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We thank the editors and anonymous reviewers for their input and devoted
time to our work. The detailed revisions were very helpful and have allowed
us to improve the manuscript greatly. The major changes in the new version
of the manuscript include:

• Adding results and analysis of the principal component 3 to the manu-
script.

• A revised introduction picking up all research questions that appear
later in the manuscript.

• A better explanation of what differentiates the present study from other
studies using PCA.

• An expanded “Hysteresis” section, with an improved and more intuitive
explanation.

• Move some of the results from the appendix into the main text.

• Many other revisions.

We have addressed all concerns in detail below, reviewers’ comments are
in normal font, replies are in italics and blue. Additionally, many small
improvements have been made to the manuscript and many errors have been
corrected. For a full list of changes, please see the attached document at the
end of this document. We hope that with all these changes the manuscript
meets the high quality standards of the journal.

Kind regards,

The Authors
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1 Anonymous Referee #1

1.1 General Remarks

I appreciated reading the discussion paper Summarizing the state of the
terrestrial biosphere in few dimensions by Guido Kraemer and colleagues. The
paper presents an approach for summarizing key variables on the terrestrial
biosphere into fewer independent components using established multi-variate
methods. They exemplify their approach by showing several trajectories
across space and time and by highlighting some major anomalies visible
in their data. While the work is well presented and scientifically sound, I
have some major concerns regarding the publication of the manuscript in its
current form.

We thank the reviewer for his positive and very thorough review and the helpful
comments. We have now addressed the open issues as we will show below. We
especially thank the reviewer for the detailed review of the overall structure
of the manuscript and pointing out the many small details that have been
improved in the new version of the manuscript.

1.2 Concerns

1) The number of dimensions

The authors state that the first two components explain large parts of the
variance and that the ‘knee’ is reached with the second component. However,
inspecting Figure 1a, it seems that the ‘knee’ is reached with the third
component, which still explains 9% of the variance. I was a little confused
that the third component was disregarded throughout the whole manuscript,
without giving a strong justification. Figure 2b indicates that the third
component might be strongly connected to albedo. I encourage the authors
to either expand their analysis to also include the third component, or to
give a very strong argument for its exclusion. As it stands now, the decision
to only inspect the first two components is very subjective.

The reviewer is right that the 3rd principal component still contains important
information. Therefore, we included results and analysis of component 3 in
the manuscript. Accordingly, we have implemented the following changes:

• Added axis 3 to the manuscript (for details, see the attached document
showing all changes).

• Flipped axis 3 so that higher values for PC3 mean higher albedo.
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We think that the addition of the third component improved the manuscript
substantially and want to thank the reviewer for recommending this.

2) Scientific novelty and usefulness

I am missing a strong discussion/conclusion on how the manuscript advances
scientific progress. Putting it into simple terms, the authors apply PCA – a
widely used and established method – to a set of existing data sets. As such, it
is not really a novel methodological development, but rather a demonstration
of what could be done with global datasets as provided though the Earth
System Data Lab. While this is not a deal-breaker per sé, the authors could
greatly advance their manuscript by explaining how this approach can be used
by other scientists, that is how it will advance the science of the terrestrial
biosphere.

Thank you for this critique and comment which can be viewed from several
angles. At first glance, the reviewer is right: we simply applied a PCA to
a highly curated global data set—a data cube contained in the Earth system
data lab. But, although the method is similar to EOFs in climatology, where
the matricization (the flattening of the 4th order tensor, variables × time
× longitude × latitude, to a matrix) happens maintaining time. We are
maintaining both, space and time and reduce only over the variables, as far
as the authors are aware, this has not been done on global data.

This is in our view an innovation, as we account, for the first time, for
the many redundancies in high-dimensional Earth observations. We have
carefully reviewed the literature, but do not find a study that has investigated
the global covariations of multiple Earth observation data streams. This is the
main novelty of our work, to better explain our approach in more depth, we
have added some explanations to better explain these differences to the reader.

Also, the use of a simple PCA algorithm is not incidental here: we seek
for a method that learns a data transformation that is invertible, and allows
us to measure/compute the reconstruction error in meaningful physical units.
This cannot be done with more complicated/sophisticated nonlinear machine
learning methods, where the (probably more accurate) transform is hard to
analyze.

3) Too many results in the appendix

Many of the results are buried in the Appendix but never picked-up in the
main text. In fact, Figure A1, B1, D1 and C1 were never referenced in the
main text. The authors thus present many results in the Appendix that
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are not discussed in the main manuscript and thus the reader is left alone
with her own interpretation. As some of the results are quite crucial for
evaluating the method (e.g., the errors presented in B1), I strongly encourage
the authors to thoroughly discuss them in their manuscript.

Thank you for the observation! We fully agree that we have a lot of results in
the appendix, some of them very relevant for the discussion. Following the
suggestion, we moved parts of the appendix into the main text and have also
added references to the figures into the text:

• Moved the section “Reconstruction Error” from the appendix to the text.

• Moved figure C1 (“Bowen Ratio”) into the text.

• We added the corresponding references into the text.

4) Writing

The writing needs improvement for turning this already good manuscript
into an excellent manuscript. For example, the authors often describe their
figures, instead of the results (Figure X shows. . . ). It would be much more
interesting to read about the main result instead (A influences B (Figure X)).
I am sure the senior authors of this manuscript can do a great job in revising
the manuscript to make it more accessible and exciting for the reader.

We thank the reviewer for the pointing this out and have revised many aspects
of the paper, see the marked up manuscript version showing all changes. We
hope that we have corrected the manuscript accordingly.

5) Spelling/grammar

There are some wording and spelling/grammar issues, some of which listened
below:

Thanks for the thorough revision provided. We have corrected all suggested
minor changes, and commented further on the critical ones below.

L. 16: Suggest removing ‘the’ before ‘global’.

Thank you, changed.

L. 27: Spring is not a phenological event. Could use onset of bud-flush or
similar.

Thanks for catching this detail.
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L. 74: Not clear how standardization accounts for differences in scales. What
scales? Spatial? Temporal?

Indeed, the wording is a bit ambiguous. We have changed it to make
clear that we mean scale in a statistical sense here.

L. 138: The breakpoint detection comes out of the blue. Why is this done?
What was the rational behind? This needs a decent introduction.

The reviewer is right that we do breakpoint detection without properly
introducing it, we mentioning the topic in the introduction now.

L. 142: Same as above. The term hysteresis is never introduced before, but
then explained in the results section (L. 239). As a reader, I would
love to hear the details upfront, instead of reading about them in the
results/discussion.

This was missing from the introduction, we thank the reviewer for
noticing this, we have remedied the situation.

L. 148: Maybe include an example figure here, instead of referencing to the
results already.

The hysteresis may be a complex topic for people not familiar with it,
we thank the reviewer for pointing this out and have added a conceptual
figure to the “Methods” section that hopefully makes the concept easier
to understand.

L. 151: ‘We see that. . . ’ is not a good opener. Directly describe the result,
be precise and upfront (e.g., The first two components explained 73%
of the variance (Figure 1a))

Removed “We see that”.

L. 160: What is the pre-imaging problem? Please do not assume that the
reader reads up the details in the reference provided. Either avoid
naming it or give a brief description.

Again we thank the reviewer for pointing out that this is a topic that
the target audience may not be acquainted to. We have improved the
description and hopefully made the concept understandable to everyone.

L. 162: Again, not the best opener. The first sentence of a paragraph should
summarize the main point of the paragraph (topic sentence), allowing
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the reader to skim through the manuscript. This sentence just describes
where the reader can find a result, but nothing about the result itself.

Thanks for pointing this out, we have have removed the sentence.

L. 164: Odd formulation (two times related).

Thank you for noticing! We have changed the sentence accordingly.

L. 174ff: his paragraph actually described the indicators used and does not
discuss the results. This could go into the methods description or should
be more clearly related to the actual results.

This paragraph describes PC2 and discusses how the variables that
make up PC2 are related, therefore we have decided to leave it in, as a
discussion of PC2.

Figure 2: What are ‘some points’? How were they chosen?

It says so in the caption: “The trajectories were chosen to fill a large
area in the space of the first two principal components.”

L. 139: As said before, this is rather introduction than results/discussion. I
would have very much appreciated reading this in the introduction.

This is the wrong line number, the reviewer is probably referring to
the description of the Bowen ratio as this should be mentioned in the
introduction, indeed. We have added the Bowen ratio to the introduction
and changed the paragraph to highlight the main result.

L. 258: rephrase: . . . and can therefore be interpreted. . .

Thank you for finding this, we have rephrased the sentence.

L. 282: Again, put the result in the spotlight, not the figure showing the
result.

The reviewer is right, this also counts for some of the other paragraphs
describing that figure, thank you for pointing this out. We hope to have
remedied the situation with the changes made to the paragraphs referring
to the same figure.

L. 305: Occur instead of occurring.

Changed, thanks.
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L. 312: Move ‘especially’ after ‘showed’.

Changed, thank you.

L. 313: Repeats methods.

Thanks for noticing, we have removed the phrase and added “. . . patterns
of trends . . . ” to the next sentence.

L. 320: Why did you calculate the trends from the full data? Would it have
been better to use the growing season as well to facilitate comparison?
Please give a reasoning why you do it differently.

The reviewer is right, that usually these kind of analyses are made on
the growing season only. Because of simplicity of the analysis, we opted
to do the analysis this way, just as with the breakpoints we did not
want to develop complicated methods for detecting the growing season
from PC1 because this is not the scope of this paper. The analyses on
the resulting indicators are simple and straightforward because of their
exploratory nature. The next question would have been, how to limit
PC2 and PC3? Use the wet/dry season for PC2 because it shows water,
and summer/winter for PC3, or also use the growing season? Using
growing season data only, we probably could have found stronger trends
in PC1, but this could be an interesting topic for future research.

L. 324: Something odd with the sentence starting with ‘Inside. . . ’.

Thanks for finding this one, fixed!

L. 327: Remove ‘a’ before ‘browning’.

Removed, thank you.

L. 349: The breakpoints are actually never shown, nor discussed. The
conclusion is thus not really based on data here.

The reviewer is right, we have added the breakpoints at several places
throughout the manuscript. Thank you for pointing this out.

L. 352: in, not ‘ina’.

Changed, thank you.
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2 Anonymous Referee #2

2.1 General Remarks

2.1.1 General assessment

This is a very interesting paper addressing some important issues of big data
analysis for ecology studies. It is rich in analyses and provides some new
views on an old method (PCA). I particularly liked the analysis of trajectories
that I found quite powerful, notably for case studies.

The authors thank the reviewer for the positive review, his time and thorough
comments. We think that the comments allowed us to greatly improve the
manuscript. We have addressed all of the reviewer’s concerns as detailed
below.

2.1.2 Key research question

Yet I found it difficult to understand what key research questions are addressed
in this paper. This is important to clarify at the end of the introduction as
the authors is providing us with a suit of analyses that may resemble (for non
PCA-expert) an attempt of addressing many (all?) questions without real
rationale. The readers need to have a clear (concise) view of the objectives
of this paper, and they need to be guided through the analyses by referring
back to the main research questions.

Thank you for pointing this out. The reviewer is right in that the paper may
appear to try to solve too many problems. We have done some major revisions
and hope that thate focus of the paper is clearer now. Thanks for the comment.

The main motivation and goal of this paper is a lack of a systematic
data-driven approach to explain the main features in Earth system data cubes
in the literature. We first introduce a novel way of applying PCA as a
method to create such summarizing indicators, then we apply the method to
a global set of representative variables describing the biosphere. Finally, to
prove the effectiveness of the method, we give interpretations of the resulting
set of indicators and explore the information contained in the indicators by
analyzing them in different ways and relating them to well known phenomena.
We have explicitly declared such motivation and approach at the end of the
“Introduction” section.
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2.1.3 Input data may cause the resulting axes

In addition, I also have a major concern related to the set of inputs data
used to feed the PCA. I agree that PCA is a powerful tool to deal with
correlated variables, yet I have difficulties understanding why the authors
have decided to include variables that are obviously highly correlated. To
my opinion, vegetation productivity proxies are overrepresented as well as
those related to water availability and stress. It puts some doubts in my
head as to whether the finding of PC1 (primary productivity) and PC2
(surface hydrology) driving the state of the biosphere in space and time is
truly original (or just purely mathematical). It is therefore important for
the authors to justify the set of original variables. A suggestion could also
be to decrease the number of input variables (removing obvious redundant
proxies) as the amount of data to be condensed is mainly coming from the
8days interval used for the analysis.

PCA extracts uncorrelated components, therefore the resulting axes will not
change much if more or less variables are added that represent a certain aspect
of the ecosystem. Intuitively, adding correlated variables in the analysis means
that geometrically they point in the same direction in the feature space and do
not change much the selection of the corresponding principal component. What
does change are the explained variances of the resulting axes, i.e. including
more variables that are proxies for primary productivity will cause this axis
to explain more variance. The set of covariates we chose constitutes a large
complementary and representative set that describes the exchange of mass and
energy of the biosphere with the atmosphere. We have added a justification
for the variables used to the “Data” section.

2.2 Detailed comments

Finally I also have other comments and concerns - notably related to the
structure of the manuscript - that would need to be addressed by the authors
prior publication of their research (see attached report for details).

(1) Abstract

The authors start off the abstract by mentioning the importance of detecting
abrupt and gradual changes in terrestrial ecosystem but do not develop further
in the introduction. In the method section, the detection of breakpoints
reappears but no results are presented or discussed (except for the appendix
A). The authors should decide whether to consider the detection of abrupt
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changes as a real research question for this study.

The reviewer is right, do not really go into detail in the analysis of breakpoints.
To remedy this, we have changed the first sentence and made it clear that
there is a proof of concept analysis in the appendix.

(2) Introduction

As stated in my main comment, I find that there is somewhat a mismatch
between the introduction and the method section. In the introduction, the
authors touch upon many issues related to assessing and attributing changes
of biosphere properties. However apart from creating a new set of independent,
’essential’ variables, they do not clearly mention what other research questions
this study is going to address; whereas in the methods they mention PCA,
trend and breakpoints analyses. Clearly stating the research questions for
this study would help the readers to understand the rationale behind each
analysis.

The reviewer is right, therefore we have also extended the “Introduction”
section to contain all research questions.

(3) Data and methods

Better description of the data The description of the data slightly too
minimalistic, including in the appendix F. Mentioning the input data
(satellite, climate or others) feeding into each dataset would be helpful.
The observation period used for this study is also not mentioned.

We thank the reviewer for pointing this out. We have added the limits
of the time dimension and the type of grid in the “Data” section and
have extended the descriptions of the variables in the appendix.

