
Response to Anonymous Referee #1  

Interactive comment on “Drivers and modelling of blue carbon stock variability” 

by Carolyn J. Ewers Lewis et al. 

 
 

We thank Anonymous Referee #1 for their thoughtful comments (see Interactive Comment published on 

01 Oct 2019 by Anonymous Referee #1). Below, we have responded to each comment and included 

changes to the manuscript text based on the feedback from Anonymous Referee #1. 

 

In this paper, the authors look to create a framework for modelling shallow carbon stocks (0-30cm) 

in vegetated coastal ecosystems. They use a combination of geomorphological, anthropogenic and 

ecological variables, combined with carbon stocks from a large number of shallow cores (n = 287) to 

construct the model and estimate carbon stocks for a region in southern Australia. The model could 

account for ~ 49% of the variability in shallow carbon stocks, with plant community being the 

strongest predictor in the model. 

 

Generally this is an interesting paper, but I have some points that should be clarified. 

 

1. Can these shallow carbon stocks be considered “blue carbon”? There is growing evidence that 

carbon within the surface layers is still highly susceptible to degradation. A typical profile of 

carbon down the soil profile in these vegetated habitats show a decline with depth until reach a 

pseudo steady state. Do the authors have some deeper cores to show that carbon density in the top 

30 cm is representative of long-term sequestration? Along these same lines – some of the plant 

communities looked at in this study (e.g. mangroves) can put “new” carbon into depths below 30cm 

through root production. The combination of these factors may lead to erroneous definition of 

carbon stocks as “blue carbon”. 

“Blue Carbon” is broadly defined in the scientific literature as organic carbon captured and stored in 

ocean ecosystems, especially mangrove forests, seagrass meadows, and salt marshes (Macreadie et al., 

2019; Mcleod et al., 2011; Nellemann et al., 2009), and includes carbon pools in the living plant biomass 

(above- and belowground), dead plant biomass (e.g. leaf litter, dead wood), and sediments (Mcleod et al., 

2011). Though carbon stocks associated with sediments are often considered more “permanent” relative 

to living biomass, both biomass and sediments (including shallow portions of sediments) are defined as 

“blue carbon”.  

Across depths, sediments may span a continuum of carbon quality from “labile” to “recalcitrant” or 

“refractory” based on a number of criteria, which involve more than depth alone (Lovelock et al.). By 

these criteria, virtually all carbon is susceptible to degradation to some degree. However, this does not 

negate the fact that carbon present in surface sediments represents the offsetting capacity of blue carbon 

sediments (potential long-term carbon storage), and is an important measure of carbon that may be more 

vulnerable to remineralization following disturbance.  

To be very clear that we are not referring to the entire sediment C pool, we have altered our wording 

throughout the entire paper to specify “shallow sediment C stocks” in place of “C stocks” or “sediment C 

stocks”. This includes the title, which has been changed from Drivers and modeling of blue carbon stock 

variability to Drivers and modeling of blue carbon stock variability in shallow sediments of southeast 

Australia, as well as section headers and within the entirety of the text. 



We have added text to the methods to explain our rationale for the study design, including the use of 30 

cm cores: 

Though it is common in the literature to sample to 1 m deep in blue C sediments, the sampling protocol 

used for collecting these data (Ewers Lewis et al., 2018) was designed to maximize spatial coverage of 

shallow sediment C samples rather than sample entire sediment profiles (which may extend well beyond 1 

meter deep). Greater spatial coverage allowed us to test the relationships between a variety of potential 

drivers and surface sediment C stocks on both fine and broad scales. 

 

We have also added text to the discussion to explain why the top 30 cm are the most relevant sediments 

for assessing the impact of contemporary environmental factors on shallow sediment C stocks (please see 

new discussion text under our response to your second comment, which directly addresses this point). 

