
1 Response to reviewer 1

The manuscript presents the application of the newly developed PCMCI
algorithm for the detection of causal links in geophysical data, focus-
ing on biosphere/atmosphere interactions. Applications of the algo-
rithm is done using flux tower eddy covariance data, for fine temporal
scale analysis, and satellite derived NDVI along with climate data are
used for global scale analysis at coarser scales. The topic is impor-
tant and clearly within the scope of Biogeosciences. Identifying and
quantifying causation in geophysical data is crucial for understanding
the interplay of the processes involved and developing models. The
present manuscript is intended to my understanding to be primarily a
proof of concept of the applicability of the PCMCI algorithm. While
the paper is well written several parts need to be better clarified.

We thank the reviewer for the support of the manuscript and further sug-
gestions and address the points below.

Specific comments:

• I find the description of the algorithm on the paper slightly
confusing (in particular for a Biogeosciences audience). I believe
that the reader must refer to (Runge et al.,2018) to understand
the basic principles behind the algorithm. I strongly suggest the
authors to restructure and clarify this section. Simplifying the
description and reporting the algorithm details as supplemen-
tary information could benefit the fluency of the manuscript.

We improved the accessibility of the method by restructuring of the ex-
isting text and adding an introductory subsection to the method section.
Here we explained how PCMCI relates to existing methods and what
its key concept is. This helps the reader to gain a more intuitive un-
derstanding of aim and concept of PCMCI. More detailed description of
assumptions, independence tests and the two parts building PCMCI are
then given in the following subsections.

Please refer to the sections 2.1, 2.2, 2.3 and 2.4 in the marked up manuscript
for details.

• The synthetic test developed to quantify the skill of the al-
gorithm, when its assumptions are not valid (e.g. seasonality,
heteroscedacity) is clearly important. However, it is not cur-
rently clear how the results derived from this analysis can be
generalized beyond the Hainich site. Emphasis should be given
on the transferability of the magnitude of expected biases at a
global scale.

We believe this may be a misunderstanding. The synthetic test did not
focus solely on the Hainich site. The impression might be given, as a few
plots (time series and networks) are showing as an example the results
from Hainich. We used radiation data from 72 FLUXNET sites to run the
model. Therefore, the results are not bound to the conditions at Hainich.

To clarify this we changed within the first paragraph of section ‘2.3.1
Artificial Dataset - Test Model’ the sentence:
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Using time series of measured global radiation (Rg) we created
three artificial time series that conceptually represent tempera-
ture (T), gross primary production (GPP) and ecosystem res-
piration (Reco).”

To:

The artificial dataset was created using a test model which takes
time series of measured global radiation (Rg) and creates three
artificial time series that conceptually represent air temperature
(T ), gross primary production (GPP) and ecosystem respiration
(Reco).[....]

With further explanations in line 19ff on page 9:

The model was fitted to real observational data (using radi-
ation, temperature and land-atmosphere fluxes) of daily time
resolution, measured by eddy-covariance method (Baldocchi et
al., 1988; Baldocchi, 2003) from FLUXNET, by minimizing the
sum of squared residuals using the gradient descent implemented
in the Optim.jl package (Mogensen and Riseth, 2018). We fitted
the model to 72 sites listed in Table B1 given in the Supplemen-
tary Material section.

We think that this adjustment should clarify that we are not focusing on
the Hainich site only.

• In a broader sense, a key question is why would the authors use
a procedure for the identification of causal links, when the basic
assumptions of the procedure are violated by the data?

Every statistical method comes with a set of assumptions which are re-
quired to assure interpretability of the results. In our case the assump-
tions guarantee theoretically that the method will estimate the true causal
graph. In a real world study case, those assumptions are typically not fully
met. This can be already the case for linear regression (e.g., perfect nor-
mality). Our work addresses exactly the point of how well PCMCI works
under violations of the assumptions, that is, how robust the method is re-
garding realistic violations occurring in practice. PCMCI in conjunction
with ParCorr possesses several attributes which favour its use, as shown
in our analysis: high detection power, interpretability, and computational
efficiency. We aimed to identify whether PCMCI and ParCorr could in
fact deliver reliable results using artificial and real data.

• I believe the authors should better explain why the proposed
algorithm in more efficient than e.g. the spectral Granger causal-
ity algorithm proposed earlier by Detto et al.(2012), which, to
my understanding, is inherently non-parametric and not sensi-
tive to periodicities.

Thanks for pointing out the need for a more detailed comparison to other
methods. This is basically in line with Reviewer 3 who, however, suggested
the comparison to another approach. We totally agree on the importance
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of such comparisons but regard numerical analyses evaluating other meth-
ods to be out of scope of this paper. Nevertheless, we agree that we could
better describe the specific characteristics and benefits of PCMCI in con-
junction with the independence test ParCorr.

PCMCI is computationally efficient, has proper significance testing and
attribution of link strengths. As we observe, the seasonality is an obstacle
for PCMCI and might be better handled with a spectral method. But,
to the best of our knowledge, spectral Granger causality is also bound
to causal stationarity. Thus, within an analysis spanning (possibly) sev-
eral years and seasons, one would assume a constant network structure
throughout time (same network structure in winter as in summer). How-
ever, this is not the case, as we could show in our analysis of the Majadas
ecosystem.

• In Fig2 it is shown that with an increasing sample size, the
fraction of falsely identified causal links increases, when the al-
gorithm’s assumptions are not valid. This can be a significant
drawback as the best datasets (i.e. with long records), are more
prone to errors. The authors should better discuss this.

To analyse long record time series data one has to question whether causal
stationarity is fulfilled. As we have seen in the example of the Majadas
dataset, strong differences in the dependence structure occur for different
months of the year. Accounting for causal stationarity still does not con-
flict with analysing long data records with PCMCI, because by applying
a proper mask one can estimate the network structure for one month or
season within multi year time series (which is similar to our mask used in
the Majadas dataset: taking only noon values but for consecutive days).
Such a mask increases stationarity and therefore reduces an inflated false
positive rate.

This is partially discussed already on page 20 line 3 to 20. To further
clarify we will modify the submitted paper as follows:

We replace line 13 and 15:

Much of the influence of heteroscedasticity is also removed when
limiting the analysis to a specific time period, i.e.season, which
makes the data causally stationarity (cf. Sect. 2.1). For exam-
ple, the link from radiation to GPP vanishes in winter as there
is mostly no active plant material left.

With:

The increasing FPR with increasing time series length can fur-
ther raise doubts regarding the analysis of long time series. For
such an analysis, though, the assumption of causal stationarity
should first be assessed. For example, the link from radiation
to GPP vanishes in winter as there is mostly no active plant
material left. To account for causal stationarity, the analysis
should be limited to time series sections where the causal struc-
ture is expected to be similar. This is typically done by limiting
the analysis to a specific time period (i.e. ’masking’), e.g. a
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specific season, month, or time of the day. Such masking re-
duces additionally further influences of remaining seasonality or
heteroscedasticity.

• If I understood correctly, it is shown that for the baseline case,
the algorithm cannot robustly identify the true causal non-linear
links (as expected). However, the identification rate increases
incorporating seasonality (which I presume also violates the sta-
tionarity assumption of the algorithm), which is counter intu-
itive. The authors in their discussion attribute this behaviour
to the variance of the parent variable. Can the authors discuss
how this artefact can limit the range of applicability of the pro-
cedure for global scale applications (i.e. differences in regions
with distinct seasonality or not)?

Seasonality constitutes a common driver in this model. In general, such
common drivers increase the dependence among the variables and, hence,
lead to a higher detection rate for true links (TPR) as well as a higher false
positive rate (FPR) for absent links since this driver is not conditioned
out properly. Therefore it is not counter intuitive that both the TPR and
the FPR rate increase in the seasonality model. To reduce the effect of
seasonality further, we suggest to use a mask or use deseasonalized time
series.

We added following sentences to section 4.1.

Seasonality and heteroscedasticity constitute violations of the
stationarity assumption underlying the independence test Par-
Corr. Seasonality constitutes a common driver in this model. In
general, such common drivers increase the dependence among
the variables. and, hence, lead to a higher detection rate for
true links (TPR) as well as a higher false positive rate (FPR)
for absent links if this driver is not conditioned out properly.
This additionally causes the TPR and the FPR rate to increase
in the seasonality model. As shown in [?], including the cause
of the non-stationarity as an exogenous driver in the analysis
allows PCMCI to regress out its influence on the other vari-
ables. However, for ParCorr this is only valid if the dependence
on the non-stationary driver is linear. Therefore, the regression
on Rg fails for GPP and Reco in the test model. With this ill-
posed setting, the probability to detect false links increases with
increasing time series length or when more periods are included.
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1 Response to reviewer 2

The presented manuscript presents an interesting and novel approach
to better understand biosphere-atmosphere interactions. The paper
is clearly of interest for the scientific community and fits well in the
scope of the Biogeosciences journal. While moving on from the clas-
sical correlation approach is needed and of great interest, because
causality is modern topic and no so broadly used, the paper needs
to do a better effort to introduce the topic in an easy way to the
community in order to be published. Actually, it is difficult for me
to review the results of the paper until the methods are more clearly
exposed to the reader.These are my specific comments:

We thank the reviewer for the support of the topic. The accessibility of
the method has been criticised also by reviewer 1. In a revised version of the
manuscript we will aim for an improved accessibility of the method. Please refer
to your specific comment for further details.

Introduction: I miss a paragraph showing the limitations of the classical cor-
relations analysis, when the failed, when causality approaches
did better and why. . .

We see the benefits the reviewer aims for by requesting such a paragraph.
We do not claim correlation analysis to be wrong, if applied correctly. The
issues arise, if one moves beyond certain boundaries within the interpreta-
tion of the results. A correlative analysis does not fulfill requirements for
a causal interpretation. Any method which brings us closer to causal in-
terpretability of a dependence structure increases the information content
of the analysis. This is our motivation to test a causal inference method
that is more sophisticated than the mere use of correlations.

This argument is further motivated, first by citing literature which showed
an improved interpretability using causal methods rather than correlation
(cf. Detto 2008, but also Runge2019 and others), and second by high-
lighting the differences of the estimated dependence structure using lagged
correlation and PCMCI (cf. Fig. 1 or Fig. 4 and F1).

Methods: In general, as I said, the methods are hard to follow. I suggest
to simplify/restructure the section to facilitate its understand-
ing. The section 2.1.2 is probably the most confusing to me, I
recommend to include a flowchart to visualise the algorithm.

We improved the accessibility of the method by restructuring of the ex-
isting text and adding an introductory subsection to the method section.
Here we explained how PCMCI relates to existing methods and what its
key concept is. This helps the reader to gain a more intuitive understand-
ing of aim and concept of PCMCI. Detailed description of assumptions,
independence tests and the two parts building PCMCI are then given in
the following subsections. Further, we added a schematic now available as
Figure A1.

Results: Line 5, page 12, replace “stonger” by stronger.

Thanks for noticing and pointing out this spelling mistake.
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Discussion: Lines 7-11: After reading the paper, I am still not convinced
that using a linear in-dependence test is the way to proceed. I
think you have to demonstrate it with an example. Perhaps, you
can run your artificial dataset tests using a non linear rank inde-
pendence test (spearman’s correlation) and compare the results.
These results could be added to an appendix to better support
your statements if that’s the case.

We added analyses using Gaussian-process regression and distance corre-
lations to the supplementary section. Spearman’s correlation is not appli-
cable as it is not an conditional independence test.

Within the introduction of the discussion, we refer to these results. Specif-
ically, on page 19 line 11 we add:

To further convince the reader we performed analyses on the
observational datasets using Gaussian regression and distance
correlation as an independence test. These results show similar
patterns but due to the low sample sizes exhibit worse statistical
significances.

For example, Fig. 1 is comparable to Fig. 5 from the manuscript. The
difference is that 1 is calculated using Gaussian-process regressions and
distance correlations as independence test (GPDC). The two figures show
a similar seasonal behaviour and even good agreement in detected links.
Note that GPDC only yields positive link strengths. Further, the strength
values estimated with GPDC are rather weak due to the low number of
datapoints and the larger sensitivity of that method to the sample size.

An other example is given in Fig. 2. Here the figure is not one-to-one
comparable with Fig. 6 of the manuscript because significances of an
analysis using GPDC have been too (due to too low sample sizes) low
to perform the same analysis. Instead we plotted the link strengths of
radiation, temperature and precipitation on NDVI at lag 0 and 1. At lag
0, GPDC detects some influence of temperature (and radiation) in boreal
regions. At lag 1 precipitation influences mostly arid regions.
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Figure 1: Same as Fig. 5 of the manuscript but the analysis was performed using
a non-linear independence test. The number of significant occurrences of a link
is given by its width. The link strength, given by the link color, is calculated
by averaging the significant links of the towers. The link’s lag is shown in the
centre of each arrow, sorted in descending order of link strength. The resulting
graphs are shown for April 2014 till March 2015. The significance threshold is
0.01

3



Figure 2: Influence of climatic drivers on NDVI as calculated by PCMCI in
conjunction with the non linear independence test GPDC. The first and second
columns show the estimated causal influences of climatic drivers on NDVI at
lag 0 and 1, respectively.
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1 Review 3

This is Ben Ruddell writing; I waive anonymity for this review. When
I saw this paper come across my desk it caught my attention, because
I have been working on similar topics and also following the authors’
work for several years. In general, I like this paper and after reading
it I would like to see it published in this journal, with some changes.
This general area of work needs a lot more attention because of the
promise of the general approach and the urgency of getting our infer-
ence and modeling right for this kind of complex and coupled system.
Thank you for this effort! After working on this kind of paper for
more than a decade (and contemplating many reviews of my own
work) I’ve come to the opinion that we need to move past a focus
on innovating methods and toward the challenge of showing how the
methods can be used to produce actionable and fundamentally novel
insights- or to test process theories in science. If we cannot use ad-
vanced inference techniques to learn about these systems or critique
previously inaccessible scientific ideas, these methods will continue
to fall on deaf ears, so to speak. So, I challenge the authors and
anyone else listening to move forward aggressively with the intent
to apply causal networks (Process Networks) and advanced inference
techniques to interrogate scientific hypothesis and learn about sys-
tems. The current paper could do more along these lines, with added
investment, by(for instance) comparing its statistical results with ex-
pectations from climate or ecological models, etc.

Dear Dr. Ruddell, thank you very much for your support and helpful ad-
vice. We fully agree that it is not enough to test and advocate for a new
method only. However, in order to ‘learn about these systems or critique pre-
viously inaccessible scientific ideas’ the method of use has to be understood in
its behaviour first. As PCMCI has not been tested or applied within the con-
text of biosphere–atmosphere interactions to date, this was a necessary step to
take before addressing specific scientific questions. The latter will be the aim
of following studies, which will build upon the identified strengths of PCMCI.
Further, testing or comparing the network structure between models requires
non deterministic dependencies which, however, is typically not given.

In the following we try to respond accurately to your questions and com-
ments and will try to integrate those as far as possible.

Before beginning the review, based purely on the expectations
raised by the very broad title of the paper, I already had a few ques-
tions about the paper. I will pose and then evaluate those questions
before moving on to line by line comments.

1. Is the now-substantial body of literature on this topic ade-
quately summarized and cited, giving credit where credit is due?
Papagiannopoulou et al is cited twice, but the similar paper Sed-
don et al. 2016 is not cited; please cite appropriately. Please
review GeoInfoTheory.org, which has a nice list of publications
on related topics (https://geoinfotheory.org/reference-list/). In
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particular,there are a few recent papers that should really be
cited appropriately in your paper,because they are recent and
narrowly within the scope of your literature review; these treat
global land-atmosphere interactions and feedbacks using simi-
lar methods to your own. Please describe in your introduction,
methods, and/or results as relevant, how does your work relate
to these? Yu et al. 2019 in GCB is especially important. A
list of references that would seem to be highly relevant follows.
[please refer to original comment to see reference list]

Thank you for this supportive comment. We improved the discussion
of related literature. There we restructured paragraph 3 and 4 of the
introduction which are now spanning from page 3 line 17 to page 4 line
13.

2. Is the concept and any methods used for ”causality” adequately
posed and defended? You can expect such a strong claim and
wording as “causal graph” to be aggressively challenged by read-
ers and reviewers in this paper and any others using the term,
fora long time to come. Renaming ”correlation” or ”informa-
tion flow” to ”causation” is a major and very aggressive depar-
ture from our disciplines’ wording and conceptualization during
the long and mature history of statistical inference, and requires
very strong justification. Granger causality has never really been
“causality”; it’s a type of conditional time-lagged cross correla-
tion. Please understand my point here; I’m not asking for you
to give up on the use of “causal” language, but I am strongly re-
questing that you spend at least a paragraph in the introduction
or methods section of this paper (and others, for the foreseeable
future) to argue and explain to the reader exactly what is,and is
not, meant by “causal” in this context. It is otherwise too strong
a term to be using. As a more general comment, it’s extremely
important for us to reach a consensus about what to call things.
This is an iterative community process of communication that
works through conversation and engagement, and through clar-
ification about what is the same and what is different. It’s not
my place to decide whether we should be calling something a
“causal network” or a “Process Network”, but I do insist that
we have the conversation. For the purposes of this paper, this
means citing my recent & prior work,and that of others, and
trying to explain exactly how your terms relate to our terms for
similar things, and proposing what you understand the similar-
ities and differences to be; this is particularly important when
writing a methods paper such as this one under review here.

Indeed the prefix “Granger” is always used in Granger causality analysis
to differentiate it from some stronger form of causality. The same applies
to concepts of Information Flow or Transfer Entropy, which avoid the term
causal. This stronger form has so far remained elusive, but it is the merit
of seminal works by Judea Pearl (Pearl 2009) and others to put the term
causal on a solid mathematical basis. This is the framework of causal
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graphical models (Spirtes 2000, Pearl 2009) which lays out the assump-
tions under which graphs (aka networks) estimated based on conditional
independencies can be interpreted causally. Not least through his popular
science book (Pearl 2018), Pearl has advocated to overcome, as he states,
the ‘mental barrier’ of using causal language— as long as it is used to-
gether with the assumptions required. And these assumptions have to be
thoroughly discussed in any analysis. This is exactly the goal of our work.
PCMCI belongs to the causal graphical model framework and under the
assumptions listed in the paper (refer to Sect) and in the limit of infinite
time series length PCMCI converges to the true causal graph, which is
why we use the term causal. As we deal with finite sample length and
partially unfulfilled assumptions we mention several times, that spurious
links can appear (in excess to the expected FPR) and that each detected
link has to be interpreted carefully.

This is now mentioned at the end of the new Paragraph ’Evolution of
PCMCI from information theory’ of the method section.

3. Is there anything new here, and is that made clear? Yes! PCMCI
is put through some rigorous tests for both satellite and 30m
flux data and appears to hold up well; this is novel and interest-
ing as a methodological development. However, in my opinion,
it is important when describing this method in the methods
section that you distinguish it precisely and detail from other
similar methods,explaining its relative advantages and disadvan-
tages. There are lots of other methods out there that have used
Granger-adjacent directed coupling statistics in various applica-
tion contexts. In this precise context, my 2009 papers you cited
(and several since)used 30 minute flux tower time series data to
determine atmo-bio networks, identifying ranges of statistically
significant time lagged couplings, and also studies periodicity
and noise in the method, calling these resulting patterns ”Pro-
cess Networks”, and distinguishing the most “causally” relevant
couplings using a Tz metric that compares directed vs correla-
tive information flows. This is a well worn topic in 2019, so it’s
not sufficient in a methods paper to contrast your method with
correlations anymore. Contrast your method precisely against
others that claim similar goals and results, please. Why should
we use PCMCI instead of one of several other existing similar
methods?How would the results differ in theory and in practice?
Should we use PCMCI in this case, and use Ruddell et al. 2009a
“Tz” in another case? What are the pros and cons? Because
this paper focuses on methods, it needs to be much more spe-
cific about how these methods relate to other adjacent methods
and conflicting/overlapping terminologies already in use; this
engagement is how we will build our community’s knowledge
and practice. (your treatment of the underlying assumptions is
a strength of the paper and should help make these distinctions
clear; thank you for this attention to detail here.)

