DRIFTS during bare fallows  360 

All bare fallow plots lost SOC over time with the severity of SOC loss varying between soils and climates at the 

different sites. The Bad Lauchstädt site experienced the slowest carbon loss (7% of initial SOC in 26 years), while 

SOC at Ultuna and Kraichgau was lost at much faster rates (Ultuna - 39% of initial SOC in 50 years  ̧Kraichgau 

on average 9% of initial SOC in 7 years) (Table 3Table 3). In the Swabian Jura field 1 the SOC loss was 

comparable to that of Kraichgau (about 10% of initial SOC in 7 years), but was much less in fields 2 and 3. Some 365 

miscommunications with the field owner’s contractors led to unwanted manure addition and fields ploughing in 
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Swabian Jura field 2 and 3 in 2013, hence results of these two fields after the incident in 2013 were excluded. The 

DRIFTS spectra revealed that the aliphatic aliphatic carbon bandpeak area (2930 cm-1) decreased rather fast after 

the establishment of bare fallow plots while the aromatic aromatic/carboxylate bandpeak area (1620 cm-1) had 

showed only minor changes and no consistent trend (Figure 2Figure 2). The resulting assumed fraction of SOC 370 

in the slow SOM pool according to the computed DSI at 105°C changed from the initial range of 54 to 80 % to 

the range of 76 to 99% at the end of the observational period (Table 3, Figure S 3Figure S 3). The SMB-C reacted 

even more rapidly to the establishment of fallows and halved on average for all fields within 7 years duration 

(Table 3).  

3.2 Comparison of the different model initializations  375 

The observed trend of SOC loss with ongoing bare fallow duration was also found in all simulations (Figure 

3Figure 3 and Figure S 4Figure S 4). For Ultuna, simulated SOC loss in all cases underestimated measured loss, 

while for Bad Lauchstädt, simulated SOC losses consistently overestimated measured losses. At Kraichgau sites 

SOC loss was underestimated by the models, but with the Bruun (2003) parameter set yielding simulated values 

closer to actual measurements. In the Swabian Jura, both parameter sets underestimated SOC loss. The decline of 380 

SMB-C in the Kraichgau and Swabian Jura (Figure 4Figure 4) occurred more rapidly than that of SOC, though 

SMB-C had higher variability of measurements. The parameter sets with steady state assumptions marked the 

upper and lower boundaries of the SMB-C simulations but the DRIFTS stability index (DSI) initializations were 

closer to the measured values (with exception of Swabian Jura field 3). For brevity only simulations of field 1 for 

Kraichgau and Swabian Jura are shown. Simulation results for fields 2 and 3 are found in the supplemental material 385 

(Figure S 5Figure S 5 for SOC simulations and Figure S 6Figure S 6 for SMB-C).  

The statistical analysis of the model error revealed a site dependency of the effect of the parameter set. The 

three-way interaction of initialization, parameter set and time 𝛾ଵ𝑡 was significant for all but Bad Lauchstädt 

SOC, where only the parameter set had a significant effect. In the case of Bad Lauchstädt, the model error was 

significantly lower with the slower Mueller (1997) SOM turnover parameter set, while for the rest of tested cases, 390 

the faster Bruun (2003) set performed significantly better (Table 4Table 4). For Ultuna and Kraichgau + Swabian 

Jura SOC, the steady state assumption with Mueller (1997) parameters had the highest model error, while the 

steady state assumption with Bruun (2003) parameters had the lowest model error of all simulations, being similar 

to DSI initializations at Kraichgau and+ Swabian Jura. However, there was but there was only a statistical 

significantly lower SOC model error with difference of DSI using 105°C drying temperature comparedthan to the 395 

lower drying temperatures to DSI using other 32°C and 65°C for the Ultuna site. For SMB-C simulations at the 

Kraichgau + Swabian Jura sites, however, the errors were lowest for the DSI initialization using the 105° C drying 

temperature with Bruun (2003) parameters and significantly lower than both steady state initializations. Of the 

DSI initializations using different drying temperatures, the model error was always lowest when using the 105°C 

drying temperature initialization compared to 32°C and 65°C (significant for Ultuna, as well as for Kraichgau + 400 

Swabian Jura SMB-C using Mueller (1997) parameters). As initializations with DSI using 105°C drying 

temperature consistently performed best of all three DSI initializations, only DSI spectra of soils dried at 105°C 

were used for the Bayesian calibration. 
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3.3 Informed turnover rates of the Bayesian calibration 

The posterior distribution of parameters from the Bayesian calibration differed considerably between the different 405 

calibrations for individual sites, but there were also differences between different weighting schemes or when 

performing the Bayesian calibration without using the DSI (Figure 5Figure 5). The highest probability turnover 

of the fast SOM pool (kSOM_fast) was 1.5 and 3 times faster for Ultuna and Kraichgau, respectively, when compared 

to initial rates (1.4 * 10-4 d-1 for both parameters sets), which fitted well for Bad Lauchstädt and Swabian Jura. For 

the slow SOM pools (kSOM_slow) the Bad Lauchstädt, Kraichgau and Swabian Jura site calibrations were in between 410 

the two published parameter sets, but tended towards the slower rates (2.7 * 10-6 d-1 by Mueller (1997)), while the 

optimum for Ultuna was exactly at the fast rates of Bruun (2003) (4.3 * 10-5 d-1). The humification efficiency 

(fSOM_slow) was not strongly constrained in the Bayesian calibration, except for the Kraichgau site, where it ran into 

the upper boundary of 0.35. This trend towards higher humification existed also for the other sites, but to a lesser 

extent than for Kraichgau.  415 

The different calibrations of the combination of all sites under different weightings and with or without the DSI 

led to considerable differences in the posteriors (Figure 5).(Table 5)[g7]. When combining the sites with the 

artificial equal weighting, the posterior distribution of all three parameters was the widest, basically covering the 

range of all four site calibrations. With the original weighting scheme, only informed by the variance of the data, 

the posteriors were narrower for all parameters, with the optima of kSOM_fast being slightly faster than the two 420 

