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Abstract. The dynamics of biochemical processes in terrestrial ecosystems are tightly coupled to local meteorological condi-

tions. Understanding these interactions is an essential prerequisite for predicting e.g. the response of the terrestrial carbon cycle

to climate change. However, many empirical studies in this field rely on correlative approaches and only very few studies apply

causal discovery methods. Here we explore the potential of a recently proposed causal graph discovery algorithmto reconstruct

the causal dependency structure underlying biosphere-atmosphere interactions. Using artificial time series with known depen-5

dencies that mimic real-world biosphere-atmosphere interactions we address the influence of non-stationarities, i.e. periodicity

and heteroscedasticity, on the estimation of causal networks. We then investigate the interpretability of the method in two case

studies. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosystem, and secondly, we ex-

plore global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic drivers of vegetation

greenness. We compare the retrieved causal graphs to simple cross correlation-based approaches to test whether causal graphs10

are considerably more informative. Overall, the results confirm the capacity of the causal discovery method to extract time-

lagged linear dependencies under realistic settings. For example, we find a complete decoupling of the net ecosystem exchange

from meteorological variability during summer time in the Mediterranean ecosystem. However, cautious interpretations are

needed as the violation of the method’s assumptions due to non-stationarities increases the likelihood to detect false links.

Overall, estimating directed biosphere-atmosphere networks helps unravelling complex multi-directional process interactions.15

Other than classical correlative approaches, our findings are constrained to a few meaningful sets of relations which can be

powerful insights for the evaluation of terrestrial ecosystem models.
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1 Introduction

The terrestrial biosphere responds to atmospheric drivers such as radiation intensity, temperature, vapour pressure deficit,

and composition of trace gases. On the other hand, the biosphere influences the atmosphere via partitioning incoming net

radiation into sensible, latent, and ground heat fluxes as well as via controlling the exchange of trace gases and volatile organic

compounds. Over the past decades, many of these processes have been identified and their physical, chemical and biological5

effects have been investigated (see e.g. Monson and Baldocchi, 2014; McPherson, 2007, for overviews). However, there are still

substantial unknowns regarding the exact causal dependencies among the different processes (Baldocchi et al., 2016; Miralles

et al., 2018), which leads to large uncertainties when predicting e.g. ecosystem responses to drought conditions von Buttlar

et al. (2018); Sippel et al. (2017).

Multiple ecological monitoring systems have been setup to monitor ecosystem dynamics. Networks of eddy covariance10

towers continuously monitor carbon, water, and energy fluxes in high temporal resolution (Baldocchi, 2014). Satellite remote

sensing data complement this picture and can be used in tandem (Papale et al., 2015; Mahecha et al., 2017). They typically

only monitor vegetation states at multi-day resolutions and some products offer nearly complete global coverage (Justice et al.,

2002; Woodcock et al., 2008). The actual and future satellite missions are leading to rapid development in the field with ever

higher spatial, temporal, and spectral measurements (Malenovský et al., 2012; Guanter et al., 2015; Qi and Dubayah, 2016).15

The study of biosphere-atmosphere interactions using observations typically relies on correlative approaches, or is based

on model-data i.e. requires a-priori knowledge. In recent years, a new branch in statistics aiming for causal inference from

empirical data has experienced substantial progress. The idea of causal inference emerged already in the early 20th century

(Wright, 1921). Later, Granger suggested one of the first applicable formalisms (Granger, 1969); since then, several efforts in

ecology and climate science have concentrated on the bivariate form of Granger causality (Elsner, 2006, 2007; Kodra et al.,20

2011; Attanasio, 2012; Attanasio et al., 2012). From an information theoretic perspective transfer entropy (Schreiber, 2000)

evolved as a frequently used measure to infer directionality and amount of information flow (Kumar and Ruddell, 2010; Ruddell

et al., 2015; Gerken et al., 2018; Yu et al., 2019). For instance, Ruddell and Kumar (2009) used transfer entropy to estimate

networks of information flow. These networks constructed for an agricultural site under drought and non-drought conditions

showed substantial differences in connectivity, especially between subsystems comprising variables of land and atmospheric25

conditions. Those changes in connectivity are attributed to changes in the feedback patterns between the subsystems for drought

and normal conditions. The original forms of both Granger causality and transfer entropy are bivariate and converge for the case

of vector auto regressive models. While Granger causality is typically limited to linear relationships, transfer entropy captures

also non-linear interactions, but requires very large data quantities for the estimation of the probability density function.

Aiming to mitigate some of the limitations of the traditional Granger causality, Detto et al. (2012) used a conditional spectral30

Granger causality framework that allows to disentangle system inherent periodic couplings from external forcing. The disen-

tanglement is enabled via decomposition into the frequency domain using wavelet theory. This method enabled the finding

that soil respiration in a pine and hardwood forested ecosystem in winter is not influenced by canopy assimilation but only

by temperature, a result that would not be detectable via lagged correlation or bivariate Granger causality. A time-frequency
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representation of Granger causality was presented by Shadaydeh et al. (2019) which allowed to identify anomalous events in

marine and ecological time series. Green et al. (2017) used a similar approach as Detto et al. (2012) to investigate biosphere-

atmosphere feedback loops. It was found that they can explain up to 30% of variance in radiation and precipitation in certain

regions. Recently, Papagiannopoulou et al. (2017a) applied a non-linear multivariate conditional Granger causality frame-

work to study climatic drivers of vegetation at the global scale. This approach revealed that water availability dominates plant5

productivity as 61% of the vegetated surface appeared water limited rather than controlled by radiation or temperature (Papa-

giannopoulou et al., 2017b). In the case of transfer entropy, Goodwell and Kumar (2017a, b) developed a redundancy measure

which allows to distinguish unique, synergistic and redundant information transfer of a bi or potentially multivariate system to

a target variable. This modification enables a stronger multivariate interpretation of process networks constructed with transfer

entropy. Changes in connectivity then potentially point to different ecosystem response strategies to disturbances (Goodwell10

et al., 2018). These examples highlight that unexpected interaction patterns can in principle be identified from data only and

may challenge theoretical assumptions. In fact, in the last years the science of causal inference has developed a strong theo-

retical foundation and several algorithms have been proposed (Spirtes et al., 2001; Pearl, 2009; Peters et al., 2017; Pearl and

Mackenzie, 2018; Runge et al., 2019a). However, only few studies test the suitability of this latest generation of methods to

understand ecosystem dynamics (see e.g. Shadaydeh et al., 2018, 2019; Christiansen and Peters, 2018).15

Ecological and climate data are often time ordered. This property can be exploited to construct time series graphs (Ebert-

Uphoff and Deng, 2012). Recently, Runge et al. (2019b) introduced an algorithm to estimate such graphs, called PCMCI, a

combination of the PC algorithm (named after its inventors Peter and Clark, Spirtes and Glymour, 1991) and the Momentary

Conditional Independence (MCI) test. PCMCI has been successfully applied to artificial (Runge et al., 2018) and climatological

case studies (Runge et al., 2014; Kretschmer et al., 2016). Hence, this method could be potentially of high relevance for learning20

the causal dependency structure underlying biosphere-atmosphere interactions.

In this study, we explore the potential of PCMCI for disentangling and quantifying interactions and feedbacks between

terrestrial biosphere state and fluxes and meteorological variables. The study is structured as follows: In Sect. 2 we motivate

and introduce the method from an ecological perspective. We also describe artificial and real world datasets explored in this

study. The results in Sect. 3 describes the performance of the method on artificial time series data with known dependencies25

that mimic some basic properties of observed land surface fluxes such as heteroscedasticity. We then report on the explo-

ration of three replicated eddy covariance measurement towers in a Mediterranean ecosystem and explore how the identified

interdependencies of carbon and energy fluxes and micro-meteorological observations vary over time. Further, we present the

analysis of global satellite data of vegetation greenness to understand the lagged dependency of ecosystems with respect to

climatic drivers. Based on these results, Sect.4 discusses the potentials and limitations of PCMCI for other applications in30

land-atmosphere studies and give recommendations for further methodological developments.