Thank you for bringing up the points about “new” C at depth and the relationship between shallow and 

deep C stocks. We recognize that surface stocks may not always represent stocks at depth, and also that 

processes happening at the surface can impact deeper sediments, and have added text about this topic to 

the discussion: 

Modern-day factors influencing vegetation can also have impacts on C stocks deeper than the sediments 

we measured. The effects of underground biomass on sediment C stocks can extend beyond the top 30 cm, 

and in fact new C inputs and active C cycling by microbial communities can occur as deep as 

underground roots extend (Trumbore, 2009). These new C additions (and fluxes) at depth fall outside the 

general pattern of sediment C decay down-core in vegetated ecosystems (Trumbore, 2009) which has 

previously allowed for linear or logarithmic regressions to be used to extrapolate 1-m deep C contents 

from shallow (e.g. 30-50 cm deep) sediment C data (Macreadie et al., 2017a; Serrano et al., 2019).  The 

activity of underground biomass and microbes at depth, when considered over space and time, may 

account for large C fluxes. The influence of anthropogenic activities, such as land use changes, on these 

processes via impacts to vegetation may largely go unnoticed based on current methods (Trumbore, 

2009), both in this study and in blue C stock assessments on larger scales. We suggest further research to 

understand the dynamics of active C cycling at sediment depths traditionally considered stable. 

Later in the discussion we have also added: 

 

It is important to emphasize here that total sediment depths in blue C ecosystems can vary greatly, and 

are commonly deeper than 30 cm. Blue C ecosystems can have sediments up to several meters deep (e.g. 

Lavery et al., 2013; Scott and Greenberg, 1983), suggesting the estimates of C stocks measured here are 

conservative. In spite of these limitations, surface sediment C stock estimates give us valuable knowledge 

about the sediment C pool most vulnerable to disturbance and how it may be impacted by environmental 

drivers.   

 

 

2. I wonder how applicable the use of contemporary variables is to the assessment of carbon stocks 

that are assumedly a function of conditions over the last several decades. This might be worth 

considering, and could explain the 50% of variability unaccounted for by the model outcomes. For 

example, community composition is changing in temperate regions such as the study area in this 

paper. Assuming a sediment accretion rate similar to SLR (~ 3mm/yr) – the 30cm soil profile used 

in the model integrates ~ 100 years of environmental, ecological and anthropogenic conditions. 

Could this discrepancy in the temporal scale used for the predictor variables and carbon stock 

accumulation be an issue?  



 

Thank you for this comment. We have added paragraphs to the discussion to describe the challenges 

associated with matching temporal time points in the sediments to contemporary variables and how the 

depth we chose and regional accretion rates might shine light on some of these issues: 

 

We also aimed to maximize our ability to capture relationships between contemporary drivers 

and sediment C stocks by utilizing sediment C stock data to only 30 cm deep, a sediment horizon more 

directly impacted by recent environmental conditions compared to deeper stocks due to age. Based on 

previously estimated sediment accretion rates in blue C ecosystems in the study region (averaging 2.51 to 

2.66 mm year-1 in tidal marshes (Ewers Lewis et al., 2019; Rogers et al., 2006a) and 7.14 mm year-1 in 

mangroves (Rogers et al., 2006a)), the top 30 cm of sediment represents roughly ~113-120 years of 

accretion in Victorian tidal marshes and ~42 years of accretion in Victorian mangroves. These time 

scales suggest sediments depths utilized in this study are more appropriate for assessing the impacts of 

modern environmental conditions on sediment C stocks compared to meter-deep stocks, which can be 

thousands of years old (e.g. Ewers Lewis et al., 2019). Using shallow sediment C stocks also allows us to 

be more confident that the vegetation present now has been there during the time of sediment accretion, 

unlike deeper sediments that are thousands of years old and for which it is difficult to determine what 

vegetation, if any, was present at the time of accretion.  

The variability in shallow sediment C stocks that could not be explained by our modeling may 

also be related to the inherent challenges surrounding spatial and temporal matching of driver proxies 

and sediment C stock measurements; the relationship between shallow sediment C stocks and 

contemporary environmental settings can be represented more accurately for some variables over others. 

 Ecosystem type was a relatively powerful predictor of shallow sediment C stock variability in our 

study and this is likely due, in part, to the direct relationship between vegetation and surface sediments. 

In most vegetated ecosystems, the majority of underground plant biomass and microbial activity exists 

within the top 20 cm of soils (Trumbore, 2009). For saltmarsh, it has been demonstrated that the top 30 

cm of sediment are directly impacted by current vegetation  (Owers et al., 2016). Therefore, using 

shallow sediment C stock measurements allowed us to take advantage of the direct relationship between 

vegetation and C stocks to explain variability in surface sediments.  

 The portion of recently accreted sediments influenced by contemporary anthropogenic drivers is 

harder to identify than that of ecosystems. Based on estimated accretion rates for this region from the 

literature (Ewers Lewis et al., 2019; Rogers et al., 2006b), 30 cm deep sediments would have taken an 

average of ~80 years to accumulate in Victoria (~117 years in tidal marsh and ~42 years in mangroves). 