(similar) published rates. The optima of kSOM_slow were slightly slower than Bruun (2003) but much faster than 

Mueller (1997) and fSOM_slow was even above the higher Bruun (2003) value of 0.3. The use of the original weighting 

scheme without the use of the DSI in the Bayesian calibration did not constrain the fSOM_slow at all and had faster 

kSOM_slow and slower kSOM_fast than the one using the DSI. Both these Bayesian calibrations using the original 

weighting (with and without DSI) showed a trend towards slightly faster turnover than suggested by Bruun (2003).  425 

There was a strong negative correlation between kSOM_fast and kSOM_slow parameters for all but the Bad Lauchstädt 

calibration (Figure S 7Figure S 7). When DSI was not included in the Bayesian calibration, this negative 

correlation was stronger than when it was included (Figure 6Figure 6). The parameters kSOM_fast and fSOM_slow were 

always positively correlated, most strongly for Kraichgau (0.49) and Swabian Jura (0.38), but only weakly for the 

long-term sites. The correlations between the parameters kSOM_slow and fSOM_slow were generally low and both 430 

positive and negative. The parameters with the highest probability density of the calibrations combining all sites 

for fSOM_slow , kSOM_fast and kSOM_slow in that order were 0.34, 2.29 * 10-4, 3.25 * 10-5 for the original weight calibration 

and 0.06, 9.58 * 10-5 and 5.54 * 10-5 for the calibration using original weights and no DSI. These results suggest 

that turnover rates of kSOM_slow could be similar or faster than kSOM_fast without the use of the DSI. About 10 % of 

simulations of the Bayesian calibration without DSI had even a faster kSOM_slow than kSOM_fast.  435 

4 Discussion 

4.1 How useful is the DRIFTS stability index? 

A search for suitable proxies for SOM pool partitioning into SOM model pools that correspond to measurable and 

physicochemical meaningful quantities is of high interest (Abramoff et al., 2018; Bailey et al., 2018; Segoli et al., 

2013). The results of this study confirm the hypothesized usefulness of the DSI proxy assessing the current state 440 
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of SOM for pool partitioning to model SOC for several soils across Europe. This is particularly relevant, given 

that changes in crop genotype and rotation, agricultural management, and the rise of average temperatures in recent 

decades as well as land use changes, such as draining of soils or deforestation, in recent centuries have altered the 

quality and quantity of carbon inputs to soil. Consequently, the steady state assumption for model initialization is 

not likely to be valid. Demyan et al. (2012) showed that with a careful selection of peak integration limits for 445 

absorbance band areas, the DSI through identifying organic contributions in DRIFTS spectra is a sensitive 

indicator of SOM stability if mineralogy is similar (despite acknowledged mineral interference). Combined with 

a higher temperature (105 oC) for soil drying prior to DRIFTS analysis, a strong correlation between the portion 

of centennially persistent SOC and the DSI (Figure S 2Figure S 2) was found in our study which supports the 

hypothesis that it DSI might be of general applicability across sites. Results from modeling corroborated the 450 

usefulness of the DSI for SOM pool partitioning for soils of different properties across Europe. The statistical 

analysis of the model error for both SOC and SMB-C showed clearly that the DSI can improve poor model 

performance, especially with when the slower turnover rates of Mueller (1997) were used. When model 

performance is already satisfactory, the natural variability of the DSI can make model performance worse, as in 

the case of Ultuna SOC with Bruun (2003) parameters, but this reduction was minor compared to the improvement 455 

the DSI had over steady state assumptions at Ultuna with Mueller (1997) rates. The better results for Ultuna with 

the Bruun (2003) steady state might also just be an effect of turnover times still being too slow and hence the more 

SOC in the fast pool, the faster turnover is in general and the lower the model error. This was also indicated by 

faster optima by the Bayesian calibration compared to both published turnover rates. In the case of the Chernozem 

of Bad Lauchstädt, only turnover rates had an influence on model performance and. The  its SOC turnover 460 

properties of the Chernozem were was generally not well captured overestimated with by either both parameter 

sets (Figure 3). It was previously suggested that the high SOC storage capacity of this site is a result of 

cation-bridging due to a high content of adsorbed cations (Ellerbrock and Gerke, 2018). Additionally, there is 

evidence for black carbon at the site (e.g. the high thermal stability found by (Demyan et al., 2013).  , and it 

probably has a slower overall SOM decomposition than many other agricultural soils.SoTherefore, a possible 465 

reason for an overestimation of SOC turnover in Bad Lauchstädt might be, that DAISY only considers clay content 

as a stabilizing mechanism.  Nevertheless, the use of DSI also was suitable for Bad Lauchstädt, as it did not 

reducethere was no significant difference in model performance compared to steady state. 

The range of different sites, soils, and climatic conditions of Europe represented within this study suggests the 

robustness of the DSI as a proxy for SOM quality and SOM pool division for a large environmental gradient. 470 

Hence, it would be an improvement over assuming steady state of SOM wherever there is a lack of detailed 

information of carbon inputs and climatic conditions. Considering the timescales at which SOM develops, this is 

almost anywhere, as detailed data is available at best for <200 years, which is not even one half-life of the slow 

SOM pool.  