4



2 Method and Data

2.1 From bivariate to multivariate measures of causality

Monitoring an ecosystem with continuous observations of net ecosystem exchange (NEE), the underlying gross primary pro-

duction (GPP) and ecosystem respiration (Rtextnormaleco) together with the relevant drivers i.e. global radiation (Rg), surface

air temperature (T), and soil moisture (SM), allows to study the dynamics of the carbon cycle in terrestrial ecosystems. To5

foster its understanding, a fundamental question is how these variables causally depend on each other. This requires the iden-

tification of directional dependencies such as the well known effects of SM→ GPP and GPP→ Reco and their differentiation

from physically implausible links such as Reco → GPP. Graphical causal models (Spirtes et al., 2001) provide a framework to

represent and identify causal relations based on conditional independence relations in data streams of this kind. In the case of

an ecological monitoring site as described here, we can exploit the temporal information of the observations for identifying10

a time series graph as a type of graphical model (Runge, 2018a). Formally this can be stated as follows: The variables Xi
t

comprise a multivariate stochastic process X (where i is the variable index, in the example i ∈ {Rg,T,GPP,Reco,SM}, and t is

the time index). A time series graph G visualizes how the individual variables Xi ∈ X depend on each other at specific time

lags τ, i.e. Xi
t−τ with τ ∈ {1, .., τmax} (see Runge, 2018a, for definitions). In the following, we refer to a variable Xi

t−τ that is

causally affecting a variable X j
t as ’parent’ or ’driver’ and the latter as ’receiver’ or ’target’. To come to a causal interpretation,15

it is important to exclude dependencies between two variables that are due to common drivers (Xi
t−τ1
← Xs

t−τ2
→ X j

t ) or indirect

paths (Xi
t−τ2
→ Xs

t−τ1
→ X j

t ). For instance, when estimating the effects of GPP on Reco and Rg on Reco using a bivariate measure,

one likely obtains implausible results like to strong or even unexpected links because T, respectively as the common driver and

mediator (indirect path), is not accounted for. To exclude dependencies due to common drivers or indirect paths, conditional

independence tests are used, denoted as CI(Xi
t−τ,X

j
t |S), with some conditioning set S. If any variable (or their combination) in20

S explains the dependence between Xi
t−τ and X j

t , then the CI statistic is zero.

Two prominent methods that aim for directional dependencies are Granger causality and transfer entropy (Granger, 1969;

Schreiber, 2000). Granger causality is typically estimated as a vector autoregressive model and thus captures only linear links.

Transfer entropy, based on information theory, captures also non linear dependencies. It can be shown that for multivariate

Gaussians, transfer entropy is equivalent to Granger causality (Barnett et al., 2009). Both can be phrased as testing for con-25

ditional independence (Runge et al., 2019a). In their original bivariate form, neither of these two methods accounts for third

variables. But both can also be extended to deal with multivariate time series as required here (Runge et al., 2012; Granger,

1969). There are even non-linear and spectral modifications of Granger causality which have been applied to study biosphere

atmosphere interactions (Papagiannopoulou et al., 2017a; Detto et al., 2012; Claessen et al., 2019). However, the estimation

of multivariate transfer entropy is challenging due to the "curse of dimensionality" (Runge et al., 2012) and also multivariate30

Granger causality exhibits low link detection power for larger number of variables (higher dimensions) and limited sample

size, as is the case in our application (Runge et al., 2019b). The strong decrease in detection power happens when using the

whole past X−t = (Xt−1,Xt−2, ...) of X j
t , truncated at a maximum lag τmax, as a conditioning set S. The problem is that this set

can contain a high number of conditions which are irrelevant. For example, when assessing the effect of Rg at a specific time
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lag τ on GPP using multivariate Granger causality one would create a vector auto regressive model comprising all variables,

i.e. Rg, T, SM, GPP and Reco at each available lag. But Reco, dominated by heterotrophic respiration, is not expected to affect

gross primary productivity and could be removed to decrease the dimensionality. However, manually selecting conditions is

not desirable when the underlying dependence structure is unknown which is why ideally the conditioning set is identified

automatically.5

PCMCI addresses this issue by reducing the set of conditions S prior to quantifying the dependence between two variables.

The two-step approach utilizes a variant of the PC algorithm (Spirtes and Glymour, 1991) and the momentary conditional

independence measure (MCI) (Runge et al., 2019b). More detailed descriptions are given in Sect. 2.4 and 2.5, respectively (full

description of PCMCI including proofs and quantitative comparisons with other methods are provided in Runge et al. (2019b)).

A schematic of the PCMCI approach is given in Fig. A1. PCMCI belongs to the family of causal graphical models (Spirtes10

et al., 2001; Pearl, 2009), and follows the assumptions listed in Sect. 2.2. In the limit of infinite time series length, PCMCI

converges to the true graph of dependencies, which is why we use the term “causal”. As we deal with finite sample length and

partially unfulfilled assumptions, spurious links can still appear (beyond the expected false positive rate) and therefore each

detected link has to be interpreted with caution.

2.2 Assumptions15

PCMCI assesses the causal structure of a multivariate dataset or process X by estimating its time series graph. To draw causal

conclusions from observational data, any causal method must adopt a number of assumptions (Pearl, 2009; Spirtes et al.,

2001). For the time series case, here we assume time order, the causal Markov condition, faithfulness, causal sufficiency,

causal stationarity, and no contemporaneous causal effects (Runge et al., 2018). PCMCI is applied in combination with the

ParCorr linear independence test based on partial correlations (cf. Sect. 2.3). This application additionally requires stationarity20

in mean and variance and linear dependencies. In the following, we briefly discuss these assumptions (further details in Runge,

2018a; Runge et al., 2019b).

The time order within the time series allows to orient directed links which are only pointing forward in time. This accounts

for causal information propagating forward in time only, i.e. the cause shall precede the effect. Therefore, a directed causal

link Xi
t1 → X j

t2 can only exist between two nodes Xi
t1 ,X

j
t2 if t1 < t2. When a contemporaneous link is found, i.e. t1 = t2, it is25

considered to be undirected. In ecological language it means that in order to claim that Rg is driving GPP any change in Rg

that is affecting GPP must be measured at a time step before the change in GPP occurs. The Causal Markov and faithfulness

assumptions relate the underlying physical causal mechanisms to statistical relationships manifest in the data. The Causal

Markov condition states that if two processes are not directly connected by some physical mechanism, then they should be

statistically independent conditional on their direct drivers, like Rg and Reco conditional on T . The faithfulness assumption30

concerns the other direction: if two processes are statistically independent, then there cannot be a direct physical mechanism.

The causal sufficiency assumption implies that every common cause of two or more variables Xi ∈ X is included in X. If this

is not the case, detected links may be indirect or due to an unobserved common driver. However, the absence of a link in the

detected graph still implies that no direct link is present (as this only requires the assumption of faithfulness). For example, Rg
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is expected to influence Reco via T, the indirect path. Though, a link between Rg and Reco might be detected if T is not included

in the analysis. However, a missing link between T and Reco, might indicate conditions inhibiting respiratory processes, i.e.

very cold temperatures with frozen surfaces or very dry conditions with dead vegetation coverage. Causal stationarity refers to

the existence of links over time. In a deciduous forest, for example, the ecosystem’s CO2 exchange is not causally stationary

as the link Rg→ GPP is given in summer but not in winter. Formally, a process X with graph G is called causally stationary5

over a time index T , if and only if for all links Xi
t−τ→ X j

t in the graph the condition Xi
t−τ�yX j

t | X−t \{Xi
t−τ} holds for all t ∈ T .