Thank you for the above comments. We improved the accessibility of the
method by restructuring of the existing text and adding an introductory
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subsection to the method section. Here we explained how PCMCI relates
to existing methods and what its key concept is. This helps the reader
to gain a more intuitive understanding of aim and concept of PCMCI.
Detailed description of assumptions, independence tests and the two parts
building PCMCI are then given in the following subsections.

However, an in-depth numerical comparison of the available methods is
beyond the scope of the manuscript, and partially already done in Runge
et al. 2018 and 2019. There are several causal inference methods available,
with multiple additional modifications. Picking only one or two of them
(e.g., Tz statistic of Ruddell et al. 2009) would unavoidably be rather
arbitrary. We agree that this comparison is important but might be best
tackled in a separate study, maybe even in a combined effort. Such a com-
parison study would help users choose the most suitable method for each
specific application, rather than addressing any specific question with the
method at hand, as it is common practice. See also the causality bench-
mark platform www.causeme.net which addresses method comparison on
a growing number of benchmark datasets.

4. Is the very broad title justified, or is the paper actually about
something much more narrow and specific?By the end of the
abstract, I decided ”negative” on 4. because this paper appears
to be not a review or synthesis of the broad topic of causal
networks in the bio-atmo-geo-sphere as implied by the title, but
instead a methods case study establishing the robustness of a
proposed method MCMCI in two land-atmosphere contexts. I
suggest a much narrower title, like ”PCMCI robustly identifies
biosphere-atmosphere interdependencies”, or some such. It is
very important to use an accurate title that is not over-broad.
The title directly summarizes the question and/or findings, in a
nutshell.An overbroad or inaccurate title is grounds for rejection
in my view.

Thank you for this advice. We renamed the title to ”Estimation of causal
networks in biosphere-atmosphere interaction: The PCMCI approach”.

Line by Line Comments

Sec. 2.1 I’ve followed the derivations in Runge et al. (various, 2014-
2018) and I don’t have a problem with the methods. How-
ever, I have not seen here or in Runge et al. (various) an ex-
plicit comparison of the MCI approach with Ruddell and Ku-
mar’s(2009a) “Tz” or zero-lag ratio method for the disambigua-
tion of “strongly causal” versus “common-source causal” indi-
cated couplings. There appears to be a lot of shared intent and
intuition here, and possibly some very similar (but differently
named) mathematics and assumptions. Please explain what is
similar or different.

PCMCI and Tz are two quite different approaches: PCMCI is a multi-
variate causal network estimation approach, Tz is bivariate and, at least
in general, cannot exclude common causes or indirect links. Tz is a bi-
variate Transfer Entropy (TE) divided by the zero-lag mutual information
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(MI). Ruddell and Kumar’s(2009a) give a “coupling type” classification
regarding the coupling interpretation of different values of TE and MI.
However, any bivariate analysis is difficult to interpret causally since com-
mon drivers can both increase or decrease a MI or TE. For example, a
significant MI and TE with TE ¿ MI, classified as “forcing dominated
coupling” in Ruddell and Kumar’s(2009a), can be the result of a common
driver that drives X and Y in different ways. Hence, PCMCI and Tz are
difficult to compare directly.

Pg.20-10 This discussion on “causal stationarity” and limitation of study
to one season or system state appears to be treated in Rud-
dell and Kumar 2009(b) (second half of the paper you cited)
under the terms “local” and “global” stationarity. What’s the
relationship here, please?

We studied the paper “Ecohydrologic process networks: 2. Analysis and
characterization” by Ruddell and Kumar. We could not identify a defini-
tion of local or global stationarity. To our understanding the terms ‘local’
and ‘global’ are used in the context of choosing the bounds for the binning
intervals in the estimation of the conditional probability densities. A local
scheme refers to a binning interval chosen by the minimum and maximum
values of the month. A global scheme refers to the binning interval that
is chosen by the minimum and maximum values of the whole time series
or dataset. The global scheme is chosen if a comparison between process
networks is intended.

Causal stationarity means: A process X with graph G is called causally
stationary over a time index T , iff for all links X

i
t−τ → X

j in the graph
X

i
t−τ�⊥X

j | X−

t \{X
i
t−τ} holds for all t ∈ T . An example: The influ-

ence from radiation to temperature exists in both summer and winter, it
might weaken or strengthen but as the physical mechanisms remain ac-
tive, the link satisfies causal stationarity through out the year. In contrast,
the influence of radiation on photosynthesis in a deciduous forest exist in
summer but can not exist in winter if no photoactive plant material is
present. Thus causal stationarity is violated if the whole year is included
in the analysis. Limiting the analysis to specific periods in time, e.g. sum-
mer, leads to causal stationarity. This masking in time in PCMCI could
be done manually/fixed time intervals, e.g. monthly, or by choosing the
mask for a specific value range of one specific variable, i.e. GPP or Rg.
The latter might remind of the above mentioned local and global binning
but still only marginally, from our perspective.

We noticed that this explanation is missing in the method section. We
added it accordingly.

Pg.21-20 Although it isn’t the focus of your paper, Kumar and Rud-
dell (2010, Entropy) and some of my more recent papers (Yu
et al., Gerken et al.) have shown very strong changes in cou-
pling strength across space, as well as across time. I wouldn’t
make the claim that “the interaction between biosphere and at-
mosphere is expected to change only marginally across space” in
the absence of strong arguments supporting this. I’ve argued the
opposite in several recent papers- I’ve argued that the Process
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Network characterizing these systems and their states changes
dramatically between places and times, and that this represents
a qualitative shift in how the systems are functioning. (note that
I’m not arguing that physics changes, only that its structure and
expression in a complex system changes dramatically)...please
engage with this argument,or remove the claim.

The claim “the interaction between biosphere and atmosphere is expected
to change only marginally across space” was used only in the context of
the Majadas ecosystem and within this context we regard it justified and
well supported: This ecosystem is a rather homogeneous Savanna. Within
this ecosystem three eddy-covariance towers are situated within a distance
of up to one kilometre (app.). At such spatial scale, climatic conditions
are very similar. Due to the homogeneity of the ecosystem “interaction
between biosphere and atmosphere is expected to change only marginally
across space”.

We clarified that this statement by adding ’across space within this ecosys-
tem’ to the sentence ’Thus, also the interaction between biosphere and at-
mosphere is expected to change only marginally across space within this
ecosystem’.

We again emphasize that PCMCI and the Tz measure used in the referees
studies cannot be directly compared and any discussion on “strong” or
“weak” couplings has to take into account whether the measure is mul-
tivariate or bivariate, since excluding the effect of common drivers can
strongly change the value of a measure.

Pg.21-25 Most of my papers have focused their analysis and presenta-
tion of results on a single “most significant” time lag (usually
chosen as the first/shortest peak lag in mypapers, called the
“characteristic time lag” in my papers), or an average across a
range of time lags (usually subdaily ¡18hrs) because of the ex-
treme challenge of interpretation posed by a large number of
statistically significant coupling links. Separating out every con-
ditionally “momentary” coupling is not hard to do mechanically,
but interpretation and communication is devilish. I think you’re
running into this problem here. Once we move past conditioning
couplings on zero-lag correlations, it’s not clear where to stop
or how to interpret the results. I’d hope that PCMCI could
add some clarity, but I’m not convinced based on this discussion
that it is helping. Please comment and clarify if possible, or at
least explain how what you’re doing is different here from what
Ruddelland Kumar 2009 did with T, I, Tz, canonical coupling
types, and characteristic timelags. If possible, also engage with
Goodwell and Kumar (recent) who have attempted to split out
redundant, synergistic, and independent couplings in the land-
atmosphere coupling context.

We agree that interpreting a process network incorporating many lags for
one dependence can pose difficulties. That is why we omitted a detailed
analysis/study of the monthly Majadas networks. Yet, we also did not
want to aggregate or focus on one lag as this would have reduced the
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information content of the analysis. An averaging of lagged links, for
example, would have caused a strong deviation in link strength for the de-
pendence H→VPD in Fig. 4 (August) among the towers. I(T→VPD)LMa

would be nearly 0 while I(T→VPD)LM1 and I(T→VPD)LM2 would be
around 0.25. This is due to the possibility of negative coupling strengths
using ParCorr. The dependence H→VPD appears at lag 1 and 3. The
confidence intervals of the strength values from the three towers are over-
lapping for both lags, but as the link H→VPD at lag 3 is rather weak,
only one crosses the significance threshold.

Defining the maximum lag might be indeed difficult from a physiologi-
cal/physical perspective. In Runge2018a following is suggested: “Choice
of τmax: The maximum time delay depends on the application and should
be chosen according to the maximum physical time lag expected in the
complex system. In practice we recommend a rather large choice that
includes peaks in the lagged cross-correlation function (or a more general
measure corresponding to the chosen independence test), because a too
large choice of τmax merely leads to longer runtimes of PCMCI, but not
to an increased estimation dimension as for FullCI.”

Due to the differences between PCMCI and the Tz statistic laid out above,
we omit further comparison.

Pg.22-15 I am not convinced by biweekly or monthly scale correlation
analysis in satellite or climate data represents causation in any
real or approximate sense. There are several problems here.
First, these data are modeled and abstracted several levels be-
yond primary observations, so patterns cannot be relied upon
to strongly represent causal realities as well as in-situ flux data.
Second, once we move past subdaily timelags, we are well into
the scales dominated by diurnal cycles, synoptic weather cy-cles
and by seasonal rhythms, so it is hard to distinguish signal from
noise when the“noise” is an overwhelmingly energetic diurnal,
seasonal, or synoptic cycle. Third, we already have strong rea-
son to believe that the main process timescales are subdaily,
due to e.g. our flux tower analyses, so we must presume that
super daily or monthly timescales indicated by the methods are
merely echoes and confounding correlates of shorter timescale
processes unless we can prove otherwise (e.g. through robust
conditioning against shorter lags)- and that proof is not possi-
ble using coarse time resolution data. This is a basic problem
with attempts to use satellite and coarse time resolution grid-
ded data to establish “causal” relationships, and I haven’t seen
it adequately addressed in this paper or prior papers attempt-
ing similar. What am I missing here, please? Please explain
how your method addresses these three problems. This grid-
ded/monthly analysis may be a “bridge too far”, so to speak,
for this paper; it’s different from and a weaker argument than
your eddy covariance analysis, with several layers of practical
problems weakening the conclusions.

This comment might be addressed by addressing comment 2. Causal re-
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lationships are best examined by perturbing the system at a specific time
and state (variable) (do calculus of Pearl). Though such experiments are
usually not feasible in a controlled manner within Earth system sciences.
Therefore, we (as a community) rely on the estimation of causal dependen-
cies from time series and can only detect the signal imprinted in the time
series. The signal of interactions depends on properties of the interaction
itself, i.e. the strength,type and pattern, but also the signal-to-noise ra-
tio, i.e. measurement noise, time sampling intervals and time aggregation.
Therefore, the signal of interactions detectable within the time series (i.e.
dependence within the conditional probability distributions, which using
Markov condition determines connectedness in graph) might not corre-
spond to the actual physical interactions anymore, but might very well
allow valuable insight. Especially when trying to evaluate and compare
dependence structures within model time series. Further, under aggrega-
tion information from fast interactions will be lost (and maybe visible as
contemporaneous interactions in our networks) but processes which are
dominant on larger time scales might appear as their signal is improved
due to aggregation.

Further, Ruddell and Kumar 2009 and Krich 2019 find links on timescales
below 30 min on 30 min time resolution fluxdata. Having the above in
mind, i.e. keeping in mind that the time sampling interval determines
the appearance of the causal graph, one can not even speak of the ‘true
causal relationships’ using 30min resolution data. If links appear that
happen on faster time scales than the time resolution, they will be shown
as contemporaneous links (undirected) in our networks. In the method
section, we state, that spurious links, both contemporaneous and lagged,
can appear. This will be further elaborated in a revised manuscript.

Fig. 6,7 These results are begging for a detailed comparison with Yu
and Ruddell etal., published earlier this year in Global Change
Biology, which attempts a very similar analysis but uses an ex-
trapolation of 30m flux data derived couplings to the global ter-
rasphere rather than monthly gridded data. Please provide this
comparison.

With all respect, we do not fully agree on the level of similarity between
these two studies. Without a doubt the performed study “Anticipating
global terrestrial ecosystem state change using FLUXNET” by Yu and
Ruddell et al. 2019 is very interesting and we actually had similar ideas
for another study. To explain why we prefer to omit a comparison with
this study, we briefly summarize the method and subsequently give the
reasoning.

Yu and Ruddell (2019) calculated two bivariate transfer entropy couplings
(Temp-NEE, Precip-NEE) on monthly time periods of the available time
series data of 204 Fluxnet towers. Thus they obtain a network per month
which can be translated to monthly time series of couplings. These cou-
plings are fitted with a specific model (using monthly averages or sums of
Rg, Temp, Precip, EVI) to estimate an elasticity of that coupling to each
’driver’. Those elasticities are upscaled to global scale using an artificial
neural network. Those maps of upscaled elasticities shall be compared to
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PCMCI strength values.

The choice of variables for the coupling calculations are based upon:
(quote from the paper) ”an eddy covariance tower’s process network can be
approximated using three functional subsystems: Synoptic, Atmospheric
boundary layer (ABL), and Turbulent. We choose an essential timeseries
from each of those three subsystems: for the Synoptic subsystem, air tem-
perature; for the ABL subsystem, precipitation; and for the Turbulent
subsystem, net ecosystem exchange of carbon”.

We believe a comparison is not straightforward because of two reasons:
The quantity we plot in Fig. 6 and 7 is a conditional independence mea-
sure, i.e. partial correlation coefficient between time series residuals at
monthly resolution in a multivariate analysis. The plotted elasticities in
Fig. 3 of Yu and Ruddell et al. 2019 represent an upscale of a specific co
variation (an exponential model) of a conditional independence measure,
i.e. bivariate transfer entropy between time series at 30 min resolution,
to monthly aggregates of climate and phenology variables. We have dif-
ficulties to relate these two quantities with each other. Furthermore, We
want to validate the outcome of PCMCI. Thus we preferably compare our
results to studies which calculate a dependence measure on approximately
the same data as we used.

Second, Fig. 6 and 7 of our study show the dependence of phenology
(NDVI) on climatic drivers. Fig. 3 of Yu and Ruddell et al. 2019 shows
the elasticities of NEE to both climatic and phenological drivers. Fluctua-
tions and responses of NEE and NDVI to climatic factors happen on very
different time scales. Further, NEE and NDVI are difficult to compare in
the first place.

We hope that we could convince you that the comparison of our global case
study to Wu et al. (2015) and Papagiannopoulou et al. (2017b) is better
suited for verification purposes than a comparison to Yu and Ruddell et
al. 2019.
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Abstract. Local meteorological conditions and biospheric activity
✿✿✿

The
✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿✿✿✿✿✿✿✿

biochemical
✿✿✿✿✿✿✿✿

processes
✿✿

in
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿✿✿

ecosystems

are tightly coupled
✿

to
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿✿

conditions. Understanding these links
✿✿✿✿✿✿✿✿✿✿

interactions
✿

is an essential prerequisite

for predicting the Earth system under climate changeconditions
✿✿

e.g.
✿✿✿✿

the
✿✿✿✿✿✿✿

response
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle
✿✿

to
✿✿✿✿✿✿✿

climate

✿✿✿✿✿✿

change. However, many empirical studies on the interaction between the biosphere and the atmosphere are based
✿✿

in
✿✿✿✿

this

✿✿✿✿

field
✿✿✿

rely
✿

on correlative approaches that are not able to deduce causal paths, and only very few studies apply causal discov-5

ery methods. Here , we use
✿✿✿

we
✿✿✿✿✿✿

explore
✿✿✿✿

the
✿✿✿✿✿✿✿

potential
✿✿✿

of a recently proposed causal graph discovery algorithm, which aims

to reconstruct the causal dependency structure underlying a set of time series . We explore the potential of this method to

infer temporal dependencies in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

biosphere-atmosphere
✿✿✿✿✿✿✿✿✿✿✿

interactions.
✿✿✿✿✿

Using
✿✿✿✿✿✿✿

artificial
✿✿✿✿

time
✿✿✿✿✿✿

series
✿✿✿✿

with
✿✿✿✿✿✿

known
✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿✿

that

✿✿✿✿✿

mimic
✿✿✿✿✿✿✿✿✿

real-world biosphere-atmosphere interactions . Specifically we address the following questions: How do periodicity and

heteroscedasticity influence causal detection rates
✿✿✿✿✿✿✿

influence
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-stationarities, i.e. the detection of existing and non-existing10

links? How consistent are results for noise-contaminated data? Do results exhibit an increased information content that justifies

the use of this causal-inference method? We explore the first question using artificial time series with well known dependencies

that mimic real-world biosphere-atmosphere interactions. The two remaining questions are addressed jointly
✿✿✿✿✿✿✿✿

periodicity
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

heteroscedasticity,
✿✿

on
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿

networks.
✿✿✿

We
✿✿✿✿✿

then
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

interpretability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

method in two case

studiesutilizing observational data. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosys-15

temat half hourly time resolution allowing us to understand the impact of measurement uncertainties. Secondly, we analyse
✿

,

✿✿✿

and
✿✿✿✿✿✿✿✿

secondly,
✿✿✿

we
✿✿✿✿✿✿

explore
✿

global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic

drivers of vegetation greenness.
✿✿✿

We
✿✿✿✿✿✿✿

compare
✿✿✿

the
✿✿✿✿✿✿✿✿

retrieved
✿✿✿✿✿

causal
✿✿✿✿✿✿

graphs
✿✿✿

to
✿✿✿✿✿

simple
✿✿✿✿✿

cross
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

correlation-based
✿✿✿✿✿✿✿✿✿

approaches
✿✿

to
✿✿✿✿

test

✿✿✿✿✿✿

whether
✿✿✿✿✿✿

causal
✿✿✿✿✿✿

graphs
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

considerably
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

informative.
✿

Overall, the results confirm the capacity of the causal discovery

method to extract time-lagged linear dependencies under realistic settings. The
✿✿✿

For
✿✿✿✿✿✿✿✿

example,
✿✿

we
✿✿✿✿

find
✿

a
✿✿✿✿✿✿✿✿

complete
✿✿✿✿✿✿✿✿✿✿

decoupling
✿✿

of20

✿✿

the
✿✿✿✿

net
✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿✿

exchange
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿

during
✿✿✿✿✿✿✿

summer
✿✿✿✿✿

time
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

Mediterranean
✿✿✿✿✿✿✿✿✿

ecosystem.
✿✿✿✿✿✿✿✿✿

However,

✿✿✿✿✿✿✿

cautious
✿✿✿✿✿✿✿✿✿✿✿✿

interpretations
✿✿✿

are
✿✿✿✿✿✿

needed
✿✿✿

as
✿✿✿

the violation of the method’s assumptions
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-stationarities
✿

increases the like-

lihood to detect false links. Nevertheless, we consistently identify interaction patterns in observational data. Our findings

suggest that estimating a
✿✿✿✿✿✿

Overall,
✿✿✿✿✿✿✿✿✿

estimating
✿

directed biosphere-atmosphere network at the ecosystem level can offer novel

possibilities to unravel
✿✿✿✿✿✿✿

networks
✿✿✿✿✿

helps
✿✿✿✿✿✿✿✿✿

unravelling
✿

complex multi-directional
✿✿✿✿✿✿

process
✿

interactions. Other than classical correl-

ative approaches, our findings are constrained to a few meaningful set
✿✿✿

sets of relations which can be powerful insights for the

evaluation of terrestrial ecosystem models.
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1 Introduction

Understanding biosphere-atmosphere interactions is a prerequisite to accurately quantify feedbacks in the Earth system (Bonan, 2015).5

On the one hand, the
✿✿✿

The
✿✿✿✿✿✿✿✿

terrestrial
✿

biosphere responds to the atmospheric drivers such as radiation intensity, temperature,

vapour pressure deficit, and composition of trace gases. On the other hand, the biosphere influences the atmosphere via par-

titioning the incoming net radiation into sensible, latent, and ground heat fluxes as well as via controlling the exchange of

trace gases and volatile organic compounds. Over the past decades, many of these processes have been identified and their

physical, chemical and biological effects have been investigated (see e.g. Monson and Baldocchi, 2014; McPherson, 2007, for10

overviews). However, the synergistic effects of these processes and the specific cause-effect interactions underlying these effects

are still not fully understood (Baldocchi D and T., 2016; Miralles et al., 2018)
✿✿✿✿

there
✿✿✿

are
✿✿✿

still
✿✿✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿✿✿

unknowns
✿✿✿✿✿✿✿✿

regarding
✿✿✿

the

✿✿✿✿

exact
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿✿✿✿

among
✿✿

the
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

processes
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Baldocchi D and T., 2016; Miralles et al., 2018),
✿✿✿✿✿

which
✿✿✿✿

leads
✿✿

to
✿✿✿✿✿

large

✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

predicting
✿✿✿

e.g.
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿

responses
✿✿

to
✿✿✿✿✿✿✿

drought
✿✿✿✿✿✿✿✿✿

conditions
✿✿

??.