So far, studies that assessed SOM quality and pool division proxies, either using thermal stability of SOM (Cécillon 475 

et al., 2018) or size-density fractionation (Zimmermann et al., 2007), only indirectly related the proxies to inversely 

modeled SOM pool distributions, using machine learning and rank correlations. In contrast, our study showed that 

the DSI is a proxy which can be directly used for pool initialization. The DSI also makes sense from the perspective 
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of energy content, as microorganisms can obtain more energy from the breakdown of aliphatic than 

aromatic/carboxylate carbon aliphatic than aromatic compounds (e.g. Good and Smith, 1969), and therefore 480 

aliphatic aliphatic carbon compounds are is primarily targeted by microorganisms (hence have faster turnover) as 

previously shown for bare fallows (Barré et al., 2016).  

The two distinct peaks absorption bands for aliphatic and aromatic/carboxylate aliphatic and aromatic carbon 

bonds of the DSI fit well to the two SOM pool structure of DAISY and the simulation of carbon flow through the 

soil in DAISY is very similar to several established SOM models such as SoilN, ICBM and CENTURY. It is 485 

therefore likely that with calibration, the DSI could be used as a general proxy for SOM models with two SOM 

pools and a humification efficiency (fSOM_slow in DAISY). The parameter correlations between kSOM_slow, kSOM_fast 

and fSOM_slow according to the Bayesian calibrations also suggest that without a pool partitioning proxy, modifying 

any one parameter can lead to similar results in terms of SOC and SMB-C simulation. A clear distinction between 

fast and slow pools needs a pool partitioning proxy as can be seen by faster kSOM_slow than kSOM_fast for some of the 490 

simulations of the Bayesian calibration without using DSI. Assigning the DSI to DAISY reduced parameter 

correlations and led to a clear distinction between fast and slow SOM pools.  

The aliphatic molecular vibrational peak of DRIFTS absorption band for aliphatic carbon is most resolved when 

applying a 105°C drying temperature to samples prior to analysis (Laub et al., 2019). The current study’s modeling 

results corroborated the finding that the DSI should be obtained from measurements after drying at 105 °C with 495 

the performance of the DRIFTS initializations being always in the order 105°C > 65°C > 32°C drying temperature 

(differences being sometimes but not always significant).  

Compared with the other proxies for SOM quality discussed above, the measurements by DRIFTS are inexpensive, 

relatively simple, and the equipment of the same manufacturer is standardized. This should also constrain 

variability between different laboratories and be attractive for large-scale applications with large sample numbers, 500 

for example to initialize simulations at the regional scale. However, for standardization of the DSI for model 

initialization one needs to address how the type of spectrometer (e.g. detector type) influences the spectra, if water 

and mineral interferences (Nguyen et al., 1991) in the spectra can be further reduced and if a mathematical 

standardization of the spectra and DSI (across instruments and water contents) is possible. While a complete 

elimination of mineral interference is not possible, a careful selection of integration limits and the use of a local 505 

baseline minimizes mineral interference of DRIFS spectra from bulk soils. This mostly selects the top part of the 

1620 cm-1 bandpeak area, which corresponds to the part that is reduced or completely lost when SOC is destroyed 

(Demyan et al., 2013; Yeasmin et al., 2017). Other approaches such as spectral subtraction of ashed samples or 

HF destruction of minerals prior DRIFTS analysis have been developed in the attempt to obtain spectra of pure 

SOC. All are rather labor intensive and still produce artifacts, as it is not possible to destroy only the minerals or 510 

only the SOC without altering the respective other fraction (Yeasmin et al., 2017). Hence, we think that the selected 

integration limits might represent at this point the most feasible option for obtaining a robust and cost-effective 

proxy of SOC quality for modeling. The strong correlation of DSI and centennially persistent SOC as well as the 

model results of this study seem to corroborate this. The method of DSI estimation might be improved by a study 

of the best integration limits optimizing the fit of the DSI and centennially persistent SOC, which would require 515 

more bare fallow experiments than in this study. It could be worthwhile to use a purely mineral peak [g8]to correct 
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for the mineral interference at 1620 cm-1 similar to what was done to correct for carbonates in the 2930 cm-1 peak 

by Mirzaeitalarposhti et al. (2016)..  

From a conceptual perspective DSI probably relates mainly to chemical recalcitrance of SOM present in different 

SOM fractions. In that respect it is different from physical light/heavy fraction separation approaches as each of 520 

these fractions is very heterogeneous. For examples, tThe light fraction has strong absorbance at both 

aliphaticsaturated and aromatic/carboxylateunsaturated carbon bands (Calderón et al., 2011), so it could be that 

within each fraction, aliphatic saturated carbon is preferentially consumed by microorganisms. Thus, DSI reflects 

physicochemically stabilized SOC (mainly mineral-association in the case of bare soils) as also suggested by the 

correlation of the ratio of 1620 cm--1/2930 cm--1 absorption bands areas to the ratio of mineral associated 525 

carbon/light fraction carbon (Demyan et al. 2012). The relationship to mineral-association is in many models is 

represented by a texture adjustment factor. On the other hand, DSI does not directly relate to aggregated (i.e. 

occluded) SOM, and its applicability in models focusing on aggregation needs to be evaluated (i.e. by a separate 

spectral analysis of occluded and remaining fractions.[g9]  

   530 

The recent coupling of pyrolysis with DRIFTS (Nkwain et al., 2018) might be a further analytical advancement of 

the DSI, as it overcomes mineral interferences in the spectra. However, this technique is more complex due to a 

larger number of visible organic absorption bandpeaks, including CO2 that develops from the pyrolysis, which 

makes it not easily applicable to established two-pool models such as DAISY. In addition, a considerable portion 

(30 – 40 %) of SOM is not pyrolyzed and therefore not recorded in the spectra. In summary, even despite of the 535 

acknowledged shortcomings, the DSI was useful to partition SOM between pools, even more so, when the 

optimized parameters for the DSI will be used for future applications. It seems more robust than steady state or 

long-term spin-up runs which rely on strong assumptions. Further tests are needed before using the DSI for 

mineralogy that differs considerably from the soils of this study. Finally, the DSI is not purely related to chemical 

recalcitrance of SOM, as it also correlates with the level of SOC protected by aggregation (Demyan et al., 2012). 540 

Hence, it is likely that aggregation and chemical recalcitrance are related. 