2.3 Independence Test

At the core of PCMCI there are conditional independence tests CI(Xi
t−τ,X

j
t ,S) to evaluate whether Xi

t−τ y X j
t | S given a con-

ditioning set S. Within the PCMCI software package Tigramite (Runge, 2018b), several independence tests are implemented.

Here, we focus on the linear independence test called ParCorr. The ParCorr conditional independence test is based on partial10

correlations and a t-test. This assumes the model

Xi = SβXi + εXi , X j = SβX j + εX j , (1)

with coefficients β and Gaussian noise ε. This leads to the residuals

rXi
= Xi −S ˆβXi , rX j

= X j −S ˆβX j (2)

with estimated β̂. ParCorr removes the influence of S on Xi and X j via ordinary least squares regression and tests for inde-15

pendence of the residuals using the Pearson correlation with a t-test. The independence test returns a p-value and test statistic

value I, i.e. the correlation coefficient in case of ParCorr. Thus, to identify the effect of GPP on Reco that does account for

their common driver T ∈ S, ParCorr will perform a linear regression of T on both GPP and Reco accounting for time lags. The

p-value of the residuals’ partial correlation test can be used to assess whether the two variables are dependent.

2.4 PC algorithm20

To efficiently estimate CI(Xi
t−τ,X

j
t |S) the conditioning set S should be as small as possible which means that it should only

contain relevant conditions, which allow to isolate the unique influence of Xi
t−τ on X j

t . For an estimation of CI(Rgt−τ,GPPt |S),

for example, S should contain T and SM (at certain lags), as they influence the ability of an ecosystem to perform photosynthe-

sis. Likewise, when estimating CI(Tt−τ,GPPt |S), S should include Rg and SM for the same reasons. A sufficient set of relevant

conditions includes the drivers/parents of the variable X j
t . Consequently, the aim of the PC step is to identify an as small as pos-25

sible superset of the parents of each variable included in the process. The algorithm uses a variant of the PC algorithm (Spirtes

et al., 2001); a comprehensive pseudo-code of this procedure is given in the supplementary materials of Runge et al. (2019b).

In the limit of infinite sample size the relevant conditions indeed converge to the true causal parents, practically though, an

estimate that contains a few irrelevant conditions, like Reco, is sufficient as well.

The PC step starts by initializing the whole past of a process: P̃(X j
t ) = X−t = {Xi

t−τ : i = 1, ...,N, τ = 1, ..., τmax}. Next, by30

evaluating CI(Xi
t−τ,X

j
t ,S), conditions Xi

t−τ are removed from P̃(X j
t ) that are independent of X j

t conditionally on a subset
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S ∈ P̃(X j
t )\
{
Xi

t−τ

}
. S starts as the empty set ∅ and is iteratively increased. For instance, let Xi

t−τ be Reco (at a specific lag)

and X j
t be GPP. The conditional independence between GPP and Reco will be estimated first by using no conditions. If GPP and

Reco appear related, one variable will be included in the conditioning set. If the residuals are still dependent, a second variable

is included and so on. When T is part of the conditioning set, the residuals of GPP and Reco might not be dependent anymore

and Reco is removed from the estimated set of parents of GPP. The PC algorithm adopted in PCMCI efficiently selects those5

conditioning sets to limit the number of tests conducted.

Every conditional independence test is evaluated at a significance threshold αpc, which is usually set to a liberal value

between 0.1 and 0.4. Alternatively, in tigramite one can let αpc unspecified. PCMCI then evaluates the best choice of αpc

∈ {0.1,0.2,0.3,0.4} based on the Akaike information criterion which is further explained in (Runge et al., 2018).

2.5 MCI tests10

MCI is the actual causal discovery step that ascribes a p-value and strength to each possible link. MCI iterates through all pairs

(Xi
t−τ,X

j
t ) : i = 1, ...,N, τ = 0, ..., τmax and calculates CI(Xi

t−τ,X
j
t ,S) whereS consists of the two (super-)sets of parents P̃(X j

t ) and

P̃(Xi
t−τ) obtained in the PC step. P̃(Xi

t−τ) is constructed by shifting the time series of P̃(Xi
t) by τ. In case Xi

t−τ ∈ P̃(X j
t ), Xi

t−τ has

to be removed from P̃(X j
t ). If τ = 0, conditional dependence is estimated for contemporaneous nodes X j

t and Xi
t . Due to missing

time order, a dependence would be left undirected. Further, as the parents P̃(Xi
t) and P̃(X j

t ) used in each conditional dependence15

test are defined to lie in the past of Xi
t and X j

t , links, both contemporaneous and lagged, can be spurious due to contemporaneous

common drivers or contemporaneous indirect paths. The absence of a link, though, means that a physical (contemporaneous)

link is unlikely (assuming faithfulness, cf. Runge et al. (2018)). For simplicity, the previously given examples were omiting the

time lag. Thus if Reco responds instantaneously (considering the sampling temporal resolution) to changes in T but T responds

with a time lag to Rg, both variables will likely appear contemporaneously coupled to Rg.20

The link strength in the PCMCI framework can be given by the effect size of the conditional independence test statistic

measure CI used in combination with MCI. In case of ParCorr, the effect size is given by the partial correlation value, which is

between -1 and 1. Assuming a linear Gaussian model the partial correlation value is shown to directly depend on the receiver’s

and driver’s variance as well as the coupling coefficient (Runge et al., 2019a):

ρMCI
Xi

t−τ→X j
t

=
cσXi

t−τ√
σ2

X j
t
+ c2σ2

Xi
t−τ

(3)25

where σXi
t−τ,X

j
t

are the variances of the noise/innovation terms driving Xi
t−τ and X j

t , respectively, and c is their coupling coeffi-

cient. In practice, also non-linear links can often be well detected with ParCorr in so far they be linearly approximated. In case

the linear part is even "stronger" than the non-linear part, ParCorr might also have a better detection power than a non-linear

independence test (Runge et al., 2018).
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2.6 Data

2.6.1 Artificial Dataset - Test Model

We tested the algorithm on artificial datasets prior to its application to real world data. The artificial dataset was created using

a test model which takes time series of measured global radiation (Rg) and creates three artificial time series that conceptually

represent temperature (T ), gross primary production (GPP) and ecosystem respiration (Reco). Note that this test model is not5

intended to accurately represent observed land-atmosphere fluxes, but only serves to test the procedure. The model incorporates

one linear auto dependence Tt−τ1 →Tt, one linear additive cross-dependence Rgt−τ2 →Tt and two non-linear dependencies,

multiplicative Rgt−τ3 •Tt−τ4 →GPPt, and multiplicative exponential GPPt−τ5
• cTt−τ6 →Recot (cf. Fig. 1) according to the

equations:

Rgmo = Rgobs (4)10

Tmo(t) = c1 Tmo(t− τ1) + c2 Rgmo(t− τ2) + ξT (5)

GPPmo(t) = c3 Rgmo(t− τ3) ∗ Tmo(t− τ4) + ξGPP (6)

Recomo(t) = c4 GPPmo(t− τ5) ∗ c
Tmo (t−τ6)−Tre f

10
5 + ξReco (7)

The parameters c1, c2, ..., c5 are referred to as coupling coefficients, and the time lags are noted as τ1, τ2,..., τ5. The subscripts

mo and obs abbreviate model and observation, respectively. Tre f is set to 15◦C. The term ξ, termed “intrinsic” or “dynamical15

noise”, here represents values from uncorrelated, normally distributed noise. Having dynamic noise is essential for a method

utilizing conditional independence tests. It is based on the assumption that a process or state is never fully described by its

deterministic part because there are unresolved intrinsic processes, summarized as ξ.

The model was fitted to real observational data (using radiation, temperature and land-atmosphere fluxes) of daily time

resolution, measured by the eddy-covariance method (Baldocchi et al., 1988; Baldocchi, 2003) from FLUXNET, by minimizing20

the sum of squared residuals using the gradient descent implemented in the Optim.jl package (Mogensen and Riseth, 2018).