L. 75, Mention projection This statement is not always valid (e.g. in the
case of equal-area projection). The sentence would be clearer if the
authors would mention the projection system used here.

We thank the reviewer for pointing this out. See previous response.

L77. Better explanation of PCA The authors mentioned that they used
a modified PCA, reading from the description given in the following
lines, the PCA applied here seems to be standard. Could the authors
provide some explanations to why / how the PCA has been modified?
It should also clarify whether they applied the PCA in s or t-mode.
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We have clarified the PCA analysis by discussing it in the context of
frameworks describing PCA in the context of climatology and ecology
and hope that this will help with the understanding of the method.

• The PCA is a decomposition of the correlation matrix.

• Building the correlation matrix is not standard due to the big data
aspects, and the spatial extension, both of which require a lot of
care in the calculation of the covariance matrix, which is described
in the “Methods” section.

• We summarize the dimensions in a novel way, there are a number
of different frameworks (S- vs. T-mode in climatology, Q- vs. R-
mode in ecology and multivariate statistics, and primal vs. dual
modes in machine learning) that describe standard applications
of PCA, none of which give an exact description of the analysis
done here. We have added a section (“Relations to other PCA-type
analyses”) describing the relation of the present analysis with these
frameworks.

Per-pixel analysis It would be nice here to make a link to the (extended –
see comment above) research questions in order to understand directly
the rationale for such analyses.

The link was really unclear, we have added more research questions
to the introduction (see previous replies) and are now mentioning the
research questions.

(4) Results

General comment: I highly suggest to split the results and discussion into
two separate sections. It will facilitate the reading and will allow the
authors to emphasise better the originality of their work. Example:
L155-161, L164-173, L175-182, L235-246, etc. should not be in a
results section s.s., but would rather belong to a discussion (or even
introduction or method). Please consider at least moving all methods
description and introduction to new concepts to the respective adequate
sections.

We thank the reviewer for this suggestion, but we think that a joint
results and discussions section is a better choice, as it allows for the
results and their discussions to be closer and easier to follow.
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L153 and Figure 1 The authors mentioned that there is a knee at com-
ponent 2. I believe it is rather at component 3. This component still
contribute to the total variability to a share of almost 10%, therefore the
authors should either include it in the rest of the analysis or provide an
adequate justification not to. Also I generally miss a figure presenting
together the temporal and the spatial patterns for the main PCs. This
could be put as supplementary material. In the caption of Fig.1 I
would recommend to change the term axis 1 and 2 by PC1 and 2. The
comment also applies to the text itself (Ex. L190).

The third component was missing to simplify the analysis. Looking
back at this decision, we fully agree with the reviewer that it should be
included for the sake of completeness. We have added it to the paper
now, we thank the reviewer for pointing this out, as it improved the
manuscript substantially. The spatiotemporal figure was also missing
and we have added it, this was an oversight of our part and we corrected
it. We have also unified the terminology, axis is now never used to
describe principal components.

• We have added the third component to the manuscript.
• Added an appendix with joint time and space patterns.
• Removed the term axis when in designated a component in the
entire manuscript.

L183 Please describe in the first sentence what the triangle is made of.

Thank you for noticing. We have provided a better description of the
figure.

L203 ‘movement of a spatiotemporal pixel in variable space’, please rephrase.
A pixel cannot be moving spatiotemporally, like in a sliding puzzle.

The pixel is moving in the vector space of the principal components, this
formulation was easily misunderstood and thereore we have changed it.
We thank the reviewer for pointing this out.

L221-224 This should be described in the methods section and should be
linked to a key research questions.

We thank the reviewer for pointing out this oversight. We have added a
definition of the means seasonal cycle to the methods and link to it in
the introduction.
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(5) Conclusion

L341 The results of the breakpoints analyses were not reported or discussed
in the main text, therefore the statement ‘To monitor gradual and
abrupt changes in times of global change’ do not hold.

We thank the reviewer for pointing this out and hope that we have
remedied the situation. We have changed the beginning of the conclusion
to: “To monitor the complexity of the changes occurring in times of an
increasing human impact on the environment . . . ”

Appendixes Some results presented in the appendixes do not appear in the
main text, e.g. Figures A1 and B1. The authors should maybe decide
on the key results to be presented here and maybe save some others for
a follow-up paper?

We thank the reviewer for pointing this out and all appendices should be
referenced in the text now.

(6) Two final comments for reflexion:

Legacy effects: The authors have applied PCA on time series of 8 day
variables without considering any lag or accumulation effect in the
response of a given variable. Would it be fair to say that legacy effects
might not be captured adequately by such analysis?

The method ignores lag and memory effects, lag effects may still be
captured implicitly in the components but there will probably not be a
“memory axis”. Something like this may be captured using a combination
of more advanced machine learning algorithms (e.g. autoencoders and
recurrent neural networks) but as far as the authors know, no one ever
attempted an analysis like this.

Operationalization: The authors refer to the MEI in the introduction as
an example of a successful PCA-based indicator. Could the authors
elaborate on the requirement for operationalising their methods (e.g. if
one would like to use the new indicators operationally, how frequently
should the PCA be updated?).

Applying a trained PCA is very simple and computationally efficient.
The trained PCA should also be quite stable and therefore we assume
that updates do not have to happen frequently. The implementation
with WeightedOnlineStats.jl would theoretically allow a very efficient
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update with every step, but we assume that this will not be necessary.
For a real time application of the method, the most important limitation
is that only real time data can be used. This limits the type of data that
that can be used, as most of the data we used here are created years
after collecting the satellite or field observations.

3 Anonymous Referee #3

3.1 General Remarks

This manuscript entitled “Summarizing the state of the terrestrial biosphere
in few dimensions” is well-thought and well-written, and fits the scope of
Biogeosciences, so overall, I am favourable to get it published there. I do
have some concerns which I would like to see addressed by the authors, and I
also have several recommendations to improve the manuscript before getting
it published. Please find these points below.

We thank the reviewer for the positive comment and hope that we can address
all mentioned concerns and recommendations.

3.2 Better explanation for the interpretation

My first point regards the interpretation of the first to PCA components.
Having the first related to productivity and the second to water availability is
indeed interesting and useful to summarize that state of vegetation. However,
I believe some more effort is needed to more clearly separate these 2 in their
interpretation. Productivity is inevitably dependent on water availability, so
in principle, one wonders why these would be the first 2 components, which
by definition should be orthogonal and ‘unrelated’. I suppose this is perhaps
because these refer to signals at different scales, PC1 describing an overall
general state of potential productivity of the system at that location, while
PC2 describes more events of water shortages and or excesses that are not
directly related to the stationary potential productivity. Am I correct? Could
you please clarify/elaborate on this to help readers better understand how
these two axes should be ‘read’.

Much related to the previous point, isn’t it surprising that the 2 first
principal components have such similar spatio-temporal patterns in Figure
3? These seem very highly correlated, which is something I would not have
expected from the first two components which explain the maximum of
variance in two orthogonal direction. Can you help me grasp this apparent
paradox? In a way having such similar patterns make me wonder how useful
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having 2 PC is instead of only 1? Of course you do show the value of the
2D space in figure 2, but even there, much of the variation goes along the
PC1 axis. Your selected cases in the anomalies in Figure 5 also generally go
in the same direction of lower productivity coinciding with dryer conditions
(Russian heatwave, droughts in Amazon), or vice versa (Floods in horn of
Africa). Perhaps a stronger focus in general throughout the paper should
be made on highlighting the much more specific cases where the two PCs
give different but complementary information rather that going in the same
direction.

While the reviewer is right that ecosystem productivity is dependent on water
availability, the availability of water can be restricted due to several reasons
which are reflected by PC2. We have added extensive descripitons to the text.

3.3 Explain component 3

I think you should also explore the third component. It does represent 9%
of the variance, which is not so little, but above all it seems to be quite
different from the first 2 in that it reacts much more to the albedo, which
you hardly mention in the entirety of the manuscript. Could this be related
to biophysical effects that vegetation could have on the climate? E.g. to
understand where radiative vs non-radiative mechanisms dominate their effect
on local temperature, for instance.

This is really a good suggestion and we added component three and a compre-
hensive interpretation.

3.4 Include static variables?

The behavior of the biosphere is much related to the elevation. While I
know the effect of elevation should be reflected in the other variables, this
is still dependent of modelling assumptions that may end up diluting the
effect of elevation. Yet elevation is a variable that is very well measured,
and which could contribute to summarizing the terrestrial biosphere. So why
not including such a variable in the PCA? I know changes in elevation are
minimal (and probably very difficult to detect) and having a static variable
with respect to all the other dynamic ones you propose is a bit odd, but still,
what are your arguments for not doing so? I think some discussion on this is
warranted.

We thank the reviewer for this suggestion, but we are only including variables
that are affected by the biosphere, it is true that elevation has a strong effect
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on the biosphere, the biosphere has no impact on elevation (excluding long
term effects, such as erosion).

3.5 General structure

The paper generally could be improved by curating more the structure.
Several points on this:

We thank the reviewer for these suggestions and hope that we have addressed
satisfactorily.

• Section 3.2 could benefit from some introduction naming what you
intend to calculate first (get trends, test significativity, get breakpoints,
hysteresis) before going in the details. This part could also be more
pedagogic, providing more rational on why you do these things.

We have done extensive restructuring of the text and hope that this
solved this problem.

• Parts of the ‘discussion’ should be much further after the ‘results’,
such as lines 155-162 which should come in some kind of ‘caveats and
perspective about the method’ section

We have done a lot of text reorganization and hope that we have addressed
this issue.

• Section 3.2 is very unbalanced with respect to 3.1. Probably best to
reorganize to avoid ‘sub-sub-sections’ and have subsections from 3.1 to
3.5

We have done a lot of reorganization of the text and hope that the text
is better balanced now.

• Parts describing concepts, such as Hysteresis (lines 235-246) should not
appear in the results but before, either in methods or introduction.

We have moved the description of hysteresis into the “Methods” section,
see comments to previous reviewer.

3.6 Minor stuff

Lines 74, 75: how do you manage intermittent gaps in the data? Does this
affect your averages and your normalization? Also, please clarify if the
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normalization is based on the entire data cube for each variable, or is
the normalization done per time frame?

This was not entirely clear in the original text, we thank the reviewer
for pointing this out. Normalization for each variable is done globally,
pixels with missing values are ignored. We have added an explanation
to the “Data”-section.

Line 182: don’t you mean sensible heat instead of latent heat?

Yes, thank you for noting this, changed.

Figure 1: caption could be more instructive, perhaps somehow say there
what the reader should understand/read from the “rotation matrix”.

Thank you for pointing out that the term rotation matrix may not
be understood by everyone. We have changed the caption to be more
instructive.

Figure 7: surprised to see the strong pattern in Eastern Australia. Is this
corroborated in other studies?

This is indeed interesting, we added a paragraph describing the reasons
for this particular trend to the “Trends in Trajectories” section: “In
eastern Australia we find a strong wetness and greenness trend which is
due to Australia having a “milennium drought” since the mid nineties
with a peak in 2002 (Nicholls, 2004; Horridge et al., 2005) and extreme
floods in 2010–2011 (Hendon et al., 2014).”

Mention the time period for trend analysis. Regarding all trend anal-
yses, make sure you more clearly mention in the captions the extend of
the period you are considering, as these are not long-term trends and
could thus be misinterpreted.

Good point, added the year to the captions of the figures related to trends.

Add contour for coast lines For clarity and readability, figures with maps
could benefit from either a dark background on the oceans or a line
vector showing the coasts, as many of the colour scales use very light
colours which are confounded with the white background.

Done, improved the figures quite a bit, thanks for the suggestion!
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Move breakpoint detection to SI, including description I wonder if
the breakpoint detection is really useful if it is not more mentioned
and elaborated in the main text and just left in appendix. I would
recommend to bring it in as a main figure if something strong can
be extracted from there, and otherwise remove it entirely from the
methods. Eventually you could include it in supplementary, but then
include the description of the breakpoint methodology only there.

The breakpoint detection is an example analysis that showcases one
of the possible set of changes that can occur and that can be detected,
therefore we think it has it’s place in the paper as an example what can
be possible, without going into too much detail.

Move Fig C1 into the main text On the other hand, I would strongly
recommend to integrate the Figure C1 in the main text as you do talk
in detail about the Bowen ratio and how the 2 PCs do characterize it
well.

Thank you for the good suggestion, we have moved the figure into the
main text.

Unify scale ranges for fig D1 Figure 1D I have a bit of a hard time to
make good use of it as it is. Are the values in normalized units or
absolute values? Would it not be prefereable to have the same scale for
MSC min and MSC max? Do you refer to this figure in the main text.

Thank you for this suggestion, but this figure is entirely about showing,
that very different ecosystems can be very similar at certain points in
time, for this, we don’t need to compare across subfigures and therefore a
single scale won’t help for this, they will just remove contrast, especially
across MSC min and MSC max.

Typos There are some typos in several places. Make sure to address them.

We have fixed many and hope we did not forget any.

4 Anonymous Referee #4

4.1 General remarks

The authors present a well-written manuscript on the analysis of two principal
components derived from a set of biosphere variables, one related to vegetation
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productivity and the other one related to water stress. The trajectories of
those components over time reveal interesting seasonal patterns, inter-annual
changes and anomalies, and can be used to track extreme events and state
shifts of ecosystems/biomes. Therefore, I believe that this is a novel and
relevant contribution to Biogeosciences.

The authors thank the reviewer for the his time and thorough comments, we
think that the comments greatly improved the manuscript. We have addressed
them below.

4.2 Major concern

4.2.1 Advantage of PCA

My major concern lies in the fact that the authors select mainly variables
related to productivity and water availability, and thus not surprisingly the
PCA shows those two major axes. I wonder whether just selecting for example
GPP and evaporative stress for the analysis of time trajectories would give the
same results, but it might be easier to interpret than principal components
representing a mix of variables. Can the authors elaborate in more depth
what is the advantage of using PCs in this context?

There are multiple advantages,

• Having to observe less dimensions: We can quantify the number of
dimensions we have to measure. If we simply take GPP, we don’t know
how much of the variance of the dataset we are explaining.

• Information on the covariance structure of the covariates.

• If some event happens only on one of the variables driving a component,
then it can still be observed in the final component.

• Directional information, when observing extremes.