4.2 Parameter uncertainty as estimated with Bayesian calibration 
According to our Bayesian calibrations, a wide range of parameter values are possible for DAISY going far beyond 

the initial published parameter sets. By combining various sites and including meaningful proxies, such as the DSI, 

the parameter uncertainty and equifinality could be reduced and the credibility intervals narrowed. The predictions 545 

of mechanistic models usually fail to account for the three main statistical uncertainties of (1) inputs, (2) scientific 

judgments resulting in different model setups and (3) driving data (Wattenbach et al., 2006). However, with a 

Bayesian calibration framework such as implemented in UCODE 2014, almost any model can be made 

probabilistic, so uncertainties of parameters and outputs can be assessed, even for projections into the future 

(Clifford et al., 2014). As this study focused on Bayesian calibration and we used an established model, we mainly 550 

address parameter uncertainty, although input uncertainty was also included through the weighting process. We 

clearly demonstrated an effect of the individual site used for Bayesian calibration on the resulting model 

parameters and uncertainties. Similarly diverging site specific turnover rates were also found by Ahrens et al. 
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(2014) in a study of soil carbon in forests. Diverging results for different sites generally point towards a need for 

a better understanding of the modeled system and model improvements (Poeter et al., 2005), but this often requires 555 

a deeper understanding of the system and new measurements – hence it is not always feasible. A Bayesian 

calibration asks the question: “What would be the probability distribution of parameters, given that the measured 

data should be represented by the selected model?”. Hence, if only one site is used, it can only answer this question 

for that specific site. As this study showed, the parameter set could then be highly biased for other sites. For a 

more robust calibration, several sites should be combined to obtain posterior distributions of parameters for a 560 

gradient of sites, though this might reduce model performance for individual sites. The introduction of the equal 

weighting scheme, which gave similar weights to the different sites, highlights how much bias may be introduced 

by user decisions of artificial weighting: this Bayesian calibration parameter set had the highest uncertainties and 

it appears as if the Ultuna site had by far the strongest influence. In contrast to that, the combination of all four 

sites with the original weights based on the error variances or measurements led to a very clear reduction of 565 

parameter uncertainty and the narrowest parameter credibility intervals (Figure 6Figure 6 a compared to b and 
c).  

The results of the statistical analysis of model errors (Table 4Table 4) suggests that the DSI is suitable for SOC 

model pool initialization. This was corroborated by the Bayesian calibration, as the inclusion of the DSI narrowed 

credibility intervals for the slow SOM pool turnover and humification efficiency and reduced the correlation 570 

between fast and slow SOM turnover compared to the simulation without the DSI as constraint. Especially in the 

case of the clear differentiation between kSOM_slow and kSOM_fast, our results show the advantage of attaching a 

physiochemical meaning to the pools that was not provided before. Other effective approaches, such as time series 

of 14C data could be combined with the DSI for better results. 

Of all three parameters, the humification efficiency (fSOM_slow) was the only parameter that consistently ran into the 575 

upper boundaries, set to 35 %. In fact, initial calibrations were done where fSOM_slow was constrained to 95 %; even 

then, it tended to run into that constraint (Figure S 8Figure S 8) and led to much faster turnover rates (kSOM_slow) 

than were published before. These values of fSOM_slow were much greater than the 10 % for the Mueller (1997) 

dataset, 30 % for Bruun (2003), and other published two pool models. Therefore, we considered the cause of the 

poorly constrained fSOM_slow parameter was considered as being caused byto be a model formulation problem, which 580 

did not depend on whether the DSI was included in the Bayesian calibration or not. Only when the humification 

efficiency was restricted in the Bayesian calibration, the turnover of fast and slow SOM aligned with the earlier 

published rates. If a parameter is problematic, such as fSOM_slow it could mean that there is a lack of data. However, 

if parameters are constrained, but run into implausible values, it usually means that the model structure is 

suboptimal (Poeter et al., 2005) and should be altered.   585 

4.3 Model structure determines SOM turnover times in two-pool models  

The rate of SOM decomposition remains of major interest, especially with respect to the potential of SOM as a 

global carbon sink (Minasny et al., 2017). Some of the first conceptual approaches proposed SOM pools with 

residence times of 1000 years and longer (e.g. in CENTURY, Parton et al., 1987), but the SOM models were 

calibrated to fit data measured in long-term experiments that included vegetation. The pool structure of early SOM 590 

models such as DAISY and CENTURY were rather similar as were the turnover rates of SOM pools (see summary 
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in Table 5Table 5). An improved understanding of actual amounts of carbon inputs to the soil, which remain 

challenging to measure, led to faster turnover rates in more recent model versions (e.g. by Bruun, 2003). The 

reason is probably that inputs of carbon and nitrogen to the soil were initially underestimated as it is very difficult 

to measure root turnover and rhizosphere exudation inputs without expensive in situ 13C or 14C labeling. The 595 

underestimated inputs were then likely counterbalanced in the model calibration by slower turnover rates resulting 

in acceptable model outputs (SOM dynamics and CO2 emissions) for the time being. However, as our summary 

of more recent studies underlines (Table 5Table 5), the earlier published turnover rates seem to be subject to a 

systematic underestimation. As the comparison of our Bayesian calibration to other recent Bayesian calibration 

studies suggests, the relatively fast turnover rates of this study are in alignment with other recent findings (Table 600 

5Table 5), as all five examples have published turnover rates for the slow SOM pool, which are at least one order 

of magnitude faster than early assumptions from the 1980s and 90s. 

