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Supplement 1 

Description of newly modeled processes 2 

SOLVEG is a one-dimensional multi-layer model that consists of four sub-models for the 3 

atmosphere near the surface, soil, vegetation, and radiation within the vegetation canopy (Fig. 4 

S1). Since full descriptions of the model are available in the papers by Nagai (2004), Katata 5 

(2009), Ota et al. (2013), and Katata and Ota (2017), we give details about cold processes newly 6 

modelled in the present study. 7 

 8 

Fig. S1 Overview of key processes (underlined words) and variables for (a) atmosphere, (b) 9 

vegetation, radiation, (c) snow, and (d) soil submodels in SOLVEG. The part of the existing 10 

grass growth model of BASGRA is coupled in this study. 11 
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Modeling snow accumulation and melting processes 12 

A multi-layer snow module is newly incorporated into the SOLVEG model. Most of the 13 

variables in the following equations are based on either the Community Land Model (CLM: 14 

Oleson et al., 2010) or SNTHERM (Jordan 1991), while the model is unique in including the 15 

gravitational and capillary liquid water flows in unsaturated snow layer based on van 16 

Genuchten‘s concept of water flow in the unsaturated zone (c.f., Hirashima, Yamaguchi, Sati, 17 

& Lehning, 2010). 18 

The temporal change in snow temperature Tsn (K) is expressed by the heat conduction 19 

equation based on Yamazaki (2001) as
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where Csn and ρsn are the specific heat of snow (J kg−1 K−1) and the density of the bulk snow 22 

(kg m-3), respectively, λsn is the thermal conductivity of snow (Wm−1K−1), In is the net solar flux 23 

in the snow layer (W m−2), lf and l are the latent heats of fusion and sublimation (J kg−1) , 24 

respectively, and Esmel is the melting or freezing rate in the snow layer (kg m-3 s-1), and Esb is 25 

the sublimation rate of water vapor from the snow layer (kg m−3 s−1). In is calculated as: 26 

(1 − 𝑟)(1 − 𝐴7)𝑆>?@# 𝑒𝑥𝑝(−𝜇𝑧),    (2) 27 

where r is the absorptivity of solar radiation at the snow surface, Ab is the albedo of the snow 28 

surface as a sum of the direct and the diffuse visible and near-infrared solar and long-wave 29 

radiations (Wiscombe & Warren, 1980), and µ is the extinction coefficient of the solar radiation 30 

in the snow layer (Jordan, 1991). 31 
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The sublimation rate Esb is calculated only at the snow surface by assuming that water 32 

vapor is saturated over the snow as: 33 

𝐸"7F = 𝜎"#𝜌𝑐IF|𝑢|[𝑞"N)(𝑇"#F) − 𝑞P],   (3) 34 

where σsn is the fractional area of snow cover parameterized using physical snow height (Essery, 35 

Morin, Lejeune, & Menard, 2013), ρ is the density of air (kg m−3), cE0 is the bulk coefficient, 36 

qsat (Tsn0) is the saturated specific humidity (kg kg−1) at the snow surface temperature Tsn0 (K), 37 

and |𝑢| and qr are the horizontal wind speed (m s−1) and specific humidity (kg kg−1) at the 38 

lowest atmospheric layer, respectively. 39 

Melting or freezing rate in the snow layer is calculated from snow temperature as: 40 
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where Tm is the melting point of 273.15 K. Using Esmel, the ice content in snow wi (kg m−2) at 42 

each snow layer is determined as: 43 

%@W
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= −𝐸"456𝛥𝑧,     (5) 44 

where Δz is the snow layer thickness (m). 45 

The mass balance equation for liquid water in the snow layer is given as:
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where ηsw is the volumetric liquid water content (m3 m−3), Dsw is the liquid water diffusivity (m2 48 

s−1), Ksw is the snow unsaturated hydraulic conductivity (m s−1), and ρw is the density of liquid 49 

water (kg m−3) in the snow layer. The equations for Dsw and Ksw are similar to those for soil 50 
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water content in the capillary region (Katata 2009), except for using the empirical parameters 51 

for the snow cover that are given by Hirashima et al. (2010). 52 

Snow accumulation and compaction at each snow layer are modelled as: 53 
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where Csnf, Cmet, Cover, and Cmel are the change rates in Dz (s−1) due to snowfall, metamorphism, 58 

overburden, and melting, respectively, and fice and fice+ the fractions of ice before and after the 59 

melting, respectively. Csnf is calculated as 𝑆2 𝜌2" 𝜌@⁄ , where Sf is the snowfall rate (mm s−1) 60 

given by either the input data or the empirical equation using total rainfall rate and wet bulb 61 

temperature (Yamazaki 2001), and rfs the fresh snow density (kg m-3) obtained by Boone (2002). 62 

Values for the parameters in the above equations are given by Oleson et al. (2010). 63 

Snow grain growth (i.e., change in grain size in the snow layer) is calculated based on 64 

Jordan (1991) as: 65 
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where dsn is the snow grain diameter (m), Uv the mass vapor flux in the snow layer (kg m−2 s−1), 67 
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and g1 and g2 the parameters. The formulation of Uv and the values of g1 and g2 are given by 68 

Jordan (1991). 69 

After the above calculations for temperature, liquid and ice water contents, and 70 

accumulation and compaction in snow, the number of snow layers is adjusted by either 71 

combining or subdividing layers (Jordan, 1991) to obtain the physical snow height. 72 

 73 

Modeling freeze-thaw process in soil 74 

In the soil module, freeze–thaw processes in soil are considered based on heat conduction 75 

and liquid water flow equations as follows: 76 
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where Cs and ρs are the specific heat of soil (J kg−1 K−1) and the density of the bulk soil (kg 79 

m−3), respectively, λs is the thermal conductivity of soil (W m−1 K−1), lf and l are the latent heat 80 

of fusion and sublimation (J kg−1) , respectively, ηw is the volumetric soil water content (m3 81 

m−3), Dw is the soil water diffusivity (m2 s−1), K is the unsaturated hydraulic conductivity (m 82 

s−1), Eb is the evaporation or condensation or sublimation of soil water (kg m−2 s−1), and Emel is 83 

the melting or freezing rate in soil (kg m−3 s−1). The soil water diffusivity Dw (m2 s−1) is 84 

expressed by: 85 

𝐷@ = 𝐾 %|
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where ψ is the water potential in the soil layer (m). ψ and K (m s−1) in frozen soil are modeled 87 

based on the concept of freezing point depression (Zhang, Sun, & Xue, 2007): 88 

𝜓 = 𝜓~#2P?+5#(1 + 𝐶�𝜂u)a,    (15) 89 

𝐾 = 𝐾~#2P?+5#10UIWYW,     (16) 90 

where Ck and Ei are the empirical parameters, and ψunfrozen and Kunfrozen are the ψ and K in 91 

unfrozen soil described by Katata (2009), respectively. 92 

Ice content at each soil layer ηi (m3 m−3) is determined similar to snow ice content in Eq. 93 

(5) as: 94 
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where ρi is the density of ice (kg m−3). 97 
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