4.2.2 More data streams

For describing the state of the terrestrial biosphere, I think the authors are
missing a very important component related to biodiversity, habitat quality,
intactness, forest degradation and fragmentation. These aspects are crucial to
describe the state of the terrestrial biosphere. There is still research needed to
develop these as operational data streams, but a few examples are available at
least at one point in time, e.g. Global Habitat Heterogeneity from EarthEnv,
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datasets from Global Forest Watch, Dynamic Habitat Indices DHI from
Silvislab. This might not be sufficient (in terms of temporal resolution) to
include it for this analysis, but the results from this study could be compared
to those datasets (especially the DHI) and the need and relevance of global
biodiversity and habitat intactness/quality information should be discussed.

We think that the reviewer has a very relevant point here, we would have loved
to include more data streams that are relevant to the biosphere. The major
problem is the availability of relevant of open data streams at a sufficiently
high resolution in space and time which is currently very limited. As we want
to track the change of the indicators over time, including static variables did
not really make sense in this analysis. Including variables that have a yearly
temporal resolution would require to aggregate our data by year which would
also have made for a very interesting analysis but outside of the scope of this
study.

4.3 Minor comments

L18: new satellite missions, add: Schimel, D., Schneider, F., Bloom, A.,
Bowman, K., Cawse-Nicholson, K., Elder, C., . . . Zheng, T. (2019).
Flux towers in the sky: global ecology from space. New Phytologist,
nph.15934. https://doi.org/10.1111/nph.15934

added

L25: green revolution, add: Chen, C., Park, T., Wang, X., Piao, S., Xu, B.,
Chaturvedi, R. K., . . . Myneni, R. B. (2019). China and India lead in
greening of the world through land-use management. Nature Sustain-
ability, 2(2), 122–129. https://doi.org/10.1038/s41893-019-0220-7

added

L27: changes are not only occurring in the onset of spring, but also browning
trends, see:

• Garonna, I., de Jong, R., de Wit, A. J. W., Mücher, C. A., Schmid,
B., & Schaepman, M. E. (2014). Strong contribution of autumn
phenology to changes in satellite-derived growing season length
estimates across Europe (1982 - 2011). Global Change Biology,
20(11), 3457–3470. https://doi.org/10.1111/gcb.12625

• Garonna, I., de Jong, R., & Schaepman, M. E. (2016). Variability
and evolution of global land surface phenology over the past three
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decades (1982-2012). Global Change Biology, 22(4), 1456–1468.
https://doi.org/10.1111/gcb.13168

Thanks for the suggestion, we have added the suggesting changes.

L35: if a principal component is a mix of productivity measures, I don’t
necessarily think it’s more intuitive to interpret than a simple GPP
map.

Thanks for pointing this out, changed the sentence to:

The rationale is that dimensionality reduction only retains the main
data features, which makes them easier accessible for analysis.

L63: What do you mean by “of parts”? Parts of what?

We have changed “parts” to “observations” to clarify the sentence.

L75: Isn’t this dependent on the coordinate system and/or projection? What
is the coordinate system used? And why not try to use an equal-area
projection (e.g. equal earth projection)?

We have added the coordinate system, thank you for pointing out this
oversight.

L152: So what is contributing to the third component. It’s still 9% of
explained variance!

Thank you for pointing this out, we have added the third component to
the manuscript.

L162: Figure 1b is not very intuitive to me. What exactly does it show
and how do you read from this that the first component represents
productivity and the second hydrology? The figure doesn’t seem to
show any clear patterns to me. Could you also show the biplots of PC1
and 2, and PC2 and 3?

As biplots are the “standard” way do describe this type of information,
we have thought about adding biplots, but decided against it for the
following reasons: 1) Biplots don’t really contain any information that is
not already contained in fig 2b and fig. 4. 2) The number of observations
is so high that it would be impossible to add all the observations to a
plot: we worked our way around this by showing bivariate histograms
as a background shading in fig. 4, and 3) the manuscript contains too
many figures already and adding even more would hamper readability.
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L177/178: check spelling

Thanks for finding this, fixed!

Figure 2: Very interesting figure! A degraded or stressed system might
show different trajectories, could you somehow visualize the difference
between intact and degraded ecosystems?

Thank you for the positive comment, in this figure we are trying to
show trajectories that are diverse. You can see a comparison between a
degraded and non-degraded trajectory in fig. 9a.

L258: check spelling

Thanks for finding this one. This sentence was changed in reply to
another comment.

Figure 5: third line, the effects of the drought

Changed drought → floods. Thank you for finding this mistake.

Figure 6: This figure is a bit confusing to me. Could you improve the
legends? I don’t see an increase in seasonal amplitude in 6a, but maybe
I just don’t read this figure correctly. (b-c-d) seem to show the mean
seasonal cycle and an event, but what do we see in 6a?

Thank you for pointing out that this may be confusing, we have added
an explanatory sentence to the caption.

L305: changes that occurring?

Thank you for finding this, this sentence was changed in reply to another
comment.

L340: Additional research is needed to better represent biodiversity, habitat
quality and intactness, forest degradation and fragmentation, etc. . .
See:

• Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis,
F. W., Asner, G. P., . . . Ustin, S. L. (2016). Monitoring
plant functional diversity from space. Nature Plants, 2(3), 16024.
https://doi.org/10.1038/nplants.2016.24

• Chiarucci, A., & Piovesan, G. (2019). Need for a global map of
forest naturalness for a sustainable future. Conservation Biology,
00(0), cobi.13408. https://doi.org/10.1111/cobi.13408
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• Nicholas C. Coops, Michael A. Wulder, (2019). Breaking the
Habit(at), Trends in Ecology & Evolution, Volume 34, Issue 7,
https://doi.org/10.1016/j.tree.2019.04.013.

We think that the reviewer has a very valid point here, it would be very
desirable to include these variables into the analysis. Unfortunately
these variables do not exist, yet.

L352: detected ina a similar fashion

Thanks for finding this one.
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Abstract. In times of global change, we must closely monitor the state of the planet in order to understand gradual or abrupt

changesearly on
::
the

::::
full

:::::::::
complexity

::
of
:::::

these
:::::::
changes. In fact, each of the Earth’s subsystems—i.e. the biosphere, atmosphere,

hydrosphere, and cryosphere—can be analyzed from a multitude of data streams. However, since it is very hard to jointly

interpret multiple monitoring data streams in parallel, one often aims for some summarizing indicator. Climate indices, for

example, summarize the state of atmospheric circulation in a region. Although such approaches are also used in other fields5

of science, they are rarely used to describe land surface dynamics. Here, we propose a robust method to create
:::::
global indica-

tors for the terrestrial biosphere using principal component analysis based on a high-dimensional set of relevant global data

streams. The concept was tested using 12 explanatory variables representing the biophysical states
::::
state

:
of ecosystems and

land-atmosphere water, energy, and carbon fluxes. We find that two
::::
three indicators account for 73

::
82% of the variance of the

state of the biosphere in space and time
:::::
across

:::
the

::::
globe. While the first indicator summarizes productivity patterns, the second10

indicator summarizes variables representing water and energy availability.
:::
The

:::::
third

:::::::
indicator

:::::::::
represents

::::::
mostly

:::::::
changes

:::
in

::::::
albedo. Anomalies in the indicators clearly identify extreme events, such as the Amazon droughts (2005 and 2010) and the

Russian heatwave (2010), they also allow us to interpret the impacts of these events. The indicators also reveal changes in

the seasonal cycle, e. g.
:::
can

::::
also

::
be

:::::
used

::
to

:::::
detect

::::
and

:::::::
quantify

:::::::
changes

::
in

::::::::
seasonal

:::::::::
dynamics.

::::
Here

:::
we

::::::
report

:::
for

:::::::
instance

increasing seasonal amplitudes of productivity in agricultural areas and in arctic regions. We assume that this generic approach15

has great potential for the analysis of land-surface dynamics from observational or model data.

1 Introduction

Today, humanity faces the
:::::::
negative global impacts of land use and land cover change (Song et al., 2018), global warming (IPCC,

2014), and associated losses of biodiversity (IPBES, 2019), to only mention the most prominent transformations. Over the past

decades, new satellite missions (Berger et al., 2012)
::::::::::::::::::::::::::::::::::::::::::::
(e.g. Berger et al., 2012; Schimel and Schneider, 2019), along with the20

continuous collection of more ground based measurements (Baldocchi et al., 2001; Baldocchi, 2008)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Wingate et al., 2015; Nasahara and Nagai, 2015; Baldocchi, 2020)

, and the generation of model data to anticipate future dynamics in the Earth system (Eyring et al., 2016)
::::::::
integration

:::
of

::::
both

::::::::::::::::::::::::::::::::::::::::::::::
(Papale et al., 2015; Babst et al., 2017; Jung et al., 2019) have increased our capacity to monitor the Earth’s surface enor-

mously. However, there are still large knowledge gaps limiting our capacity to monitor and understand the current changes
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:::::::::::::
transformations of the Earth system (Rockström et al., 2009). Regional trends of vegetation greeningand browning that have25

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Steffen et al., 2015; Rosenfeld et al., 2019; Yan et al., 2019; Piao et al., 2020).

:

:::::
Many

::
of

:::::
recent

:::::::
changes

:::
due

::
to

:::::::::
increasing

:::::::::::
anthropogenic

:::::::
activity

:::
are

:::::::::
manifested

::
in

::::::::
long-term

:::::::::::::
transformations.

::::
One

:::::::::
prominent

:::::::
example

::
is

:::::::
“global

::::::::
greening”

::::
that

:::
has

:
been attributed to fertilization effectson the one hand, ,

::::::::::
temperature

:::::::::
increases,

:
and

long-term climate change on the other, need to be understood (de Jong et al., 2011; Zhu et al., 2016; Wright et al., 2017). Changes

in the seasonal cycles of primary production, e. g. decreased seasonal amplitudes in
:::::::
land-use

:::::::::::
intensification

:::::::::::::::::::::::::::::::::::::::::::::
(de Jong et al., 2011; Zhu et al., 2016; Piao et al., 2019)30

:
.
:
It
::
is

::::
also

:::::
known

::::
that

::::::::::
phenological

:::::::
patterns

::::::
change

::
in

:::
the

:::::
wake

::
of

::::::
climate

::::::
change

::::::::::::::::::::::::::::
(Schwartz, 1998; Parmesan, 2006)

:
.
::::::::
However,

::::
these

:::::::::::
phenological

:::::::
patterns

::::
vary

::::::::::
regionally.

::
In

:
“cold” ecosystems

:::
one

:::::
may

:::
find

:::::::::
decreased

:::::::
seasonal

::::::::::
amplitudes

:::
on

:::::::
primary

:::::::::
production due to warmer winters (Stine et al., 2009)or increased seasonal amplitude .

:::::::::
Elsewhere,

::::::::
seasonal

:::::::::
amplitude

::::
may

:::::::
increase

:::
e.g. in agricultural areas due to the so called “green revolution” , are expected (Zeng et al., 2014). In general, phenological

patterns are changing in the wake of climate change , leading primarily to changes in the onset of spring (Schwartz, 1998; Parmesan, 2006)35

. Additionally, we are confronted with cascading effects induced by today’s
::::::::::::::::::::::::::::::
(Zeng et al., 2014; Chen et al., 2019).

::::::::
Another

::::::
change

::
in

::::::::
terrestrial

::::::::::
land-surface

::::::::
dynamics

::
is
:::::::
induced

:::
by increasing frequencies and magnitudes of extreme events (Barriope-

dro et al., 2011; Reichstein et al., 2013)which are .
::::
The

:::::::::::
consequences

::::
for

:::::::::::::
land-ecosystems

:::::
have yet to be fully understood

(Flach et al., 2018; Sippel et al., 2018). The question
:::::::::::::::::::::::::::::::
(Flach et al., 2018; Sippel et al., 2018),

::::
and

::::::
require

:::::
novel

::::::::
detection

::::
and

::::::::
attribution

::::::::
methods

:::::::
tailored

::
to

:::
the

::::::::
problem

::::::::::::::::::::::::::::::::::
(Flach et al., 2017; Mahecha et al., 2007a)

:
.
::::::
While

:::::::
extreme

::::::
events

:::
are

::::::::
typically40

::::
only

::::::::
temporary

:::::::::
deviations

::::
from

::
a

::::::
normal

::::::::
trajectory,

::::::::::
ecosystems

::::
may

::::::
changes

:::::
their

::::::::
qualitative

:::::
state

::::::::::
permanently.

:::::
Such

:::::
shifts

::
or

::::::
tipping

:::::
points

:::
can

:::
be

:::::::
induced

::
by

::::::::
changing

::::::::::::
environmental

:::::::::
conditions

::
or

:::::
direct

::::::
human

::::::::
influence,

::::
and

::::
pose

:::
yet

:::::::
another

:::::::
problem

:::
that

:::::
needs

::
to

::
be

:::::::::
considered

:::::::::::::::::
(Lenton et al., 2008)

:
.
:::
The

:::::::
question

:::
we

::::::
address

::::
here

:
is, how to uncover and summarize effects of this

kind from the wealth of available
:::::::
changes

::
in

::::::::::
land-surface

:::::::::
dynamics

::
in

:
a
:::::::::
consistent

:::::::::
framework.

::::
The

::::
idea

::
is

::
to

:::::::::::::
simultaneously

:::
take

:::::::::
advantage

::
of

:
a
::::
large

:::::
array

::
of global data streams? Do we need to develop specific solutions for every observed phenomenon45

or can we develop a single ,
:::::::
without

:::::::::
addressing

::::
each

::::::::
observed

:::::::::::
phenomenon

::
in

::
a

::::::
specific

:::::::
domain

::::
only.

:::
We

::::
seek

:::
to

::::::
develop

:::
an

::::::::
integrated

:
approach to uncover a wide variety of phenomena.

:::::::
changes

::
in

:::
the

:::::::::::
land-surface

::::::::
dynamics

:::::
based

:::
on

:
a
::::
very

:::::::
generic

::::::::
approach.

:::
The

::::::::
problem

::
of

::::::::::
identifying

:::::::
patterns

:::
of

::::::
change

::
in
:::::

high
:::::::::::
dimensional

::::
data

:::::::
streams

::
is

:::
not

:::::
new.

:
Extracting the dominant

dynamics
:::::::
features from high-dimensional observations is a well-known problem in many disciplines. In climate science, for50

example
:::
One

::::::::
approach

::
is

::
to

::::::::
manually

::::::
define

:::::::::
indicators

:::
that

:::
are

:::::
know

:::
to

::::::::
represent

::::::::
important

:::::::::
properties

::::
such

::
as

::::
the

:::::::
“Bowen

:::::
Ratio”

:::::::::::::
(Bowen, 1926),

:::::::
another

:::
one

:::::::
consists

::
in

:::::
using

:::::::
machine

:::::::
learning

::
to

::::::
extract

::::::
unique,

:::
and

::::::
ideally

:::::::::::
independent

::::::
features

:::::
from

::
the

:::::
data.