It is critical to understand model uncertainties and to test fundamental assumptions of how SOM is transferred 

between the pools (Sulman et al., 2018). The comparison between constrained and unconstrained humification 

efficiency in the Bayesian calibrations suggests that the sequential flow of carbon through the system might be 605 

assuming a condensation of stabile carbon that does not actually explain the vast majority of more stable SOM 

formation. From a theoretical perspective, one may wonder how large amounts of less complex SOM should 

become complex SOM without any involvement of living soil organisms. The way that the formation of complex 

carbon is represented in DAISY is probably a remainder of earlier humification theories from the 1990s that mostly 

ignored microbe involvement, while most of the recent studies suggest that the vast majority of SOM is of 610 

microbial origin (Cotrufo et al., 2013). A simple adaption for two-pool SOM models such as DAISY that include 

SMB pools could acknowledge this paradigm shift: The partitioning between slow and fast turnover SOM could 

be at the death of the microbial biomass (Figure 7Figure 7) without any transfer of SOM from fast to slow pools 

(a brief test of this new structure is provided in the supplementary material Figure S 10Figure S 10). This would 

also be in alignment with the DSI concept, as aliphatic aliphatic carbon should not spontaneously transform to 615 

aromatic aromatic/carboxylate carbon on its own. Then DAISY would fit better to the DSI and other proxies 

linking measurable fractions to SOM pools (the same is true for CENTURY and other models, which apply the 

same humification principle). The way that pools are linked in the current setupmodel configuration, is such that 

the actual turnover time of recalcitrant SOM consists of the turnover of the fast pool and the slow SOM pools 

combined as it moves through these pools sequentially (Figure 1Figure 1).  620 

How strongly the basic model assumptions influence SOM simulations is also reflected when differences between 

one- and two-SOM pool models are compared. The turnover rates of the one-pool models are in between those of 

slow and fast SOM pools. However, our comparison shows that models with similar structure come to similar 

conclusions for SOM turnover. For example, the one-pool model in Clifford et al. (2014) was quite similar in 

turnover rates to that in Luo et al. (2016), but does not match well with two-pool models. Then again, the rates for 625 

the two-pool models of this study, and the studies by Ahrens et al. (2014) and Hararuk et al. (2017) were very 

similar in their minima and maxima, for both the slow and fast SOM pools, which shows that only models with a 

similar number of pools and transformations could be compared. 
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The 95 % credibility intervals of half-lives in DAISY were in the range from 278 to 1095 years for the slow SOM 

pool and from 47 to 90 years for the fast SOM pool for the combination of sites presented in this study. If these 630 

values were reasonable – and as the three recently published Bayesian calibrations including this study are quite 

close in turnover rates (Table 5Table 5), this seems to be the case, SOM could be lost at much faster rates under 

mismanagement and global warming than earlier modeling results suggest. The rates may also be biased towards 

an underestimation of turnover, as even with intense efforts it is next to impossible to keep bare fallow plots 

completely free of vegetation (weeds) and roots from neighboring plots. Recent studies are in alignment with the 635 

possibility of relatively fast SOC loss across various scales from field scale (Poyda et al., 2019) to country scale. 

For example in Germany, agricultural soils are much more often a carbon source than a sink (Jacobs et al., 2018). 

This highlights the importance of adequate SOM management and a deeper understanding of the processes at 

different scales. Especially in the context of understanding the response of SOM to climate change it is not enough 

if the SOM balance is simulated appropriately, but also fluxes within the plant-soil system need to be quantified. 640 

The reason is that under a warmer climate and changing soil moisture levels, the plant-derived carbon inputs will 

change. Furthermore, soil enzymatic analysis at regional and field level (Ali et al., 2015, 2018) suggest that pools 

of different complexity have different temperature sensitivities (Lefèvre et al., 2014), which is also realized in new 

models (Hararuk et al., 2017). If different pools have different responses to temperature, the formula by Bruun and 

Jensen (2002) for SOM pool distribution could not be used anymore, as it implicitly assumes a similar temperature 645 

sensitivity for all pools. In light of this, new proxies such as the DSI, soil fractionation or 14C use  (Menichetti et 

al., 2016), which could also be combined, are crucial for making SOM pools chemically or physically meaningful 

and to reduce model uncertainty and equifinality. As the DSI also had a good correlation with structurally protected 

SOM (Demyan et al., 2012) it could also fit very well to models that directly simulate the protection of SOM as a 

function of microbial activity (Sulman et al., 2014). A better understanding and the use of meaningful proxies such 650 

as DRIFTS, pyrolysis with DRIFTS (Nkwain et al., 2018) or thermal deconvolution (Cécillon et al., 2018; Demyan 

et al., 2013) in combination with Bayesian calibration and a wide range of long-term experiments are needed. The 

discrepancy between simulating SOM of tropical and temperate soils, which points towards a lack of understanding 

of fundamental difference in processes at work on the global scale would be the best test for future proxies and 

SOM models, which should be facilitated by freely available datasets for model testing and calibration. 655 