Today, there is a manifold of monitoring systems operating at various spatial and temporal scales
✿✿✿✿✿✿✿

Multiple
✿✿✿✿✿✿✿✿✿

ecological15

✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿✿✿✿

systems
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿

setup
✿✿

to
✿✿✿✿✿✿✿

monitor
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿

dynamics. Networks of eddy covariance towers offer high temporal

resolution to study the dependence between
✿✿✿✿✿✿✿✿✿✿

continuously
✿✿✿✿✿✿✿

monitor carbon, water, and energy fluxes and the atmosphere under

a variety of normal and stress conditions or in response to disturbances
✿

in
✿✿✿✿

high
✿✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿

resolution
✿

(Baldocchi, 2014). Satellite

remote sensing data complement this picture
✿✿✿

and
✿✿✿

can
✿✿✿

be
✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿✿

tandem
✿✿✿✿

(??). They typically only monitor vegetation states

at multi-day resolutions and some products offer nearly complete global coverages
✿✿✿✿✿✿✿

coverage (Justice et al., 2002; Woodcock20

et al., 2008). The actual and future satellite missions are leading to rapid development in the field with ever higher spatial,

temporal, and spectral measurements (Malenovský et al., 2012; Guanter et al., 2015; Qi and Dubayah, 2016).

The study of biosphere-atmosphere interactions using observations typically relies on correlative approaches, or is based

on model-data i.e. requires a-priori knowledge. Only few attempts have been made to learn directional dependencies in a

data-driven manner in biogeosciences. For instance, Ruddell and Kumar (2009) used transfer entropy, a bivariate information25

theoretic measure, to estimate networks of information flow. These networks constructed for a corn-soybean ecosystem under

drought and normal conditions showed substantial differences in connectivity. The decoupling during drought between variables

describing both land and atmospheric conditions was attributed to changes in the feedback patterns for the two conditions. In

recent years, a new branch in statistics aiming for causal inference from empirical data has experienced substantial progress.

The idea of causal inference emerged already in the early 20th century (Wright, 1921). Later, Granger suggested one of the30

first applicable formalisms (Granger, 1969); since then, several efforts in ecology and climate science have concentrated on the

bivariate form of Granger causality (Elsner, 2006, 2007; Kodra et al., 2011; Attanasio, 2012; Attanasio et al., 2012).
✿✿✿✿

From
✿✿✿

an

✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿✿

theoretic
✿✿✿✿✿✿✿✿✿

perspective
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

entropy
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Schreiber, 2000) evolved
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿

frequently
✿✿✿✿

used
✿✿✿✿✿✿✿✿

measure
✿

to
✿✿✿✿✿

infer
✿✿✿✿✿✿✿✿✿✿✿

directionality

✿✿✿

and
✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿

flow
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kumar and Ruddell, 2010; Ruddell et al., 2015; Gerken et al., 2018; Yu et al., 2019).
✿✿✿

For
✿✿✿✿✿✿✿

instance,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ruddell and Kumar (2009) used
✿✿✿✿✿✿

transfer
✿✿✿✿✿✿✿

entropy
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿✿

networks
✿✿

of
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿

flow.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿

networks
✿✿✿✿✿✿✿✿✿

constructed
✿✿✿

for
✿✿✿

an

✿✿✿✿✿✿✿✿✿

agricultural
✿✿✿✿

site
✿✿✿✿✿

under
✿✿✿✿✿✿

drought
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

non-drought
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿

showed
✿✿✿✿✿✿✿✿✿

substantial
✿✿✿✿✿✿✿✿✿

differences
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

connectivity,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿

between

✿✿✿✿✿✿✿✿✿

subsystems
✿✿✿✿✿✿✿✿✿✿

comprising
✿✿✿✿✿✿✿

variables
✿✿✿

of
✿✿✿✿

land
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿✿

Those
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

connectivity
✿✿

are
✿✿✿✿✿✿✿✿✿

attributed
✿✿

to
✿✿✿✿✿✿✿

changes

3



✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

feedback
✿✿✿✿✿✿✿

patterns
✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsystems
✿✿✿✿

for
✿✿✿✿✿✿✿

drought
✿✿✿

and
✿✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿

conditions.
✿✿✿✿

The
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿

forms
✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿

Granger5

✿✿✿✿✿✿✿

causality
✿✿✿

and
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿✿

entropy
✿✿

are
✿✿✿✿✿✿✿✿

bivariate
✿✿✿

and
✿✿✿✿✿✿✿✿

converge
✿✿

for
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿✿✿✿

vector
✿✿✿✿

auto
✿✿✿✿✿✿✿✿

regressive
✿✿✿✿✿✿✿

models.
✿✿✿✿✿

While
✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿✿

causality

✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿

limited
✿✿

to
✿✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿

relationships,
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

entropy
✿✿✿✿✿✿✿✿

captures
✿✿✿✿

also
✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿✿✿

interactions,
✿✿✿

but
✿✿✿✿✿✿✿

requires
✿✿✿✿

very
✿✿✿✿✿

large
✿✿✿✿

data

✿✿✿✿✿✿✿✿

quantities
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

estimation
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿

function.

Aiming to mitigate some of the limitations of the traditional Granger causality, Detto et al. (2012) used a conditional

spectral Granger causality framework that allows to disentangle system inherent periodic couplings from external forcing.10

The disentanglement is enabled via decomposition into the frequency domain using wavelet theory. This method enabled

the finding that soil respiration in a pine and hardwood forested ecosystem in winter is not influenced by canopy assimi-

lation but only by temperature, a result that would not be detectable via lagged correlation or bivariate Granger causality.

✿

A
✿✿✿✿✿✿✿✿✿✿✿✿✿

time-frequency
✿✿✿✿✿✿✿✿✿✿✿✿✿

representation
✿✿

of
✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿✿

causality
✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

presented
✿✿

by
✿✿✿✿✿✿✿✿

? which
✿✿✿✿✿✿✿

allowed
✿✿

to
✿✿✿✿✿✿✿

identify
✿✿✿✿✿✿✿✿✿✿

anomalous
✿✿✿✿✿

events
✿✿✿

in

✿✿✿✿✿✿

marine
✿✿✿

and
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿

time
✿✿✿✿✿✿

series. Green et al. (2017) used a similar approach
✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Detto et al. (2012) to investigate biosphere-15

atmosphere feedback loops. It is
✿✿✿

was
✿

found that they can explain up to 30% of variance in radiation and precipitation in certain

regions. Recently, Papagiannopoulou et al. (2017a) applied a non-linear multivariate conditional Granger causality framework

to study climatic drivers of vegetation at the global scale. This approach revealed that water limitations on plant productivity

play a considerably larger role than previously expected (Papagiannopoulou et al., 2017b). These examples show
✿✿✿✿✿✿✿✿✿

availability

✿✿✿✿✿✿✿✿

dominates
✿✿✿✿✿

plant
✿✿✿✿✿✿✿✿✿✿

productivity
✿✿✿

as
✿✿✿✿

61%
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

vegetated
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

appeared
✿✿✿✿✿

water
✿✿✿✿✿✿✿

limited
✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿

controlled
✿✿✿

by
✿✿✿✿✿✿✿

radiation
✿✿✿

or20

✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Papagiannopoulou et al., 2017b).
✿✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿✿

of
✿✿✿✿✿✿

transfer
✿✿✿✿✿✿✿✿

entropy,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Goodwell and Kumar (2017a, b) developed
✿✿

a

✿✿✿✿✿✿✿✿✿

redundancy
✿✿✿✿✿✿✿✿

measure
✿✿✿✿✿

which
✿✿✿✿✿✿

allows
✿✿

to
✿✿✿✿✿✿✿✿✿

distinguish
✿✿✿✿✿✿✿

unique,
✿✿✿✿✿✿✿✿✿

synergistic
✿✿✿

and
✿✿✿✿✿✿✿✿✿

redundant
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿

transfer
✿✿

of
✿

a
✿✿

bi
✿✿✿

or
✿✿✿✿✿✿✿✿✿

potentially

✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿

system
✿✿

to
✿

a
✿✿✿✿✿✿

target
✿✿✿✿✿✿✿

variable.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿

modification
✿✿✿✿✿✿✿

enables
✿

a
✿✿✿✿✿✿✿

stronger
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿

of
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿

networks

✿✿✿✿✿✿✿✿✿

constructed
✿✿✿✿

with
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿✿

entropy.
✿✿✿✿✿✿✿

Changes
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

connectivity
✿✿✿✿

then
✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿

point
✿✿

to
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿

response
✿✿✿✿✿✿✿✿

strategies
✿✿

to

✿✿✿✿✿✿✿✿✿✿

disturbances
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Goodwell et al., 2018).
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿

examples
✿✿✿✿✿✿✿✿

highlight that unexpected interaction patterns can be found
✿

in
✿✿✿✿✿✿✿✿

principle25

✿✿

be
✿✿✿✿✿✿✿✿

identified from data only and may challenge our theoretical assumptions. In fact, in the last years the science of causal infer-

ence has developed a strong theoretical foundation and several algorithms have been proposed (Spirtes et al., 2001; Pearl, 2009; Peters et al.,

However, we only find few studies that test the
✿✿✿

only
✿✿✿✿

few
✿✿✿✿✿✿

studies
✿✿✿

test
✿✿✿

the
✿✿✿✿✿✿✿✿✿

suitability
✿✿

of
✿✿✿

this
✿

latest generation of such methods in

ecosystem ecology (see e.g. Shadaydeh et al., 2018; Christiansen and Peters, 2018)
✿✿✿✿✿✿✿

methods
✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿

dynamics

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see e.g. Shadaydeh et al., 2018; ?; Christiansen and Peters, 2018).30

Ecological and climate data is usually
✿✿

are
✿✿✿✿✿

often time ordered. Using the concept of time series graphs (Ebert-Uphoff and Deng, 2012),

the time order
✿✿✿✿

This
✿✿✿✿✿✿✿

property
✿

can be exploited to create efficient causal graph discovery algorithms (Runge, 2018a)
✿✿✿✿✿✿✿✿

construct

✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

graphs
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ebert-Uphoff and Deng, 2012). Recently, Runge et al. (2018) introduced such an algorithm
✿✿✿✿✿✿✿✿✿✿

? introduced

✿✿

an
✿✿✿✿✿✿✿✿

algorithm
✿✿

to
✿✿✿✿✿✿✿✿

estimate
✿✿✿✿

such
✿✿✿✿✿✿

graphs, called PCMCI, a combination of the PC algorithm (named after its inventors Peter and

Clark, Spirtes and Glymour, 1991) and the Momentary Conditional Independence (MCI) test. PCMCI has been
✿✿✿✿✿✿✿✿✿✿

successfully35

applied to artificial tests (Runge et al., 2018) and climatological case studies (Runge et al., 2014; Kretschmer et al., 2016).

Hence, this method could be potentially of very high relevance for learning the casual dependency structure in the complex

✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿

dependency
✿✿✿✿✿✿✿✿

structure
✿✿✿✿✿✿✿✿✿

underlying biosphere-atmosphere system
✿✿✿✿✿✿✿✿✿

interactions.

4



In this study, we explore the potential of PCMCI for disentangling and quantifying interactions and feedbacks between

terrestrial biosphere state and fluxes and meteorological variables. The study is structured as follows: Firstly, we describe5

✿✿

In
✿✿✿✿

Sect.
✿✿

2
✿✿✿

we
✿✿✿✿✿✿✿✿

motivate
✿✿✿

and
✿✿✿✿✿✿✿✿

introduce
✿✿✿

the
✿✿✿✿✿✿✿

method
✿✿✿✿✿

from
✿✿

an
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿✿✿

perspective.
✿✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿✿

describe
✿✿✿✿✿✿✿

artificial
✿✿✿✿

and
✿✿✿

real
✿✿✿✿✿✿

world

✿✿✿✿✿✿

datasets
✿✿✿✿✿✿✿✿

explored
✿✿

in
✿✿✿✿

this
✿✿✿✿✿

study.
✿✿✿✿

The
✿✿✿✿✿

results
✿✿✿

in
✿✿✿✿

Sect.
✿✿✿

??
✿✿✿✿✿✿✿✿

describes the performance of the method on artificial time series data

with well-known
✿✿✿✿✿

known
✿

dependencies that mimic some basic properties of observed land surface fluxes such as heteroscedas-

ticity(Sect.3.1). Secondly, we explore
✿

.
✿✿✿

We
✿✿✿✿

then
✿✿✿✿✿✿

report
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

exploration
✿✿

of
✿

three replicated eddy covariance measurement

towers in a Mediterranean ecosystem and explore how the identified interdependencies of carbon and energy fluxes and micro-5

meteorological observations vary over time(Sect.3.2). Thirdly, we use
✿

.
✿✿✿✿✿✿✿

Further,
✿✿

we
✿✿✿✿✿✿✿

present
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

of global satellite data

of vegetation greenness to understand the lagged dependency of ecosystems with respect to climatic drivers(Sect.3.3). Based

on these results, we discuss
✿✿✿✿✿

Sect.4
✿✿✿✿✿✿✿✿

discusses
✿

the potentials and limitations of PCMCI for other applications in land-atmosphere

studies and give recommendations for further methodological developments(Sect.4).
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2 Method and Data10

2.1 Causal Discovery via PCMCIPCMCI assesses the causal structure of a
✿✿✿✿✿

From
✿✿✿✿✿✿✿✿

bivariate
✿✿

to
✿

multivariate dataset or

✿✿✿✿✿✿✿✿

measures
✿✿

of
✿✿✿✿✿✿✿✿

causality
✿

✿✿✿✿✿✿✿✿✿

Monitoring
✿✿✿

an
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of
✿✿✿✿

net
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿

exchange
✿✿✿✿✿✿✿

(NEE),
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

underlying
✿✿✿✿✿

gross
✿✿✿✿✿✿✿

primary

✿✿✿✿✿✿✿✿✿

production
✿✿✿✿✿

(GPP)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

ecosystem
✿✿✿✿✿✿✿✿✿

respiration
✿✿✿✿✿✿✿✿✿✿✿✿

(Rtextnormaleco)
✿✿✿✿✿✿✿

together
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿

drivers
✿✿✿

i.e.
✿✿✿✿✿

global
✿✿✿✿✿✿✿✿

radiation
✿✿✿✿

(Rg),
✿✿✿✿✿✿✿

surface

✿✿

air
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

(T),
✿✿✿✿

and
✿✿✿✿

soil
✿✿✿✿✿✿✿✿

moisture
✿✿✿✿✿

(SM),
✿✿✿✿✿✿

allows
✿✿✿

to
✿✿✿✿✿

study
✿✿✿

the
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

carbon
✿✿✿✿✿

cycle
✿✿✿

in
✿✿✿✿✿✿✿✿

terrestrial
✿✿✿✿✿✿✿✿✿✿✿

ecosystems.15

✿✿

To
✿✿✿✿✿

foster
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿✿✿✿

understanding,
✿✿

a
✿✿✿✿✿✿✿✿✿✿

fundamental
✿✿✿✿✿✿✿✿

question
✿✿

is
✿✿✿✿

how
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿

causally
✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿✿✿

each
✿✿✿✿✿

other.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

requires

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

identification
✿✿

of
✿✿✿✿✿✿✿✿✿✿

directional
✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿✿

well
✿✿✿✿✿✿

known
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿

SM
✿✿✿

→
✿✿✿✿

GPP
✿✿✿✿

and
✿✿✿✿✿

GPP
✿✿

→
✿✿✿✿✿

Reco
✿✿✿

and
✿✿✿✿✿

their

✿✿✿✿✿✿✿✿✿✿✿

differentiation
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿

physically
✿✿✿✿✿✿✿✿✿✿

implausible
✿✿✿✿✿

links
✿✿✿✿

such
✿✿

as
✿✿✿✿

Reco
✿✿

→
✿✿✿✿✿

GPP.
✿✿✿✿✿✿✿✿

Graphical
✿✿✿✿✿✿

causal
✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Spirtes et al., 2001) provide
✿✿

a

✿✿✿✿✿✿✿✿✿

framework
✿✿

to
✿✿✿✿✿✿✿✿

represent
✿✿✿

and
✿✿✿✿✿✿✿

identify
✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿

relations
✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿✿

conditional
✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿✿✿✿✿

relations
✿✿

in
✿✿✿✿

data
✿✿✿✿✿✿✿

streams
✿✿

of
✿✿✿

this
✿✿✿✿✿

kind.

✿✿

In
✿✿✿

the
✿✿✿✿

case
✿✿

of
✿✿✿

an
✿✿✿✿✿✿✿✿✿

ecological
✿✿✿✿✿✿✿✿✿

monitoring
✿✿✿✿

site
✿✿

as
✿✿✿✿✿✿✿✿

described
✿✿✿✿✿

here,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿

exploit
✿✿✿

the
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿✿

information
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations20

✿✿

for
✿✿✿✿✿✿✿✿✿✿

identifying
✿✿

a
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

graph
✿✿

as
✿✿

a
✿✿✿✿

type
✿✿✿

of
✿✿✿✿✿✿✿✿

graphical
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Runge, 2018a).
✿✿✿✿✿✿✿✿

Formally
✿✿✿✿

this
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿

stated
✿✿

as
✿✿✿✿✿✿✿✿

follows:

✿✿✿

The
✿✿✿✿✿✿✿✿

variables
✿✿✿

Xi
t ✿✿✿✿✿✿✿✿

comprise
✿✿

a
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿

stochastic process X by estimating its time series graph. In short, the nodes of

a
✿✿✿✿✿

(where
✿

i
✿✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

variable
✿✿✿✿✿

index,
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

example
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

i ∈ {Rg,T,GPP,Reco,SM},
✿✿✿

and
✿✿

t
✿✿

is
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿

index).
✿✿

A time series graph G

represent single variables X1,X2, ... ∈ X at specific (lagged) time steps t, t− 1, .., t− τmax. A lag is the number of time steps

✿✿✿✿✿✿✿✿

visualizes
✿✿✿✿

how
✿✿✿

the
✿✿✿✿✿✿✿✿✿

individual
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿

Xi ∈ X
✿✿✿✿✿✿✿

depend
✿✿✿

on
✿✿✿✿

each
✿✿✿✿✿

other
✿✿✿

at
✿✿✿✿✿✿✿

specific
✿✿✿✿

time
✿✿✿✿

lags
✿

τbetween two nodes Xi
t1

,
✿✿✿✿

i.e.25

✿✿✿

Xi
t−τ✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

τ ∈ {1, .., τmax}
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Runge, 2018a, for definitions).
✿✿

In
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

following,
✿✿✿

we
✿✿✿✿✿

refer
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

variable
✿✿✿✿

Xi
t−τ✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿✿

causally

✿✿✿✿✿✿✿

affecting
✿✿

a
✿✿✿✿✿✿✿

variable
✿✿

X
j
t✿✿✿

as
✿✿✿✿✿✿✿

’parent’
✿✿

or
✿✿✿✿✿✿✿

’driver’
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

latter
✿✿

as
✿✿✿✿✿✿✿✿✿

’receiver’
✿✿

or
✿✿✿✿✿✿✿

’target’.
✿✿✿

To
✿✿✿✿✿

come
✿✿

to
✿

a
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿✿✿

interpretation,
✿✿

it
✿✿

is

✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿✿✿✿

exclude
✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿✿✿✿✿✿

between
✿✿✿

two
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

that
✿✿✿

are
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

drivers
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Xi
t−τ1
← Xs

t−τ2
→ X

j
t )

✿✿

or
✿✿✿✿✿✿✿

indirect

✿✿✿✿

paths
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Xi
t−τ2
→ Xs

t−τ1
→ X

j
t ).

✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

estimating
✿✿✿

the
✿✿✿✿✿✿

effects
✿✿

of
✿✿✿✿

GPP
✿✿

on
✿✿✿✿

Reco
✿✿✿✿

and
✿✿

Rg
✿✿✿

on
✿✿✿✿

Reco
✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿

bivariate
✿✿✿✿✿✿✿✿

measure,

✿✿✿

one
✿✿✿✿✿

likely
✿✿✿✿✿✿

obtains
✿✿✿✿✿✿✿✿✿✿

implausible
✿✿✿✿✿✿

results
✿✿✿

like
✿✿

to
✿✿✿✿✿✿

strong
✿✿

or
✿✿✿✿

even
✿✿✿✿✿✿✿✿✿

unexpected
✿✿✿✿✿

links
✿✿✿✿✿✿✿

because
✿✿

T,
✿✿✿✿✿✿✿✿✿✿

respectively
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿

common
✿✿✿✿✿

driver
✿✿✿✿

and30

✿✿✿✿✿✿✿

mediator
✿✿✿✿✿✿✿

(indirect
✿✿✿✿✿✿

path),
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

accounted
✿✿✿✿

for.
✿✿

To
✿✿✿✿✿✿✿

exclude
✿✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

drivers
✿✿

or
✿✿✿✿✿✿✿

indirect
✿✿✿✿✿

paths,
✿✿✿✿✿✿✿✿✿✿

conditional

✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿

tests
✿✿✿

are
✿✿✿✿✿

used,
✿✿✿✿✿✿

denoted
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿

CI(Xi
t−τ,X

j
t |S),

✿✿✿✿

with
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set
✿✿

S.
✿✿

If
✿✿✿✿

any
✿✿✿✿✿✿✿

variable
✿✿

(or
✿✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿✿

combination)
✿✿

in

✿

S
✿✿✿✿✿✿✿

explains
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿✿✿

between
✿✿✿

Xi
t−τ✿

and X
j
t2 ✿✿

X
j
t ,
✿✿✿✿

then
✿✿✿

the
✿✿✿

CI
✿✿✿✿✿✿

statistic
✿✿

is
✿✿✿✿

zero.
✿

✿✿✿

Two
✿✿✿✿✿✿✿✿✿

prominent
✿✿✿✿✿✿✿

methods
✿✿✿✿

that
✿✿✿

aim
✿✿✿

for
✿✿✿✿✿✿✿✿✿

directional
✿✿✿✿✿✿✿✿✿✿✿

dependencies
✿✿✿

are
✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿

causality
✿✿✿

and
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

entropy
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Granger, 1969; Schreiber, 2000).

✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿

causality
✿✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿

estimated
✿✿

as
✿

a
✿✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿✿✿✿

autoregressive
✿✿✿✿✿

model
✿✿✿✿

and
✿✿✿

thus
✿✿✿✿✿✿✿✿

captures
✿✿✿✿

only
✿✿✿✿✿

linear
✿✿✿✿✿

links.
✿✿✿✿✿✿✿

Transfer
✿✿✿✿✿✿✿

entropy,

✿✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿

theory,
✿✿✿✿✿✿✿

captures
✿✿✿✿

also
✿✿✿✿

non
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿✿✿

dependencies.
✿✿

It
✿✿✿

can
✿✿

be
✿✿✿✿✿✿

shown
✿✿✿✿

that
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿

Gaussians,
✿✿✿✿✿✿✿

transfer

✿✿✿✿✿✿

entropy
✿✿

is
✿✿✿✿✿✿✿✿

equivalent
✿✿

to
✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿✿

causality
✿✿✿

(?).
✿✿✿✿

Both
✿✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿

phrased
✿✿

as
✿✿✿✿✿

testing
✿✿✿

for
✿✿✿✿✿✿✿✿✿

conditional
✿✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Runge et al., 2019).

✿✿

In
✿✿✿✿

their
✿✿✿✿✿✿✿

original
✿✿✿✿✿✿✿

bivariate
✿✿✿✿✿

form,
✿✿✿✿✿✿✿

neither
✿✿

of
✿✿✿✿✿

these
✿✿✿

two
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿

accounts
✿✿✿

for
✿✿✿✿✿

third
✿✿✿✿✿✿✿✿

variables.
✿✿✿✿

But
✿✿✿✿

both
✿✿✿

can
✿✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿

extended
✿✿

to

✿✿✿

deal
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿

time
✿✿✿✿✿

series
✿✿

as
✿✿✿✿✿✿✿✿

required
✿✿✿

here
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Runge et al., 2012b; Granger, 1969).
✿✿✿✿✿

There
✿✿✿

are
✿✿✿✿

even
✿✿✿✿✿✿✿✿✿

non-linear
✿✿✿

and
✿✿✿✿✿✿✿

spectral5

✿✿✿✿✿✿✿✿✿✿✿

modifications
✿✿

of
✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿

causality
✿✿✿✿✿✿

which
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿

applied
✿✿

to
✿✿✿✿✿

study
✿✿✿✿✿✿✿✿

biosphere
✿✿✿✿✿✿✿✿✿✿

atmosphere
✿✿✿✿✿✿✿✿✿

interactions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Papagiannopoulou et al., 2017a; Detto

✿✿✿✿✿✿✿✿

However,
✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿

transfer
✿✿✿✿✿✿

entropy
✿✿

is
✿✿✿✿✿✿✿✿✿✿

challenging
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

"curse
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿

dimensionality"
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Runge et al., 2012b) and

✿✿✿

also
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿✿

causality
✿✿✿✿✿✿✿

exhibits
✿✿✿✿

low
✿✿✿

link
✿✿✿✿✿✿✿✿

detection
✿✿✿✿✿✿

power
✿✿✿

for
✿✿✿✿✿

larger
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿

(higher
✿✿✿✿✿✿✿✿✿✿

dimensions)
✿✿✿✿

and

✿✿✿✿✿✿

limited
✿✿✿✿✿✿

sample
✿✿✿✿

size,
✿✿

as
✿✿

is
✿✿✿

the
✿✿✿✿

case
✿✿

in
✿✿✿

our
✿✿✿✿✿✿✿✿✿

application
✿✿✿

(?).
✿✿✿✿

The
✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿✿

detection
✿✿✿✿✿✿

power
✿✿✿✿✿✿✿

happens
✿✿✿✿✿

when
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

whole
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✿✿✿

past
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

X−t = (Xt−1,Xt−2, ...)
✿✿

of
✿✿✿

X
j
t ,

✿✿✿✿✿✿✿

truncated
✿✿

at
✿

a
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿

lag
✿✿✿✿

τmax,
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set
✿✿

S.
✿✿✿

The
✿✿✿✿✿✿✿

problem
✿✿

is
✿✿✿

that
✿✿✿✿

this
✿✿

set
✿✿✿

can
✿✿✿✿✿✿✿

contain10

✿

a
✿✿✿✿

high
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿

irrelevant.
✿✿✿✿

For
✿✿✿✿✿✿✿

example,
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿

assessing
✿✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿

Rg
✿✿

at
✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿

time
✿✿✿

lag
✿

τ
✿✿✿

on
✿✿✿✿

GPP

✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿

Granger
✿✿✿✿✿✿✿

causality
✿✿✿✿

one
✿✿✿✿✿

would
✿✿✿✿✿✿

create
✿

a
✿✿✿✿✿✿

vector
✿✿✿✿

auto
✿✿✿✿✿✿✿✿

regressive
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

comprising
✿✿

all
✿✿✿✿✿✿✿✿

variables, i.e. τ = t1 − t2

for t1 > t2. To generate a causal graph
✿✿✿

Rg,
✿✿

T,
✿✿✿✿

SM,
✿✿✿✿✿

GPP
✿✿✿

and
✿✿✿✿

Reco
✿✿

at
✿✿✿✿

each
✿✿✿✿✿✿✿✿

available
✿✿✿✿

lag.
✿✿✿

But
✿✿✿✿✿

Reco,
✿✿✿✿✿✿✿✿✿

dominated
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿

heterotrophic

✿✿✿✿✿✿✿✿✿

respiration,
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿

affect
✿✿✿✿✿

gross
✿✿✿✿✿✿✿

primary
✿✿✿✿✿✿✿✿✿✿

productivity
✿✿✿

and
✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿✿✿

removed
✿✿

to
✿✿✿✿✿✿✿

decrease
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

dimensionality.
✿✿✿✿✿✿✿✿

However,

✿✿✿✿✿✿✿

manually
✿✿✿✿✿✿✿✿

selecting
✿✿✿✿✿✿✿✿✿

conditions
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

desirable
✿✿✿✿

when
✿✿✿

the
✿✿✿✿✿✿✿✿✿

underlying
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿✿✿

structure
✿✿

is
✿✿✿✿✿✿✿✿

unknown
✿✿✿✿✿

which
✿✿

is
✿✿✿✿

why
✿✿✿✿✿✿

ideally
✿✿✿

the15

✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set
✿✿

is
✿✿✿✿✿✿✿✿

identified
✿✿✿✿✿✿✿✿✿✿✿

automatically.
✿

✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿

addresses
✿✿✿✿

this
✿✿✿✿

issue
✿✿✿

by
✿✿✿✿✿✿✿

reducing
✿✿✿

the
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿

conditions
✿✿

S
✿✿✿✿

prior
✿✿

to
✿✿✿✿✿✿✿✿✿✿

quantifying
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dependence
✿✿✿✿✿✿✿

between
✿✿✿✿

two
✿✿✿✿✿✿✿✿

variables.

✿✿✿

The
✿✿✿✿✿✿✿✿

two-step
✿✿✿✿✿✿✿✿

approach
✿✿✿✿✿✿

utilizes
✿✿

a
✿✿✿✿✿✿

variant
✿✿✿

of
✿✿✿

the
✿✿✿

PC
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Spirtes and Glymour, 1991) and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

momentary
✿✿✿✿✿✿✿✿✿✿

conditional

✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿

(MCI)
✿✿✿

(?).
✿✿✿✿✿

More
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿✿

descriptions
✿✿✿

are
✿✿✿✿✿

given
✿✿

in
✿✿✿✿

Sect.
✿✿✿✿

2.4
✿✿✿

and
✿✿✿✿

2.5,
✿✿✿✿✿✿✿✿✿✿

respectively
✿✿✿✿

(full
✿✿✿✿✿✿✿✿✿

description
✿✿✿

of

✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿

including
✿✿✿✿✿✿

proofs
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

quantitative
✿✿✿✿✿✿✿✿✿✿✿

comparisons
✿✿✿✿

with
✿✿✿✿✿

other
✿✿✿✿✿✿✿

methods
✿✿✿

are
✿✿✿✿✿✿✿✿

provided
✿✿✿

in
✿✿

?).
✿✿✿

A
✿✿✿✿✿✿✿✿

schematic
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

PCMCI20

✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿

given
✿✿

in
✿✿✿✿

Fig.
✿✿✿

A1.
✿✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿

belongs
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

family
✿✿

of
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿

graphical
✿✿✿✿✿✿✿

models
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Spirtes et al., 2001; Pearl, 2009),
✿✿✿✿

and

✿✿✿✿✿✿

follows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿

listed
✿✿

in
✿✿✿✿✿

Sect.
✿✿✿✿

2.2.
✿✿

In
✿✿✿

the
✿✿✿✿✿

limit
✿✿

of
✿✿✿✿✿✿✿

infinite
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

length,
✿✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿✿

converges
✿✿

to
✿✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿

graph

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

dependencies,
✿✿✿✿✿

which
✿✿✿

is
✿✿✿✿

why
✿✿✿

we
✿✿✿✿

use
✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿✿✿✿

“causal”.
✿✿✿

As
✿✿✿✿

we
✿✿✿✿

deal
✿✿✿✿

with
✿✿✿✿✿

finite
✿✿✿✿✿✿✿

sample
✿✿✿✿✿

length
✿✿✿✿

and
✿✿✿✿✿✿✿✿

partially
✿✿✿✿✿✿✿✿✿

unfulfilled

✿✿✿✿✿✿✿✿✿✿

assumptions,
✿✿✿✿✿✿✿✿

spurious
✿✿✿✿✿

links
✿✿✿

can
✿✿✿✿

still
✿✿✿✿✿✿

appear
✿✿✿✿✿✿✿

(beyond
✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿

false
✿✿✿✿✿✿✿

positive
✿✿✿✿

rate)
✿✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿

each
✿✿✿✿✿✿✿

detected
✿✿✿✿

link
✿✿✿✿

has

✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

interpreted
✿✿✿✿

with
✿✿✿✿✿✿✿

caution.
✿
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2.2
✿✿✿✿✿✿✿✿✿✿✿

Assumptions

✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿

assesses
✿✿✿

the
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿

structure
✿✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿

dataset
✿✿✿

or
✿✿✿✿✿✿✿

process
✿✿

X
✿✿✿

by
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

its
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

graph.
✿✿✿

To
✿✿✿✿✿

draw

✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿

conclusions from observational datathrough statistical dependencies, a series of assumptions must be adopted. Here, we

assume: ,
✿✿✿✿

any
✿✿✿✿✿

causal
✿✿✿✿✿✿✿

method
✿✿✿✿

must
✿✿✿✿✿

adopt
✿✿

a
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pearl, 2009; Spirtes et al., 2001).
✿✿✿

For
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿

case,

✿✿✿

here
✿✿✿

we
✿✿✿✿✿✿✿

assume time order, the causal Markov condition, faithfulness, causal sufficiency,
✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿

stationarity, and no contempo-30

raneous causal effects (Runge et al., 2018). PCMCI is applied in combination with the ParCorr linear independence test based

on partial correlations (cf. Sect. 2.3). This application additionally requires stationarity in mean and variance and linear depen-

dencies. In the following, we briefly discuss these assumptions (further details in Runge, 2018a) and refer to a variable Xi that is

causally affecting a variable X j as ’parent’ or ’driver’ and the latter as ’receiver’ or ’target’
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(further details in Runge, 2018a; ?).

The time order within the time series allows to orient directed links which are only pointing forward in time. This accounts

for causal information propagating forward in time only, i.e. the cause shall precede the effect. Therefore, a directed causal

link Xi
t1
→ X

j
t2

can only exist between two nodes Xi
t1
,X

j
t2

if t1 < t2. When a contemporaneous link is found, i.e. t1 = t2, it is

considered to be undirected. The connection between the graph G and its process X is given by the causal Markov condition

together with the faithfulness. The Markov condition says that if there is no link in the graph, there is conditional independence5

in the distribution, and if there is no conditional independence, there is connectedness in the graph; the reverse relations, if

there is conditional independence, there is also separation in the graph and if there is connectedness in the graph, there is no

conditional independence, are given by the faithfulness assumption. With these assumptions the graph is a visualisation of

the conditional dependence and independence relationships among the variables including their lags. Finally, the
✿✿

In
✿✿✿✿✿✿✿✿✿

ecological

7



✿✿✿✿✿✿✿

language
✿✿

it
✿✿✿✿✿✿

means
✿✿✿

that
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

claim
✿✿✿✿

that
✿✿✿

Rg
✿✿

is
✿✿✿✿✿✿

driving
✿✿✿✿

GPP
✿✿✿✿

any
✿✿✿✿✿✿

change
✿✿

in
✿✿✿

Rg
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿

affecting
✿✿✿✿

GPP
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿✿✿

measured
✿✿

at10

✿

a
✿✿✿✿

time
✿✿✿✿

step
✿✿✿✿✿

before
✿✿✿

the
✿✿✿✿✿✿✿

change
✿✿

in
✿✿✿✿

GPP
✿✿✿✿✿✿

occurs.
✿✿✿✿

The
✿✿✿✿✿✿

Causal
✿✿✿✿✿✿✿

Markov
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

faithfulness
✿✿✿✿✿✿✿✿✿✿

assumptions
✿✿✿✿✿

relate
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

underlying
✿✿✿✿✿✿✿

physical

✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿

mechanisms
✿✿✿

to
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿✿

relationships
✿✿✿✿✿✿✿

manifest
✿✿

in
✿✿✿

the
✿✿✿✿✿

data.
✿✿✿

The
✿✿✿✿✿✿

Causal
✿✿✿✿✿✿✿

Markov
✿✿✿✿✿✿✿✿

condition
✿✿✿✿✿

states
✿✿✿✿

that
✿✿

if
✿✿✿

two
✿✿✿✿✿✿✿✿✿

processes

✿✿

are
✿✿✿✿

not
✿✿✿✿✿✿✿

directly
✿✿✿✿✿✿✿✿

connected
✿✿✿

by
✿✿✿✿✿

some
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿✿

mechanism,
✿✿✿✿

then
✿✿✿✿

they
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿✿✿✿✿

conditional
✿✿

on
✿✿✿✿✿

their

✿✿✿✿✿

direct
✿✿✿✿✿✿

drivers,
✿✿✿✿

like
✿✿✿

Rg
✿✿✿

and
✿✿✿✿

Reco
✿✿✿✿✿✿✿✿✿✿

conditional
✿✿

on
✿✿

T
✿

.
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

faithfulness
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿✿✿✿✿

concerns
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

direction:
✿✿

if
✿✿✿

two
✿✿✿✿✿✿✿✿✿

processes

✿✿

are
✿✿✿✿✿✿✿✿✿✿

statistically
✿✿✿✿✿✿✿✿✿✿✿

independent,
✿✿✿✿

then
✿✿✿✿

there
✿✿✿✿✿✿

cannot
✿✿

be
✿✿

a
✿✿✿✿✿

direct
✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿✿

mechanism.
✿✿✿✿

The causal sufficiency assumption implies that15

, every common cause of two or more variables Xi ∈ X is included in X. If this is not the case, detected links may be indirect

or due to an unobserved common driver. However, the absence of a link in the detected graph still implies that no direct link is

present (as this only requires the assumption of faithfulness).