::
In

::::
the

::::::
climate

::::::::
sciences,

:::
for

:::::::
instance, it is common to summarize atmospheric states using Empirical Orthogonal

Functions (EOF), also known as Principal Component Analysis (PCA; Pearson, 1901). The rationale is that dimensionality

reduction
::::
only retains the main data features, but makes them better accessible to intuitive interpretations

::::
which

::::::
makes

:::::
them55

:::::
easier

::::::::
accessible

::::
for

:::::::
analysis. One of the most prominent examples is the description of the El Niño Southern Oscillation

(ENSO) dynamics in the multivariate ENSO index (MEI; Wolter and Timlin, 2011), an indicator describing the state of the

regional circulation patterns at a certain point in time. The MEI is a very successful index that can be easily interpreted and

used in a variety of ways, most basically it provides a measure for the intensity and duration of the different quasi-cyclic ENSO
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events but it can also be associated with its characteristic impacts: E.g. seasonal warming, changes in seasonal temperatures60

and overall dryness in the Pacific Northwest of the United States (Abatzoglou et al., 2014), drought related fires in the Brazilian

Amazon (Aragão et al., 2018), and
::::
crop yield anomalies (Najafi et al., 2019).

In plant ecology, indicators based on dimensionality reduction methods are used to describe changes to species assemblages

along unknown gradients (Legendre and Legendre, 1998; Mahecha et al., 2007a).
::::::::::::::::::::::::::::::::::::::::::::
(Legendre and Legendre, 1998; Mahecha et al., 2007a)

:
. The emerging gradients can be interpreted using additional environmental constraints, or based on internal plant community65

dynamics (van der Maaten et al., 2012). It is also common to compress satellite based Earth Observations via dimensionality

reduction to get a notion of the underlying dynamics of terrestrial ecosystems. For instance, Ivits et al. (2014) showed that

one can understand the impacts of droughts and heatwaves based on a compressed view of the relevant vegetation indices.

In general, dimensionality reduction is the method of choice to compress high-dimensional observations in a few (ideally)

independent components with little loss of information
::::::::::::::::::::::::::::::::::::::::::
(Van Der Maaten et al., 2009; Kraemer et al., 2018).70

Understanding changes in land-atmosphere interactions is a complex problem, as all aforementioned changes
::::::
patterns

:::
of

::::::
change may occur and interact: Land cover change may alter biophysical properties of the land surface such as albedo with

consequences for the energy balance. Long-term trends in temperature, water availability, or fertilization may impact pro-

ductivity patterns and biogeochemical processes. In fact, these land surface dynamics have multidimensional implications

::::::::::
implications

::
on

::::::::
multiple

:::::::::
dimensions

:
and require monitoring of biophysical state variables such as leaf area index, albedo, etc.,75

as well as associated land-atmosphere fluxes of carbon, water, and energy.

Here, we aim to summarize these high-dimensional surface dynamics and make them accessible to subsequent interpretations

:::
and

::::::
similar

::::::::
analyses

::
as

:::
the

:::::::
original

:::::::::
variables,

::::
such

::
as

:::::
mean

::::::::
seasonal

::::::
cycles

::::::
(MSC),

::::::::::
anomalies,

::::
trend

::::::::
analyses,

::::::::::
breakpoint

:::::::
analyses,

::::
and

:::
the

:::::::::::::
characterization

::
of

::::::::::
ecosystems. Specifically, we seek a set of independent

::::::::::
uncorrelated, yet comprehensive,

state indicators. We want to have a set of very few indicators that represent the most dominant features of the above described80

temporal ecosystem dynamics.
:::::
These

::::::::
indicators

::::::
should

::::
also

::
be

:::::::::::
uncorrelated,

::
so

::::
that

:::
one

::::
can

::::
study

:::
the

::::::
system

:::::
state

::
by

:::::::
looking

:::
and

::::::::::
interpreting

::::
each

::::::::
indicator

::::::::::::
independently.

:
The approach should also give an idea of the general complexity contained in

the available data streams. If more than a single indicator is required to describe land surface dynamics accurately, then these

indicators shall describe very different aspects. While one indicator may describe global patterns of change, others could be

only relevant in certain regions, for certain types of ecosystems, or for specific types of impacts. The indicators shall have a85

number of desirable properties: (1) Representing the overall state of parts
::::::::::
observations

:
comprising the system in space and

time. (2) Carrying sufficient information to allow for reconstructing the original observations faithfully from these indicators.

(3) Being of much lower dimensionality than the number of observed variables. (4) Allowing intuitive interpretations.

::
In

:::
this

:::::
work,

:::
we

::::
first

::::::::
introduce

::
a
:::::::
method

::
to

:::::
create

::::
such

:::::::::
indicators,

:::::
then

:::
we

:::::
apply

:::
the

::::::
method

:::
to

:
a
::::::
global

:::
set

::
of

::::::::
variables

::::::::
describing

:::
the

:::::::::
biosphere.

:::::::
Finally,

:::
to

:::::
prove

:::
the

:::::::::::
effectiveness

::
of

::::
the

:::::::
method,

:::
we

:::::::
interpret

:::
the

::::::::
resulting

:::
set

:::
of

::::::::
indicators

::::
and90

::::::
explore

:::
the

::::::::::
information

:::::::::
contained

::
in

:::
the

:::::::::
indicators

:::
by

::::::::
analyzing

:::::
them

::
in
::::::::

different
:::::
ways

:::
and

:::::::
relating

:::::
them

::
to
:::::

well
::::::
known

::::::::::
phenomena.
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2 Methods

2.1 Data

Table 1. Variables used describing the biosphere, for a description of the variables, see appendix
:::::::
Appendix

:
A.

Variable Details Source

Black Sky Albedo Directional reflectance Muller et al. (2011)

Evaporation [mmday−1] Martens et al. (2017)

Evaporative Stress Modeled water stress Martens et al. (2017)

fAPAR fraction of absorbed photosynthetically active radiation Disney et al. (2016)

Gross Primary Productivity (GPP) [gCm−2day−1] Tramontana et al. (2016)
:::::::::::::::::::::::::::::::
Tramontana et al. (2016); Jung et al. (2019)

Latent energy (LE) [Wm−2] Tramontana et al. (2016)
:::::::::::::::::::::::::::::::
Tramontana et al. (2016); Jung et al. (2019)

Net Ecosystem Exchange (NEE) [gCm−2day−1] Tramontana et al. (2016)
:::::::::::::::::::::::::::::::
Tramontana et al. (2016); Jung et al. (2019)

Root-Zone Soil Moisture [m3m−3] Martens et al. (2017)

Sensible Heat (H) [Wm−2] Tramontana et al. (2016)
:::::::::::::::::::::::::::::::
Tramontana et al. (2016); Jung et al. (2019)

Surface Soil Moisture [mm3mm−3] Martens et al. (2017)

Terrestrial Ecosystem Respiration (TER) [gCm−2day−1] Tramontana et al. (2016)
:::::::::::::::::::::::::::::::
Tramontana et al. (2016); Jung et al. (2019)

White Sky Albedo Diffuse reflectance Muller et al. (2011)

Table 1 gives an overview of the data streams used in this analysis (for a more detailed description in appendix
:::
see95

::::::::
Appendix A). For an effective joint analysis of more than a single variable, the variables have to be harmonized and brought to a

single grid in space and time. The Earth System Data Lab (ESDL; www.earthsystemdatalab.net
:
;
:::::::::::::::::
Mahecha et al., 2019) curates

a comprehensive set of data streams to describe multiple facets of the terrestrial biosphere and associated climate system. The

data streams are harmonized as analysis ready data on a common spatiotemporal grid (
:::::::::::::
equirectangular 0.25°

:::
grid

:
in space and

8 days in time
:
,
:::::::::
2001–2011), forming a 4d hypercube, which we call a data cube

::::
“data

:::::
cube”. The ESDL not only curates Earth100

system data, but also comes with a toolbox to analyze this data efficiently.
:::
For

:::
this

:::::
study

:::
we

:::::
chose

:::
all

::::::::
variables

::::::::
available

::
in

::
the

::::::
ESDL

::::
v1.0

::::
(the

::::
most

::::::
recent

::::::
version

::::::::
available

::
at

:::
the

::::
time

:::
of

::::::::
analysis),

:::::::
divided

:::
the

:::::::
available

:::::::
variable

::::
into

:::::::::::::
meteorological

:::
and

:::::::::
biospheric

:::::::
variables

::::
and

::::::::
discarded

:::
the

::::::::::
atmospheric

::::::::
variables.

:::
We

::::
also

::::::::
discarded

::::::::
variables

::::
with

::::::::::
distributions

::::
that

:::
are

:::::
badly

:::::
suited

:::
for

:
a
:::::
linear

:::::
PCA

::::
(e.g.

:::::
burnt

::::
area

:::::::
contains

::::::
mostly

:::::
zeros)

::::
and

::::::::
variables

::::
with

:::
too

:::::
many

:::::::
missing

::::::
values.

:::
The

:::::
only

::::::
dataset

:::
that

::::
was

:::::
added

::::
post

::::
hoc

:::
was

:::::::
fAPAR

:::::
which

:::::::::
represents

::
an

:::::::::
important

:::::
aspect

:::
of

::::::::
vegetation

::::::
which

::::
was

:::
not

::::::::
available

::
in

:::
the

::::
data105

::::
cube

::
at

:::
the

::::
time

::
on

:::::::
analysis

::
(it

::
is
::::
part

::
of

:::
the

::::
most

::::::
recent

::::::
version

::
of

:::
the

::::
data

::::::
cube).

In this study, each variable was normalized globally to zero mean and unit variance to account for the differences in

scales.Because the
:::::::
different

::::
units

:::
of

:::
the

:::::::::
variables,

:::
i.e.

::::::::
transform

::::
the

:::::::
variables

:::
to

::::
have

::::::::
standard

:::::::::
deviations

::::
from

::::
the

:::::
mean

::
as

:::
the

:::::::
common

:::::
unit.

:::::::
Because

::
in

:::
the

:::::::::::::
equirectangular

:::::::::
coordinate

::::::
system

::::
used

:::
by

:::
the

::::::
ESDL

:::
the area of the pixel changes with

latitude, the pixels were weighted according to the represented surface area.
::::::::::::
Spatiotemporal

::::::
pixels

::::
with

:::::::
missing

:::::
values

:::::
were110

::::::
ignored

::
in

:::
the

:::::::::
calculation

:::
of

::
the

::::::::::
covariance

::::::
matrix.

4



2.2 Dimensionality Reduction with PCA

As a method for dimensionality reduction, we used a modified principal component analysis (PCA) to summarize the informa-

tion contained in the observed variables. PCA transforms the set of d centered and, in this case, standardized variables into a

subset of p(
:
,
:
1≤ p≤ d) ,

:
principal components (PCs). Each component is uncorrelated with the other components, while the115

first PCs explain the largest fraction of variance in the data.

The data streams consist of d
::::::
d= 12 observed variables at the same time and location. Each observation is defined in a d-

dimensional space, xi ∈ Rd, and we define the dataset by collecting all samples in the matrix X = [x1| · · · |xn] ∈ Rd×n
::::::::::::::::::::
X = [x1| · · · |xn] ∈ Rd×n.

The observations are repeated in space and time and lie on a grid of lat×lon×time, which in our caseare n=#lat×#lon×#time = 720× 1440× 506,

where # denotes the length .
::
In

:::
our

:::::
case,

:::
we

::::
have

::::::::::::::::::::::::::::::::::::::::::::::::::
n= |lat| × |lon| × |time|= 720× 1440× 506 = 524,620,800

:::::::::::
observations,120

:::::
where

:::
| · |

::::::
denotes

:::
the

:::::::::
cardinality of the dimension. Note that the actual number of observations was lower, n= 106360156

:::::::::::::::
n= 106,360,156,

because we considered land points only and removed missing values.

To derive the PCs, we used an eigendecomposition of the covariance matrix,

Q = VΛVT ∈ Rd×d.

The covariance matrix, in this case, is equal to
:::
The

:::::::::::
fundamental

::::
idea

:::
of

::::
PCA

:::
is

::
to

::::::
project

::::
the

::::
data

::
to

::
a
:::::
space

::
of

::::::
lower125

::::::::::::
dimensionality

::::
that

:::::::::
preseserves

::::
the

:::::::::
covariance

:::::::
structure

:::
of

:::
the

::::
data.

:::::::
Hence, the correlation matrix because we standardized

the variables to unit variance. Λ is a diagonal matrix with the the eigenvalues, λ1, . . . ,λd, in the diagonal in decreasing order

and V ∈ Rd×d, the matrix with the corresponding eigenvectors in columns. V can project the new incoming input data xi

(centered and standardized) onto the PCs:

yi = VTxi ∈ Rd,130

where yi is the projection of the observation xi onto the d PCs.

Because the observations were centered
::::::::
fundament

:::
of

:
a
:::::

PCA
::
is
::::

the
::::::::::
computation

:::
of

:
a
::::::::::

covariance
::::::
matrix,

:::
Q.

::::::
When

:::
all

:::::::
variables

:::
are

:::::::
centered

::
to
::::::
global

::::
zero

:::::
mean

:::
and

::::::::::
normalized

::
to

:::
unit

:::::::
variance, the covariance matrix can be calculated by using a

simple formula
:
in

::::::::
principle

::::::::
estimated

::
as

:

Q =
1

n− 1
XXT =

1

n− 1

n∑

i=1

xix
T
i . (1)135

Given that
::::::::
However,

::
in

::::
our

::::
case

:
the data cube lies on a regular 0.25° grid ,

:::
and

:
estimating Q as above would lead to

overestimating the influence of dynamics in
::::::::
relatively

:::::
small

:::::
pixels

::
of

:
high latitudes compared to lower latitudes where each

data point represent largers
:::::
larger areas. Hence, we used

::
one

:::::
needs

:
a weighted approach to calculate the covariance matrix,

:

Q =
1

w

n∑

i=1

wixix
T
i , (2)

where wi = cos(lati) and lati is the latitude of observation i. ,
:
w =

∑n
i=1wi is the total weight, and n the total number of140

observations. Equation (2) has the additional property that it can be computed sequentially on very big data sets
::::::
datasets, such

as our Earth system data cube, by
::::::
System

::::
Data

::::::
Cube,

::
by

:::
an consecutively adding observations

::
to

::
an

:::::
initial

:::::::
estimate.
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The
::::
Note

:::
that

:::
the

:
actual calculation of the covariance matrix was

::
is

::::
even

:
more complicated, because summing up many

floating-point numbers one by one
:::::::::
one-by-one

:
can lead to large inaccuracies due to precision issues of floating-point numbers

and instabilities of the naive algorithm (Higham, 1993; the same goes
::::
hols for the implementations of the sum function in most145

software used for numerical computing). Here,
::
we

:::::
used the Julia package WeightedOnlineStats.jl1 (implemented by

the first author of this paper)is used, which uses numerically stable algorithms for summation, higher precision numbers, and

a map-reduce scheme that further minimizes floating point errors.