We fitted the model to 72 sites listed in Table B1 given in the Supplementary Material section. The value range for the coupling

coefficients c1 to c4 and c5 were set to [0.2,1] and [1,2.5], respectively. The lags were limited to integer values in the range

[0,25]. The distributions of obtained lags and coupling coefficients are given in the Supplementary Material Fig. B1 to E1. The

fitting process thus generated 72 sets of parameters, containing coupling coefficients and lag values, which were used for the25

time series generation.

From each of the 72 sets of parameters we generated four sets of time series each having a length of 500 years. The time

series generation was initiated using two types of data: first, uncorrelated, normally distributed noise, and second, unprocessed

radiation data as used during the fitting (the available radiation data was repeated to 500 years). The resulting datasets are

called baseline dataset and seasonality dataset, respectively. In both cases, the model was run twice, once with homoscedastic30

(constant variance of ξ), once with heteroscedastic dynamical noise ξ. To induce heteroscedasticity, ξ was multiplied with a
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mean daily variance that was extracted for each variable at each FLUXNET site. In Supplementary Material Fig. F1 a five year

time series excerpt from Hainich site (Knohl et al., 2003b) is shown. A third dataset is generated by anomalization (subtraction

of smoothed seasonal mean) of the seasonality dataset.

2.6.2 Eddy Covariance Data - Majadas de Tiètar Experimental site

Data from three towers located in Majadas de Tiètar, (ES-LMa, ES-LM1, ES-LM2), a Mediterranean Savanna in central5

Spain, are used (coordinates of central tower: 39◦56'25''N 5◦46'29''W). Meaurements include the exchange of CO2 between the

land surface and atmosphere at half-hourly resolution using the eddy covariance method. The three tower footprints received

different fertilisation treatments in spring 2015 (El-Madany et al., 2018). We consider data from before the fertilization from

April 2014 to March 2015 of shortwave downward radiation (Rg), air temperature (T), net ecosystem exchange (NEE), vapour

pressure deficit (VPD), sensible heat (H) and latent heat (LE). The average temperature within this period was 17.3◦C, with a10

total precipitation of 765mm. Most precipitation fell between October and April.

We expect the causal imprints in the data to vary between seasons and during the course of the day. To satisfy causal

stationarity, we estimate networks separately for each month and consider only samples for which the potential radiation was

above 4
5 of the potential daily maximum, which corresponds to midday samples. We used a mask type that limits only the

receiver variable to the respective month and day time values (cf. Table A1 for PCMCI parameter settings). This setting causes15

time series lengths ranging from 239 datapoints in December to 372 datapoints in July. Minimal and maximal lags were set to

0 and 8, respectively. We left the data unprocessed, i.e. we did not subtract a seasonal mean for anomalisation. Constraining

the samples to separate month and midday values reduces the effect of seasonality as a common driver that would lead to

spurious links. Furthermore, to correct for multiple testing we applied the Benjamini-Hochberg false discovery rate correction

(Benjamini and Hochberg, 1995). Thereby, the p-values for the whole graph obtained from the MCI step are adjusted to control20

the number of false discoveries (Runge et al., 2018). We chose a two-sided significance level of 0.01.

2.6.3 Gridded global data set

The second observational case study was performed on a global data set. We used data with 0.5◦ spatial and monthly temporal

resolution from 1982 to 2008. The dataset is composed of three climatic variables, global radiation (Rg), temperature (T) and

precipitation (P), and one vegetation state index, the Normalized Difference Vegetation Index (NDVI). Both temperature and25

precipitation datasets were taken from the Climate Research Unit (CRU), version TS3.10 (Harris et al., 2014). The radiation

data stems from the Climate Research Unit and National Centers for Environmental Prediction dataset (CRUNCEP, Viovy,

2016). The used NDVI data stems from the Global Inventory Monitoring and Modeling Systems (GIMMS) in version 3g_v1

(Pinzon and Tucker, 2014).

To examine the influence of radiation, temperature, and precipitation on NDVI by means of PCMCI we used the following30

settings. We compute the anomalies by subtracting a smoothed seasonal mean. A maximal time lag of three months was chosen

based on the largest lag with significant partial correlation among all pairs of variables, partialling out only the autocorrelation

of each variable. The receiver variable was limited to the growing season defined by T>0 and NDVI>0.2, which allows good

10



comparison to Wu et al. (2015). The significance level (αpc) in the condition selection phase (cf. Sect. 2.4) was chosen based

on the AIC selection criterion. A concise list of PCMCI parameters that were altered from default settings is given in Table A1.
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Figure 1. The artificial datasets are generated with a prescribed interaction structure (True Network), which is obtained by fitting the test

model to the FLUXNET sites. Here we show for four time series lengths the process graphs estimated via both lagged correlation and

PCMCI. The data used stems from the homoscedastic realisation of the seasonality dataset of the Hainich site. The significance level was set

to 0.01. The number of time lag labels were limited to five in the correlation networks. But for the longest time series typically the whole

range of lags (0-25) was significant.

3 Results

3.1 Test Model

As motivating example, in Fig. 1 we show PCMCI and lagged correlation networks in the form of process graphs. It is clearly

visible, that many more spurious links pass the significance threshold of 0.01 using lagged correlation as compared to using

PCMCI. Those spurious links can complicate the analysis or lead to false conclusions and misleading hypotheses. We examined5

four cases of different time series lengths: 91 [183<=doy<=274] and 120 [153<=doy<=274] days, 1 and 5 years for daily data

(doy: day of the year). For each time series length and each parameter set, the causal network structure was estimated for 100

realisations of the model (each based on a realization of intrinsic noise), which allowed the estimation of false positive (FPR)

and true positive (TPR) detection rates. The detection rates are calculated for each tower, FPR in general and TPR link-wise.

The TPR for each link is its sum of detections among 100 realisations divided by 100. The FPR is the number of falsely detected10

links divided by the number of all possible false links and 100. The summary of the experiments i.e. the overall false positive

rate (FPR) and the distributions of the link’s true positive rate (TPR) across sites are given in Fig. 2 and 3, respectively. The

blue violin plots always report the case of normal distributed (non heteroscedastic) intrinsic noise and the corresponding orange

violin plots summarize the case of heteroscedastic noise. The effect of heteroscedasticity and seasonality is then assessed by

comparing the distributions obtained from the baseline dataset to the results of the seasonality dataset.15

The FPR of homoscedastic time series in the baseline dataset is in the expected range of 0.01, the chosen significance level,

indicating a well calibrated test due to fulfilled assumptions. The assumption of stationarity is violated as soon as heteroscedas-
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Figure 2. The distribution of false positive detection rates estimated for the baseline dataset, the seasonality dataset and the anomalised

seasonality dataset (mean seasonal cycle subtracted). The distributions are given for different time series length (number of datapoints).

Additionally, the distributions are split to show the impact of heteroscedastic noise (orange) compared to normal distributed noise (blue).

The significance level of 0.01 is given by a blue horizontal line.

ticity or seasonality is present. The effect on the FPR is an increase above 0.01 for time series length of 1 and 5 years with a

much stronger increase due to seasonality (factor of 4 and 8, respectively) than for heteroscedasticity (factor of 2).

The effect of non-stationarities on the TPR differs among the links. The detection of linear links (Rg→T and T →T )

is not affected by seasonality and slightly improves for heteroscedastic dynamical noise. The detection of non-linear links is

improved by seasonality with the strongest effects in the link T →GPP. The link T →Reco has a stronger non-linearity and5

therefore the detection rate shows a weaker effect on seasonality. Furthermore, the coupling coefficient c5, the base of T, can be

close to or be exactly one (cf. Fig. C1). This would actually cause on the one hand the effect of T →Reco to vanish, rendering

a detection impossible and on the other hand result in a linear dependence of GPP on Reco which improves its detection.