Several causality methods suffer from high dimensionality, i.e. multivariate transfer entropy (Runge et al., 2012b). They

use the whole past X−t \X
i
t−τ of X

j
t with X−t = (Xt−1,Xt−2, ...) as a conditioning set S in the estimation of the test statistic20

I(Xi
t−τ,X

j
t |S) : S = X−t \X

i
t−τ. PCMCI addresses this issue by reducing the set of conditions S.PCMCI first estimates S for each

X
j
t . The estimation removes all variables that are either independent or dependent due to indirect paths or common drivers only

and leaves only relevant conditions converging to the true causal parents in the limit of infinite sample size. This is done using

a variant of the PC algorithm (Spirtes et al., 2001). The conditioning set is subsequently used in the MCI step to test every

possible link; MCI also attributes a link strength. These two steps as well as the concept of independence tests, which are at the25

core of both PC and MCI algorithms, are explained in more detail in the following
✿✿✿

For
✿✿✿✿✿✿✿

example,
✿✿✿

Rg
✿✿

is
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿✿✿✿

influence
✿✿✿✿

Reco

✿✿

via
✿✿✿

T,
✿✿✿

the
✿✿✿✿✿✿

indirect
✿✿✿✿✿

path.
✿✿✿✿✿✿✿

Though,
✿✿

a
✿✿✿

link
✿✿✿✿✿✿✿

between
✿✿✿

Rg
✿✿✿✿

and
✿✿✿✿

Reco
✿✿✿✿✿

might
✿✿✿

be
✿✿✿✿✿✿✿

detected
✿✿

if
✿

T
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis.
✿✿✿✿✿✿✿✿

However,

✿

a
✿✿✿✿✿✿✿

missing
✿✿✿

link
✿✿✿✿✿✿✿

between
✿✿

T
✿✿✿✿

and
✿✿✿✿

Reco,
✿✿✿✿✿

might
✿✿✿✿✿✿✿

indicate
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿

inhibiting
✿✿✿✿✿✿✿✿✿

respiratory
✿✿✿✿✿✿✿✿✿

processes,
✿✿✿

i.e.
✿✿✿✿

very
✿✿✿✿

cold
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿

with

✿✿✿✿✿

frozen
✿✿✿✿✿✿✿

surfaces
✿✿

or
✿✿✿✿✿

very
✿✿✿

dry
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

with
✿✿✿✿

dead
✿✿✿✿✿✿✿✿✿

vegetation
✿✿✿✿✿✿✿✿

coverage.
✿✿✿✿✿✿

Causal
✿✿✿✿✿✿✿✿✿✿

stationarity
✿✿✿✿✿

refers
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

existence
✿✿

of
✿✿✿✿✿

links
✿✿✿✿

over

✿✿✿✿

time.
✿✿

In
✿✿

a
✿✿✿✿✿✿✿✿✿

deciduous
✿✿✿✿✿

forest,
✿✿✿

for
✿✿✿✿✿✿✿✿

example,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

ecosystem’s
✿✿✿✿

CO2
✿✿✿✿✿✿✿✿

exchange
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

causally
✿✿✿✿✿✿✿✿✿

stationary
✿✿

as
✿✿✿

the
✿✿✿✿

link
✿✿✿

Rg
✿✿

→
✿✿✿✿✿

GPP
✿✿

is30

✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿

summer
✿✿✿

but
✿✿✿

not
✿✿

in
✿✿✿✿✿✿

winter.
✿✿✿✿✿✿✿✿✿

Formally,
✿

a
✿✿✿✿✿✿

process
✿✿

X
✿✿✿✿

with
✿✿✿✿✿

graph
✿✿

G
✿✿

is
✿✿✿✿✿

called
✿✿✿✿✿✿✿

causally
✿✿✿✿✿✿✿✿✿

stationary
✿✿✿✿

over
✿

a
✿✿✿✿

time
✿✿✿✿✿

index
✿✿✿

T ,
✿

if
✿✿✿✿

and

✿✿✿✿

only
✿

if
✿✿✿

for
✿✿✿

all
✿✿✿✿

links
✿✿✿✿✿✿✿✿✿

Xi
t−τ→ X

j
t ✿✿

in
✿✿✿

the
✿✿✿✿✿

graph
✿✿✿

the
✿✿✿✿✿✿✿✿

condition
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Xi
t−τ✚yX

j
t | X

−
t \{X

i
t−τ}✿✿✿✿✿

holds
✿✿✿

for
✿✿✿

all
✿✿✿✿

t ∈ T .

2.2.1 Independence Test

2.3
✿✿✿✿✿✿✿✿✿✿✿

Independence
✿✿✿✿

Test

At the core of PCMCI , there are conditional independence tests CI(Xi
t−τ,X

j
t ,S) testing for

✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿✿✿✿✿✿

whether Xi
t−τ y X

j
t | S

✿✿✿✿

given
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set
✿✿

S. Within the PCMCI software package Tigramite (Runge, 2018b), several independence tests are

implemented. Here, we focus on the linear independence test called ParCorr. The ParCorr conditional independence test is5

based on partial correlations and a t-test. This assumes the model

Xi = SβXi + ǫX Xi
✿

, YX j
✿✿

= SβX j + ǫY X j
✿

, (1)

with coefficients β and Gaussian noise ǫ. This leads to the residuals

rxXi

✿

= X−Xi−
✿✿✿

S ˆβXi , ryX j

✿

= Y−X j−
✿✿✿

S ˆβX j (2)

8



with estimated β̂. ParCorr removes the influence of S on X and Y
✿✿

Xi
✿✿✿

and
✿✿✿

X j via ordinary least squares regression and tests10

for independence of the residuals using the Pearson correlation with a t-test. The independence test returns a p-value
✿✿✿✿✿✿

p-value

and test statistic value I, i.e. the correlation coefficient in case of ParCorr.
✿✿✿✿✿

Thus,
✿✿

to
✿✿✿✿✿✿

identify
✿✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿✿✿

GPP
✿✿

on
✿✿✿✿

Reco
✿✿✿✿

that
✿✿✿✿

does

✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿✿

their
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿

driver
✿✿

T
✿✿✿✿

∈ S,
✿✿✿✿✿✿✿

ParCorr
✿✿✿✿

will
✿✿✿✿✿✿✿

perform
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

regression
✿✿

of
✿✿

T
✿✿

on
✿✿✿✿✿

both
✿✿✿✿

GPP
✿✿✿

and
✿✿✿✿

Reco
✿✿✿✿✿✿✿✿✿✿

accounting
✿✿✿

for

✿✿✿✿

time
✿✿✿✿

lags.
✿✿✿

The
✿✿✿✿✿✿✿

p-value
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

residuals’
✿✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿

test
✿✿✿✿

can
✿✿

be
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿

assess
✿✿✿✿✿✿

whether
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿✿

dependent.

2.3.1 PC algorithm15

2.4
✿✿

PC
✿✿✿✿✿✿✿✿✿

algorithm

The PC algorithm estimates a set of parents for each variable of the process X
j
t ∈ Xt which are used as low-dimensional

conditions in the MCI algorithm. A comprehensive pseudo code
✿✿✿

To
✿✿✿✿✿✿✿✿

efficiently
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿✿✿✿✿✿

CI(Xi
t−τ,X

j
t |S)

✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set
✿✿

S

✿✿✿✿✿

should
✿✿✿

be
✿✿

as
✿✿✿✿✿

small
✿✿

as
✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿

which
✿✿✿✿✿

means
✿✿✿✿

that
✿✿

it
✿✿✿✿✿✿

should
✿✿✿✿

only
✿✿✿✿✿✿

contain
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿✿✿✿

which
✿✿✿✿✿

allow
✿✿

to
✿✿✿✿✿✿

isolate
✿✿✿

the
✿✿✿✿✿✿

unique

✿✿✿✿✿✿✿

influence
✿✿✿

of
✿✿✿

Xi
t−τ✿✿✿

on
✿✿✿

X
j
t .

✿✿✿

For
✿✿✿

an
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

CI(Rgt−τ,GPPt |S),
✿✿✿

for
✿✿✿✿✿✿✿✿

example,
✿✿

S
✿✿✿✿✿✿

should
✿✿✿✿✿✿

contain
✿✿

T
✿✿✿✿

and
✿✿✿

SM
✿✿✿

(at
✿✿✿✿✿✿

certain
✿✿✿✿✿

lags),
✿✿

as20

✿✿✿

they
✿✿✿✿✿✿✿✿

influence
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

of
✿✿✿

an
✿✿✿✿✿✿✿✿✿

ecosystem
✿✿

to
✿✿✿✿✿✿✿

perform
✿✿✿✿✿✿✿✿✿✿✿✿✿

photosynthesis.
✿✿✿✿✿✿✿✿

Likewise,
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

CI(Tt−τ,GPPt |S),
✿✿

S
✿✿✿✿✿✿

should

✿✿✿✿✿✿

include
✿✿✿

Rg
✿✿✿

and
✿✿✿✿

SM
✿✿

for
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

reasons.
✿✿

A
✿✿✿✿✿✿✿✿

sufficient
✿✿

set
✿✿✿

of
✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿

includes
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

drivers/parents
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variable
✿✿✿

X
j
t .

✿✿✿✿✿✿✿✿✿✿✿

Consequently,
✿✿✿

the
✿✿✿✿

aim
✿✿

of
✿✿✿

the
✿✿✿✿

PC
✿✿✿

step
✿✿

is
✿✿✿

to
✿✿✿✿✿✿

identify
✿✿✿

an
✿✿

as
✿✿✿✿✿

small
✿✿

as
✿✿✿✿✿✿✿✿

possible
✿✿✿✿✿✿✿

superset
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

parents
✿✿

of
✿✿✿✿

each
✿✿✿✿✿✿✿

variable
✿✿✿✿✿✿✿✿

included

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

process.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿

uses
✿✿

a
✿✿✿✿✿✿

variant
✿✿

of
✿✿✿

the
✿✿✿

PC
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Spirtes et al., 2001);
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

comprehensive
✿✿✿✿✿✿✿✿✿✿✿

pseudo-code
✿

of this

procedure is given in Runge et al. (2018). The algorithm starts with a fully connected graph and iteratively removes links if25

conditional independence is found. At first, a preliminary set of parents P̃ for each X
j
t equal to

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

supplementary
✿✿✿✿✿✿✿✿

materials
✿✿

of

✿✿

?.
✿✿

In
✿✿✿

the
✿✿✿✿

limit
✿✿

of
✿✿✿✿✿✿

infinite
✿✿✿✿✿✿✿

sample
✿✿✿

size
✿✿✿

the
✿✿✿✿✿✿✿

relevant
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿

indeed
✿✿✿✿✿✿✿✿

converge
✿✿

to
✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿

parents,
✿✿✿✿✿✿✿✿✿

practically
✿✿✿✿✿✿

though,
✿✿✿

an

✿✿✿✿✿✿✿

estimate
✿✿✿

that
✿✿✿✿✿✿✿

contains
✿✿

a
✿✿✿

few
✿✿✿✿✿✿✿✿

irrelevant
✿✿✿✿✿✿✿✿✿✿

conditions,
✿✿✿

like
✿✿✿✿

Reco,
✿✿

is
✿✿✿✿✿✿✿✿

sufficient
✿✿

as
✿✿✿✿✿

well.

✿✿✿

The
✿✿✿

PC
✿✿✿✿

step
✿✿✿✿

starts
✿✿✿

by
✿✿✿✿✿✿✿✿✿

initializing
✿

the whole past of the processXt is initialised
✿

a
✿✿✿✿✿✿

process: P̃(X
j
t ) = X−t = {X

i
t−τ : i = 1, ...,N, τ =

1, ..., τmax}. Next, conditional independence Xi
t−τ y X

j
t | S is tested for all Xi

t−τ ∈ P̃ ✿✿

by
✿✿✿✿✿✿✿✿

evaluating
✿✿✿✿✿✿✿✿✿✿✿✿✿

CI(Xi
t−τ,X

j
t ,S),

✿✿✿✿✿✿✿✿✿

conditions
✿✿✿✿

Xi
t−τ30

✿✿

are
✿✿✿✿✿✿✿✿

removed
✿✿✿✿

from
✿✿✿✿✿

P̃(X
j
t )

✿✿✿✿

that
✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿

X
j
t ✿✿✿✿✿✿✿✿✿✿✿

conditionally
✿✿

on
✿✿

a
✿✿✿✿✿

subset
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

S ∈ P̃(X
j
t )\
{
Xi

t−τ

}
.S is a subset of P̃(X

j
t )\
{
Xi

t−τ

}
✿✿✿✿

starts

✿✿

as
✿✿✿

the
✿✿✿✿✿

empty
✿✿✿

set
✿

∅
✿✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿

iteratively
✿✿✿✿✿✿✿✿✿

increased.
✿✿✿

For
✿✿✿✿✿✿✿✿

instance,
✿✿

let
✿✿✿✿

Xi
t−τ✿✿

be
✿✿✿✿

Reco
✿✿✿

(at
✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿

lag)
✿✿✿

and
✿✿

X
j
t✿✿✿

be
✿✿✿✿

GPP. The conditional

independence test is embedded into two loops. The outer loop iteratively increases the cardinality p of S starting from 0, the

empty set. Thus it is first tested, whether Xi and X j are independent. Further, only the p strongest conditions are selected.

The inner loop iterates through all Xi
t−τ ∈ P̃(X

j
t ). The cardinality is increased until |S| = |P̃(X

j
t )\
{
Xi

t−τ

}
| − 1. At the end of each

iteration in
✿✿✿✿✿✿✿

between
✿✿✿✿

GPP
✿✿✿✿

and
✿✿✿

Reco
✿✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿✿

estimated
✿✿✿

first
✿✿✿

by
✿✿✿✿✿

using
✿✿

no
✿✿✿✿✿✿✿✿✿✿

conditions.
✿✿

If
✿✿✿✿

GPP
✿✿✿

and
✿✿✿✿

Reco
✿✿✿✿✿✿

appear
✿✿✿✿✿✿

related,
✿✿✿✿

one
✿✿✿✿✿✿✿

variable5

✿✿✿

will
✿✿✿

be
✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set.
✿✿

If
✿✿✿

the
✿✿✿✿✿✿✿✿

residuals
✿✿✿

are
✿✿✿

still
✿✿✿✿✿✿✿✿✿✿

dependent,
✿

a
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿

variable
✿✿

is
✿✿✿✿✿✿✿✿

included
✿✿✿

and
✿✿

so
✿✿✿✿

on.
✿✿✿✿✿

When
✿✿

T

✿

is
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

set,
✿

the outer loop the non-significant parents are removed from P̃(X
j
t ).

✿✿✿✿✿✿✿

residuals
✿✿

of
✿✿✿✿

GPP
✿✿✿✿

and
✿✿✿✿

Reco

✿✿✿✿✿

might
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿✿

dependent
✿✿✿✿✿✿✿

anymore
✿✿✿✿

and
✿✿✿✿

Reco
✿✿

is
✿✿✿✿✿✿✿

removed
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿

set
✿✿

of
✿✿✿✿✿✿

parents
✿✿

of
✿✿✿✿✿

GPP.
✿✿✿

The
✿✿✿

PC
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿✿✿✿✿

adopted
✿✿

in

✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿✿

efficiently
✿✿✿✿✿✿

selects
✿✿✿✿

those
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

sets
✿✿

to
✿✿✿✿✿

limit
✿✿✿

the
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿

tests
✿✿✿✿✿✿✿✿✿✿

conducted.
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Every conditional independence test is evaluated at a significance threshold called αpc, which is usually set to a liberal value10

between 0.1 and 0.4. Alternatively,
✿

in
✿✿✿✿✿✿✿✿

tigramite
✿

one can let αpc unspecified. PCMCI then evaluates the best choice of αpc

∈ {0.1,0.2,0.3,0.4} based on the Akaike information criterion which is further explained in (Runge et al., 2018).

2.4.1 MCI tests

2.5
✿✿✿✿

MCI
✿✿✿✿

tests

MCI is the actual causal discovery step that ascribes a p-value
✿✿✿✿✿✿

p-value
✿

and strength to each possible link. MCI iterates15

through all pairs (Xi
t−τ,X

j
t ) : i = 1, ...,N, τ = 0, ..., τmax and calculates CI(Xi

t−τ,X
j
t ,S).

✿✿✿✿✿✿✿✿✿✿✿

CI(Xi
t−τ,X

j
t ,S)

✿✿✿✿✿✿

where
✿

S consists of the

two potentially multivariate
✿✿✿✿✿✿

(super-)sets of parents P̃(X
j
t ) and P̃(Xi

t−τ) obtained in the PC step. P̃(Xi
t−τ) is constructed by shift-

ing the time series of P̃(Xi
t) by τ. In case Xi

t−τ ∈ P̃(X
j
t ), Xi

t−τ has to be removed from P̃(X
j
t ). If τ = 0, conditional dependence is

estimated for contemporaneous nodes X
j
t and Xi

t . Due to missing time order, a dependence would be left undirected. Further,

as the parents P̃(Xi
t) and P̃(X

j
t ) used in each conditional dependence test are defined to lie in the past of Xi

t and X
j
t , links, both20

contemporaneous and lagged, can be spurious due to contemporaneous common drivers or contemporaneous indirect paths.

The absence of a link, though, means that a physical (contemporaneous) link is unlikely (assuming faithfulness, cf. Runge

et al. (2018)).
✿✿

For
✿✿✿✿✿✿✿✿✿

simplicity,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

previously
✿✿✿✿✿

given
✿✿✿✿✿✿✿✿

examples
✿✿✿✿✿

were
✿✿✿✿✿✿

omiting
✿✿✿

the
✿✿✿✿

time
✿✿✿✿

lag.
✿✿✿✿

Thus
✿✿

if
✿✿✿✿

Reco
✿✿✿✿✿✿✿✿

responds
✿✿✿✿✿✿✿✿✿✿✿✿✿

instantaneously

✿✿✿✿✿✿✿✿✿✿

(considering
✿✿✿

the
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿✿

temporal
✿✿✿✿✿✿✿✿✿✿

resolution)
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿

T
✿✿✿

but
✿✿

T
✿✿✿✿✿✿✿✿

responds
✿✿✿✿

with
✿

a
✿✿✿✿

time
✿✿✿

lag
✿✿

to
✿✿✿

Rg,
✿✿✿✿

both
✿✿✿✿✿✿✿✿

variables
✿✿✿✿

will
✿✿✿✿✿

likely

✿✿✿✿✿

appear
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

contemporaneously
✿✿✿✿✿✿✿

coupled
✿✿

to
✿✿✿✿

Rg.25

The link strength is
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

PCMCI
✿✿✿✿✿✿✿✿✿

framework
✿✿✿

can
✿✿✿

be given by the effect size of the conditional independence test statistic

measure CI
✿✿

CI used in combination with MCI. In case of ParCorr, the effect size is given by the partial correlation value, which

is between -1 and 1. This
✿✿✿✿✿✿✿✿

Assuming
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿

model
✿✿✿

the
✿✿✿✿✿

partial
✿✿✿✿✿✿✿✿✿✿

correlation value is shown in Runge et al. (2014) to

directly depend on the receiver’s and driver’s variance as well as the coupling coefficient . Even
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Runge et al., 2019):
✿

ρMCI

Xi
t−τ→X

j
t

✿✿✿✿✿✿

=
cσXi

t−τ√
σ2

X
j
t

+ c2σ2

Xi
t−τ

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(3)5

✿✿✿✿✿

where
✿✿✿✿✿✿

σ
Xi

t−τ,X
j
t✿✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿

variances
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

noise/innovation
✿✿✿✿✿✿

terms
✿✿✿✿✿✿

driving
✿✿✿✿✿

Xi
t−τ ✿✿✿

and
✿✿✿✿

X
j
t ,

✿✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿

and
✿✿

c
✿✿

is
✿✿✿✿✿

their
✿✿✿✿✿✿✿✿

coupling

✿✿✿✿✿✿✿✿✿

coefficient.
✿✿

In
✿✿✿✿✿✿✿✿

practice,
✿✿✿✿

also non-linear links can be
✿✿✿✿

often
✿✿

be
✿✿✿✿

well
✿

detected with ParCorr as they can often
✿✿

in
✿✿

so
✿✿✿

far
✿✿✿✿

they
✿

be

linearly approximated. In case the linear part is even stronger
✿✿✿✿✿✿✿✿

"stronger"
✿

than the non-linear part, ParCorr can have better

detection rate
✿✿✿✿✿

might
✿✿✿✿

also
✿✿✿✿

have
✿

a
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿

detection
✿✿✿✿✿✿

power than a non-linear independence test (Runge et al., 2018).
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2.6 Data10

2.6.1 Artificial Dataset - Test Model

We tested the algorithm on artificial datasets prior to its application to real world data. Using
✿✿✿

The
✿✿✿✿✿✿✿

artificial
✿✿✿✿✿✿

dataset
✿✿✿

was
✿✿✿✿✿✿✿

created

✿✿✿✿

using
✿✿

a
✿✿✿

test
✿✿✿✿✿✿

model
✿✿✿✿✿

which
✿✿✿✿✿

takes time series of measured global radiation (Rg) we created
✿✿✿

and
✿✿✿✿✿✿

creates three artificial time series

that conceptually represent temperature (T ), gross primary production (GPP) and ecosystem respiration (Reco). Note that

this test model is not intended to accurately represent observed land-atmosphere fluxes, but only serves to test the procedure.15

The model incorporates one linear auto dependence Tt−τ1
→Tt, one linear additive cross-dependence Rgt−τ2

→Tt and two

non-linear dependencies, multiplicative Rgt−τ3
•Tt−τ4

→GPPt, and multiplicative exponential GPPt−τ5
• cTt−τ6 →Recot (cf.