:::::
Based

::
on

::::
this

::::::::
weighted

:::
and

::::::::::
numerically

:::::
stable

:::::::::
covariance

::::::
matrix,

:::
the

:::::
PCA

:::
can

::
be

:::::::::
computed

::::
used

::
an

:::::::::::::::::
eigendecomposition

::
of

::
the

::::::::::
covariance

::::::
matrix,150

Q = VΛVT ∈ Rd×d.
:::::::::::::::::

(3)

::
In

:::
this

:::::
case,

:::
the

:::::::::
covariance

:::::
matrix

:::
Q

:
is
:::::
equal

::
to
:::
the

::::::::::
correlation

:::::
matrix

:::::::
because

:::
we

:::::::::::
standardized

:::
the

:::::::
variables

::
to

::::
unit

::::::::
variance.

::
Λ

:
is
::
a
:::::::
diagonal

::::::
matrix

::::
with

:::
the

:::
the

::::::::::
eigenvalues,

:::::::::
λ1, . . . ,λd,

::
in

:::
the

:::::::
diagonal

::
in
::::::::::
decreasing

::::
order

::::
and

:::::::::
V ∈ Rd×d,

:::
the

::::::
matrix

::::
with

::
the

::::::::::::
corresponding

:::::::::::
eigenvectors

::
in

::::::::
columns.

::
V

:::
can

::::::
project

:::
the

::::
new

::::::::
incoming

::::
input

::::
data

::
xi::::::::

(centered
::::
and

:::::::::::
standardized)

::::
onto

:::
the

::::::
retained

:::::
PCs,155

yi = VTxi ∈ Rd,
::::::::::::::

(4)

:::::
where

::
yi::

is
:::
the

:::::::::
projection

::
of

:::
the

::::::::::
observation

::
xi::::

onto
:::
the

:
d
:::::
PCs.

The canonical measure of the quality of a PCA is the fraction of explained variance , calculated as
::
by

:::::
each

::::::::::
component,

:::
σ2
i ,

::::::::
calculated

::
as

:

σ2
i =

::::

λi∑d
i=1λi

,. (5)160

where λi is the i-th eigenvalue of the covariance matrix Q. To get a more complete measure of the accuracy of the PCA,

we used the “reconstruction error” in addition to the fraction of explained variance. PCA allows a simple projection of an

observation onto the first p PCs and a consecutive reconstruction of the observations from this p-dimensional projection. This

is achieved by

Yp = VT
p X ∈ Rp×n and Xp = VpYp ∈ Rd×n, (6)165

where Yp is the projection on
::::
onto the first p PCs, Vp the matrix

::::
with

:::::::
columns

:
consisting of the eigenvectors belonging to the

p largest eigenvalues, and Xp the observations reconstructed from the first p PCs.

The reconstruction error, ei, was calculated for every point, xi in the space-time-domain
:::::::::
space–time

:::::::
domain

:
based on the

reconstructions from the first p principal components:

ei = VpV
T
p xi−xi ∈ Rd. (7)170

1DOI: 10.5281/zenodo.3360311, repository: https://github.com/gdkrmr/WeightedOnlineStats.jl/
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As this error is explicit in space, time and variable, it allows for disentangling the contribution of each of these domains to the

total error. This can be achieved by estimating e.g.
:
the (weighed) mean square error

MSE =
1

w

∑

i

wie
2
i

where wi = cos(lati), lati the latitude of ei, w =
∑

iwi the total weight. Therefore, this

MSE =
1

w

∑

i

wie
2
i .

::::::::::::::::

(8)175

::::
This approach can give a better insight into the compositions of the error than a single global error estimate based on the

eigenvalues.

2.3 Pixel-wise analyses of time series

When calculating slopes using measured data, ordinary least squares regression is not the optimal choice because outliers

can significantly change the estimator. One possible solution is using the Theil-Sen estimatorwhich is robust
:::
The

::::::::
principal180

::::::::::
components

::::::::
estimated

::
as

::::::::
described

:::::
above

:::
are

::::::
ideally

:::::::::::::
low-dimensional

:::::::::::::
representations

::
of

:::
the

::::::::::
land-surface

::::::::
dynamics

::::
that

::::::
require

:::::
further

::::::::::::
interpretation.

:::::
These

:::::::::::
components

::::
have

:
a
::::::::
temporal

::::::::
dynamics

:::
that

:::::
needs

::
to
:::
be

:::::::::
understood

::
in

::::::
detail.

::::
One

:::::
crucial

::::::::
question

:
is
::::
how

:::
the

::::::::
dynamics

:::
of

:
a
::::::
system

::
of

:::::::
interest

:::::::
deviates

::::
from

:::
it’s

::::::::
expected

::::::::
behaviour

::
at
:::::
some

:::::
point

::
in

:::::
time.

::
A

:::::::
classical

::::::::
approach

:
is
:::::::::
inspecting

:::
the

::::::::::
“anomalies”

:::
of

:
a
::::
time

::::::
series,

::
i.e.

:::
the

:::::::::
deviatiosn

::::
from

:::
the

:::::
mean

::::::::
seasonal

::::
cycle

::
at

::
a

::::::
certain

:::
day

::
of

::::
year.

:

:::::::
Another

:::
key

:::::::::
description

::
of

::::
such

::::::
system

::::::::
dynamics

:::
are

::::::
trends.

:::
We

::::::::
estimated

:::::
trends

::
of

:::
the

::::::::
indicators

:::
as

:::
well

::
as

::
of
:::::
their

:::::::
seasonal185

::::::::
amplitude

:::::
using

:::
the

::::::::
Theil–Sen

:::::::::
estimator.

:::
The

:::::::::
advantage

::
of

:::
the

:::::::::
Theil–Sen

::::::::
estimator

::
is

::
its

:::::::::
robustness to up to 29.3% of outliers

(Theil, 1950; Sen, 1968)
:
,
:::::
while

:::::::
ordinary

:::::
least

:::::::
squares

::::::::
regression

::
is
::::::

highly
::::::::

sensitive
::
to

:::::
such

:::::
values. The calculation of the

estimator consists simply on computing the median of the slopes spanned by all possible pairs of points

slopeij =
zi− zj
ti− tj

, (9)

where zi is the value of the response variable at time step i and ti the time at time step i. In our experiments, we computed190

the slopes separately per pixel and principal component where time is
::::
with

::::
time

::
as

:
the predictor and the value of the principal

component is
::
as the response variable.

To test the slopes for significance, we used the Mann-Kendall statistics (Mann, 1945; Kendall, 1970) and adjusted the

resulting p-values with the Benjamini-Hochberg method to control for the false discovery rate (Benjamini and Hochberg,

1995). Slopes with an adjusted p < 0.05 were deemed significant.195

For the calculation of the number of
::
To

:::::::
identify

:::::::::
disruptions

:::
in

:::::::::
trajectories,

:::::::::
breakpoint

::::::::
detection

::::::::
provides

:
a
:::::
good

:::::::::
framework

::
for

::::::::
analysis.

:::
For

:::
the

:::::::::
estimation

::
of breakpoints, the generalized fluctuation test framework (Kuan and Hornik, 1995)was used to

test for the presence of breakpoints. The framework uses recursive residuals (Brown et al., 1975) , and
::::
such

:::
that

:
a breakpoint

is identified when the mean of the recursive residuals deviates from zero. We used the implementation in Zeileis et al. (2002).

For practical reasons, here we only focus on the biggest
:::::
largest

:
breakpoint.200
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Figure 1.
:::::::
Example

:::::::
polygons

:::
and

::::
their

:::::
areas,

:::
Eq.

::
10,

:::
the

:::::
arrows

:::::::
indicate

::
the

:::::::::::
directionality.

::
(a)

::::::::
Clockwise

:::::::
polygon,

:::
has

::
a
::::::
negative

::::
area.

:::
(b)

:::::::::::::
Counterclockwise

:::::::
polygon,

:::
has

:
a
::::::
positive

::::
area.

:::
(c)

::::::
Chaotic

:::::::
polygon,

:::
has

:
a
::::

very
:::
low

::::
area.

:::
(d)

:::::::
Polygon

:::
with

::
a
:::::
single

:::::::::
intersection,

:::
has

::::
both

:
a
::::::::
clockwise

:::
and

:::::::::::::
counterclockwise

::::::
portion.

:::
The

::::::::
clockwise

::::::
portion

:
is
::::::

slightly
:::::

larger
::::
than

::
the

::::::::::::::
counterclockwise

::::::
portion,

:::::::
therefore

::
the

::::
area

::
is

:::::
slightly

:::::::
negative.

:

Hysteresis was calculated as the area,

:
A
:::::

very
:::::::
different

::::
type

:::
of

:::::::
dynamic

::
is
::::::::::

considering
::::::::

bivariate
::::::::
relations.

:::
In

:::
the

::::::
context

:::
of

:::::::::
oscillating

::::::
signals

::
it

::
is

::::::::::
particularly

::::::::
instructive

::
to
::::::::
quantify

::::
their

::::::
degree

::
of

:::::
phase

::::
shift

::::
and

:::::::::::::
direction—even

::
if

:::::
booth

::::::
signals

:::
are

:::
not

:::::::
linearily

:::::::
related.

::
A

::::::::::
“hysteresis”

:::::
would

::
be

::::
such

::
a
::::::
pattern

:::::::::
describing

:::
that

:::
the

::::::::
pathways

::::::
A→B

::::
and

::::::
B→A

:::::::
between

:::::
states

:
A ,

:::
and

::
B

::::
differ

::::::::::::::::::
(Beisner et al., 2003)

:
.
:::
We

::::::::
estimated

::::::::
hysteresis

:::
by

:::::::::
calculating

:::
the

::::
area inside the polygon formed by the mean seasonal cycle of PC1 and PC2205

A=
1

2

n∑

i=1

xi(yi+1− yi−1),

::
the

::::::::::::
combinations

::
of

:::
two

:::::::::::
components

::::
(PC1::

to
:::::
PC3).

Area =
1

2

n∑

i=1

xi(yi+1− yi−1),

::::::::::::::::::::::::

(10)

where n= 46, the number of time steps in a year, xi and yi the mean seasonal cycle of PC1 and PC
:::
two

::
of

::::
PC1 ::

to
:::
PC23 at

time step i, respectively. The polygon is circular, i.e. the indices wrap around the edges of the polygon
::
so

::::
that

:::::::
x0 = xn::::

and210

:::::::::
xn+1 = x1. This formula gives the actual area of the polygon

::::
inside

:::
the

::::::::
polygon

::::
only

:
if it is non-self-intersecting and the

vertices run counterclockwise. If the vertices run clockwise, the area is negative. If the polygon is shaped as
:::
like

:
an 8, the

clockwise and counterclockwise parts will cancel each other (partially) out, e. g. the green trajectory in fig. 4b. Trajectories

that cover a larger range .
::::::::::
Trajectories

::::
that

::::
have

:
a
::::::
larger

:::::::::
amplitudes will also tend to have larger areas .

:
as

:::::::::
illustrated

::
in

:::
fig.

::
1.
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3 Results and Discussion215

::
In

:::
the

::::::::
following

:::
we

::::
first

::::::
briefly

::::::
present

::::
and

::::::
discuss

::::
the

::::::
quality

::
of

:::
the

::::::
global

:::::::::::::
dimensionality

::::::::
reduction

:::::
(Sect.

:::::
3.1),

:::
we

::::
then

:::::::
interpret

:::
the

:::::::::
individual

::::::::::
components

:::::
from

::
an

:::::::::
ecological

:::::
point

:::
of

::::
view

::::::
(Sect.

::::
3.2),

::::::
before

:::
we

::::
turn

::
to

::::::::::
summarize

:::
the

::::::
global

::::::::
dynamics

::
we

::::
can

::::::
uncover

::
in

:::
the

::::::::::::::
low-dimensional

:::::
space

:::::
(Sect.

:::
3.3)

:::
and

:::::::::::
characterize

::
the

::::::::
contained

::::::::
seasonal

::::::::
dynamics

:::::
(Sect.

::::
3.4),

::::::::
including

:::::
spatial

:::::::
patterns

::
of

:::::::::
hysteresis

:::::
(Sect.

::::
3.5).

:::
We

::::
then

:::::::
describe

::::::
global

:::::::::
anomalies

::
of

:::
the

::::::::
identified

:::::::::
trajectories

::::::
(Sect.

::::
3.6),

:::
and

::::::
discuss

:::
the

::::::::
identified

:::::::::
anomalies

::
in

:::::
depth

:::::
based

::
on

:::::
local

::::::::::
phenomena

:::::
(Sect.

::::
3.7).

:::::::
Finally,

::
we

::::
turn

::
to

::::::
global

:::::
trends

::::
and

::::
their220

:::::::::
breakpoints

:::::
(Sect.

:::::
3.7).

3.1 The
:::::::
Quality

::
of

:::
the

:
PCAembedding
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Figure 2. (a) Fraction of explained variance of the PCA by component. Components
::::
Knee

::
at

::::::::
component

:
three

:::::
suggest

:::
that

:::::::::
components

::::
four

and higher do not conrtibute
:::::::
contribute

:
much to total variance. (b) Rotation matrix of the global PCA model

:::
(also

:::::
called

:::::::
loadings, axis one

describes
::
eq.

:::
4).

:::
The

:::::::
columns

::
of

:::
the

::::::
rotation

:::::
matrix

:::::::
describe

::
the

:::::
linear

::::::::::
combinations

::
of

:::
the

:::::::
(centered

:::
and

:::::::::::
standardized)

::::::
original

:::::::
variables

:::
that

::::
make

:::
up

::
the

::::::::
principal

:::::::::
components.

::::
PC1 ::

is
::::::::
dominated

::
by

:
primary productivity related variables, axis

:::
PC2:two describe

::
by

:::::::
variables

:::::::
describing

:
water availability

:
,
:::
PC3::

by
:::::::
variables

::::::::
describing

::::::
albedo.