Heteroscedasticity seems to have a slight negative effect on non-linear links. In general, the TPRs in the seasonality dataset are

quite high, even for non-linear links, and predominantly above 80% and often reaching 100%.10

Comparing the TPRs of the non-linear links shows some disparity. The links T →GPP and T →Reco experience zero

detection in the baseline dataset but partially considerable rates in the seasonality dataset with a strong dependence on the

time series length. On the contrary, the median of the TPR of the links Rg→GPP and GPP→Reco is above 95% in the

seasonality dataset, even for time series length as short as 91 days, but remains high in the baseline dataset. The removal of

the seasonal cycle keeps the TPRs largely unaffected, but reduces the FPR. Nevertheless, it still remains above the significance15

level by a factor of four and two for five and one year time series length, respectively.
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Figure 3. The distribution of the true positive detection rates for each link in the test model estimated for the baseline dataset, the sea-

sonality dataset, and the anomalised seasonality dataset. The distributions are given for different time series length (number of datapoints).

Additionally the distributions are split to show the impact of heteroscedastic noise (orange) compared to normally distributed noise (blue).

In summary, the seasonality dataset exhibits high TPR even for non-linear links. Compared to stationary time series, the

detection of non-linear links actually benefits from seasonality. The high detection, though, comes at the cost of a high false

positive rate for time series length of and above one year. To a certain degree, the increase in FPR can be counteracted by

anomalization.

3.2 Majadas de Tiètar dataset5

At first we look at the link consistency by comparing networks that were obtained for each tower within a month. The compar-

ison is done for two months with strongly differing climate conditions: April and August. In Fig. 4 we compare the estimated

link strengths (effect size estimated via partial correlation) as long as the corresponding links are significant in at least one

network. The confidence intervals are overlapping for the majority of links, suggesting that the uncertainty of the fluxes is

much smaller than the observed effects (El-Madany et al., 2018). Exceptions are found for only a few links (Rg
0
−→T, Rg

1
−→LE,10

VPD
1
−→VPD, H

2
−→H, NEE

0
−→LE, H

2
−→NEE, NEE

4
−→NEE, number above the arrow indicates the lag) where the detection rates do

not or barely overlap. Cross links (a link from one variable to another) with two or more significant appearances are predomi-
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Figure 4. Comparison of the networks of three eddy covariance measurement stations (LMa, LM1, LM2) located in Majadas (Spain). Links

that are found to be significant in one of the three networks are included. For each link, the calculated strength of all three networks is

plotted with its 90% confidence interval. The colors blue, orange, and green correspond to the towers LMa, LM1, and LM2, respectively.

The significance threshold is 0.01. If a link does not pass the significance, it is marked by a black dot. The links are grouped into lag 0 (top),

lag 1 (middle) and all lags greater than 1 (bottom). Negative NEE is associated with carbon uptake by the ecosystem. Links at lag 0 are left

undirected (−), yet as Rg is set as main driver, links incorporating Rg at lag 0 are directed (→).
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nantly at zero lag. Approximately half of the links with lag one are auto-dependent links (a link from the past of a variable to

its present). Comparing the links between the month April and August, distinct differences can be noticed. First, August has

slightly fewer significant links compared to April. Second, the only links remaining that are significant in two or three towers

are between atmospheric variables. Third, the remaining link strengths tend to be weaker in August than in April.

The difference among the seasons is further investigated in Fig. 5 which shows process graphs for each month of the year.5

We combine the networks of the three towers to one process graph by plotting every link that is significant in at least one tower.

The process graphs in Fig. 5 visualize clearly gradual changes within the interaction structure of the biosphere-atmosphere

system during the course of a year. During the main growing season from February to May, NEE is coupled strongly to the

energy fluxes latent (LE) and sensible heat (H). These connections weaken, disappear or even switch sign with start and course

of the dry season. Less regularly NEE also shows connections to radiation (Rg) and temperature (T). Between the atmospheric10

variables, a basic network between VPD, T, Rg and H remains intact and relatively constant in strength. The dominance of

contemporaneous links is found as well, as seen already in Fig. 4. Besides the decoupling of NEE from any variable in the dry

period, there are additional interesting patterns. For example, the positive reappearance of the link between NEE and LE in

September. Here, the onset of precipitation events (cf. Fig. J1) occurred that lead to strong respiration peaks (Ma et al., 2012).

Creating such a network via lagged correlation would result in much more significant links (causing the network to be not15

interpretable as opposed to PCMCI) and NEE does not decouple from the atmosphere in August (cf. Fig. G1).

The above results demonstrate that PCMCI is sensitive enough to capture seasonal differences and certain physiological

reasonable biosphere behaviour. Moreover, PCMCI yields a better interpretable network structure than pure correlation ap-

proaches.

3.3 Gridded global data set20

Subject of inspection were the significant lags and MCI values of each climatic variable on NDVI. In Fig. 6 the maximal MCI

value and the corresponding lag are plotted for the links Xt−τ→ NDVI : τ ∈ {0,1,2,3} with X being one of the climatic drivers

radiation, temperature, or precipitation. The chosen significance threshold was set to 0.05. Fig. 7 shows the climatic driver

with largest MCI per grid point. PCMCI detects a regionally varying influence of climatic drivers. As expected, the boreal

regions are strongly driven by temperature instantaneously, while (semi-) arid regions, which correspond predominantly to25

grass or prairie dominated areas, respond strongest to precipitation at a time lag of one month. Radiation is found to have a

comparatively low spatial effect with hot spots in south and east China, central Russia and east Canada.

The dominant lags are found to be zero and one. Just a very small fraction of the total area shows a maximal MCI value

at a higher lag of two or three months. The lags are also not equally distributed among the climatic drivers. Radiation and

temperature are predominantly strongest at lag zero, while precipitation has a much larger fraction of area showing the strongest30

response at lag one. Regions where the impact of Rg on NDVI is strongest at lag 1 tend to respond negatively to Rg but

positively to precipitation at lag one. On the other hand, a large part of regions with the strongest impact of precipitation at lag

zero respond negatively to it but positively to radiation.
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Figure 5. To visualize the gradual changes in interaction structure the networks of the three towers are combined for each month. The number

of significant occurences of a link is given by its width. The link strength, given by the link color, is calculated by averaging the significant

links of the towers. The link’s lag is shown in the centre of each arrow, sorted in descending order of link strength. The resulting graphs

are shown for April 2014 till March 2015. The significance threshold is 0.01. The networks of April and August, illustrated in Fig. 4, are

highlighted by a box.
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Figure 6. Influence of climatic drivers on NDVI as calculated by PCMCI. The first column shows the estimated causal influence given as

maximal absolute MCI value of climatic drivers on NDVI. The second column gives the time lag at which the maximal absolute MCI value

occures (in month).

Figure 7. Map of the strongest climatic driver (largest absolute MCI value) per grid point.
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In summary, PCMCI estimates coherent interaction patterns which match well with anticipated behaviour based on vegeta-

tion type and prevailing climatic conditions.
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4 Discussion

Causal discovery methods promise an improved understanding and can help to come up with new hypotheses about the interac-

tion between biosphere and atmosphere (Christiansen and Peters, 2018; Runge et al., 2019a). But the underlying assumptions

need to be properly taken into account. The coupled biosphere-atmosphere system possesses several challenges that potentially

violate the underlying assumptions of causal discovery in general and the employed method’s assumptions in particular. Here,5

we investigate the effect of a violation of assumptions on PCMCI network estimates.