Fig. 1) according to the equations:

Rgmo = Rgobs (4)

Tmo(t) = c1 Tmo(t− τ1) + c2 Rgmo(t− τ2) + ξT (5)20

GPPmo(t) = c3 Rgmo(t− τ3) ∗ Tmo(t− τ4) + ξGPP (6)

Recomo(t) = c4 GPPmo(t− τ5) ∗ c
Tmo (t−τ6)−Tre f

10

5
+ ξReco (7)

The parameters c1, c2, ..., c5 are referred to as coupling coefficients, and the time lags are noted as τ1, τ2,..., τ5. The subscripts

mo and obs abbreviate model and observation, respectively. Tre f is set to 15◦C. The term ξ, termed “intrinsic” or “dynamical

noise”, here represents values from uncorrelated, normally distributed noise. Having dynamic noise is essential for a method25

utilizing conditional independence tests. It is based on the assumption that a process or state is never fully described by its

deterministic part because there are unresolved intrinsic processes, summarized as ξ.

The model was fitted to real observational data (using radiation, temperature and land-atmosphere fluxes) of daily time

resolution, measured by
✿✿✿

the eddy-covariance method (Baldocchi et al., 1988; Baldocchi, 2003) from FLUXNET, by minimizing

the sum of squared residuals using the gradient descent implemented in the Optim.jl package (Mogensen and Riseth, 2018).30

We fitted the model to 72 sites listed in Table B1 given in the Supplementary Material section. The value range for the coupling

coefficients c1 to c4 and c5 were set to [0.2,1] and [1,2.5], respectively. The lags were limited to integer values in the range

[0,25]. For the fitting, the dynamical noise ξ was set to 0. The distributions of obtained lags and coupling coefficients are given

in the Supplementary Material Fig. B1 to E1. The fitting process thus generated 72 sets of parameters, containing coupling

coefficients and lag values, which were used for the time series generation.

From each of the 72 sets of parameters we generated four sets of time series each having a length of 500 years. The time5

series generation was initiated using two types of data: first, uncorrelated, normally distributed noise, and second, unprocessed

radiation data as used during the fitting (the available radiation data was repeated to 500 years). The resulting datasets are

called baseline dataset and seasonality dataset, respectively. In both cases, the model was run twice, once with homoscedastic

(constant variance of ξ), once with heteroscedastic dynamical noise ξ. To induce heteroscedasticity, ξ was multiplied with a

11



mean daily variance that was extracted for each variable at each FLUXNET site. In Supplementary Material Fig. F1 a five year10

time series excerpt from Hainich site (Knohl et al., 2003b) is shown. A third dataset is generated by anomalization (subtraction

of smoothed seasonal mean) of the seasonality dataset.

2.6.2 Eddy Covariance Data - Majadas de Tiètar Experimental site

Data from three towers located in Majadas de Tiètar, (ES-LMa, ES-LM1, ES-LM2), a Mediterranean Savanna in central

Spain, are used (coordinates of central tower: 39◦56'25''N 5◦46'29''W). Meaurements include the exchange of CO2 between the15

land surface and atmosphere at half-hourly resolution using the eddy covariance method. The three tower footprints received

different fertilisation treatments in spring 2015 (El-Madany et al., 2018). We consider data from before the fertilization from

April 2014 to March 2015 of shortwave downward radiation (Rg), air temperature (T), net ecosystem exchange (NEE), vapour

pressure deficit (VPD), sensible heat (H) and latent heat (LE). The average temperature within this period was 17.3◦C, with a

total precipitation of 765mm. Most precipitation fell between October and April.20

We expect the causal imprints in the data to vary between seasons and during the course of the day. To satisfy causal

stationarity, we estimate networks separately for each month and consider only samples for which the potential radiation was

above 4
5

of the potential daily maximum, which corresponds to midday samples. We used a mask type that limits only the

receiver variable to the respective month and day time values (cf. Table A1 for PCMCI parameter settings). This setting causes

time series lengths ranging from 239 datapoints in December to 372 datapoints in July. Minimal and maximal lags were set to25

0 and 8, respectively. Due to the limited number of years, we
✿✿

We
✿

left the data unprocessed, i.e. we did not subtract a seasonal

mean for anomalisation. Constraining the samples to separate month and midday values reduces the effect of seasonality as

a common driver that would lead to spurious links. Furthermore, to correct for multiple testing we applied the Benjamini-

Hochberg false discovery rate correction (Benjamini and Hochberg, 1995). Thereby, the p-values
✿✿✿✿✿✿✿

p-values for the whole graph

obtained from the MCI step are adjusted to control the number of false discoveries (Runge et al., 2018). We chose a two-sided30

significance level of 0.01.

2.6.3 Gridded global data set

The second observational case study was performed on a global data set. We used data with 0.5◦ spatial and monthly temporal

resolution from 1982 to 2008. The dataset is composed of three climatic variables, global radiation (Rg), temperature (T) and

precipitation (P), and one vegetation state index, the Normalized Difference Vegetation Index (NDVI). Both temperature and

precipitation datasets were taken from the Climate Research Unit (CRU), version TS3.10 (Harris et al., 2014). The radiation

data stems from the Climate Research Unit and National Centers for Environmental Prediction dataset (CRUNCEP, Viovy,

2016). The used NDVI data stems from the Global Inventory Monitoring and Modeling Systems (GIMMS) in version 3g_v1

(Pinzon and Tucker, 2014).

To examine the influence of radiation, temperature, and precipitation on NDVI by means of PCMCI we used the following

settings. We compute the anomalies by subtracting a smoothed seasonal mean. A maximal time lag of three months was chosen5

based on the largest lag with significant partial correlation among all pairs of variables, partialling out only the autocorrelation

12



of each variable. The receiver variable was limited to the growing season defined by T>0 and NDVI>0.2, which allows good

comparison to Wu et al. (2015). The significance level (αpc) in the condition selection phase (cf. Sect. 2.4) was chosen based

on the AIC selection criterion. A concise list of PCMCI parameters that were altered from default settings is given in Table A1.
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Figure 1. The artificial datasets are generated with a prescribed interaction structure (True Network), which is obtained by fitting the test

model to the FLUXNET sites. Here we show for four time series length
✿✿✿✿✿

lengths the process graphs estimated via both lagged correlation and

PCMCI. The data used stems from the homoscedastic realisation of the seasonality dataset of the Hainich site. The significance level was set

to 0.01. The number of time lag labels were limited to five in the correlation networks. But for the longest time series typically the whole

range of lags (0-25) was significant.

3 Results10

3.1 Test Model

As motivating example, in Fig. 1 we show PCMCI and lagged correlation networks in the form of process graphs. It is clearly

visible, that many more spurious links pass the significance threshold of 0.01 using lagged correlation as compared to using

PCMCI. Those spurious links can complicate the analysis or lead to false assumptions
✿✿✿✿✿✿✿✿✿

conclusions
✿

and misleading hypotheses.

We examined four cases of different time series lengths: 91 [183<=doy<=274] and 120 [153<=doy<=274] days, 1 and 5 years15

for daily data (doy: day of the year). For each time series length and each parameter set, the causal network structure was

estimated for 100 realisations of the model (each based on a realization of intrinsic noise), which allowed the estimation of

false positive (FPR) and true positive (TPR) detection rates. The detection rates are calculated for each tower, FPR in general

and TPR link-wise. The TPR for each link is its sum of detections among 100 realisations divided by 100. The FPR is the

number of falsely detected links divided by the number of all possible false links and 100. The summary of the experiments

i.e. the overall false positive rate (FPR) and the distributions of the link’s true positive rate (TPR) across sites are given in Fig.

2 and 3, respectively. The blue violin plots always report the case of normal distributed (non heteroscedastic) intrinsic noise

and the corresponding orange violin plots summarize the case of heteroscedastic noise. The effect of heteroscedasticity and5

seasonality is then assessed by comparing the distributions obtained from the baseline dataset to the results of the seasonality

dataset.

The FPR of homoscedastic time series in the baseline dataset is in the expected range of 0.01, the chosen significance level,

indicating a well calibrated test due to fulfilled assumptions. The assumption of stationarity is violated as soon as heteroscedas-
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Figure 2. The distribution of false positive detection rates estimated for the baseline dataset, the seasonality dataset and the anomalised

seasonality dataset (mean seasonal cycle subtracted). The distributions are given for different time series length (number of datapoints).

Additionally, the distributions are split to show the impact of heteroscedastic noise (orange) compared to normal distributed noise (blue).

The significance level of 0.01 is given by a blue horizontal line.

ticity or seasonality is present. The effect on the FPR is an increase above 0.01 for time series length of 1 and 5 years with a10

much stronger increase due to seasonality (factor of 4 and 8, respectively) than for heteroscedasticity (factor of 2).

The effect of non-stationarities on the TPR differs among the links. The detection of linear links (Rg→T and T →T ) is not

affected by seasonality and slightly improves for heteroscedastic dynamical noise. The detection of non-linear links is improved

by seasonality with the strongest effects in the link T →GPP. The link T →Reco has a stonger
✿✿✿✿✿✿

stronger
✿

non-linearity and

therefore the detection rate shows a weaker effect on seasonality. Furthermore, the coupling coefficient c5, the base of T, can be15

close to or be exactly one (cf. Fig. C1). This would actually cause on the one hand the effect of T →Reco to vanish, rendering

a detection impossible and on the other hand result in a linear dependence of GPP on Reco which improves its detection.

Heteroscedasticity seems to have a slight negative effect on non-linear links. In general, the TPRs in the seasonality dataset are

quite high, even for non-linear links, and predominantly above 80% and often reaching 100%.

Comparing the TPRs of the non-linear links , shows some disparity. The links T →GPP and T →Reco experience zero

detection in the baseline dataset but partially considerable rates in the seasonality dataset with a strong dependence on the5

time series length. On the contrary, the median of the TPR of the links Rg→GPP and GPP→Reco is above 95% in the

seasonality dataset, even for time series length as short as 91 days, but remains high in the baseline dataset. The removal of

the seasonal cycle keeps the TPRs largely unaffected, but reduces the FPR. Nevertheless, it still remains above the significance

level by a factor of four and two for five and one year time series length, respectively.
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Figure 3. The distribution of the true positive detection rates for each link in the test model estimated for the baseline dataset, the sea-

sonality dataset, and the anomalised seasonality dataset. The distributions are given for different time series length (number of datapoints).

Additionally the distributions are split to show the impact of heteroscedastic noise (orange) compared to normally distributed noise (blue).

In summary, the seasonality dataset exhibits high TPR even for non-linear links. Compared to stationary time series, the10

detection of non-linear links actually benefits from seasonality. The high detection, though, comes at the cost of a high false

positive rate for time series length of and above one year. To a certain degree, the increase in FPR can be counteracted by

anomalization.

3.2 Majadas de Tiètar dataset

At first we look at the link consistency by comparing networks that were obtained for each tower within a month. The compar-

ison is done for two months with strongly differing climate conditions: April and August. In Fig. 4 we compare the estimated

link strengths (effect size estimated via partial correlation) as long as the corresponding links are significant in at least one5

network. The confidence intervals are overlapping for the majority of links, suggesting that the uncertainty of the fluxes is

much smaller than the observed effects (El-Madany et al., 2018). Exceptions are found for only a few links (Rg
0
−→T, Rg

1
−→LE,

VPD
1
−→VPD, H

2
−→H, NEE

0
−→LE, H

2
−→NEE, NEE

4
−→NEE, number above the arrow indicates the lag) where the detection rates do

not or barely overlap. Cross links (a link from one variable to another) with two or more significant appearances are predomi-
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Figure 4. Comparison of the networks of three eddy covariance measurement stations (LMa, LM1, LM2) located in Majadas (Spain). Links

that are found to be significant in one of the three networks are included. For each link, the calculated strength of all three networks is

plotted with its 90% confidence interval. The colors blue, orange, and green correspond to the towers LMa, LM1, and LM2, respectively.

The significance threshold is 0.01. If a link does not pass the significance, it is marked by a black dot. The links are grouped into lag 0 (top),

lag 1 (middle) and all lags greater than 1 (bottom). Negative NEE is associated with carbon uptake by the ecosystem. Links at lag 0 are left

undirected (−), yet as Rg is set as main driver, links incorporating Rg at lag 0 are directed (→).
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nantly at zero lag. Approximately half of the links with lag one are auto-dependent links (a link from the past of a variable to10

its present). Comparing the links between the month April and August, distinct differences can be noticed. First, August has

slightly fewer significant links compared to April. Second, the only links remaining that are significant in two or three towers

are between atmospheric variables. Third, the remaining link strengths tend to be weaker in August than in April.

The difference among the seasons is further investigated in Fig. 5 which shows process graphs for each month of the year.

We combine the networks of the three towers to one process graph by plotting every link that is significant in at least one tower.15

The process graphs in Fig. 5 visualize clearly gradual changes within the interaction structure of the biosphere-atmosphere

system during the course of a year. During the main growing season from February to May, NEE is coupled strongly to the

energy fluxes latent (LE) and sensible heat (H). These connections weaken, disappear or even switch sign with start and course

of the dry season. Less regularly NEE also shows connections to radiation (Rg) and temperature (T). Between the atmospheric

variables, a basic network between VPD, T, Rg and H remains intact and relatively constant in strength. The dominance of20

contemporaneous links is found as well, as seen already in Fig. 4. Besides the decoupling of NEE from any variable in the dry

period, there are additional interesting patterns. For example, the positive reappearance of the link between NEE and LE in

September. Here, the onset of precipitation events (cf. Fig. J1) occurred that lead to strong respiration peaks (Ma et al., 2012).

Creating such a network via lagged correlation would result in much more significant links (causing the network to be not

interpretable as opposed to PCMCI) and NEE does not decouple from the atmosphere in August (cf. Fig. G1).25

The above results demonstrate that PCMCI is sensitive enough to capture seasonal differences and certain physiological

reasonable biosphere behaviour. Moreover, PCMCI yields a better interpretable network structure than pure correlation ap-

proaches.

3.3 Global
✿✿✿✿✿✿✿✿

Gridded
✿✿✿✿✿

global
✿✿✿✿✿

data
✿✿

set

Subject of inspection were the significant lags and MCI values of each climatic variable on NDVI. In Fig. 6 the maximal MCI30

value and the corresponding lag are plotted for the links Xt−τ→ NDVI : τ ∈ {0,1,2,3} with X being one of the climatic drivers

radiation, temperature, or precipitation. The chosen significance threshold was set to 0.05. Fig. 7 shows the climatic driver

with largest MCI per grid point. PCMCI detects a regionally varying influence of climatic drivers. As expected, the boreal

regions are strongly driven by temperature instantaneously, while (semi-) arid regions, which correspond predominantly to

grass or prairie dominated areas, respond strongest to precipitation at a time lag of one month. Radiation is found to have a

comparatively low spatial effect with hot spots in south and east China, central Russia and east Canada.

The dominant lags are found to be zero and one. Just a very small fraction of the total area shows a maximal MCI value

at a higher lag of two or three months. The lags are also not equally distributed among the climatic drivers. Radiation and

temperature are predominantly strongest at lag zero, while precipitation has a much larger fraction of area showing the strongest

response at lag one. Regions where the impact of Rg on NDVI is strongest at lag 1 tend to respond negatively to Rg but5

positively to precipitation at lag one. On the other hand, a large part of regions with the strongest impact of precipitation at lag

zero respond negatively to it but positively to radiation.
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Figure 5. To visualize the gradual changes in interaction structure the networks of the three towers are combined for each month. The number

of significant occurences of a link is given by its width. The link strength, given by the link color, is calculated by averaging the significant

links of the towers. The link’s lag is shown in the centre of each arrow, sorted in descending order of link strength. The resulting graphs

are shown for April 2014 till March 2015. The significance threshold is 0.01. The networks of April and August, illustrated in Fig. 4, are

highlighted by a box.
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Figure 6. Influence of climatic drivers on NDVI as calculated by PCMCI. The first column shows the estimated causal influence given as

maximal absolute MCI value of climatic drivers on NDVI. The second column gives the time lag at which the maximal absolute MCI value

occures (in month).

Figure 7. Map of the strongest climatic driver (largest absolute MCI value) per grid point.
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In summary, PCMCI estimates coherent interaction patterns which match well with anticipated behaviour based on vegeta-

tion type and prevailing climatic conditions.
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4 Discussion10

Causal discovery methods promise an improved understanding and can help to come up with new hypotheses about the inter-

action between biosphere and atmosphere (Christiansen and Peters, 2018; Runge et al., 2019). But the underlying assumptions

need to be properly taken into account. The coupled biosphere-atmosphere system possesses several challenges that potentially

violate the underlying assumptions of causal discovery in general and the employed method’s assumptions in particular. Here,

we investigate the effect of a violation of assumptions on PCMCI network estimates.15

With regard to expected non-linearities in biosphere-atmosphere interactions, using a linear independence test within the

PCMCI framework may not be adequate. We motivate our choice with the following arguments: first, non-linearities are often

approximated linearly. Second, a linear regression based test has a much higher power for detecting linear links than a non

parametric test (Runge, 2018a) and can, hence, detect links already at smaller sample sizes. Third, linear partial correlation

is easily interpretable, for example, positive and negative MCI values. The
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

motivation
✿✿

is
✿✿✿✿✿✿✿✿

supported
✿✿✿

on
✿✿✿

the
✿✿✿✿

one
✿✿✿✿

hand
✿✿✿

by20

✿✿

the
✿

results of the test model support our choices
✿✿✿

and
✿✿✿

on
✿✿

the
✿✿✿✿✿

other
✿✿✿✿

hand
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

additionally
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿✿✿

analyses
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observational

✿✿✿✿✿✿

datasets
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿✿

regression
✿✿✿✿

and
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿✿✿

correlation
✿✿

as
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿

test.
✿✿✿✿✿

These
✿✿✿✿✿✿

results
✿✿✿

(cf.
✿✿✿✿

Fig.
✿✿✿✿✿✿✿✿✿

H1,I1,K1)
✿✿✿✿✿

show

✿✿✿✿✿✿

similar
✿✿✿✿✿✿

patterns
✿✿✿

but
✿✿✿✿

due
✿

to
✿✿✿

the
✿✿✿✿

low
✿✿✿✿✿✿

sample
✿✿✿✿

sizes
✿✿✿✿✿✿

exhibit
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿✿✿✿✿

significances. In general, the derived results show a high

detection power with a strong consistency in calculated effect strengths on eddy covariance data and global, regularly gridded

reanalysis data that leads to well interpretable patterns. Observed drawbacks are a high FPR in case of violated assumptions,25

especially strong periodicity, as well as the appearance of contemporaneous lags in measurement datasets.

4.1 Lessons learned from the test model

The probability to detect a link with PCMCI depends strongly on a link’s MCI effect size, which is larger for strong variance

in the driver and a low variance in the receiver (Runge et al., 2018)
✿✿

(cf.
✿✿✿✿✿

Sect.
✿✿✿✿

2.5). Several results can be explained by this

observation. First, the variance of three out of five drivers of cross dependencies in the test model are either directly or indirectly30

(via GPP) influenced by Rg, which has the highest variance of all variables. Consequently, the detection power of the three

links is large, almost 100%. In comparison, the other variables’ variances are weaker, since they are influenced by T , which

results in a lower detection power. This is the origin of the disparity in detection rates of the non-linear links. Second, also

the partially strong increase in TPR of non-linear links (influenced in a multiplicative way by T ) from the baseline dataset to

the seasonality dataset can be explained by this increase in variance. A multiplicative link is actually not generally expected

to be found by ParCorr (Runge, 2018a), but the value of the multiplicative factor is dominated by the seasonal value, and not

the dynamical noise, which might cause rather a scaling of the dynamical noise terms rather than a random distortion. Third,

the dependence on the variance ratio can also explain the difference in TPR between homoscedastic (equal error variance) and5

heteroscedastic (error variance changing over time) time series, i.e., the variance of Rg and GPP exhibits a strong seasonality

with its peak in summer, while the variance of T is rather constant. This explains, for example, the strong decrease in TPR for

the link T →GPP at 91 days time series length when comparing homoscedasticity to heteroscedasticity. The decrease in TPR

is less pronounced when another season, implying a different variance, is chosen for this comparison. As links with weak driver
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variance and strong response variance are more likely to be missed, one may ask which effect this will have on the detection10

of feedback loops where one variable has low and the other high variance. Here lies a limitation of the test model where no

feedback loops were implemented.