Figure 2a shows the explained fraction of variance (Eq. 5) for the global PCA based on the entire data cube. We see that

the first two
:::
The

:::
two

:::::::
leading components explain 73% of the variance from the 12 variables; additional components contribute

little < 10% explained variance
:::::::
relatively

::::
little

:::::::::
additional

::::::::
variance

::::
(PC3::::::::::

contributes
::::
9%,

::
all

::::::::::
subsequent

::::
PCs

::::
less

::::
than

::::
7%)225

each. This results in a “knee” at component 2
:
3, which suggests that two indicators are sufficient to capture the major global

dynamics of the terrestrial land surfaceand therefore we focus on these
:
,
:::
but

:::
we

:::
will

::::
also

:::::::
consider

:::
the

:::::
third components in the

following analyses .
:::::::::::
(Cattell, 1966)

:
.

9



Using PCA as a method for dimensionality reduction means that we are assuming linear relations among features. A

nonlinear method could possibly be more efficient in reducing the number of variables, but would also have significant230

disadvantages. In particular: nonlinear methods typically require tuning of specific parameters, objective criteria are often

lacking, a proper weighting of observations is difficult, and it is harder to interpret the resulting indicators due to their nonlinear

nature (Kraemer et al., 2018).The salient feature of PCA is that an inverse projection is well defined and allows for a deeper

inspection of the errors, which is not the case for nonlinear methods due to the pre-imaging problem (Mika et al., 1999; Arenas-Garcia et al., 2013)

.235

The contributions of each variable to the resulting indicators can be understood from the rotation matrix (Eq. 4, fig. 2b). The

:::
We

::::::::
estimated

:::
the

::::::::::::
reconstruction

::::
error

::::::::::
sequentially

:::
up

::
to

:::
the

:::
first

:::::
three

:::::::
principal

::::::::::
components

::::
(fig.

:::
3).

:::::::
Regions

:::
that

:::
do

:::
not

::
fit

:::
the

:::::
model

::::
well

:::::
show

:
a
::::::
higher

::::::::::::
reconstruction

:::::
error.

::::::::::
Considering

:::
one

::::::::::
component

::::
only,

::::::
highest

::::::::::::
reconstruction

::::::
errors

::::::
appear

::
in

::::
high

:::::::
latitudes

:::
but

:::::::
decrease

:::::::
strongly

::::
with

::::
each

:::::::::
additional

:::::::::
component

::::
and

:::::
nearly

::::::
vanish

::
if

:::
the

::::
third

:::::::::
component

::
is

::::::::
included.

3.2
::::::::::::
Interpretation

::
of

:::
the

:::::
PCA240

:::
The

:
first PC summarizes variables that are closely related to vegetation primary productivity

:
to

:::::::
primary

:::::::::
production

:
(GPP, LE,

NEE, fAPAR). These variables are related because they are all directly related to primary productivity.
:
,
:::
and

::::::::
therefore

::::::
highly

:::::::::
interrelated

::::
(see

:::
fig.

::::
2b). The energy for photosynthesis comes from solar radiation,

:::
and

::::::
fAPAR

:
is
:
an indicator for the fraction

of light used for photosynthesisis given by fAPAR. Photosynthesis fixes carbon from gaseous CO2 producing sugars to .
::::
The

:::::::
available

::::::::::::
photosynthetic

::::::::
radiation

::
is

::::
used

:::
by

::::::::::::
photosynthesis

::
to

:::
fix

::::
CO2:::

and
:::::::::
producing

::::::
sugars

:::
that

:
maintain the metabolism of245

plants, this
:::
the

::::
plant.

::::
The total uptake of CO2 is reflected in GPP. However, the CO2 uptake is ,

::::::
whiche

::
is

::::
also closely related to

water consumption. The actual uplift of water within the plant is not only essential to enable photosynthesis, but also drives the

transport of nutrients from the roots and is ultimately reflected in transpiration—together with evaporation from soil surfaces

one can observe the integrated latent energy needed for the phase transition (LE). However, ecosystems also respireand hence

:
; CO2 is produced by plants in energy consuming processes as well as by the decomposition of dead organic materials via250

soil microbes and other heterotrophic organisms. This total respiration can be observed as terrestrial ecosystem respiration

(TER). The difference between GPP and TER is the net ecosystem exchange (NEE) rate of CO2 between ecosystems and the

atmosphere (Chapin et al., 2006)
:
,
:::
and

::::
both

::::::::
variables

:::
are

:::
also

::::
well

::::::::::
represented

:::
by

:::
the

:::
first

:::::::::
dimension.

On the second axis we observe variables that are
:::
The

::::::
second

:::::::::
component

:::::::::
represents

:::::::
variables

:
related to the surface hydrology

of ecosystems .
:::
(see

:::
fig.

::::
2b).

:
Surface moisture, evaporative stress, root-zone soil moisture, and sensible heat, are all essential255

indicators for the state of plant available water. While surface moisture is a rather direct measure, evaporative stress is a modeled

quantity summarizing the level of plant stress, a
:
:
::
A value of zero means that there is no water available for transpiration, while

a value of one means that transpiration
:::::
equals the potential transpiration (Martens et al., 2017). Root-zone soil moisture is the

moisture content of the root zone in the soil, the moisture directly available for root uptake. If this quantity is below the wilting

point, there is no water available for uptake by the plants. Sensible heat is the exchange of energy by a change of temperature,260

if there is enough water available, then most of the surface heat will be lost due to evaporation (latent heat), with decreasing

water availability more of the surface heat will be lost due to latent
::::::
sensible

:
heat, making this also an indicator of dryness.
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Figure 3.
:::::::::::
Reconstruction

::::
error

::
of

:::
the

:::
data

::::
cube

:::::
using

::::::
varying

:::::::
numbers

::
of

:::::::
principal

::::::::::
components

::::::::
aggregated

:::
by

::
the

:::::
mean

::::::
squared

:::::
error.

:::::::::::
Reconstruction

:::::
errors

::::::::
aggregated

:::
over

:::
all

:::
time

::::
steps

:::
and

:::::::
variables

:::
are

:::::
shown

:
in
:::
the

:::
left

::::::
column:

:::
(a)

::::
Using

::::
only

:::
the

:::
first

:::::::::
component;

::
(c)

:::::
Using

::
the

:::
first

::::
two;

:::
(e)

::::
Using

:::
the

:::
first

:::::
three.

:::::::::::
Corresponding

::::
right

::::
plots

::
(b,

::
d,

:
f)
:::::

show
::
the

:::::
mean

::::::::::
reconstruction

::::
error

:::::::::
aggregated

::
by

:::::::
latitudes.
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:::
We

::::::
observe

::::
that

:::
the

::::
third

:::::::::
component

::
is
:::::
most

:::::::
strongly

::::::
related

::
to

::::::
albedo

:::
(fig.

::::
2b).

::::::
Albedo

::::::::
describes

:::
the

::::::
overall

::::::::::::
reflectiveness

::
of

:
a
:::::::
surface.

:::::
Light

::::::::
surfaces,

::::
such

::
as

:::::
snow

::::
and

:::::
sand,

:::::
reflect

:::::
most

::
of

:::
the

::::::::
incoming

:::::::::
radiation,

:::::
while

:::::::
surfaces

::::
that

::::
have

::
a

::::
high

:::::
liquid

:::::
water

::::::
content

::
or

::::::
active

:::::::::
vegetation

:::::
absorb

:::::
most

::
of

:::
the

::::::::
incoming

:::::::::
radiation.

:::::
Local

:::::::
changes

::
to

::::::
albedo

:::
can

:::
be

::::::
caused

::
by

::
a265

::::
large

:::::
array

::
of

:::::::
reasons,

:::
e.g.

:::::
snow

:::
fall,

:::::::::
vegetation

::::::::::::::::
greening/browning,

:::
or

:::
land

::::
use

::::::
change.

:

:::
The

:::::::
relation

::
of

::::
PC3:::

to
::::::::::
productivity

::::
and

:::::::::
hydrology

::
is

::::::::
opposite

::
to

:::::
what

:::
we

:::::
would

::::::
expect

:::::
from

:::
an

::::::
albedo

::::
axis.

::::::::
Because

::::::::
vegetation

::::
uses

::::::::
radiation

::
as

:::
an

::::::
energy

::::::
source,

::::::
albedo

::
is
:::::::::

negatively
:::::::::
correlated

::::
with

:::
the

:::::::::::
productivity

::
of

:::::::::
vegetation,

::::::
hence

:::
the

:::::::
negative

:::::::::
correlation

::
of

:::::::
albedo

::::
with

::::
PC1.

::::::
Given

::::
that

:::::
water

::::
also

:::::::
absorbs

:::::::
radiation

:::
we

::::
can

:::::::
observe

::
a

:::::::
negative

:::::::::
correlation

:::
of

:::::
albedo

::::
with

::::
PC2::::

(see
:::
fig.

::::
2b).

:::
We

:::::::
observe

:::
that

::::
PC1:::

and
::::
PC2:::

are
::::::::
positively

:::::::::
correlated

::::
with

::::
PC3 ::

on
:::
the

:::::::
positive

::::::
portion

:::
of

::::
their270

::::
axes

:::
(see

:::
fig.

:::
4d

:::
and

::
f),

::::::
which

:::::
means

:::::::::::::::
counterintuitively

:::
that

:::
the

:::::
index

:::::::::::
representing

:::::
albedo

::
is
::::::::
positively

:::::::::
correlated

::::
with

:::::::
primary

::::::::::
productivity

:::
and

::::::::
moisture

:::::::
content.

::::::
Finally

:::
we

:::
can

:::::::
observe

:::
that

::::
PC1:::

and
::::
PC2::::

have
::

a
:::::
much

::::::
higher

::::::::::::
reconstruction

::::
error

::
in

:::::
snow

::::::
covered

:::::::
regions,

::::::
which

::
is

:::::::
strongly

::::::::
improved

:::
by

::::::
adding

::::
PC3 ::::

(see
:::
fig.

:::
3f).

:::::::::
Therefore

:::
the

::::
third

::::::::::
component

::::::
should

::
be

::::::::
regarded

:::::
mostly

:::
as

:::::
binary

:::::::
variable

::::
that

::::::::
introduces

:::::
snow

:::::
cover,

:::
as

:::
the

::::
other

::::::::::
information

::::
that

::
is

::::::
usually

:::::::::
associated

::::
with

:::::
albedo

::
is
:::::::
already

::::::::
contained

::
in

:::
the

:::
first

::::
two

:::::::::::
components.275

The

3.3
::::::::::

Distribution
::
of

::::::
points

::
in

:::::
PCA

:::::
space

:::
The

::::::::
bivariate

:::::::::
distribution

:::
of

:::
the first two principal components form a triangle

::::::::
“triangle” (gray background in fig. 4). On one

edge of the first principal component we find ecosystems in a
::
a).

:::
At

:::
the

::::
high

:::
end

::::
onf

::::
PC1 :::

we
:::
find

::::
one

:::::
point

::
of

:::
the

:::::::
triangle

::
in

:::::
which

::::::::::
ecosystems

::::
have

:
a
::::
high

:
high state of primary productivity (high values of GPP, fAPAR, LE, TER, and evaporation),280

mostly limited by radiation, while on .
::::

On the lower end of the principal component one we find states of low productivity.

Ecosystem
:::
the

:::::
other

:::
two

::::::
points

::
of

:::
the

:::::::
triangle

:::::::::
describing

::::
two

:::::::::
alternative states of low productivityare further separated by

:
:
:::::
These

::::
can

::::::
happen

:::::
either

:::::
when

:
the second principal component : Low productivity can coincide with radiation

::::::::
coincides

::::
with

::::::::::
temperature limitation (the negative extreme of the second principal component) as seen in the lower left corner of the

distribution in fig. 4a and b or with
:::
due

::
to
:
water limitation (the positive extreme of the second principal component, the upper285

left corner in fig. 4a). This pattern reflects the two essential global limitations of GPP in terrestrial ecosystems (Anav et al.,

2015).

Both axes form the space

::::
Both

::::::::::
components

::::
form

::
a

:::::::
subspace

:
in which most of the variability of ecosystems takes place. Axis

::::::::::
Component one describes

productivity and axis
:::::::::
component

:
two the limiting factors to productivity. Therefore, we can see that most ecosystems with high290

values on axis
::::::::
component

:
one (a high productivity) are at the approximate center of axis

:::::::::
component

:
two. When ecosystems are

found outside the center of axis
:::::::::
component two, they have lower values on axis

:::::::::
component one (lower productivity) because

they are limited by water or temperature (see fig. 4b).

Heat transfer

::
To

::::::
further

::::::::
interpret

:::
the

:::::::::
“triangle”

:::
we

:::::::
analyze

::::
how

:::
the

::::::
Bowen

:::::
ratio

:::::::
embeds

::::
into

:::
the

:::::
space

::
of
::::

the
::::
first

:::
two

:::::::::::
dimensions.295

::::::
Energy

:::::
fluxes

:
from the surface into the atmosphere can happen either by

::::
either

::::::::
represent

:
a
:
radiative transfer (sensible heat) or

12
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Figure 4.
::::::::
Trajectories

:::
of

::::
some

:::::
points

:::::::
(colored

:::::
lines)

:::
and

:::
the

::::
area

:::::::
weighted

::::::
density

::::
over

:::::::
principal

:::::::::
components

::::
one

:::
and

:::
two

::::
(the

::::
gray

::::::::
background

:::::::
shading

:::::
shows

::
the

:::::::
density)

::
for

::::
(left

::::::
column)

:::
the

:::
raw

:::::::::
trajectories

:::
and

:::::
(right

::::::
column)

:::
the

::::
mean

:::::::
seasonal

:::::
cycle.

:::
The

:::::::::
trajectories

::
are

:::::
shown

::
in
:::

the
:::::
space

::
of

:::::::
PC1–PC2::::

(first
::::
row),

::::::::
PC1–PC3 ::::::

(second
::::
row),

:::
and

:::::::
PC2–PC3:::::

(third
::::
row).

::::
The

::::::::
trajectories

::::
were

::::::
chosen

::
to

::::
cover

::
a

::::
large

:::
area

::
in

:::
the

::::
space

::
of

:::
the

:::
first

::::
two

::::::
principal

::::::::::
components.

:::::
Some

::
of

:::
the

::::::::
trajectories

::::
have

::
an

:::::
arrow

::::::::
indicating

::
the

::::::::
direction.

:::
The

:::::::
numbers

::::::
illustrate

:::
the

:::::
value

::
of

::::
some

::::::::
variables,

::
for

::::
units

:::
see

:::
tab.