Though sedimentation rates vary over time, they are relatively steady in comparison to changes in 

anthropogenic drivers, such as land use change. This means that modern day maps of land use, though 

useful for looking at the general impact of various activities, may be more useful for relating to 

variability in sediment C stocks when the data is assessed at a finer resolution. For example, comparing 

land use area data across various time periods with C densities in aged bands of sediment could help 

capture the pulse effects of sudden land use changes in narrower sediment horizons representative of the 

same time periods. In this study, the effects of land-use change may have been too diluted within the 30-

cm horizons to relate to impacts on sediment C stock.  

 

 

3. It would be good to see some kind of power analysis to assess whether the sample size is 

appropriate. I note there are R packages to do this for this kind of modelling approach. 



 

 Using a simpler modelling approach, a power analysis was conducted on this dataset for a 

separate study using the SIMR package. This analysis showed that a power of 80% was reached across all 

ecosystems within the sample sizes of this dataset (Young, M. A., Macreadie, P. I., Duncan, C., Carnell, 

P. E., Nicholson, E., Serrano, O., Duarte, C. M., Shiell, G., Baldock, J. and Ierodiaconou, D. 2018. 

Optimal soil carbon sampling designs to achieve cost-effectiveness: a case study in blue carbon 

ecosystems, Biol. Lett., 14(20180416), doi:10.1098/rsbl.2018.0416). 

Though we like the idea of running a power analysis for this more complex modelling approach, 

we have not been able to find an R package that is specifically compatible with the information theory 

multimodel approach we have taken. Though there are R packages for doing power analysis on 

glmm/glmer models created in the R package lme4 (e.g. SIMR), we have not found a package compatible 

with averaged models that have been generated by dredging and averaging general linear mixed effects 

models (made with the R package MuMIn).  

To clarify why we used the more complex modelling approach (AICc with model averaging), we 

added the following paragraph to the methods, which explains the better accuracy of predictions 

generated from averaged models compared to traditional approaches utilizing a single “best” model (e.g. 

glmer in the lme4 package): 

 

To identify drivers of shallow sediment C stock variability and create the best predictive model of 

shallow sediment C stocks to 30 cm deep we utilized a multi-step process based on an information 

theoretic approach and multimodel inference (Figure 3). Traditional approaches have relied on 

identification of the “best” data-based model; however, information-theoretic approaches allow for more 

reliable predictions through utilization of multiple models, especially in cases where lower ranked models 

may be essentially as good as the best (Burnham and Anderson, 2002; Symonds and Moussalli, 2011). 

Further, information theoretic model selection has been demonstrated to provide significant advantages 

for explaining phenomena with more complex drivers (Richards et al., 2011). Here, we first looked 

broadly at our variables of interest by narrowing down to the best models containing all possible 

variables (“global” models, as explained below) using AICc (Akaike information criteria, corrected for 

small sample size) to explain the variability observed in the training dataset (70% of total C stock data; 

Symonds and Moussalli, 2011). From there, we identified which variables within the best global models 

best explained the observed variability in C stock data in order to remove unnecessary variables from the 

model equation (through the process of “dredging” and selecting the best subset, explained in detail 

below). The validity of removing unnecessary variables from the model is supported by the concept of 

parsimony, which suggests models more complicated than the best model provide little benefit and should 

be eliminated (Burnham and Anderson, 2002; Richards, 2008). The best subset of models generated from 

the global models (“dredge products”) were selected based on delta AICc<2, which are viewed as 

essentially interchangeable with the best model (Symonds and Moussalli, 2011). Each subset of best 

models was used to generate an averaged model, which was tested by generating predictions of C stocks 

for a reserved (30%) subset of the dataset. The best performing model was used to generate a predictive 

map of C stocks to 30 cm deep for mapped blue C ecosystems in Victoria.  

 

Minor comments: Title – see comment 1 above, I am not sure the paper really assesses blue carbon 

due to the shallow sediment profile analysed. Also as this is a regional study, I think it might be 

appropriate to include something to clarify that in the title. 

Thank you for this feedback. We have changed the title to better reflect the specifics of our study by 

changing it from “Drivers and modelling of blue carbon stock variability” to “Drivers and modelling of 

blue carbon stock variability in shallow sediments of southeast Australia”.   