5 Conclusion 

We tested the use of the DRIFTS stability index as a proxy for initializing the two SOM pools in the DAISY model 

and used a Bayesian calibration to implement this proxy. A statistical analysis of model errors suggested that the 

use of DRIFTS stability index to initialize the fast and slow SOM poolsation significantly reduced model errors in 

most cases, especially those with initially poor performance. It DSI therefore seems to be a robust proxy to 660 

distinguish between fast and slow cycling SOM in order to initialize two-pool models and adds physicochemical 

meaning to the pools. As other studies have also shown, statistically sound approaches such as Bayesian calibration 

are needed to grasp the high uncertainty of SOM turnover, which is often neglected in modeling exercises. The 

results of the Bayesian optimization procedure further suggest that model performance could be improved byut 

adjusting model parameters (turnover rates, humification efficiency) to the DSI initialization approach. Meaningful 665 

proxies such as DRIFTS, physical/chemical fractionation, or 14C age assessments are likely to be the most robust 
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way to initialize SOM pools but their measurement method needs to be optimized to overcome known constraints, 

such as water and mineral interference in the case of DSI. The results of this study suggest that the turnover of 

SOM could be much faster than assumed by commonly used SOM models. For example, the DAISY slow SOM 

pool half-life estimated in our study ranged from 278 to 1095 years (95 % credibility intervals). The variability of 670 

parameters highlights the importance to include meaningful proxies into SOM models and to conduct research on 

a larger gradient of soils with bare fallow and planted sites, and over longer time frames. 
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9 Tables 

Table 1 Locations, descriptionssoil type according to (IUSS Working Group WRB, 2007), and initial soil organic carbon (SOC) stocks and other properties of the of  used simulated bare 
fallow study sites 

Study Site 

UTM 
Degrees 
Latitude 

UTM 
Degrees 
Longitude Soil type  

Depth of 
measure
ments 
sampling 
(cm) Rep. 

Clay 
(%) 

Silt 
(%) 

Initial 
SOC 
(%) 

Bulk 
density 
(Mg/m³) 

Initial SOC 
stocks in 
the 
measured 
sampled 
depth at 
fallow start 
(Mg/ha) 

Year of 
experiment 
and bare 
fallow 
establishment 

Years of bBulk 
soil samples 
available from 
yearsility 

Types of available 
measurements 

Ultuna1 Ultuna 59.821879 17.656348 Eutric Cambisol 0 - 20 4 37 41 1.50 1.44 43.22 1956 1956, 79, 95, 2005 SOC, DRIFTS 

Bad Lauchstädt2  51.391605 11.877028 Haplic Chernozem 0 - 20 2 21 68 1.82 1.24 45.08 1985 1985, 2001, 04, 08 SOC, DRIFTS 

Kraichgau 1 48.928517 8.702794 Stagnic Luvisol 0 - 30 3 18 97 0.90 1.37 37.10 2009 2009 - 16 SOC, DRIFTS, SMB-C 

Kraichgau 2 48.927748 8.708884 Stagnic Luvisol 0 - 30 3 18 80 1.04 1.33 41.61 2009 2009 - 16 SOC, DRIFTS, SMB-C 

Kraichgau 3 48.927197 8.715891 Stagnic Luvisol 0 - 30 3 17 81 0.89 1.44 38.50 2009 2009 - 16 SOC, DRIFTS, SMB-C 

Swabian Jura 1 48.527510 9.769429 Calcic Luvisol 0 - 30 3 38 56 1.78 1.32 70.33 2009 2009 - 16 SOC, DRIFTS, SMB-C 

Swabian Jura 2 48.529857 9.773253 Anthrosol 0 - 30 3 29 68 1.95 1.38 80.85 2009 2009 - 13 SOC, DRIFTS, SMB-C 

Swabian Jura 3 48.547035 9.773176 Rendzic Leptosol 0 - 30 3 45 51 1.91 1.07 61.27 2009 2009 - 13 SOC, DRIFTS, SMB-C 
UTM = Universal Transverse Mercator reference system, SOC= soil organic carbon, Rep.= replicates, SOC = soil organic carbon, DRIFTS = Diffuse reflectance mid infrared Fourier transform 
spectroscopy, SMB-C = soil microbial biomass carbon, 1 = Ultuna continuous soil organic matter field experiment (Kätterer et al., 2011), 2 = Bad Lauchstädt extreme farmyard manure experiment 
(Blair et al., 2006) 
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Table 2 Values of the two initial DAISY parameter sets for the DAISY SOM model that were used in this study. The 
parameters consist of turnover rates (k), maintenance respiration (only for SMB, added to the turnover rate), carbon 
use efficiency (CUE -which divides between carbon assimilated by SMB and lost as CO2), the humification efficiency 
(fSOM_slow) and microbial recycling (part of SMB going directly back to SMB fast at turnover of either SMB pool). A 
graphical display of the model structure  related to these and pools considered with the most important parameters for 
within this study is found in Figure 1.  

Parameter  Default DAISY Bruun (2003) Unit 

kSOM_slow 2.70 * 10-6 # 4.30 * 10-5 x d-1 
kSOM_fast 1.40 * 10-4 # 1.40 * 10-4 # d-1 
kSMB_slow 1.85 * 10-4 * 1.85 * 10-4 * d-1 
kSMB_fast 1.00 * 10-2 * 1.00 * 10-2 * d-1 
kAOM_slow 0.012 * 0.012 * d-1 
kAOM_fast 0.05 * 0.05 * d-1 
maint_SMB_slow 1.80 * 10-3 * 1.80 * 10-3 * d-1 
maint_SMB_fast 1.00 * 10-2 * 1.00 * 10-2 * d-1 
CUE_SMB 0.60 #  0.60 #  kg kg-1 
CUE_SOM_slow 0.40 *  0.40 *  kg kg-1 
CUE_SOM_fast 0.50 *  0.50 *  kg kg-1 
CUE_AOM_slow 0.13 *  0.13 *  kg kg-1 
CUE_AOM_fast 0.69 *  0.69 *  kg kg-1 
 fSOM_slow (humification efficiency) 0.10 #  0.30 x  kg kg-1 
part. SMB > SOM_fast (microbial recycling) 0.40 # 0.40 #  kg kg-1 
fraction of SOM_slow at steady state 
Bruun (2002) equation 0.83  0.49  kg kg-1 