Seasonality and heteroscedasticity constitute violations of the stationarity assumption underlying the independence test

ParCorr.
✿✿✿✿✿✿✿✿✿✿

Seasonality
✿✿✿✿✿✿✿✿✿

constitutes
✿

a
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

driver
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

model.
✿✿

In
✿✿✿✿✿✿✿

general,
✿✿✿✿

such
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿✿

drivers
✿✿✿✿✿✿✿

increase
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

dependence

✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿✿✿

variables
✿✿✿

and
✿✿✿✿✿✿

hence,
✿✿✿✿

lead
✿✿

to
✿

a
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿

detection
✿✿✿

rate
✿✿✿

for
✿✿✿✿

true
✿✿✿✿

links
✿✿✿✿✿✿

(TPR)
✿✿

as
✿✿✿✿

well
✿✿

as
✿

a
✿✿✿✿✿✿

higher
✿✿✿✿

false
✿✿✿✿✿✿✿

positive
✿✿✿

rate
✿✿✿✿✿✿

(FPR)15

✿✿

for
✿✿✿✿✿✿

absent
✿✿✿✿✿

links
✿

if
✿✿✿✿

this
✿✿✿✿✿

driver
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿

conditioned
✿✿✿✿

out
✿✿✿✿✿✿✿

properly.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

additionally
✿✿✿✿✿✿

causes
✿✿✿

the
✿✿✿✿

TPR
✿✿✿

and
✿✿✿✿

the
✿✿✿✿

FPR
✿✿✿

rate
✿✿✿

to
✿✿✿✿✿✿✿

increase

✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

seasonality
✿✿✿✿✿✿

model.
✿

As shown in Runge (2018a), including the cause of the non-stationarity as an exogenous driver in

the analysis allows PCMCI to regress out its influence on the other variables. However, for ParCorr this is only valid if the

dependence on the non-stationary driver is linear. Therefore, the regression on Rg fails for GPP and Reco in the test model.

With this ill-posed setting, the probability to detect false links increases with increasing time series length or when more periods20

are included. Stationarity in mean is obviously also not fully guaranteed when subtracting the seasonal mean. Here we observe

that the FPR stays above the significance level for the anomalised seasonality dataset. One can ask whether the FPR stays

above the significance threshold because subtracting the seasonal mean does not remove the heteroscedasticity. However, we

attribute this high FPR to a not fully removed seasonality since the FPR of both homoscedastic and heteroscedastic time series

decreases by roughly the same amount in the anomalised seasonality dataset and the effect of heteroscedasticity is rather weak25

in the baseline dataset. Much of the influence of heteroscedasticity is also removed when limiting the analysis to a specific time

period, i.e. season, which makes the data causally stationarity (cf. Sect. 2.2)
✿✿✿

The
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿

FPR
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time
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series
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length
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can
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further
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raise
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doubts
✿✿✿✿✿✿✿✿

regarding
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿✿

long
✿✿✿✿

time
✿✿✿✿✿

series.
✿✿✿✿

For
✿✿✿✿

such
✿✿

an
✿✿✿✿✿✿✿

analysis,
✿✿✿✿✿✿✿

though,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

assumption
✿✿

of
✿✿✿✿✿✿

causal

✿✿✿✿✿✿✿✿✿

stationarity
✿✿✿✿✿✿

should
✿✿✿

first
✿✿✿

be
✿✿✿✿✿✿✿

assessed. For example, the link from radiation to GPP vanishes in winter as there is mostly no active

plant material left.
✿✿

To
✿✿✿✿✿✿

account
✿✿✿

for
✿✿✿✿✿✿

causal
✿✿✿✿✿✿✿✿✿✿

stationarity,
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿

limited
✿✿

to
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

sections
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿

causal30

✿✿✿✿✿✿✿

structure
✿✿

is
✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿

be
✿✿✿✿✿✿

similar.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿

done
✿✿✿

by
✿✿✿✿✿✿

limiting
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

to
✿✿

a
✿✿✿✿✿✿

specific
✿✿✿✿

time
✿✿✿✿✿✿

period
✿✿✿✿

(i.e.
✿✿✿✿✿✿✿✿✿

’masking’),
✿✿✿✿

e.g.

✿

a
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿

season,
✿✿✿✿✿✿

month,
✿✿

or
✿✿✿✿

time
✿✿

of
✿✿✿

the
✿✿✿✿

day.
✿✿✿✿✿

Such
✿✿✿✿✿✿✿

masking
✿✿✿✿✿✿✿

reduces
✿✿✿✿✿✿✿✿✿✿

additionally
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿

influences
✿✿

of
✿✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿✿✿✿✿✿

seasonality
✿✿

or

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

heteroscedasticity. One can argue, as it is done in Peters et al. (2017), that the causality of a system is invariant even between

seasons ,
✿✿✿✿✿✿

because the physical mechanism is the same in all seasons.
✿✿✿

Yet,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿

physical,
✿✿✿

i.e.
✿✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿

might

✿✿

be
✿✿✿✿✿✿✿

constant
✿✿✿✿

over
✿✿✿✿✿

time,
✿✿✿

its
✿✿✿✿✿✿

imprint
✿✿✿

in
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿

might
✿✿✿✿

vary.
✿

For example, a functional dependence f (x) might be ‘flat’35

for small values of x and linearly increasing for larger values. If only small values occur in the winter season, then the link

is absent, while it ‘appears’ only in the summer season. Across all seasons, this can be considered as a nonlinear functional

dependence f (x). In practice, restricting an analysis to different seasons can help in interpreting the mechanism, here in a linear

framework.

Summarizing the results of the test model, the different detection rates, disparity among non-linear links, and the detection5

of multiplicative links are largely explainable via the effect of the variance on the link detection. Yet, the discussion revealed

the need for further research in several aspects. On the one hand, feedback loops are not included in the test model yet are an

important aspect in natural systems. On the other hand, removing non-stationarities is essential to keep the false positive rate

23



in the expected range, but standard procedures of subtracting the mean seasonal cycle are not sufficient. Further, the effect of

non-stationarity on the causal network structure needs to be investigated.10

4.2 Causal interpretation of estimated networks from observational data

In both the half-hourly time resolved eddy covariance data and the monthly global dataset the predominant type of dependence

found is contemporaneous. PCMCI leaves these undirected since no time order indicating the flow of causal information

is available. Further, as discussed in Sect. 2.2, contemporaneous common drivers or mediators are not accounted for. The

consequence is that both spurious contemporaneous and spurious lagged links can appear, if they are due to contemporaneous15

variables. For interactions that are contemporaneous in nature since they occur on considerably shorter time scales than the time

resolution, therefore, PCMCI is not the optimal choice regarding a causal interpretation and other methods should be applied

in conjunction (Runge et al., 2019). Further, we faced a trade off between fulfilling causal assumptions and detection power.

In practice, accounting for causal stationarity (by limiting the analysis to certain periods of the dataset) means decreasing

the number of available data points while accounting for causal sufficiency leads to an increase in dimensionality by adding20

variables and increasing the maximal lag. Both will lead to a decrease in detection power, which can affect the network

structure. PCMCI alleviates the curse of dimensionality by applying a condition selection step, but still one cannot indefinetly

✿✿✿✿✿✿✿✿✿

indefinitely
✿

add more variables. Another important factor that affects detection power and dimensionality is the time resolution.

There are several points in favour and against increasing time resolution. On the one hand, increasing time resolution can

resolve contemporaneous links and potentially increases the detection power due to an increased number of datapoints. On25

the other hand, the dimensionality increases if the maximal lag is adapted. Further, causal information might be split apart

and distributed over more lags, rendering the links at each individual lag less detectable. This can cause links to disappear,

but links can also appear if new processes are resolved at a higher time scale. At last, observational noise (measurement

errors) might be larger in higher resolution data than in aggregated data, as it is averaged out in the latter and thus affects

link detection less. Consequently, when comparing network structures based on different settings, i.e. maximal lag, included30

variables, time resolution, and considered time period, the (dis-)appearance of single links among specific variables can stem

from several factors, i.e. a change in detection power, a changed (conditional) dependency, or due to a common driver. These

factors together with a non-zero false positive detection rate are challenging for a causal interpretation. Therefore, detected

links should be interpreted with care and can give rise to new hypotheses and analyses involving further variables. Generally,

a causal interpretation is more robust regarding the absence of links (cf. Sect.2.2). In particular it does not require that all

common drivers are observed.

Nevertheless, robust patterns were identified in our studies that are also consistent with other studies. Furthermore, a causal

analysis has the advantage of an enhanced interpretability compared to correlative approaches. First of all, we could show

that the networks’ estimated link strengths are consistent for observational data, even though measurement error affects the5

data. The dataset used was suitable for this analysis, as the measurement stations are located in a reasonably homogeneous

ecosystem that shows only little spatial variation (El-Madany et al., 2018). Thus, also the interaction between biosphere and

atmosphere is expected to change only marginally across space
✿✿✿✿✿

within
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

ecosystem. Second, the gradual changes in plant
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activity that are taking place in the ecosystem of Majadas throughout the year do very well emerge in the coupling strength of

daytime NEE to the atmospheric variables. The observed decoupling during the dry season is in accordance with the one of a10

soybean field during drought conditions observed by Ruddell and Kumar (2009). The gradual changes in ecosystem activity

are not visible in a pure (lagged) correlation analysis or are only visible in color or density changes but the large number

of significant links prevents any detailed interpretation on the physical mechanisms and changes thereof. The large number

of significant links compared to the PCMCI networks stems solely from the absence of conditioning on common drivers or

mediating variables, which often further leads to an overestimation of the link strength in correlation networks. As a result,15

processes, such as the decoupling of NEE during the dry period, stay hidden. To reduce the effect of confounding, often analyses

utilize partial correlation (see e.g. Buermann et al., 2018). However, a partial correlation can introduce new dependencies (as

opposed to removing them) if one conditions on causal effects of the variables under consideration (the ‘marrying parents’

effect). This issue is avoided in PCMCI by only conditioning on past variables. Additionally, PCMCI chooses only relevant

variables as conditions by applying the PC condition selection step which is especially valuable in high dimensional study20

cases and improves detection power and computation time (Runge, 2018a).

The global study of climatic drivers of vegetation shows a general pattern of lags and dependence strengths of vegetation on

climatic variables that is easily-interpretable. The boreal regions appear energy limited and especially driven by temperature

(cf. Fig 6c), while the strongest dependence of (semi-)arid regions on precipitation reflects their limitation in water supply.

Two recent studies performed a similar analysis. Both Wu et al. (2015) and Papagiannopoulou et al. (2017b) investigated25

lagged effects and dependence strengths of NDVI on precipitation, temperature and radiation. Wu et al. (2015) estimated the

lags of the strongest effects via an univariate regression of the climatic drivers on NDVI and subsequently used those lags to

fit a multivariate regression model of the climatic drivers on NDVI and determined their relative effects. Papagiannopoulou

et al. (2017b) applied a non-linear Granger causality framework utilising a random forest predictive model; the method was

presented by Papagiannopoulou et al. (2017a). We recognize that similar patterns are observed in Wu et al. (2015), but the30

lags at the maximal MCI value are usually lower than the one found in Wu et al. (2015), which stems from the methodical

differences. Besides having used anomaly values, PCMCI regresses both NDVI and the climatic drivers on their parents before

calculating the MCI value (cf. Sect. 2.5). This especially removes the influence of autocorrelation. Runge et al. (2014) shows

how autocorrelation affects the correlative lag causing it to be larger for stronger autocorrelation; thereby the correlative lag may

become larger than the causal lag. Therefore, according to Fig. 6b, the causal information embedded in monthly resolution is35

predominantly received within one month. Finding the strongest causal links at a time lag up to one month appear in agreement

with Papagiannopoulou et al. (2017b). Also the spatial distribution of the strongest climatic influences compares well. But there

are certain noteworthy differences which not necessarily stem from masking differences, i.e. that we took only values belonging

to the growing season while Papagiannopoulou et al. (2017b) took the whole time series. First, there is little significant Granger

causality of water availability found in boreal regions while there are significant negative causal dependencies detected via5

PCMCI. Second, NDVI in arid regions is not or barely Granger caused by radiation and temperature, but in parts shows a

negative PCMCI value on those variables. There might be physiological reasons that can explain the PCMCI patterns, i.e.

water logging or too high temperatures. To explain the differences though, we could identify two possible reasons. First,
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Papagiannopoulou et al. (2017b) masked out negative influences of radiation arguing that radiation is not negatively affecting

NDVI. They found, that negative influences of Rg are usually a consequence of poor conditioning on other variables. Second,10

a precipitation event in boreal regions coincides with a reduction in radiation and temperature. Boreal regions usually do not

suffer from water shortages. Thus they respond stronger to the reduction of radiation and temperature than precipitation. As

precipitation is coupled negatively to radiation and temperature at lag zero, the effect of precipitation on NDVI is found to

be negative. Thus, the link P
−
−→NDVI might be an effect of the contemporaneous common driver scheme P

−
←− Rg

+
−→ NDVI

and therefore would not be causal. In fact, a similar argumentation can be given for the negative impact of temperature and15

radiation on NDVI in arid regions.

In summary, we pointed out the need for careful interpretations in applying causal discovery methods and especially high-

lighted the challenges linked to the study of biosphere-atmosphere interaction via PCMCI. We demonstrated that the network

structures estimated from observational data are explainable with respect to plant physiology and climatic effects. Finally, our

study shows that causal methods can deliver better interpretability and a much improved process understanding in comparison

to correlation and bivariate Granger causality analyses that are ambiguous to interpret since they do not account for common

drivers.

4.3 Outlook5

The preceding discussion has shed light on the merits of PCMCI as well as the challenges of applying causal discovery methods.

Runge et al. (2019) discuss further challenges and methods and give an outlook how multiple methods can be combined to

alleviate limitations.
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5 Conclusions

Here we tested PCMCI, an algorithm that estimates causal graphs from empirical time-series. We specifically explored two10

types of data sets that are highly relevant in biogeosciences: eddy covariance measurements of land-atmosphere fluxes and

global satellite remote sensing of vegetation greenness. The causal graphs estimated from the eddy covariance data collected

in a Mediterranean site confirm patterns we would expect in these ecosystems: During the dry season’s plants senescence,

for instance, the ecosystem’s carbon cycle (NEE) decouples from meteorological variability. On the contrary during the main

growing season with warm and humid conditions strong links between NEE, LE and H characterise the graph. Not only the15

strongly contrasting states emerge in the graph structure using the causal framework, but also the gradual transitions that relate

to minor changes like the connectivity of sensible heat to temperature with progressing dryness. A purely correlative analy-

sis, instead, is not able to resolve these patterns. PCMCI allows us to identify and focus on much fewer, but highly relevant

dependencies only. Applying the approach to three replicated eddy covariance systems shows the robustness of the method to

random errors in the fluxes measurements and confirm one of the assumption of eddy covariance: above a relatively homoge-20

neous terrain the fluxes measured should be spatially invariant, and so the underlying causal relationship between climate and

fluxes. The global analysis of NDVI in relation to climatic drivers confirms the known patterns of dependence strengths of veg-

etation on climatic variables: boreal regions are energy limited and especially driven by temperature and secondarily radiation,

while in semi-arid regions vegetation dynamics are strongly dependent on water supply. However, obtained response times of

vegetation to climatic variations are lower using PCMCI than correlation which can be attributed to a better treatment of the

autocorrelation in the time-series and cross-relations among climate variables. Compared to merely correlative approaches, this

leads to a interpretable pattern of driver-response relationships. In short, the new developments achieved in causal inference5

allow to gain well constrained insights on processes, that would otherwise be drowning in the correlation chaos. Therefore

we hope that this study fosters usage of causal inference in analysing interactions and feedbacks of the biosphere-atmosphere

system and furthermore exhibits our demand of further developments.
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Table A1. PCMCI parameters that were used differently from default settings.

Dataset significance αpc tau_min tau_max selected_variables mask_type fdr_method

Test Model 0.01 0.4 0 25 [1,2,3] ’none’ ’none’

Majadas Dataset 0.01 None 0 8 [1,2,3,4,5] ’y’ ’fdr_bh’

Gridded global data set 0.05 None 0 3 [1,2,3] ’y’ ’fdr_bh’

Code and data availability. The eddy covariance data of the FLUXNET sites can be downloaded from the official webpage (https://fluxnet.fluxdata.org/).

CRU temperature and precipitation data is available at http://badc.nerc.ac.uk/data/cru/.

CRUNCEP radiation data can be downloaded via ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm.5

The NDVI dataset is available at http://ecocast.arc.nasa.gov/data/pub/gimms/3g/.

The TIGRAMITE software package that includes PCMCI can be found on github https://github.com/jakobrunge/tigramite/. All other code

will be made available upon request.
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FLUXNET-ID start year end year Data Reference FLUXNET-ID start year end year Data Reference

AT-Neu 2002 2012 Wohlfahrt et al. DK-ZaH 2000 2014 Lund et al. (2012)

AU-Cpr 2010 2014 Meyer et al. (2015) FI-Hyy 1996 2014 Suni et al. (2003)

AU-DaP 2007 2013 Beringer et al. (2011a) FI-Sod 2001 2014 Thum et al. (2007)

AU-DaS 2008 2014 Hutley et al. (2011) FR-Fon 2005 2014 Delpierre et al. (2016)

AU-Dry 2008 2014 Cernusak et al. (2011) FR-LBr 1996 2008 Berbigier et al. (2001)

AU-How 2001 2014 Beringer et al. (2007) FR-Pue 2000 2014 Rambal et al. (2004)

AU-Stp 2008 2014 Beringer et al. (2011b) GF-Guy 2004 2014 Bonal et al. (2008)

AU-Tum 2001 2014 Leuning et al. (2005) IT-BCi 2004 2014 Vitale et al. (2016)

BE-Lon 2004 2014 Moureaux et al. (2006) IT-Col 1996 2014 Valentini et al. (1996)

BE-Vie 1996 2014 Aubinet et al. (2001) IT-Lav 2003 2014 Marcolla et al. (2003)

BR-Sa3 2000 2004 Saleska et al. (2003) IT-MBo 2003 2013 Marcolla et al. (2011)

CA-Man 1994 2008 Brooks et al. (1997) IT-Noe 2004 2014 Spano et al.

CA-NS2 2001 2005 Bond-Lamberty et al. (2004) IT-Ro1 2000 2008 Rey et al. (2002)

CA-NS3 2001 2005 Wang et al. (2002a) IT-SRo 1999 2012 Chiesi et al. (2005)

CA-NS5 2001 2005 Wang et al. (2002b) IT-Tor 2008 2014 Galvagno et al. (2013)

CA-NS6 2001 2005 Wang et al. (2002c) JP-SMF 2002 2006 Matsumoto et al. (2008)

CA-Qfo 2003 2010 Chen et al. (2006) NL-Hor 2004 2011 Jacobs et al. (2007)

CA-SF2 2001 2005 Rayment and Jarvis (1999a) RU-Fyo 1998 2014 Kurbatova et al. (2008)

CA-SF3 2001 2006 Rayment and Jarvis (1999b) US-ARM 2003 2012 Fischer et al. (2007)

CH-Cha 2005 2014 Merbold et al. (2014) US-Blo 1997 2007 Schade et al.