 



 

Abstract – Aims 1 and 2 should include the term regional, as the paper doesn’t really produce a 

model that is applicable beyond the region of the study area 

We have updated the aims as suggested by adding the phrase “… in southeast Australia” to each of them 

(in both the abstract and introduction). 

 

Abstract – last sentence. Without testing the validity of the modelling method to other regions, I am 

not sure this statement can be made. Suggest removing this statement or validating the modelling 

method elsewhere. 

Thank you for this comment. We have modified this sentence to reflect the need to test the validity of 

using the modelling methods elsewhere.  

 

The sentence previously read:  

Globally these methods can be applied to identify relationships between environmental drivers and C 

stocks to produce predictive C stock models at scales relevant for resource management.  

 

And has been changed to: 

We recommend these methods be tested for applicability to other regions of the globe for identifying 

drivers of C stock variability and producing predictive C stock models at scales relevant for resource 

management. 

 

Introduction Ln 40-43 Stocks of carbon are not directly related to greenhouse gas inventories which 

are based on flux rates. 

We are aware of this, but also recognize that knowledge of stocks enables for more accurate estimates of 

fluxes, which are related to stocks (e.g. the maximum amount of carbon that can be remineralized and 

converted to CO2 if subjected to disturbance is the total stock present). We have added “and fluxes” to 

this sentence to ensure we convey the importance of fluxes, which relate C stocks and greenhouse gas 

inventories to one another:  

With the current momentum for including blue C ecosystems in global greenhouse gas inventories, there 

is a need to quantify the magnitude of C stocks and fluxes… 
 

Line 86 – Best not to start a new paragraph with “However” as this is a conjunction for connecting 

sentences within a paragraph. 

This has been removed. 

 

Materials and methods Ln 153-159 Can the authors expand upon the methods used, including 

accuracy of analytical methods, the number of samples analysed by FT-MIR vs EA, and the results 

of cross validation between these 2 methods. 

Thank you for this request. We have added more details, such as those requested, to make our methods 

more transparent and easier to understand without referencing the original C stock paper, as follows: 

 

Sediment C stocks to 30 cm deep (referred to throughout the paper as “shallow sediment C 

stocks”) were estimated for 287 sediment cores from 96 blue C ecosystems across Victoria in southeast 

Australia (Ewers Lewis et al., 2018; Figure 1). Full details of sample collection, laboratory analyses, and 

calculations of C stocks can be found in Ewers Lewis et al. (2018). Briefly, three replicate sediment cores 

(5-cm inner diameter) were taken in each ecosystem (n=125 in tidal marsh, n=60 in mangroves, and 

n=102 in seagrasses). Once back in the laboratory, samples were taken from three depths (0-2, 14-16, 

28-30 cm) within each core. Samples were dried at 60℃ until a consistent weight was achieved, then 

ground. Dry bulk density (DBD) was calculated as the dry weight divided by the original volume for all 

samples.  



Based on the protocols by Baldock et al. (2013), a combination of diffuse reflectance Fourier 

transform mid-infrared (MIR) spectroscopy and elemental analysis via oxidative combustion using a 

LECO Trumac CN analyzer was used to determine organic C contents of all samples. Previous studies 

have demonstrated the accuracy of using MIR to estimate organic C stocks of sediments (Baldock et al., 

2013; Van De Broek and Govers, 2019; Ewers Lewis et al., 2018). MIR spectra were acquired for all 

samples, then a subset of 200 representative samples was selected based on a principle components 

analysis (PCA) of the MIR results utilizing the Kennard-Stone algorithm. Gravimetric contents of organic 

carbon were measured directly in the laboratory for the 200-sample subset (Baldock et al. 2013). A 

partial least squares regression (PSLR) was created using a Random Cross Validation Approach 

(Unscrambler 10.3, CAMO Software AS, Oslo, Norway) and used to build algorithms to predict square 

root transformed total carbon, total organic carbon, total nitrogen, and inorganic carbon for the entire 

dataset. The PSLR model was evaluated based on  parameters from the chemometric analysis of soil 

properties (Bellon-Maurel et al., 2010; Bellon-Maurel and McBratney, 2011), and the relationship 

between measured and predicted values was assessed based on slope, offset, correlation coefficient (r), R-

squared, the root mean square error (RMSE), bias, and the standard error (SE) of calibration (SEC) and 

validation (SEP; see Ewers Lewis et al., 2018 for full details). R-squared values for all square root 

transformed variables were ≥0.94.  