With regard to expected non-linearities in biosphere-atmosphere interactions, using a linear independence test within the

PCMCI framework may not be adequate. We motivate our choice with the following arguments: first, non-linearities are often

approximated linearly. Second, a linear regression based test has a much higher power for detecting linear links than a non

parametric test (Runge, 2018a) and can, hence, detect links already at smaller sample sizes. Third, linear partial correlation10

is easily interpretable, for example, positive and negative MCI values. This motivation is supported on the one hand by the

results of the test model and on the other hand by additionally performed analyses on the observational datasets using Gaussian

regression and distance correlation as an independence test. These results (cf. Fig. H1,I1,K1) show similar patterns but due to

the low sample sizes exhibit lower statistical significances. In general, the derived results show a high detection power with

a strong consistency in calculated effect strengths on eddy covariance data and global, regularly gridded reanalysis data that15

leads to well interpretable patterns. Observed drawbacks are a high FPR in case of violated assumptions, especially strong

periodicity, as well as the appearance of contemporaneous lags in measurement datasets.

4.1 Lessons learned from the test model

The probability to detect a link with PCMCI depends strongly on a link’s MCI effect size, which is larger for strong variance

in the driver and a low variance in the receiver (cf. Sect. 2.5). Several results can be explained by this observation. First,20

the variance of three out of five drivers of cross dependencies in the test model are either directly or indirectly (via GPP)

influenced by Rg, which has the highest variance of all variables. Consequently, the detection power of the three links is large,

almost 100%. In comparison, the other variables’ variances are weaker, since they are influenced by T , which results in a

lower detection power. This is the origin of the disparity in detection rates of the non-linear links. Second, also the partially

strong increase in TPR of non-linear links (influenced in a multiplicative way by T ) from the baseline dataset to the seasonality25

dataset can be explained by this increase in variance. A multiplicative link is actually not generally expected to be found by

ParCorr (Runge, 2018a), but the value of the multiplicative factor is dominated by the seasonal value, and not the dynamical

noise, which might cause rather a scaling of the dynamical noise terms rather than a random distortion. Third, the dependence

on the variance ratio can also explain the difference in TPR between homoscedastic (equal error variance) and heteroscedastic

(error variance changing over time) time series, i.e., the variance of Rg and GPP exhibits a strong seasonality with its peak30

in summer, while the variance of T is rather constant. This explains, for example, the strong decrease in TPR for the link

T →GPP at 91 days time series length when comparing homoscedasticity to heteroscedasticity. The decrease in TPR is less

pronounced when another season, implying a different variance, is chosen for this comparison. As links with weak driver

20



variance and strong response variance are more likely to be missed, one may ask which effect this will have on the detection

of feedback loops where one variable has low and the other high variance. Here lies a limitation of the test model where no

feedback loops were implemented.

Seasonality and heteroscedasticity constitute violations of the stationarity assumption underlying the independence test

ParCorr. Seasonality constitutes a common driver in this model. In general, such common drivers increase the dependence5

among the variables and hence, lead to a higher detection rate for true links (TPR) as well as a higher false positive rate (FPR)

for absent links if this driver is not conditioned out properly. This additionally causes the TPR and the FPR rate to increase

in the seasonality model. As shown in Runge (2018a), including the cause of the non-stationarity as an exogenous driver in

the analysis allows PCMCI to regress out its influence on the other variables. However, for ParCorr this is only valid if the

dependence on the non-stationary driver is linear. Therefore, the regression on Rg fails for GPP and Reco in the test model.10

With this ill-posed setting, the probability to detect false links increases with increasing time series length or when more periods

are included. Stationarity in mean is obviously also not fully guaranteed when subtracting the seasonal mean. Here we observe

that the FPR stays above the significance level for the anomalised seasonality dataset. One can ask whether the FPR stays

above the significance threshold because subtracting the seasonal mean does not remove the heteroscedasticity. However, we

attribute this high FPR to a not fully removed seasonality since the FPR of both homoscedastic and heteroscedastic time series15

decreases by roughly the same amount in the anomalised seasonality dataset and the effect of heteroscedasticity is rather weak

in the baseline dataset. The increasing FPR with increasing time series length can further raise doubts regarding the analysis of

long time series. For such an analysis, though, the assumption of causal stationarity should first be assessed. For example, the

link from radiation to GPP vanishes in winter as there is mostly no active plant material left. To account for causal stationarity,

the analysis should be limited to time series sections where the causal structure is expected to be similar. This is typically done20

by limiting the analysis to a specific time period (i.e. ’masking’), e.g. a specific season, month, or time of the day. Such masking

reduces additionally further influences of remaining seasonality or heteroscedasticity. One can argue, as it is done in Peters

et al. (2017), that the causality of a system is invariant even between seasons because the physical mechanism is the same in

all seasons. Yet, while the physical, i.e. functional relationship might be constant over time, its imprint in the time series might

vary. For example, a functional dependence f (x) might be ‘flat’ for small values of x and linearly increasing for larger values.25

If only small values occur in the winter season, then the link is absent, while it ‘appears’ only in the summer season. Across

all seasons, this can be considered as a nonlinear functional dependence f (x). In practice, restricting an analysis to different

seasons can help in interpreting the mechanism, here in a linear framework.

Summarizing the results of the test model, the different detection rates, disparity among non-linear links, and the detection

of multiplicative links are largely explainable via the effect of the variance on the link detection. Yet, the discussion revealed30

the need for further research in several aspects. On the one hand, feedback loops are not included in the test model yet are an

important aspect in natural systems. On the other hand, removing non-stationarities is essential to keep the false positive rate

in the expected range, but standard procedures of subtracting the mean seasonal cycle are not sufficient. Further, the effect of

non-stationarity on the causal network structure needs to be investigated.
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4.2 Causal interpretation of estimated networks from observational data

In both the half-hourly time resolved eddy covariance data and the monthly global dataset the predominant type of dependence

found is contemporaneous. PCMCI leaves these undirected since no time order indicating the flow of causal information

is available. Further, as discussed in Sect. 2.2, contemporaneous common drivers or mediators are not accounted for. The

consequence is that both spurious contemporaneous and spurious lagged links can appear, if they are due to contemporaneous5

variables. For interactions that are contemporaneous in nature since they occur on considerably shorter time scales than the time

resolution, therefore, PCMCI is not the optimal choice regarding a causal interpretation and other methods should be applied

in conjunction (Runge et al., 2019a). Further, we faced a trade off between fulfilling causal assumptions and detection power.

In practice, accounting for causal stationarity (by limiting the analysis to certain periods of the dataset) means decreasing

the number of available data points while accounting for causal sufficiency leads to an increase in dimensionality by adding10

variables and increasing the maximal lag. Both will lead to a decrease in detection power, which can affect the network

structure. PCMCI alleviates the curse of dimensionality by applying a condition selection step, but still one cannot indefinitely

add more variables. Another important factor that affects detection power and dimensionality is the time resolution. There

are several points in favour and against increasing time resolution. On the one hand, increasing time resolution can resolve

contemporaneous links and potentially increases the detection power due to an increased number of datapoints. On the other15

hand, the dimensionality increases if the maximal lag is adapted. Further, causal information might be split apart and distributed

over more lags, rendering the links at each individual lag less detectable. This can cause links to disappear, but links can also

appear if new processes are resolved at a higher time scale. At last, observational noise (measurement errors) might be larger in

higher resolution data than in aggregated data, as it is averaged out in the latter and thus affects link detection less. Consequently,

when comparing network structures based on different settings, i.e. maximal lag, included variables, time resolution, and20

considered time period, the (dis-)appearance of single links among specific variables can stem from several factors, i.e. a

change in detection power, a changed (conditional) dependency, or due to a common driver. These factors together with a

non-zero false positive detection rate are challenging for a causal interpretation. Therefore, detected links should be interpreted

with care and can give rise to new hypotheses and analyses involving further variables. Generally, a causal interpretation is

more robust regarding the absence of links (cf. Sect.2.2). In particular it does not require that all common drivers are observed.25