::
1.
:::::::::

Description
:::

of
::
the

::::::
points:

::::
Red:

:::::::
Tropical

::::::::
Rainforest,

::::::::
67.625°W,

:::::::
2.625°S;

:::::
Blue:

:::::::
Maritime

::::::
climate,

:::::::
7.375°E,

:::::::
52.375°N

:
;
:::::
Green:

:::::::
Monsoon

:::::::
climate,

:::::::
82.375°E,

::::::::
22.375°N;

::::::
Purple:

:::::::::
Subtropical,

:::::::::
117.625°W,

::::::::
34.875°N;

:::::::
Orange:

::::::::
Continental

:::::::
climate,

:::::::
44.875°E,

::::::::
52.375°N;

::::::
Yellow:

:::::
Arctic

::::::
climate,

:::::::::
119.875°E,

::::::::
72.375°N.
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Figure 5.
::
The

::::::::::
background

::::::
shading

::::
show

:::
the

:::::::::
distribution

::
of

:::
the

:::::
mean

::::::
seasonal

:::::
cycle

::
of

:::
the

:::::
spatial

:::::
points

::::
(see

:::
fig.

::
4).

::::
The

::::::
contour

::::
lines

:::::::
represent

::
the

:::::::::::
reconstruction

::
of

:::
the

:::::::
variables

::::
from

:::
the

:::
first

:::
two

:::::::
principal

::::::::::
components.

:::
The

::::::::::
reconstructed

:::::::
variables

:::
are

::
(a)

:::::
Latent

::::
Heat

:::::
(LE),

::
(b)

:::::::
Sensible

:::
heat

:::
(H),

:::
and

::
(c)

::::::::::::::
log10

( Sensible Heat
Latent Heat

)
,
:::
the

::::
log10::

of
:::
the

:::::
Bowen

::::
ratio.

::::
Note

:::
that

::
the

:::
LE

:::
and

::
H

:::
have

::::
been

::::::::
considered

::
in

::
the

::::::::::
construction

:
of
:::

the
::::
PCs,

:::
and

:::::
hence

::
are

:
a
:::::
linear

::::::
function

::
of

:::
the

::::
PCs.

:::
The

:::::
Bowen

:::::
ratio,

::::::
instead,

:::
was

:::
not

::::::::
considered

:::
here

:::
and

::::::
clearly

::::::
responds

::
in
:
a
::::::::

nonlinear

::::
form.

evaporation (latent heat). Their ratio is the “Bowen ratio”, B = LE
H ::::::
B = H

LE , (Bowen, 1926; see also fig. 5), if there is enough

moisture, then
:
.
:::::
When

:::::
water

::
is
::::::::
available

:
most of the

::::::::
available energy will be dissipated by evaporation, B < 1, resulting in

a high latent heat flux, but when the surface does not contain much moisture the .
::::::::::
Otherwise,

:::
the transfer by latent heat will

be low and most of the incoming energy has to be dissipated via sensible heat, B > 1. In higher latitudes, there is not much300

:::::::
relatively

:::::::
limited incoming radiation and the temperatures are low, therefore there is not much energy to be dissipated and both

heat fluxes are low. A high sensible heat flux is an indicator for water limitationand both low sensible and latent heat flux are

indicators for ecosystems that are limited by low temperatures and low amounts of incoming radiation. We can see that the

bowen ratio embedds well into the space spanned by the first two PCs. .
:

3.4 Trajectories305

Trajectories of some points (colored lines) and the area weighted density over principal components one and two (the gray

background shading shows the density) for (a) the raw trajectories and (b) the mean seasonal cycle. The trajectories were

chosen to fill a large area in the space of the first two principal components. Some of the trajectories in (b) have an arrow

indicating the direction. The numbers illustrate the value of some variables, for units, see tab. 1. Description of the points: Red:

Tropical Rainforest, 67.625°W, 2.625°S; Blue: Maritime climate, 7.375°E, 52.375°N; Green: Monsoon climate, 82.375°E,310

22.375°N; Purple: Subtropical, 117.625°W, 34.875°N; Orange: Continental climate, 44.875°E, 52.375°N; Yellow: Arctic

climate, 119.875°E, 72.375°N;

The principal components may be used to summarize the movement of
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3.4
:::::::

Seasonal
:::::::::
Dynamics

:::
The

::::::
leading

::::::::
principal

::::::::::
components

::::::::
represent

::::
most

::
of

:::
the

::::::::
variability

::
of

:::
the

:::::
space

:::::::
spanned

::
by

:::
the

::::::::
observed

::::::::
variables,

:::::::::::
summarizing315

::
the

:::::
state

::
of a spatiotemporal pixel in variable space, so that they represent the current state of the ecosystem at a certain location

in space and
::::::::
efficiently.

::::
This

::::::
means

:::
that

:::
the

::::
PCs

:::::
track

:::
the

::::
state

::
of

:
a
:::::
local

:::::::::
ecosystem

::::
over time (fig. 4 a) ortime of year of

:::
left

:::::::
column)

::
or,

::
in
::::
case

:::
of the mean seasonal cycleof the pixel

:
,
::::
time

::
of

:::
the

::::
year

:
(fig. 4 b).

:::
right

:::::::::
columns).

:::
For

::
a

::::::::::::
representation

::
of

::
the

:::::
state

::
of

:::
the

:::
first

:::::
three

::::::::::
components

::
in

::::
time

:::
and

::::::
space,

:::
see

::::::::
appendix

:::
fig.

:::
B1.

:

Because the underlying data are 8-daily resolution, we can observe the seasonal variability and find that the320

:
A
::::

first
:::::::::
inspection

::::::
reveals

::
a
:::::::::
substantial

:::::::
overlap

::
of

:
seasonal cycles of very different regions of the worldcan substantially

overlap. We
:
.
:::
We

:::
also

:
see that very different ecosystems may reach very similar states in the course of the season, even though

their seasonal dynamics are very distinct
:::::::
different. For instance,

:
a mid-latitude areas

::::
pixel (blue trajectory in fig. 4) show

:::::
shows

very similar characteristics to tropical forests during their peak growing seasonbecause their patterns of .
::::
This

::::::::
indicates

::::
that

::
the

:::
an

:::::::::
ecosystem

::
of

:::
the

:
a
::::::::::
mid-latitude

::::
can

:::::
reach

::::::
similar

:::::
levels

::
of productivity and water availability are similar

::::
than

:
a
:::::::
tropical325

:::
rain

:::::
forest

:
(see also SI fig. C1). Likewise,

::
on

::
the

::::
first

:::
two

:::::::::::
components,

:
many high latitude areas show similar characteristics to

mid-latitude
:::::::::
midlatitude

:
areas during winter

::
on

:::
the (low latent and sensible energy release as well as low GPP) and many dry

areas such as deserts show similar characteristics to areas with a pronounced dry season, e.g. the Mediterranean.

Ecosystems states
:::::::::
Depending

::
on

::::
their

:::::::
position

::
on

::::::
Earth,

:::::::::
ecosystem

::::
states

::::
can shift from limitation to growth during the year

(fig. 4b, e.g. Forkel et al., 2015). For example, the orange trajectory in fig. 4, an area close to Moscow, shifts from a temperature330

limited state in winter to a state of very high productivity during summer. Other ecosystems remain in a single limitation state

with only slight shifts, such as the red trajectory in fig. 4. In the corner of maximum productivity of the distribution, we find

tropical forests characterized by a very shallow
:::
low

:
seasonality. We also observe that very different ecosystems can have very

similar characteristics during their peak growing season, e.g. green (located in north east India), blue (north west Germany),

and orange (located close to Moscow) trajectories have very similar characteristics during peak growing season compared to335

the red trajectory.

3.4.1 The Mean Seasonal Cycle of Trajectories

:::
The

::::
third

:::::::::::
components

:::::
shows

::
a

:::::::
different

:::::::
picture.

:::
Due

:::
to

:
a
:::::::::
consistent

:::::
winter

:::::
snow

:::::
cover

::
in

::::::
higher

:::::::
latitudes

:::
the

::::::
albedo

::
is

:::::
much

:::::
higher

::::
and

::
the

:::::::::
amplitude

::
of

:::
the

:::::
mean

:::::::
seasonal

:::::
cycle

::
is

:::::
much

:::::
larger

::::
than

::
in

::::
other

:::::::::::
ecosystems.

:::::
Other

::::
areas

:::::
show

::::::::::::
comparatively

::::
little

:::::::
variance

::
on

:::
the

::::
third

::::::::::
component

:::
and

::::
their

:::::::
relation

::
to

::::::::::
productivity

:::
and

::::::::
moisture

::::::
content

::
is

::::
even

::::::::
positively

:::::::::
correlated

::
to

:::
the340

::::
third

::::::::::
component,

:::::
which

::
is

:::
the

:::::::
opposite

::
of

:::::
what

:
is
::::::::
expected

::::
from

:::
an

::::::
albedo

::::
axis.

As with ordinary variables, we can compute the Mean Seasonal Cycle (MSC) of the principal components summarizing the

average state of the ecosystem during the course of the year. Removing year-to-year variability and long-term trends reveals a

general characterization of the local ecosystem (cf. fig. 4b).

The global main
:::
The

::::::
global

:
pattern of the first principal component follows the productivity cycles during summer and345

winter (
:::
fig.

:
6, left column) of the northern hemisphere, with positive values (high productivity, green) during summer and

15



Mean seasonal cycle of the first principal component during the year. Left column: first principal component. Right column: second

Principal Component. Rows from top to bottom: equally spaced intervals during the year.
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Figure 6.
::::
Mean

:::::::
seasonal

::::
cycle

::
of

:::
the

:::
first

::::
three

:::::::
principal

:::::::::
components

:::
(in

:::::::
columns)

:::::
during

::
the

::::::
seasons

:::
(in

:::::
rows).

:::
Left

:::::::
column:

:::
first

:::::::
principal

::::::::
component.

::::::
Middle

::::::
column:

::::::
second

::::::
principal

:::::::::
component.

:::::
Right

::::::
column:

::::
third

::::::
principal

:::::::::
component.

:::::
Rows

:::
from

:::
top

::
to

::::::
bottom:

:::::
equally

::::::
spaced

::::::
intervals

:::::
during

:::
the

::::
year.

negative values (low productivity, brown) during winter. The tropics show high productivity all year. The global pattern shows

the well known green wave (Schwartz, 1994, 1998) because the first dimension integrates over all variables that correlate with

plant productivity.

The second principal component (fig. 6, right
::::::
middle column) tracks water deficiency: red and light red values indicate water350

deficiency, light blue values excess water, and dark blue water growth limitation due to cold. Areas which are temperature

limited during winter but have a growing season during summer, such as boreal forests, change from dark blue in winter to
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light blue during the growing season. Areas which have low productivity during a dry season change their coloring from red to

light red during the growing season, e.g the north west of Mexico/south west of the United States.

:::
The

::::
third

::::::::
principal

::::::::::
component

::::
(fig.

::
6,

::::
right

:::::::
column)

::::::
tracks

::::::
surface

::::::::::
reflectance.

::::::::
Therefore

:::
we

:::
can

::::
see

:::
the

::::::
highest

::::::
values

::
in355

::
the

:::::
arctic

::::::
region

::::::
during

::::::
winter,

::::
other

:::::
areas

::::
vary

:::::
much

:::
less

::
in
:::::
their

:::::::::
reflectance

:::::::::
throughout

:::
the

::::
year.

::::::
Again,

:::
the

::::
third

::::::::::
component

:::::
shows

::
a

:::::::::::::
counterintuitive

::::::::
behavior

::
in

:::::::::::
midlatitudes,

:::
as

::
it

::
is

::::::::
positively

:::::::::
correlated

:::::
with

::::::::::
productivity

::::
and

::::::::
therefore

:::::
shows

::::
the

:::::::
opposite

::::::::
behaviour

::
of

:::::
what

:::::
would

:::
be

:::::::
expected

:::::
from

::
an

::::::::
indicator

:::::::
tracking

::::::
albedo.

:

::::::::
Although

::
the

::::::::
principal

::::::::::
components

:::
are

:::::::
globally

:::::::::::
uncorrelated,

::::
they

:::::
covary

::::::
locally

::::
(see

:::
fig.

::::
D1).

::::::::::
Ecosystems

::::
with

:
a
:::
dry

::::::
season

::::
have

:
a
:::::::
negative

:::::::::
covariance

:::::::
between

::::
PC1:::

and
::::
PC2 :::::

while
:::::::::
ecosystems

::::
that

::::
cease

:::::::::::
productivity

::
in

:::::
winter

::::
have

::
a

::::::
positive

::::::::::
covariance.360

::::
Cold

::::
arid

::::::
steppes

:::
and

::::::
boreal

:::::::
climates

:::::
show

:
a
:::::::
negative

:::::::::
covariance

:::::::
between

:::
the

::::
PC1::::

and
::::
PC3,

:::::
while

::::
other

::::::::::
ecosystems

::::
that

::::
have

:
a
:::::
strong

::::::::
seasonal

:::::
cycle

::::
show

::
a
:::::::
positive

::::::::::
correlation,

:::::
many

::::::
tropical

::::::::::
ecosystems

:::::
don’t

:::::
show

:
a
:::::
large

:::::::::
covariance.

::
A
:::::

very
::::::
similar

::::::
picture

:::::
paints

:::
the

:::::::::
covariance

:::::::
between

::::
PC2 :::

and
::::
PC3,

::::::
boreal

:::
and

::::
and

:::::
steppe

::::::::::
ecosystems

::::
show

::
a
:::::::
negative

:::::::::
covariance,

:::::
while

:::::
most

::::
other

::::::::::
ecosystems

::::
show

::
a
::::
more

:::
or

:::
less

::::::::::
pronounced

:::::::
positive

:::::::::
covariance,

:::::
again

:::::::::
depending

::
on

:::
the

:::::::
strength

:::
of

::
the

::::::::::
seasonality.

:

Observing the mean seasonal cycle of the principal components gives us a tool to characterize ecosystems and may also365

serve as a basis for further analysis, such as a global comparison of ecosystems (Metzger et al., 2013; Mahecha et al., 2017)

:::::::::::::::::::::::::::::::::::
(Metzger et al., 2013; Mahecha et al., 2017).

3.4.1 Hysteresis

3.5
::::::::

Hysteresis

Hysteresis in ecology means that the pathwaysA→B andB→A between stable statesA andB can be different (Beisner et al., 2003370

. These alternative paths
:::
The

:::::::::
alternative

::::::
return

::::
path

:::::::
between

:::::::::
ecosystem

:::::
states

::::::::
forming

:::
the

::::::::
hysteresis

:::::
loops

:
arise from the

ecosystem tracking seasonal changes in the environmental condition, e.g. summer–winter or dry–rainy seasons (fig. 4b)).

:
. Hysteresis is a common occurrence in ecology, e. g. in community ecology it is often cited as the reason why communities

may not recover after a disturbance, it is usually attributed to memory and lag effects (Folke et al., 2004; Blonder et al., 2017; Renner et al., 2019)

.
::::::::
ecological

:::::::
systems

:::::::::::::::::::::::::::::::::::::::::::::::::
(Folke et al., 2004; Blonder et al., 2017; Renner et al., 2019).