k = turnover rate (=death rate for SMB), maint = maintenance respiration (SMB only), CUE = carbon use efficiency, SOM = 
soil organic matter pools, SMB = soil microbial biomass pools, AOM = added organic matter pools (not considered in this 
study), part. = partitioning; Source: # original Jensen (1997), * modified by Müller (1997), x modified by Bruun (2003) 
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Table 3 Measured Ssoil properties of the bare fallow experiments at each site at thecorresponding to the start of the bare fallow experiment and the end of the end simulated period. 
Measurements include SOC and SMB-C stocks in the modeled layer, and the percentage of SOC that would be assigned to the slow pool according to DRIFTS stability index (DSI) 
measured at 105°C.of the bare fallow experiment at each site 

Site 

Start 
year of 
experi
ment 
(year) 

End year 
of 
simulation 
(year) 

Depth of 
modeled 
layer 
(cm) 

Bulk 
density 
of 
modeled 
layer 
(Mg/m³) 

SOC at 
start 
Mg/ha* 

SOC at 
end 
Mg/ha*   

SMB-C 
at start 
Mg/ha* 

SMB-C 
at end 
Mg/ha* 

% 
DRIFTS 
SOMC  
in slow 
% pool 
at start 
(DSI 
105°C) 

% SOC 
in slow 
pool at 
DRIFTS 
SOM in 
slow % 
at end 
(DSI 
105°C) 

% of 
initial 
SOC 
losts 
of 
initial 

Number 
of years 

% of 
initial 
SOC 
lost 
%SOC 
loss 
per 
year of 
initial 

Ultuna 1956 2005 0 - 20 1.44 43.22 26.51 NA NA 54 91 39% 50 0.8% 
Bad Lauchstädt  1983 2008 0 - 20 1.24 45.08 41.91 NA NA 70 80 7% 26 0.3% 
Kraichgau 1 2009 2015 0 - 30 1.37 37.10 32.59 0.847 0.408 80 98 12% 7 1.7% 
Kraichgau 2 2009 2015 0 - 30 1.33 41.61 38.66 0.853 0.314 73 93 7% 7 1.0% 
Kraichgau 3 2009 2015 0 - 30 1.44 38.50 35.06 0.672 0.261 76 99 9% 7 1.3% 
Swabian Jura 1 2009 2015 0 - 30 1.32 70.33 63.29 1.566 0.654 64 83 10% 7 1.4% 
Swabian Jura 2 2009 2013 0 - 30 1.38 80.85 79.61 1.805 0.970 66 83 2% 5 0.3% 
Swabian Jura 3 2009 2013 0 - 30 1.07 61.27 70.29 1.350 0.990 61 76 -15% 5 -2.9% 
SOC = soil organic carbon, SMB-C = soil microbial biomass carbon, DSI = Diffuse reflectance mid infrared Fourier transform spectroscopy stability index, NA = 
no data available for this site, *stocks in Mg/ha refer to stocks within the depth of the modelled layer 
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Table 4. Effect of the initialization method on simulation errors. Displayed are estimated Lleast square means of the 
(back transformed) absolute error of DAISY bare-fallow simulations for SOC and SMB-C for the sites of Ultuna, Bad 
Lauchstädt and Kraichgau + Swabian Jura combined. The valuesMeans are the estimate for the end of the simulation 
period (number of years in brackets). Different capital letters indicate significant differences (p < 0.05) within columns 
(not tested between sites). For Bad Lauchstädt, the initialization effect was non-significant, so only the least square 
means for the effect of the parameter set is displayed. 

 

  Ultuna (50yr) 
Bad Lauchstädt 

(23yr) 

Kraichgau + 
Swabian Jura  

(7 yr) 

Kraichgau + 
Swabian Jura  

(7 yr) 

Parameter set 

Initialization 
method of SOM 
pools 

Least square 
means of errors 
(SOC Mg/ha) 

Back transformed 
least square means 

of errors  
(SOC Mg/ha) 

Back transformed 
least square means 

of errors  
(SOC Mg/ha) 

Least square 
means of errors 
(SMB-C Mg/ha) 

Mueller (1997) 

ratio of steady 
state assumption 13.91 A 

2.22 A 

4.50 A 0.354 A 
bandpeak area 
ratio of DRIFTS at 
32°C 10.86 B 4.50 A 0.317 AB 
band peak area 
ratio of DRIFTS at 
65°C 10.06 C 4.42 A 0.274 ABC 
band peakarea 
ratio of DRIFTS at 
105°C 8.52 D 4.28 A 0.205 CD 

Bruun (2003) 

ratio of steady 
state assumption 5.84 H 

6.01 B 

3.12 B 0.231 BCD 
band peakarea 
ratio of DRIFTS at 
32°C 7.06 E 3.31 B 0.179 CDE 
band peak area 
ratio of DRIFTS at 
65°C 6.75 F 3.30 B 0.160 DE 
band peak area 
ratio of DRIFTS at 
105°C 6.15 G 3.25 B 0.131 E 

SOM = soil organic matter pools, 
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SOC = soil organic carbon, SMB-C = soil microbial biomass carbon, DRIFTS = Diffuse reflectance mid infrared Fourier 
transform spectroscopy  
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Table 5  OOptimized turnover rates and humification efficiency of this study (of this study using the combined site 
analysis with original weighting and DSI) compared to other Bayesian calibrations and standard values of commonly 
used models. If the temperature function was given or site temperature specified, tThe turnover rates of other models 
were normalized with an exponential equation to to the DAISY standard of 10°C using an exponential equation 
(exception (Clifford et al., (2014), where no temperature was given) which is standard in DAISY. 