Nevertheless, robust patterns were identified in our studies that are also consistent with other studies. Furthermore, a causal

analysis has the advantage of an enhanced interpretability compared to correlative approaches. First of all, we could show

that the networks’ estimated link strengths are consistent for observational data, even though measurement error affects the

data. The dataset used was suitable for this analysis, as the measurement stations are located in a reasonably homogeneous

ecosystem that shows only little spatial variation (El-Madany et al., 2018). Thus, also the interaction between biosphere and30

atmosphere is expected to change only marginally across space within this ecosystem. Second, the gradual changes in plant

activity that are taking place in the ecosystem of Majadas throughout the year do very well emerge in the coupling strength of

daytime NEE to the atmospheric variables. The observed decoupling during the dry season is in accordance with the one of a

soybean field during drought conditions observed by Ruddell and Kumar (2009). The gradual changes in ecosystem activity
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are not visible in a pure (lagged) correlation analysis or are only visible in color or density changes but the large number

of significant links prevents any detailed interpretation on the physical mechanisms and changes thereof. The large number

of significant links compared to the PCMCI networks stems solely from the absence of conditioning on common drivers or

mediating variables, which often further leads to an overestimation of the link strength in correlation networks. As a result,

processes, such as the decoupling of NEE during the dry period, stay hidden. To reduce the effect of confounding, often analyses5

utilize partial correlation (see e.g. Buermann et al., 2018). However, a partial correlation can introduce new dependencies (as

opposed to removing them) if one conditions on causal effects of the variables under consideration (the ‘marrying parents’

effect). This issue is avoided in PCMCI by only conditioning on past variables. Additionally, PCMCI chooses only relevant

variables as conditions by applying the PC condition selection step which is especially valuable in high dimensional study

cases and improves detection power and computation time (Runge, 2018a).10

The global study of climatic drivers of vegetation shows a general pattern of lags and dependence strengths of vegetation on

climatic variables that is easily-interpretable. The boreal regions appear energy limited and especially driven by temperature

(cf. Fig 6c), while the strongest dependence of (semi-)arid regions on precipitation reflects their limitation in water supply.

Two recent studies performed a similar analysis. Both Wu et al. (2015) and Papagiannopoulou et al. (2017b) investigated

lagged effects and dependence strengths of NDVI on precipitation, temperature and radiation. Wu et al. (2015) estimated the15

lags of the strongest effects via an univariate regression of the climatic drivers on NDVI and subsequently used those lags to

fit a multivariate regression model of the climatic drivers on NDVI and determined their relative effects. Papagiannopoulou

et al. (2017b) applied a non-linear Granger causality framework utilising a random forest predictive model; the method was

presented by Papagiannopoulou et al. (2017a). We recognize that similar patterns are observed in Wu et al. (2015), but the

lags at the maximal MCI value are usually lower than the one found in Wu et al. (2015), which stems from the methodical20

differences. Besides having used anomaly values, PCMCI regresses both NDVI and the climatic drivers on their parents before

calculating the MCI value (cf. Sect. 2.5). This especially removes the influence of autocorrelation. Runge et al. (2014) shows

how autocorrelation affects the correlative lag causing it to be larger for stronger autocorrelation; thereby the correlative lag may

become larger than the causal lag. Therefore, according to Fig. 6b, the causal information embedded in monthly resolution is

predominantly received within one month. Finding the strongest causal links at a time lag up to one month appear in agreement25

with Papagiannopoulou et al. (2017b). Also the spatial distribution of the strongest climatic influences compares well. But there

are certain noteworthy differences which not necessarily stem from masking differences, i.e. that we took only values belonging

to the growing season while Papagiannopoulou et al. (2017b) took the whole time series. First, there is little significant Granger

causality of water availability found in boreal regions while there are significant negative causal dependencies detected via

PCMCI. Second, NDVI in arid regions is not or barely Granger caused by radiation and temperature, but in parts shows a30

negative PCMCI value on those variables. There might be physiological reasons that can explain the PCMCI patterns, i.e.

water logging or too high temperatures. To explain the differences though, we could identify two possible reasons. First,

Papagiannopoulou et al. (2017b) masked out negative influences of radiation arguing that radiation is not negatively affecting

NDVI. They found, that negative influences of Rg are usually a consequence of poor conditioning on other variables. Second,

a precipitation event in boreal regions coincides with a reduction in radiation and temperature. Boreal regions usually do not35
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suffer from water shortages. Thus they respond stronger to the reduction of radiation and temperature than precipitation. As

precipitation is coupled negatively to radiation and temperature at lag zero, the effect of precipitation on NDVI is found to

be negative. Thus, the link P
−
−→NDVI might be an effect of the contemporaneous common driver scheme P

−
←− Rg

+
−→ NDVI

and therefore would not be causal. In fact, a similar argumentation can be given for the negative impact of temperature and

radiation on NDVI in arid regions.5

In summary, we pointed out the need for careful interpretations in applying causal discovery methods and especially high-

lighted the challenges linked to the study of biosphere-atmosphere interaction via PCMCI. We demonstrated that the network

structures estimated from observational data are explainable with respect to plant physiology and climatic effects. Finally, our

study shows that causal methods can deliver better interpretability and a much improved process understanding in comparison

to correlation and bivariate Granger causality analyses that are ambiguous to interpret since they do not account for common10

drivers.

4.3 Outlook

The preceding discussion has shed light on the merits of PCMCI as well as the challenges of applying causal discovery methods.

Runge et al. (2019a) discuss further challenges and methods and give an outlook how multiple methods can be combined to

alleviate limitations.15
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5 Conclusions

Here we tested PCMCI, an algorithm that estimates causal graphs from empirical time-series. We specifically explored two

types of data sets that are highly relevant in biogeosciences: eddy covariance measurements of land-atmosphere fluxes and

global satellite remote sensing of vegetation greenness. The causal graphs estimated from the eddy covariance data collected

in a Mediterranean site confirm patterns we would expect in these ecosystems: During the dry season’s plants senescence,5

for instance, the ecosystem’s carbon cycle (NEE) decouples from meteorological variability. On the contrary during the main

growing season with warm and humid conditions strong links between NEE, LE and H characterise the graph. Not only the

strongly contrasting states emerge in the graph structure using the causal framework, but also the gradual transitions that relate

to minor changes like the connectivity of sensible heat to temperature with progressing dryness. A purely correlative analy-

sis, instead, is not able to resolve these patterns. PCMCI allows us to identify and focus on much fewer, but highly relevant10

dependencies only. Applying the approach to three replicated eddy covariance systems shows the robustness of the method to

random errors in the fluxes measurements and confirm one of the assumption of eddy covariance: above a relatively homoge-

neous terrain the fluxes measured should be spatially invariant, and so the underlying causal relationship between climate and

fluxes. The global analysis of NDVI in relation to climatic drivers confirms the known patterns of dependence strengths of veg-

etation on climatic variables: boreal regions are energy limited and especially driven by temperature and secondarily radiation,15

while in semi-arid regions vegetation dynamics are strongly dependent on water supply. However, obtained response times of

vegetation to climatic variations are lower using PCMCI than correlation which can be attributed to a better treatment of the

autocorrelation in the time-series and cross-relations among climate variables. Compared to merely correlative approaches, this

leads to a interpretable pattern of driver-response relationships. In short, the new developments achieved in causal inference

allow to gain well constrained insights on processes, that would otherwise be drowning in the correlation chaos. Therefore20

we hope that this study fosters usage of causal inference in analysing interactions and feedbacks of the biosphere-atmosphere

system and furthermore exhibits our demand of further developments.
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Table A1. PCMCI parameters that were used differently from default settings.

Dataset significance αpc tau_min tau_max selected_variables mask_type fdr_method

Test Model 0.01 0.4 0 25 [1,2,3] ’none’ ’none’

Majadas Dataset 0.01 None 0 8 [1,2,3,4,5] ’y’ ’fdr_bh’

Gridded global data set 0.05 None 0 3 [1,2,3] ’y’ ’fdr_bh’

Code and data availability. The eddy covariance data of the FLUXNET sites can be downloaded from the official webpage (https://fluxnet.fluxdata.org/).