Sediment C stocks were calculated based on Howard et al., 2014. Organic C density (mg C cm-3) 

was calculated by multiplying organic C content (mg C g-1) by DBD (g cm-3). Linear splines were applied 

to each core to estimate C density for each 2 cm increment within the 30 cm core, then C densities for 

each interval (measured and extrapolated) were summed and converted to Mg C ha-1 to estimate total 

stock down to 30 cm deep for each core location… 

 

Ln 168 – 172 Assigning catchment characteristics to estuarine communities makes sense, but 

looking at Figure 1 most samples were collected from coastal embayment’s. How might the 

influence from multiple catchments affect the model? 

The averaged model that we used to make the C stock prediction maps included ecosystem type, slope, 

and distance to coast, none of which we would expect to be substantially affected by the influence of 

multiple catchments. The influence of anthropogenic activities on surface sediment C stocks in locations 

receiving inputs from multiple locations, on the other hand, would be very difficult to track, and could 

have affected our ability to identify a relationship between anthropogenic drivers and C stock variability 

in our models. We have added the following text to the discussion to address this point, as follows: 

 

Spatially, anthropogenic variables are also difficult to assign to particular ecosystem locations or depths. 

Many blue C ecosystems in Victoria are located on coastal embayments and receive inputs from multiple 

catchments, making the influence of specific areas of land-use or population changes difficult to track to 

specific ecosystem locations. 
 

 

Ln 182-187 What was the vertical accuracy of the DEM? Considering the small elevation gradients 

across the intertidal zone, this is important. 

Thank you for this question. We have added the following text to the methods section description of the 

elevation data, as follows, to clarify the accuracy of the DEM: 

The elevation data are a composite product that integrated terrestrial and bathymetric LIDAR as well as 

multibeam sonar data. The vertical accuracies of the data varied with sensor setup for acquisition: ±10 

cm at 1 sigma (68% conf. level) in bare ground for topographic LIDAR data (for the majority of our 

dataset), ±50 cm for bathymetric LIDAR, and ±<10 cm for multibeam sonar data. 



 

Ln 210 – Is the 2001 data the most recent, or is this a typo? 

This should say 2011 – thank you for bringing this to our attention.  

 

Ln 215 Why was 30cm chosen as the depth representative of blue carbon stocks (see also earlier 

comment)? Can the authors add a few comments about this? 

Thank you for this question. We have added a paragraph in the methods to address this topic and have 

also added a paragraph about the implications of measuring to 30 cm in our discussion section. 

 

Added to methods: 

Though it is common in the literature to sample to 1 m deep in blue C sediments, the sampling protocol 

used for collecting these data (Ewers Lewis et al., 2018) was designed to maximize spatial coverage of 

shallow sediment C samples rather than sample entire sediment profiles (which may extend well beyond 1 

meter deep). Greater spatial coverage allowed us to test the relationships between a variety of potential 

drivers and surface sediment C stocks on both fine and broad scales. 

 

Added to discussion: 

We also aimed to maximize our ability to capture relationships between contemporary drivers and 

sediment C stocks by utilizing sediment C stock data to only 30 cm deep, a sediment horizon more directly 

impacted by recent environmental conditions compared to deeper stocks due to age. Based on previously 

estimated sediment accretion rates in blue C ecosystems in the study region (averaging 2.51 to 2.66 mm 

year-1 in tidal marshes (Ewers Lewis et al., 2019; Rogers et al., 2006a) and 7.14 mm year-1 in mangroves 

(Rogers et al., 2006a)), the top 30 cm of sediment represents roughly ~113-120 years of accretion in 

Victorian tidal marshes and ~42 years of accretion in Victorian mangroves. These time scales suggest 

sediments depths utilized in this study are more appropriate for assessing the impacts of modern 

environmental conditions on sediment C stocks compared to meter-deep stocks, which can be thousands 

of years old (e.g. Ewers Lewis et al., 2019). Using shallow sediment C stocks also allows us to be more 

confident that the vegetation present now has been there during the time of sediment accretion, unlike 

deeper sediments that are thousands of years old and for which it is difficult to determine what 

vegetation, if any, was present at the time of accretion.  

 

Results Throughout the results and the discussion the error associated with all estimates should be 

included. This error should combine model error and uncertainty in the spatial coverage of habitat 

areas. 