CH-Dav 1997 2014 Zielis et al. (2014) US-Ha1 1991 2012 Wofsy et al. (1993)

CH-Fru 2005 2014 Imer et al. (2013) US-Me2 2002 2014 McDowell et al. (2004)

CH-Lae 2004 2014 Etzold et al. (2011) US-Me6 2010 2014 Ruehr et al. (2012a)

CH-Oe1 2002 2008 Ammann et al. (2009) US-MMS 1999 2014 Pryor et al. (1999)

CH-Oe2 2004 2014 Dietiker et al. (2010) US-Ne1 2001 2013 Gitelson et al. (2003)

CZ-wet 2006 2014 Dušek et al. (2012) US-Ne2 2001 2013 Cassman et al. (2003a)

DE-Akm 2009 2014 Bernhofer et al. (a) US-Ne3 2001 2013 Cassman et al. (2003b)

DE-Geb 2001 2014 Anthoni et al. (2004) US-SRG 2008 2014 Ruehr et al. (2012b)

DE-Gri 2004 2014 Prescher et al. (2010a) US-SRM 2004 2014 Scott et al. (2008)

DE-Hai 2000 2012 Knohl et al. (2003a) US-Ton 2001 2014 Tang et al. (2003)

DE-Kli 2004 2014 Prescher et al. (2010b) US-Twt 2009 2014 Hatala et al. (2012)

DE-Lkb 2009 2013 Lindauer et al. (2014) US-UMB 2000 2014 Rothstein et al. (2000)

DE-Obe 2008 2014 Bernhofer et al. (b) US-UMd 2007 2014 Nave et al. (2011)

DE-Spw 2010 2014 Bernhofer et al. (c) US-Var 2000 2014 Xu et al. (2004)

DE-Tha 1996 2014 Grünwald and Bernhofer (2007) US-Whs 2007 2014 Scott et al. (2006)

DK-NuF 2008 2014 Westergaard-Nielsen et al. (2013) US-Wkg 2004 2014 Emmerich (2003)

DK-Sor 1996 2014 Pilegaard et al. (2011)

Table B1. List of FLUXNET sites used for the generation of artificial datasets and the time periode used.
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Figure B1. Distribution of coupling coefficients obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions

used for generation of heteroscedastic time series.
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Figure C1. Distribution of coupling coefficients obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions

used for generation of homoscedastic time series.
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Figure D1. Distribution of time lags obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions used for

generation of heteroscedastic time series.
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Figure E1. Distribution of time lags obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions used for

generation of homoscedastic time series.
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Figure F1. Observed (blue) and
✿✿✿

test model (orange) time-series for Hainich Fluxnet site. The model data was produced with heteroscedastic

noise.

35



Rg

TNEE

VPD

H LE

2, 3, 1, 4, 5, 6, 7, 8

1, 8, 7, 2, 6, 3

4, 3, 5, 2, 6, 1, 7, 8

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3

1, 2, 3, 4, 5, 6, 7, 8

7, 8, 6, 5, 4, 3

8, 7, 6, 5, 4

1, 2, 3, 4, 5, 6

5, 4, 3, 2, 1, 7, 6, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3

1, 2, 3, 4, 5, 6, 7, 8

5, 6, 7, 8, 4, 3, 2, 1

1, 2, 3, 4, 8, 5

7, 8, 6, 5, 4, 3, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

2, 1, 3, 4, 5, 6, 7, 8

8, 1, 7, 6, 5

3, 2, 4, 5, 1, 6, 7, 8

1, 2, 3, 4, 5

April

Rg

TNEE

VPD

H LE

2, 3, 4, 1, 5, 6, 7, 8

8, 7, 6, 5, 1

4, 3, 5, 6, 2, 7, 1, 8

1, 2, 3, 4

1, 2, 3, 4, 5

1, 2, 3

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3
1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 2, 3, 1

8, 7, 6, 5, 4, 3, 2, 1

1, 2

1, 7, 5, 4, 2, 3, 6, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 1

1, 2, 3, 4

1, 2, 3, 4, 5, 6, 7

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5

8, 7, 6, 5, 4, 3, 2, 1

3, 2, 4, 1, 5, 6, 7, 8

1, 2, 8, 3, 7

4, 3, 6, 5, 8, 7, 2, 1

7, 5, 6, 8, 1

May

Rg

TNEE

VPD

H LE

6, 8, 7, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2, 1

5, 6, 7, 8, 4, 3, 2, 1

1, 2, 3, 4, 8

1, 2, 3, 4

1, 3, 2, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

3, 6

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 2, 3, 1

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3

June

Rg

TNEE

VPD

H LE

5, 4, 3, 6, 2, 7, 8, 1

5, 6, 7, 8, 4, 3, 2, 1

5, 6, 4, 7, 3, 8, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

6, 7, 8

1, 2, 3, 4, 8, 5, 6, 7

1, 3, 2, 4, 5, 8, 6, 7

8, 5, 7, 4, 2, 6, 3, 1

1, 2, 4, 3, 7

1, 2, 3, 4, 5, 6, 7, 8

4, 5, 6, 3, 8, 7, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 4, 5

6, 7, 5, 4, 8, 3, 2, 1

8, 6, 7, 5, 4, 1, 3, 2

6, 7, 8, 5, 4, 3, 2, 1

4

8, 7, 6, 5, 4, 3

6, 8, 7, 4, 3, 5, 1, 2

8, 7, 6, 5, 4, 3

4, 3, 5, 6, 8, 7

July

Rg

TNEE

VPD

H LE

5, 6, 4, 7, 8, 3, 2, 1

5, 6, 4, 7, 8, 3, 2, 1

5, 6, 4, 7, 8, 3, 2, 1

1, 2, 3, 4

8, 7, 6, 5

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

6

8, 7, 6

1, 2, 3, 4, 5, 6, 8

1, 2, 3, 4, 5, 6, 8

8

1, 3, 5

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

8

8, 7, 6, 5, 4, 3

8, 7, 6, 5, 4, 3, 2, 1

7, 8, 6, 5, 4, 3, 2

8, 7, 6, 5, 4, 3, 2, 1

7, 8, 6

8, 7, 6, 5, 4, 3

8, 7, 6, 5, 4

8, 7, 6, 5, 4, 3

2

August

Rg

TNEE

VPD

H LE

2, 3, 4, 1, 5, 6, 7, 8

1, 2, 3

4, 3, 5, 2, 6, 1, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 5, 4

8, 7, 1

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2, 1

5, 3, 2, 4, 6, 1, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3, 2, 1

3, 4, 2, 5, 1, 6, 7, 8

1, 2, 3, 4

3, 4, 5, 2, 6, 7, 1, 8

4

8, 7, 6, 5, 4, 3

8, 5

8, 7, 6, 5, 4, 3

1

September

Rg

TNEE

VPD

H LE

3, 4, 2, 5, 1, 6, 7, 8

1, 2, 8, 7

3, 4, 2, 5, 1, 6, 7, 8

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7

8, 7, 6, 5, 4, 3, 2

7, 8, 6, 5, 4, 3, 2, 1

1, 2, 3

2, 1, 3, 5, 4, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 1

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7, 8

5, 6, 4, 7, 3, 2, 8, 1

8, 7, 6, 1

5, 6, 4, 7, 3, 8, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

2, 3, 4, 5, 1, 6, 7, 8

1, 8, 7, 2

3, 2, 4, 5, 1, 6, 7, 8

1, 2, 3, 4

October

Rg

TNEE

VPD

H LE

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 4

2, 3, 1, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6

1, 2, 3, 4, 5, 6, 7

7, 6, 5, 8, 4, 3, 2, 1

5, 6, 7, 4, 8, 3, 2, 1

1, 2, 3, 4, 5, 6

1, 2, 3, 5, 6, 4, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2

1, 2, 3, 4, 5, 6, 7

1, 2, 3, 4, 5, 6, 7, 8

2, 4, 3, 5, 1, 6, 7, 8

1, 2, 3

2, 3, 4, 5, 1, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

2, 1, 3, 4, 5, 6, 7, 8

1, 2, 3, 4

2, 3, 1, 4, 5, 6, 7, 8

1, 2, 3, 4, 5

November

Rg

TNEE

VPD

H LE

8, 7, 6, 5

1, 2, 3, 4, 5, 6, 7, 8

4, 5, 3, 2, 6, 7, 1, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 8, 3, 7

1, 2, 3, 4, 5, 6

8, 7, 6, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2

4, 5, 3, 2, 6, 1, 8

4, 3, 2, 1, 5, 6, 7

1, 2

1, 2, 3, 4, 5

6, 7, 5, 8, 4, 3, 2, 1

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6, 7, 8

6, 7, 5, 1

1, 2, 4, 3, 5, 6

5, 4, 3, 2, 1, 6, 7, 8

1, 2, 3, 4, 5, 6, 7

6, 7, 5, 8, 4, 3, 2, 1

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4, 5, 6, 7

December

Rg

TNEE

VPD

H LE

4, 3, 5, 6, 2, 7, 8, 1

1, 2, 3, 4, 5, 6, 7

3, 4, 2, 5, 6, 1, 7, 8

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 1

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4

1, 2, 3, 4, 5, 6, 7, 8

4, 5, 6, 3, 2, 7, 1, 8

4, 5, 2, 6, 3, 1, 7, 8

1, 2, 3

1, 4, 2, 3, 5, 6, 7

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3, 4

1, 2, 3

1, 2, 3, 4, 5, 6, 7, 8

5, 4, 6, 7, 3, 8, 2, 1

1, 2, 3, 4, 5, 6

4, 5, 6, 7, 3, 2, 8, 1

1, 4, 2, 5, 3, 6, 7, 8

2, 1, 3, 4, 5, 6, 7, 8

1, 2, 3

1, 2, 3, 4, 5, 6, 7, 8

1, 2, 3

January

Rg

TNEE

VPD

H LE

2, 3, 1, 4, 5, 6, 7, 8

1, 8, 2, 7, 6, 3

2, 3, 1, 4, 5, 6, 7, 8

1, 2, 3, 8

1, 2, 3, 4, 5, 6

1, 8, 7, 2, 6

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4

1, 2, 3, 4, 5, 6, 7

5, 6, 4, 7, 8, 3, 2, 1

6, 7, 8, 5, 4, 3, 2, 1

1, 2, 8, 7, 3

1, 4, 2, 3, 6, 5

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5

1, 2, 8, 3

1, 2, 3, 4, 5, 6, 7

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 8, 3, 7

5, 6, 4, 7, 8, 3, 2, 1

1, 2, 3, 4, 5

2, 1, 3, 4, 5, 6, 7, 8

8, 7, 1, 6, 5

2, 3, 1, 4, 5, 6, 7, 8

1, 2, 3, 8, 7, 4, 6

February

Rg

TNEE

VPD

H LE

3, 4, 5, 2, 6, 1, 7, 8

8, 7, 6, 1, 5

4, 5, 3, 6, 2, 7, 1, 8

1, 2, 3, 4, 5, 6

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3

1, 2, 3, 4, 5, 6, 7, 8

8, 1

1, 2, 3, 4, 5, 6, 7, 8

6, 7, 8, 5, 4, 3, 2, 1

8, 7, 6, 5, 4, 3, 2

1, 3, 2, 4, 5

4, 6, 3, 7, 5, 1, 8, 2

1, 2, 3, 4, 5, 6, 7, 8

8, 7, 6, 5, 4, 3, 2, 1

1, 2, 3, 4

1, 2, 3, 4, 5, 6, 7, 8

6, 8, 7, 5, 4, 3, 2, 1

1, 8, 7, 2

6, 7, 8, 5, 4, 3, 2, 1

1, 2, 3, 6, 5, 4, 7, 8

3, 2, 1, 4, 5, 6, 7, 8

8, 7, 6, 5, 1, 4

3, 4, 5, 2, 6, 1, 7, 8
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Cross Correlation Value

0.0 0.2 0.4 0.6 0.8 1.0

Auto Correlation Value

Figure G1. Same as Fig. 5 but using simple correlation analysis to estimate the graph structures. The number of significant occurences of

a link is given by its width. The link strength, given by the link color, is calculated by averaging the significant links of the towers. Link

labels indicating the lag were removed to improve link visibility. They typically ranged from 1 to 8 (full range of possible lags). The resulting

graphs are shown for April 2014 till March 2015. The significance threshold is 0.01.
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Figure H1.
✿✿✿✿

Same
✿✿

as
✿✿✿✿

Fig.
✿

4
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

manuscript
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿

analysis
✿✿✿✿

was
✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿

test.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿

networks
✿

of
✿✿✿✿

three
✿✿✿✿

eddy
✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿✿

stations
✿✿✿✿✿

(LMa,
✿✿✿✿✿

LM1,
✿✿✿✿

LM2)
✿✿✿✿✿✿

located
✿✿

in
✿✿✿✿✿✿

Majadas
✿✿✿✿✿✿

(Spain).
✿✿✿✿✿

Links
✿✿✿

that
✿✿

are
✿✿✿✿✿

found
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿

significant

✿

in
✿✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿

three
✿✿✿✿✿✿✿

networks
✿✿✿

are
✿✿✿✿✿✿✿

included.
✿✿✿

For
✿✿✿✿

each
✿✿✿✿

link,
✿✿✿

the
✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿✿

strength
✿✿

of
✿✿

all
✿✿✿✿✿

three
✿✿✿✿✿✿✿

networks
✿✿

is
✿✿✿✿✿

plotted
✿✿✿✿

with
✿✿

its
✿✿✿✿

90%
✿✿✿✿✿✿✿✿✿

confidence

✿✿✿✿✿✿

interval.
✿✿✿

The
✿✿✿✿✿

colors
✿✿✿✿

blue,
✿✿✿✿✿✿

orange,
✿✿✿

and
✿✿✿✿

green
✿✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿

the
✿✿✿✿✿✿

towers
✿✿✿✿

LMa,
✿✿✿✿✿

LM1,
✿✿✿

and
✿✿✿✿

LM2,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿✿✿✿

threshold
✿✿

is
✿✿✿✿

0.01.

✿

If
✿

a
✿✿✿✿

link
✿✿✿

does
✿✿✿

not
✿✿✿✿

pass
✿✿

the
✿✿✿✿✿✿✿✿✿✿

significance,
✿

it
✿✿

is
✿✿✿✿✿✿

marked
✿✿

by
✿

a
✿✿✿✿✿

black
✿✿✿

dot.
✿✿✿

The
✿✿✿✿

links
✿✿✿

are
✿✿✿✿✿✿

grouped
✿✿✿

into
✿✿✿

lag
✿✿

0
✿✿✿✿

(top),
✿✿✿

lag
✿

1
✿✿✿✿✿✿✿

(middle)
✿✿✿

and
✿✿

all
✿✿✿

lags
✿✿✿✿✿✿

greater

✿✿✿

than
✿

1
✿✿✿✿✿✿✿✿

(bottom).
✿✿✿✿

Links
✿✿

at
✿✿✿

lag
✿

0
✿✿✿

are
✿✿✿

left
✿✿✿✿✿✿✿✿

undirected
✿✿✿

(−),
✿✿✿

yet
✿✿

as
✿✿

Rg
✿✿

is
✿✿

set
✿✿

as
✿✿✿✿

main
✿✿✿✿✿

driver,
✿✿✿✿

links
✿✿✿✿✿✿✿✿✿✿✿

incorporating
✿✿

Rg
✿✿

at
✿✿✿

lag
✿

0
✿✿✿

are
✿✿✿✿✿✿

directed
✿✿✿✿

(→).
✿✿✿✿

Note

✿✿✿

that
✿✿✿✿✿

GPDC
✿✿✿✿

only
✿✿✿✿✿

yields
✿✿✿✿✿✿

positive
✿✿✿

link
✿✿✿✿✿✿✿

strengths.
✿✿✿✿✿✿✿

Further,
✿✿

the
✿✿✿✿✿✿✿

strength
✿✿✿✿✿

values
✿✿✿✿✿✿✿

estimated
✿✿✿✿

with
✿✿✿✿✿

GPDC
✿✿✿

are
✿✿✿✿✿

rather
✿✿✿✿

weak
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿

low
✿✿✿✿✿✿

number
✿✿

of

✿✿✿✿✿✿✿

datapoints
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿

sensitivity
✿

of
✿✿✿✿

that
✿✿✿✿✿

method
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

sample
✿✿✿

size
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Figure I1.
✿✿✿✿

Same
✿✿

as
✿✿✿

Fig.
✿✿

5
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

manuscript
✿✿

but
✿✿✿

the
✿✿✿✿✿✿

analysis
✿✿✿

was
✿✿✿✿✿✿✿✿

performed
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿✿

test.
✿✿✿

The
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

significant

✿✿✿✿✿✿✿✿✿

occurrences
✿✿

of
✿

a
✿✿✿

link
✿✿

is
✿✿✿✿

given
✿✿✿

by
✿✿

its
✿✿✿✿✿

width.
✿✿✿

The
✿✿✿✿

link
✿✿✿✿✿✿

strength,
✿✿✿✿✿

given
✿✿

by
✿✿✿

the
✿✿✿

link
✿✿✿✿✿

color,
✿✿

is
✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿✿✿✿✿

averaging
✿✿✿

the
✿✿✿✿✿✿✿✿

significant
✿✿✿✿

links
✿✿

of
✿✿✿

the

✿✿✿✿✿

towers.
✿✿✿✿

The
✿✿✿✿

link’s
✿✿✿

lag
✿

is
✿✿✿✿✿✿

shown
✿✿

in
✿✿

the
✿✿✿✿✿

centre
✿✿

of
✿✿✿✿

each
✿✿✿✿✿

arrow,
✿✿✿✿✿

sorted
✿✿

in
✿✿✿✿✿✿✿✿

descending
✿✿✿✿✿

order
✿✿

of
✿✿✿

link
✿✿✿✿✿✿✿

strength.
✿✿✿

The
✿✿✿✿✿✿✿

resulting
✿✿✿✿✿

graphs
✿✿✿

are
✿✿✿✿✿

shown
✿✿✿

for

✿✿✿✿

April
✿✿✿✿

2014
✿✿✿

till
✿✿✿✿✿

March
✿✿✿✿✿

2015.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

significance
✿✿✿✿✿✿✿

threshold
✿✿

is
✿✿✿✿✿

0.01.
✿✿✿✿

Note
✿✿✿

that
✿✿✿✿✿

GPDC
✿✿✿✿

only
✿✿✿✿✿

yields
✿✿✿✿✿✿

positive
✿✿✿✿

link
✿✿✿✿✿✿✿

strengths.
✿✿✿✿✿✿✿

Further,
✿✿

the
✿✿✿✿✿✿✿

strength

✿✿✿✿✿

values
✿✿✿✿✿✿✿

estimated
✿✿✿✿

with
✿✿✿✿✿

GPDC
✿✿

are
✿✿✿✿✿

rather
✿✿✿✿

weak
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿

low
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

datapoints
✿✿✿

and
✿✿

the
✿✿✿✿✿

larger
✿✿✿✿✿✿✿✿

sensitivity
✿✿

of
✿✿✿

that
✿✿✿✿✿

method
✿✿

to
✿✿✿

the
✿✿✿✿✿

sample
✿✿✿✿

size
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Figure J1. Precipitation
✿✿✿✿

Daily
✿✿✿✿✿✿✿✿

aggregated
✿✿✿✿✿✿✿✿✿✿

precipitation
✿

in Majadas Majadas de Tiètar measured at the three tower sites from April 2014 to

March 2015. Missing values are set to -1.
✿✿✿✿✿

plotted
✿✿

as
✿✿✿✿

gaps.
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Figure K1.
✿✿✿✿✿

Similar
✿✿

to
✿✿✿

Fig.
✿✿✿

3.3
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿

manuscript.
✿✿✿✿✿✿✿

Influence
✿✿

of
✿✿✿✿✿✿

climatic
✿✿✿✿✿✿

drivers
✿✿

on
✿✿✿✿✿

NDVI
✿✿

as
✿✿✿✿✿✿✿

calculated
✿✿✿

by
✿✿✿✿✿✿

PCMCI
✿

in
✿✿✿✿✿✿✿✿✿

conjunction
✿✿✿✿

with
✿✿✿

the
✿✿✿

non

✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

independence
✿✿✿

test
✿✿✿✿✿✿

GPDC.
✿✿✿

The
✿✿✿✿

first
✿✿✿

and
✿✿✿✿✿

second
✿✿✿✿✿✿✿

columns
✿✿✿✿

show
✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

causal
✿✿✿✿✿✿✿

influences
✿✿

of
✿✿✿✿✿✿✿

climatic
✿✿✿✿✿

drivers
✿✿

on
✿✿✿✿✿

NDVI
✿✿

at
✿✿

lag
✿✿

0
✿✿✿

and

✿

1,
✿✿✿✿✿✿✿✿✿✿

respectively.
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