Model DAISY ICBM 
CBM-
CFS3 APSIM own creation* CENTURY DAISY DAISY 

Reference This study Ahrens  Hararuk Luo  Clifford  Parton Mueller Bruun 
Year 2019 2014 2017 2016 2014 1993 1997 2003 

Turnover rates of the fast pool at 10°C (recalculated to d-1 at 10°C)        
minimum 1.07 * 10-4 4.57 * 10-4 6.30 * 10-4 NA NA - no    
optimum 2.29 * 10-4 4.57 * 10-3 1.97 * 10-4 NA  temperature 9.32 * 10-5 1.40 * 10-4 1.40 * 10-4 
maximum 3.27 * 10-4 2.28 * 10-2 1.05 * 10-3 NA found    

Turnover rates of the slow pool at 10°C (recalculated to d-1 at 10°C)        
minimum 2.99 * 10-6 4.57 * 10-7 9.86 * 10-6 1.00 * 10-4 1.10 * 10-4    
optimum 3.25 * 10-5 2.28 * 10-5 1.10 * 10-5 3.00 * 10-4 1.67 * 10-4 2.10 * 10-6 2.70 * 10-6 4.30 * 10-5 
maximum 6.14 * 10-5 4.57 * 10-5 1.32 * 10-5 6.00 * 10-4 2.19 * 10-4    
Portion of fast to slow pool = (humification efficiency (dimensionless) 
minimum 0.05 0.05       
optimum 0.34 0.2    0.3 0.1 0.3 
maximum 0.35 0.35       

References: (Ahrens et al., 2014; Bruun et al., 2003; Clifford et al., 2014; Hararuk et al., 2017; Luo et al., 2016; Mueller et al., 
1997; Parton et al., 1993), * remarks – Clifford et al. (2014) did not specify a base temperature for their model 
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10 Figures 

 

 

Figure 1 Original structure of the internal cycling of SOM in the DAISY model, as it was used in this study. 
A__XXXX2930  cm--1 and A_1620 cm-1 refer tois the areas of below eachthe DRIFTS absorption bands at  2930 cm-1 
and 1620 cm-1 (Equation 3),peak obtained by DRIFTS. kSOM and kSMB (fast/slow) are turnover rates of the fast and 
slow SOM and SMB pools, respectively and fSOM_slow is the humification efficiency. Other All model parameters can 
be found in Table 2. 
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Figure 2  Examples of DRIFTS bbaseline corrected and vector normalized examples of DRIFTS spectra of bulk soil 
samples (dried at 105°C) of the first and last year of the bare fallow plots at four sites. Fallow periods were 50 years 
(Ultuna), 24 years (Bad Lauchstädt) and 7 years (Kraichgau and Swabian Jura). Small pictures on the top left and right, 
are zoomed in versions of the 2930cm-1 band peak and the 1620cm-1 bandpeak, respectively For better visibility, the full 
spectra pictures have a y-axis offset (+0.02 for samples from the start), while zoomed in versions share a common 
baseline. More details on the sites in Table 3Table 3. 
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Figure 3 Example of SOC simulations from Ultuna (top left), Bad Lauchstädt (top right), Kraichgau field 1 (bottom 
left) and Swabian Jura Field 1 (bottom right). Initializations were done (i) assuming steady state using the formula of 
Bruun and Jensen (2002) (equation 1) with both turnover rates of Mueller et al. (1997) and Bruun et al. (2003) and (ii) 
by the DRIFTS stability index (DSI) at 105°C drying temperature using both turnover rates for simulations (simulations 
using the other drying temperatures for DSI in the supplementary). The site specific and the combination of all sites 
Bayesian calibrations (BC) are also displayed. Bars indicate the standard deviation of measured values of all plots 
(n = 3) per field. 

Figure 4 Example SMB-C simulations for Kraichgau field 1 (left) and Swabian Jura Field 1 (right). Initializations were 
done (i) assuming steady state using the formula of Bruun and Jensen (2002) with turnover rates of Mueller et al. (1997) 
and Bruun et al. (2003) and (ii) by the DRIFTS stability index (DSI) at 105°C drying temperature using both turnover 
rates for simulations (simulations using the other drying temperatures for DRIFTS in the supplementary). The site 
specific and the combination of all sites Bayesian calibrations (BC) are also displayed. Bars indicate the standard 
deviation of measured values of all plots (n =3) per field. 
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Fig[g10][ML11]ure 5 Violin plots of the parameter distributions, obtained by the Bayesian calibration using only the 
individual sites (1-4) and all sites combined (5-7) with different weighing schemes (OW = original weight, EW = equal 
weight calibration; +/- DSI indicates, whether the DSI data was used for calibration). The black line corresponds to the 
parameters of Mueller (1997), the blue dashed line to the parameters of Bruun (2003). Note: The turnover k_SOM_fast 
parameter (top figure) is the same in both Mueller (1997) and Bruun (2003) 
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Figure 6 Correlation matrices of posterior distributions from the Bayesian calibrations of a) equal weight calibration 
for all sites combined using DSI (5), b) original weight calibration for all sites combined without using DSI (6), and c) 
original weight calibration for all sites combined using the DSI (7). The plots of individual site simulations (1-4) can be 
found in the supplemental material. 
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Figure 7 Suggested improvements to the internal cycling structure of SOM in the DAISY model. The division into fast 
and slow cycling SOM, corresponding to aliphatic aliphatic and aromatic aromatic/carboxylate carbon happens follows 
the turnoverat the /death of either microbSMB pooles. Aliphatic Aliphatic carbon no longer becomes complex 
aromatic/carboxylate carbon without the involvement of microbes.  

  