Model error is presented through model validation in our study. We reserved 30% of our C stock dataset  

to test the accuracy of the predictions generated by each averaged model (as described in sections 3.2 of 

the results and displayed in Figure S3). These results showed that our best model explained ~half the 

observed variability in C stocks (Adj R-sq=0.4881; averaged model 2). We have clarified the errors 

associated with our model predictions by providing further details on the outputs of our validation step, 

which utilized the reserved dataset (30% of our original carbon dataset) for assessing the prediction power 

of each averaged model. Using linear regression, we compared predicted values from each averaged 

model to actual measured C stock values for reserved dataset. The complete outputs for this analysis have 

been added to the results section 3.2 (“Model validation”), as follows:  

 

Linear regressions of predicted versus actual measured shallow sediment C values produced the 

following outputs for each averaged model: averaged model 11, residual standard error (RSE)=38.36 on 

84 degrees of freedom (df), adjusted R-squared (R-sq(adj))=0.4868, F-statistic(F-stat)=81.63 on 1 and 

84 df, p-value=5.044e-14; averaged model 5, RSE=38.51, R-sq(adj)=0.4829, F-stat=80.39 on 1 and 84 

df, p-value=6.953e-14; averaged model 2, RSE=38.32, R-sq(adj)=0.4881, F-stat=82.06 on 1 and 84 df, 



p-value=4.517e-14; averaged model 10, RSE=39.67, R-sq(adj)=0.4514, F-stat=70.93 on 1 and 84 df, p-

value=8.645e-13; averaged model 4, RSE=39.84, R-sq(adj)=0.4465, F-stat=69.58 on 1 and 84 df, p-

value=1.254e-12; averaged model 1; RSE=39.48, R-sq(adj)=0.4566, F-stat=72.43 on 1 and 84 df, p-

value=5.73e-13; averaged model 7, RSE=39.29, R-sq(adj)=0.4618, F-stat=73.94 on 1 and 84 df, p-

value=3.81e-13. 

 
We have also been more explicit about the error associated with the averaged model used to generate our 

state-wide shallow sediment C stock predictions by adding text to the results section on modelled shallow 

sediment blue C stocks (section 3.3) as follows: 
 

We estimated a total of over 2.31 million Mg C stored in the top 30 cm of sediments in the ~68,700 ha of 

blue C ecosystems across Victoria (Table 4; Figure 5). This estimate is based on predictions from our 

best averaged model that utilized ecosystem type as the ecological variable (averaged model 7), which 

explained 46.18% of observed variability in C stock data and had an RSE of 39.29. 
 

Due to the complexity of our multimodel approach, we did not include standard errors in predicted values 

for the entire region of Victoria due to the combination of using an averaged model and having random 

effects (there are no compatible R packages, to our knowledge).  

 

For spatial coverage, there is no data available to estimate uncertainty in habitat area that gives the 

specificity we would need to alter our predictions (i.e. we would have to know the exact locations due to 

the spatially explicit nature of the model). We used the most recent and complete maps available for each 

ecosystem for Victoria, which did not include specific locations where coverage was questionable. The 

main uncertainty stems from the potential changes in habitat area since the time of mapping or errors in 

mapping, and we cannot measure that error because no more-recent maps are available.  

 

Discussion Ln 434 As with the use of “however” to start a paragraph, “Further” should also be 

avoided. 

We thank you for the suggestion. We have moved this sentence up to be included in the previous 

paragraph, and moved the remainder of the paragraph to an earlier section of the text to improve flow.  

 

452- 454 See earlier comment regarding applicability of this modelling framework to global 

assessments. 

We understand your point and have edited the text to reflect that this framework needs testing in other 

regions for applicability.  

 

The text previously read: 

Globally, these methods are applicable for identifying relationships between potential environmental 

drivers and C stocks for creating predictive C stock models in blue C ecosystems at scales relevant for 

resource management applications. 

 

And has been changed to: 

We recommend these methods be tested in other areas of the globe to determine whether they may be 

applicable for identifying relationships between potential environmental drivers and C stocks for creating 

predictive C stock models in blue C ecosystems at scales relevant for resource management applications 

in other regions. 

 

 

Data availability – I would like to see all of the underlying data made publically available rather 

than just the model outputs. These data can easily be attached as a supplementary. 



To improve transparency and accessibility of the data both utilized and produced in this study we have 

added the following table to the supplements (below) with a reference to it in the methods section: 

Complete details of data availability for inputs and outputs of our models can be found in supplementary 

Table S10.  