CRU temperature and precipitation data is available at http://badc.nerc.ac.uk/data/cru/.

CRUNCEP radiation data can be downloaded via ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm.

The NDVI dataset is available at http://ecocast.arc.nasa.gov/data/pub/gimms/3g/.

The TIGRAMITE software package that includes PCMCI can be found on github https://github.com/jakobrunge/tigramite/. All other code5

will be made available upon request.
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FLUXNET-ID start year end year Data Reference FLUXNET-ID start year end year Data Reference

AT-Neu 2002 2012 Wohlfahrt et al. DK-ZaH 2000 2014 Lund et al. (2012)

AU-Cpr 2010 2014 Meyer et al. (2015) FI-Hyy 1996 2014 Suni et al. (2003)

AU-DaP 2007 2013 Beringer et al. (2011a) FI-Sod 2001 2014 Thum et al. (2007)

AU-DaS 2008 2014 Hutley et al. (2011) FR-Fon 2005 2014 Delpierre et al. (2016)

AU-Dry 2008 2014 Cernusak et al. (2011) FR-LBr 1996 2008 Berbigier et al. (2001)

AU-How 2001 2014 Beringer et al. (2007) FR-Pue 2000 2014 Rambal et al. (2004)

AU-Stp 2008 2014 Beringer et al. (2011b) GF-Guy 2004 2014 Bonal et al. (2008)

AU-Tum 2001 2014 Leuning et al. (2005) IT-BCi 2004 2014 Vitale et al. (2016)

BE-Lon 2004 2014 Moureaux et al. (2006) IT-Col 1996 2014 Valentini et al. (1996)

BE-Vie 1996 2014 Aubinet et al. (2001) IT-Lav 2003 2014 Marcolla et al. (2003)

BR-Sa3 2000 2004 Saleska et al. (2003) IT-MBo 2003 2013 Marcolla et al. (2011)

CA-Man 1994 2008 Brooks et al. (1997) IT-Noe 2004 2014 Spano et al.

CA-NS2 2001 2005 Bond-Lamberty et al. (2004) IT-Ro1 2000 2008 Rey et al. (2002)

CA-NS3 2001 2005 Wang et al. (2002a) IT-SRo 1999 2012 Chiesi et al. (2005)

CA-NS5 2001 2005 Wang et al. (2002b) IT-Tor 2008 2014 Galvagno et al. (2013)

CA-NS6 2001 2005 Wang et al. (2002c) JP-SMF 2002 2006 Matsumoto et al. (2008)

CA-Qfo 2003 2010 Chen et al. (2006) NL-Hor 2004 2011 Jacobs et al. (2007)

CA-SF2 2001 2005 Rayment and Jarvis (1999a) RU-Fyo 1998 2014 Kurbatova et al. (2008)

CA-SF3 2001 2006 Rayment and Jarvis (1999b) US-ARM 2003 2012 Fischer et al. (2007)

CH-Cha 2005 2014 Merbold et al. (2014) US-Blo 1997 2007 Schade et al.

CH-Dav 1997 2014 Zielis et al. (2014) US-Ha1 1991 2012 Wofsy et al. (1993)

CH-Fru 2005 2014 Imer et al. (2013) US-Me2 2002 2014 McDowell et al. (2004)

CH-Lae 2004 2014 Etzold et al. (2011) US-Me6 2010 2014 Ruehr et al. (2012a)

CH-Oe1 2002 2008 Ammann et al. (2009) US-MMS 1999 2014 Pryor et al. (1999)

CH-Oe2 2004 2014 Dietiker et al. (2010) US-Ne1 2001 2013 Gitelson et al. (2003)

CZ-wet 2006 2014 Dušek et al. (2012) US-Ne2 2001 2013 Cassman et al. (2003a)

DE-Akm 2009 2014 Bernhofer et al. (a) US-Ne3 2001 2013 Cassman et al. (2003b)

DE-Geb 2001 2014 Anthoni et al. (2004) US-SRG 2008 2014 Ruehr et al. (2012b)

DE-Gri 2004 2014 Prescher et al. (2010a) US-SRM 2004 2014 Scott et al. (2008)

DE-Hai 2000 2012 Knohl et al. (2003a) US-Ton 2001 2014 Tang et al. (2003)

DE-Kli 2004 2014 Prescher et al. (2010b) US-Twt 2009 2014 Hatala et al. (2012)

DE-Lkb 2009 2013 Lindauer et al. (2014) US-UMB 2000 2014 Rothstein et al. (2000)

DE-Obe 2008 2014 Bernhofer et al. (b) US-UMd 2007 2014 Nave et al. (2011)

DE-Spw 2010 2014 Bernhofer et al. (c) US-Var 2000 2014 Xu et al. (2004)

DE-Tha 1996 2014 Grünwald and Bernhofer (2007) US-Whs 2007 2014 Scott et al. (2006)

DK-NuF 2008 2014 Westergaard-Nielsen et al. (2013) US-Wkg 2004 2014 Emmerich (2003)

DK-Sor 1996 2014 Pilegaard et al. (2011)
Table B1. List of FLUXNET sites used for the generation of artificial datasets and the time periode used.
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Figure B1. Distribution of coupling coefficients obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions

used for generation of heteroscedastic time series.
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Figure C1. Distribution of coupling coefficients obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions

used for generation of homoscedastic time series.

30



0

5

10

15

20

25

Figure D1. Distribution of time lags obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions used for

generation of heteroscedastic time series.
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Figure E1. Distribution of time lags obtained after fitting the test model to the Fluxnet sites. Here shown are the distributions used for

generation of homoscedastic time series.
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noise.
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Figure G1. Same as Fig. 5 but using simple correlation analysis to estimate the graph structures. The number of significant occurences of

a link is given by its width. The link strength, given by the link color, is calculated by averaging the significant links of the towers. Link

labels indicating the lag were removed to improve link visibility. They typically ranged from 1 to 8 (full range of possible lags). The resulting

graphs are shown for April 2014 till March 2015. The significance threshold is 0.01.
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Figure H1. Same as Fig. 4 of the manuscript but the analysis was performed using a non-linear independence test. Comparison of the

networks of three eddy covariance measurement stations (LMa, LM1, LM2) located in Majadas (Spain). Links that are found to be significant

in one of the three networks are included. For each link, the calculated strength of all three networks is plotted with its 90% confidence

interval. The colors blue, orange, and green correspond to the towers LMa, LM1, and LM2, respectively. The significance threshold is 0.01.

If a link does not pass the significance, it is marked by a black dot. The links are grouped into lag 0 (top), lag 1 (middle) and all lags greater

than 1 (bottom). Links at lag 0 are left undirected (−), yet as Rg is set as main driver, links incorporating Rg at lag 0 are directed (→). Note

that GPDC only yields positive link strengths. Further, the strength values estimated with GPDC are rather weak due to the low number of

datapoints and the larger sensitivity of that method to the sample size
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Figure I1. Same as Fig. 5 of the manuscript but the analysis was performed using a non-linear independence test. The number of significant

occurrences of a link is given by its width. The link strength, given by the link color, is calculated by averaging the significant links of the

towers. The link’s lag is shown in the centre of each arrow, sorted in descending order of link strength. The resulting graphs are shown for

April 2014 till March 2015. The significance threshold is 0.01. Note that GPDC only yields positive link strengths. Further, the strength

values estimated with GPDC are rather weak due to the low number of datapoints and the larger sensitivity of that method to the sample size
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Figure J1. Daily aggregated precipitation in Majadas de Tiètar measured at the three tower sites from April 2014 to March 2015. Missing

values are plotted as gaps.
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Figure K1. Similar to Fig. 3.3 of the manuscript. Influence of climatic drivers on NDVI as calculated by PCMCI in conjunction with the non

linear independence test GPDC. The first and second columns show the estimated causal influences of climatic drivers on NDVI at lag 0 and

1, respectively.
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