Any modifications made to these data for producing our models are described in the methods section of 

this manuscript.  

Please also note the data produced in this study (R code and model prediction rasters) will be uploaded to 

an online repository upon acceptance of this manuscript for publication, due to both the large size of the 

raster files (making them too large for supplementary information) and the intellectual property associated 

with this work as part of the first author’s Ph.D. dissertation. We have inquired about joining and 

depositing our data to the Coastal Carbon Research Coordination Network 

(https://serc.si.edu/coastalcarbon/join-the-network) Data Clearinghouse so that the data can be archived in a 

Smithsonian Library digital repository and accessible through a digital object identifier (DOI).   

 

Table S10. Data availability 

Data Item Description Data Source & Location 

Carbon Stock 

Dataset 

Percent organic carbon and dry bulk density 

data for sediment sampled to 30 cm deep in 

96 blue carbon ecosystems (saltmarshes, 

mangrove forests, and seagrass meadows) 

across Victoria, Australia. 

Ewers Lewis et al. 2018; Deakin Research 

Online 

Deakin University’s Data Repository 

https://dro.deakin.edu.au/view/DU:300934

05 

Ecosystem 

Extent Vectors 

1. Mangrove areal extent in Victoria, 

Australia; saltmarsh areal extent and 

ecological vegetation classes in Victoria, 

Australia. 

2. Seagrass areal extent in the major bays and 

estuaries of Victoria, Australia. 

   a. Port Phillip Bay 

   b. Western Port Bay 

   c. Corner Inlet and Nooramunga 

   d. Gippsland Lakes 

   e. Minor Inlets of Victoria 

 

1. Boon et al. 2001; OzCoasts Australian 

Online Coastal Information, Victorian 

Saltmarsh and Mangrove Vegetation Maps 

https://ozcoasts.org.au/geom_geol/vic/Salt

marsh/Master 

2. Available from: 

a. Ball et al., 2014; Blake and Ball, 2001a  

https://discover.data.vic.gov.au/dataset/port

-phillip-bay-1-25-000-seagrass-2000  

b. Blake and Ball, 2001b 

Distribution of Seagrass in Western Port        

in 1999 

https://discover.data.vic.gov.au/dataset/dist

ribution-of-seagrass-in-western-port-in-

1999 

c. Roob et al., 1998 

Corner Inlet Seagrass 1998 

https://discover.data.vic.gov.au/dataset/cor

ner-inlet-seagrass-1998 

d. Roob and Ball, 1997 

Gippsland Lakes Seagrass 1997 

https://discover.data.vic.gov.au/dataset/gip

psland-lakes-seagrass-1997 

e. Blake et al., 2000 

Anderson Inlet Seagrass 1999 

https://discover.data.vic.gov.au/dataset/and

erson-inlet-seagrass-1999 

Tamboon Inlet Seagrass 1999 

https://serc.si.edu/coastalcarbon/join-the-network
https://dro.deakin.edu.au/view/DU:30093405
https://dro.deakin.edu.au/view/DU:30093405
https://ozcoasts.org.au/geom_geol/vic/Saltmarsh/Master
https://ozcoasts.org.au/geom_geol/vic/Saltmarsh/Master
https://discover.data.vic.gov.au/dataset/port-phillip-bay-1-25-000-seagrass-2000
https://discover.data.vic.gov.au/dataset/port-phillip-bay-1-25-000-seagrass-2000
https://discover.data.vic.gov.au/dataset/distribution-of-seagrass-in-western-port-in-1999
https://discover.data.vic.gov.au/dataset/distribution-of-seagrass-in-western-port-in-1999
https://discover.data.vic.gov.au/dataset/distribution-of-seagrass-in-western-port-in-1999
https://discover.data.vic.gov.au/dataset/corner-inlet-seagrass-1998
https://discover.data.vic.gov.au/dataset/corner-inlet-seagrass-1998
https://discover.data.vic.gov.au/dataset/gippsland-lakes-seagrass-1997
https://discover.data.vic.gov.au/dataset/gippsland-lakes-seagrass-1997
https://discover.data.vic.gov.au/dataset/anderson-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/anderson-inlet-seagrass-1999


https://discover.data.vic.gov.au/dataset/tam

boon-inlet-seagrass-1999 

Wingan Inlet Seagrass 1999 

https://discover.data.vic.gov.au/dataset/win

gan-inlet-seagrass-1999 

Shallow Inlet Seagrass 1999 

https://discover.data.vic.gov.au/dataset/shal

low-inlet-seagrass-1999 

Mallacoota Inlet Seagrass 1999 

https://discover.data.vic.gov.au/dataset/mal

lacoota-inlet-seagrass-1999 

Sydenham Inlet Seagrass 1999  

https://discover.data.vic.gov.au/dataset/syd

enham-inlet-seagrass-1999 

Elevation 

Raster 

A gap free digital elevation model (DEM) for 

the coastal region of Victoria, Australia, that 

combines 2.5 m and 10 m DEMs. 

Victorian Coastal Digital Elevation Model 

(VCDEM 2017) 

https://vmdp.deakin.edu.au/geonetwork/srv

/eng/metadata.show?uuid=8d3ccf63-ee85-

41cd-917e-933624a50b2e 

Freshwater 

Vectors 

Location of channels and other freshwater 

objects in Victoria, Australia. 

Vicmap Hydro 1:25,000 

Victorian Government Data portal 

https://discover.data.vic.gov.au/dataset/vic

map-hydro-1-25-000 

Coastline 

Vector 

Line delineating the coastline of Victoria, 

Australia. 

Victorian Coastline 2008  

Victorian Government Data portal 

https://discover.data.vic.gov.au/dataset/vict

orian-coastline-2008 

Lithology 

Vectors 

Rock types across Victoria, Australia. Geomorphology of Victoria 

Victorian Government Data portal 

https://discover.data.vic.gov.au/dataset/geo

morphology-of-victoria  

  

Land Use 

Vectors 

Primary land use designations for land 

parcels in Victoria, Australia. 

Victorian Land Use Information System 

2014/2015  

Victorian Government Data portal 

https://discover.data.vic.gov.au/dataset/vict

orian-land-use-information-system-2014-

2015 

Population 

Raster 

Human population data for Victoria, 

Australia. 

Australian Population Grid, 2011  

Australian Bureau of Statistics 

https://www.abs.gov.au/AUSSTATS/abs@

.nsf/Lookup/1270.0.55.007Main+Features1

2011?OpenDocument 

R Code R code used to identify drivers and model 

carbon shallow sediment carbon stocks. 

This study.  

Data depository TBD upon acceptance for 

publication. 

Model Output 

Raster 

Shallow sediment (to 30 cm deep) carbon 

stock predictions in blue carbon ecosystems 

(seagrass meadows, mangrove forests, and 

saltmarshes) in Victoria, Australia 

This study.  

Data depository TBD upon acceptance for 

publication. 

 

 

 

 

https://discover.data.vic.gov.au/dataset/tamboon-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/tamboon-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/wingan-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/wingan-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/shallow-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/shallow-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/mallacoota-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/mallacoota-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/sydenham-inlet-seagrass-1999
https://discover.data.vic.gov.au/dataset/sydenham-inlet-seagrass-1999
https://vmdp.deakin.edu.au/geonetwork/srv/eng/metadata.show?uuid=8d3ccf63-ee85-41cd-917e-933624a50b2e
https://vmdp.deakin.edu.au/geonetwork/srv/eng/metadata.show?uuid=8d3ccf63-ee85-41cd-917e-933624a50b2e
https://vmdp.deakin.edu.au/geonetwork/srv/eng/metadata.show?uuid=8d3ccf63-ee85-41cd-917e-933624a50b2e
https://discover.data.vic.gov.au/dataset/vicmap-hydro-1-25-000
https://discover.data.vic.gov.au/dataset/vicmap-hydro-1-25-000
https://discover.data.vic.gov.au/dataset/victorian-coastline-2008
https://discover.data.vic.gov.au/dataset/victorian-coastline-2008
https://discover.data.vic.gov.au/dataset/geomorphology-of-victoria
https://discover.data.vic.gov.au/dataset/geomorphology-of-victoria
https://discover.data.vic.gov.au/dataset/victorian-land-use-information-system-2014-2015
https://discover.data.vic.gov.au/dataset/victorian-land-use-information-system-2014-2015
https://discover.data.vic.gov.au/dataset/victorian-land-use-information-system-2014-2015
https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1270.0.55.007Main+Features12011?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1270.0.55.007Main+Features12011?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1270.0.55.007Main+Features12011?OpenDocument