:
For instance, a hysteresis loop can be found375

when plotting soil respiration against soil temperature (Tang et al., 2005). The sensitivity of soil respiration to soil temperature

changes seasonally due to changing soil moisture and photosynthesis (by supplying carbon to
::
the

:
rhyzosphere) producing a

seasonally changing hysteresis effect (Gaumont-Guay et al., 2006; Richardson et al., 2006; Zhang et al., 2018). Biological vari-

ables also show a hysteresis effect in their relations with atmospheric variables, e.g. Mahecha et al. (2007b) found a hysteresis

effect between seasonal NEE, temperature, and a number of other ecosystem and climate related variables.380

Looking at some
:::
Here

:::
we

:::::
look

::
at

:::
the

:
mean seasonal cycles of trajectories, e.g. the

::::
pairs

::
of

:::::::::
indicators

:::
and

::::
the

::::
area

::::
they

::::::
enclose.

:

:::
The

:
orange trajectory (area close to Moscow) in fig. 4b shows that the paths between maximum and minimum productivity

can be very different, in contrast to the blue trajectory located in the north west of Germany which also has a very pronounced

yearly cycle but shows no such effect.
:::
Fig.

::
4
::::
also

:::::::
indicates

::::
that

:::
the

::::
area

::::::
inside

:::
the

::::::
means

:::::::
seasonal

::::::
cycles

::
of

::::::::
PC1–PC2::::

and385
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Figure 7. The area inside the mean seasonal cycle
:::::
cycles of PC1 and PC2

::
(a)

::::::::
PC1–PC2,

::
(b)

::::::::
PC1–PC3,

:::
and

::
(c)

::::::::
PC2–PC3.

:::
The

:
area is positive if

direction is counterclockwise and negative if the direction is clockwise. We can observe that most
::::
Most of the trajectories need a pronounced

:::::
strong

:
seasonal cycle to show a

::::::::
pronounced

:
hysteresis effect. E

:
If

::
the

:::::
mean

::::::
seasonal

::::
cycle

::::::::
intersects,

:::
the

::::
areas

:::::
cancel

::::
each

::::
other

:::
out,

:
e.g. the

green trajectory of
:

4bdoes not show up here, because it is shaped like an 8 and therefore the clockwise and counterclockwise parts cancel

each other out.
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:::::::
PC1–PC3:::::

show
:::::::::
important

:::::::::::
characteristics

:::::
while

:::::::::
hysteresis

::
in

::::::::
PC2–PC3::

is
:
a
:::::
much

::::
less

::::::::::
pronounced

::::::
feature,

:::
i.e.

:::
we

::::
can

::::
only

:::
see

:
a
::::::::::
pronounced

::::
area

:::::
inside

:::
the

::::::
yellow

:::::
curve

::
in

:::
fig.

:::
4f.

The trajectories that show a more pronounced hysteresis effect seem to have
:::::::::::
anticlockwise

::::::::
hysteresis

:::::
effect

:::
in

::::::::
PC1–PC2

:::
(fig.

:::
7a)

::::
are

::::
areas

::::
with

::
a
:::::
warm

::::
and

::::::::
temperate

:::::::
climate

:::
and

:::::::
partially

:::::
those

::::
that

::::
have

::
a
::::
snow

:::::::
climate

::::
with

:::::
warm

:::::::::
summers,

:::
i.e.

::::
areas

::::
that

::::
have

:
pronounced growing, dry, and wet seasons and therefore shift their limitations more strongly during the year,390

i.e.
:
the moisture reserves deplete during growing season and therefore the return path has higher values on the second principal

component
:::
(the

:::::::
climatic

:::::
zones

:::
are

:::::
taken

::::
from

:::
the

:::::::::::::
Köppen–Geiger

::::::::::::
classification;

:::::::::::::::
Kottek et al., 2006

:
). We can also see that most

trajectories that show hysteresis turn counterclockwise for the same reason (see
::::
areas

::::
with

::::
dry

::::::
winters

::::
tend

::
to

::::
have

:
a
:::::::::
clockwise

::::::::
hysteresis

::::::
effect,

:::
e.g.

:::::
many

:::::
areas

::
in

::::
East

:::::
Asia,

:::
due

:::
to

:::
the

:::::
humid

::::::::
summers

:::::
there

::
is

::
no

:::::::::
increasing

:::::
water

:::::::::
limitation

::::::
during

:::
the

::::::
summer

:::::::
months

:::::
which

::::::
causes

::
a
:::::::
decrease

:::
on

::::
PC2 ::::::

instead
::
on

:::
an

::::::::
increase.

:::::
Other

::::
areas

:::::
with

::::::::
clockwise

:::::::::
hysteresis

:::
can

::
be

::::::
found395

::
in

:::::
winter

::::
dry

::::
areas

:::
in

:::
the

:::::
Andes

::::
and

:::
the

::::::
winter

:::
dry

:::::
areas

:::::
north

:::
and

:::::
south

::
of

:::
the

:::::::
African

::::::::::
rainforests.

:::::::
Tropical

:::::::::
rainforests

:::
do

:::
not

::::
show

::::
any

::::::::
hysteresis

:::::
effect

::::
due

::
to

::::
their

:::
low

::::::::::
seasonality.

::
In

:::::::
general

:::
we

:::
can

:::
say

::::
that

:::
the

::::
area

:::::
inside

:::
the

:::::
mean

:::::::
seasonal

:::::
cycle

::::::::
trajectory

::
of

::::::::
PC1–PC2:::::::

depends
::::::
mostly

:::
on

:::::
water

::::::::::
availability

::
in

:::
the

:::::::
growing

:::
and

:::::::::::
non-growing

:::::::
season,

:::
i.e.

:::
the

:::::::
contrast

::
of

::::
wet

::::::
summer

::::
and

:::
dry

::::::
winter

::
vs.

::::
dry

::::::
summer

::::
and

:::
wet

::::::
winter.

:

:::
The

::::::::
hysteresis

:::::
effect

:::
on

::::::::
PC1–PC3 :

(fig. 7)
::
b)

:::::
shows

::
a
::::::::::
pronounced

::::::::::::::
counterclockwise

:::::
MSC

::::::::
trajectory

::::::
mostly

:
in
:::::
warm

:::::::::
temperate400

:::::::
climates

::::
with

:::
dry

::::::::
summers,

:::::
while

::
it
::::::
shows

:
a
:::::::::
clockwise

:::::
MSC

::::::::
trajectory

::
in

:::::
most

::::
other

::::::
areas,

::::
again

:::::::
tropical

:::::::::
rainforests

:::
are

:::
an

::::::::
exception

:::
due

:::
to

::::
their

::::
low

::::::::::
seasonality.

:::
The

:::::
most

::::::::::
pronounced

:::::::::
clockwise

:::::
MSC

::::::::::
trajectories

:::
are

:::
are

:::::
found

:::
in

:::::
tundra

::::::::
climates

::
in

:::::
arctic

::::::::
latitudes,

:::::
where

:::::
there

::
is

:
a
:::::::::
consistent

::::::
winter

:::::
snow

:::::
cover

:::
and

::
a

::::
very

:::::
short

:::::::
growing

::::::
period.

::::
The

:::::
lower

::::
end

::
of

::::
PC3 ::

is

::::::::
positively

::::::::
correlated

::::
with

:::::::::
ecosystem

:::::::::::
productivity,

:::
but

:::::
there

:::
are

:::
still

:::::::
enough

:::::::::
differences

::
to

::::
PC1::

to
:::::::::
distinguish

:::
the

::::
start

::::
and

:::
the

:::
end

::
of

:::
the

:::::::
growing

::::::
season

:::
and

:::::
show

:::::::
different

::::::::::
trajectories.

::
A

::::::::::::::
counterclockwise

:::::::
rotation

:::
can

::
be

::::::
found

::
in

::::::
summer

::::
dry

:::::
areas,

::::
such405

::
as

:::
the

::::::::::::
Mediterranean

:::
and

::::
and

:::::::::
California,

:::
but

::::
also

:::::
some

::::
more

:::::
more

::::::
humid

:::::
areas,

::::
such

::
as

:::
the

:::::
south

::::
east

::::::
United

:::::
States

::::
and

:::
the

::::
south

::::
east

:::::
coast

::
of

::::::::
Australia.

:::
In

::::
these

:::::
areas

:::
we

:::
can

::::
find

::
a

:::::::
decrease

:::
on

::::
PC3 ::

in
:::::
during

::::
the

::::::::::
non-growing

::::::
phase

:::::
which

::::::::
probably

::::::::::
corresponds

::
to

:
a
::::::
drying

:::
out

::
of

:::
the

:::::::::
vegetation

:::
and

:::::
soils.

:::
The

:::::::::
hysteresis

:::::
effect

::
on

::::::::
PC2–PC3::::

(fig.
:::
7c)

::::::
mostly

::::::::
depends

::
on

:::::::
latitude,

:::::
there

::
is

:
a
:::::
large

::::::::::::::
counterclockwise

:::::
effect

:::
in

:::
the

::::
very

:::::::
northern

:::::
parts,

:::
due

::
to

:::
the

:::::
large

::::::::
amplitude

::
of

:::::
PC3,

:::
the

::::::::
amplitude

::::
gets

::::::
smaller

::::::
further

:::::
south

::::
until

:::
the

:::::::
rotation

:::::::
reverses

::
in

::::::
winter410

:::
dry

::::
areas

::
at

:::
the

:::
the

:::::::
northern

::::
and

:::::::
southern

::::::::
extremes

::
of

:::
the

::::::
tropics

:::
and

:::::::::
disappears

:::
on

:::
the

::::::::
equatorial

::::::
humid

:::
rain

:::::::
forests.

:::
We

:::
can

:::
see

::::
that

:::
the

::::::::
hysteresis

:::
of

::::
pairs

:::
of

::::::::
indicators

:::::::::
represents

::::
large

:::::
scale

:::::::::
properties

::
of

:::::::
climatic

::::::
zones.

:::
Not

:::::
only

:::
the

::::
area

:::::::
enclosed

:::::
gives

:::::::::
interesting

::::::::::
information,

:::
but

::::
also

:::
the

::::::::
direction

::
of

:::
the

:::::::
rotation.

:::::::::
Hysteresis

::::
can

::::
give

::::::::::
information

::
on

:::
the

::::::::
seasonal

:::::::::
availability

::
of

::::::
water,

::::::::
seasonal

:::
dry

:::::::
periods

::
or

::::::::
snowfall.

:::::
With

:::
the

:::::::
method

:::::::::
presented

::::
here,

::::
we

:::
can

::::
not

:::::::
observe

::::::::::
intersecting

:::::::::
trajectories,

::::::
which

::::::
would

::::::::
probably

::::
give

::::
even

:::::
more

:::::::::
interesting

:::::::
insights

:::::
(e.g.

:::
the

:::::
green

::::::::
trajectory

:::
in

:::
fig.

:::
4b). Usually plant415

growth starts when there is enough water available (low values on component 2) , leading to increasing values on the first

component. At the end of the growing season waterresources deplete (increasing values on component 2)and productivity

decreases (decreasing values on component 1).
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3.5.1 Anomalies of the Trajectories

3.6
:::::::::

Anomalies
:::
of

:::
the

:::::::::::
Trajectories420

The deviation of the trajectories from their mean seasonal cycle should reveal anomalies and extreme events. These anoma-

lies have a directional component and can be therefore be interpreted
:::::
which

::::::
makes

:::::
them

::::::::::
interpretable

:
the same way as the

original PCswhich contain information of the underlying variables that were affected. In this sense,
:
,
:::::::
therefore

:
one can infer

the state of the ecosystem during an anomalous state
:::::::
anomaly. For instance the well-known Russian heatwave in summer 2010

::::::::::::::::
(Flach et al., 2018) appears in fig. 8 as a dark brown spot in the southern part of the affected area, indicating lower productivity

:
,425

and as a thin green line in the northern parts, indicating an increased productivity. This confirms earlier reports that
:
in

::::::
which

only the southern agricultural ecosystems were negatively affected by the heatwave, while the northern predominantly forest

ecosystems rather benefited from the heatwave in terms of primary productivity (Flach et al., 2018).

Another example of an extreme event that we find in the PCs is the very wet November rainy season of 2006 in the Horn of

Africa after a very dry rainy season in the previous year. This event was reported to bring heavy rainfall and flooding events430

which caused an emergency for the local population but also an increased ecosystem productivity (Nicholson, 2014). The

rainfall event appears as green and blue spots in fig. 8
:
b
::::
and

:
c, preceded by the drought events which appear as red and brown

spots.

Fig. 8e and 8f
::::::
Figures

::
8f

::::
and

:
g
:
also show the strong drought events in the Amazon, particularly the droughts of 2005 and

2010 (Doughty et al., 2015; Feldpausch et al., 2016) appear strongly north and south of the Amazon basin. The central Amazon435

basin does not show these strong events, because the observable response of the ecosystem was buffered due to the large water

storage capacity in the central Amazon basin.

3.6.1 Single Trajectories

:::::::
Another

:::::::
extreme

:::::
event

:::
that

::::
can

::
be

:::::
seen

::
is

:::
the

:::::::
extreme

:::::
snow

::::
and

::::
cold

:::::
event

:::::::
affecting

:::::::
Central

::::
and

:::::
South

::::::
China

::
in

:::::::
January

:::::
2008,

::::::
causing

::::
the

:::::::::
temporary

:::::::::::
displacement

:::
of

:::
1.7

:::::::
million

::::::
people

:::
and

:::::::::
economic

::::::
losses

::
of

:::::::::::::
approximately

:::
US

::
$
:::
21

::::::
billion440

::::::::::::::
(Hao et al., 2011)

:
.
::::
This

:::::
event

::::::
shows

::
up

:::::::
clearly

::
on

::::
PC2::::

and
::::
PC3::

as
:::::

cold
:::
and

:::::
light

:::::::::
anomalies

::::::::::
respectively

::::
(see

:::
fig.

:::
8k

::::
and

::
f).

3.7
:::::
Single

:::::::::::
Trajectories

Observing single trajectories can give insight into past events that happen
::::::::
happened at a certain place, such as extreme events or

permanent changes in ecosystems. The creation of trajectories is an old method used by ecologists, mostly on species assembly445

data of local communities, to observe how the composition changes over time (e.g. Legendre et al., 1984; Ardisson et al., 1990).

In this context, we observe how the states of the ecosystems inside the grid-cell shift over time, which comprises a much larger

area than a local community but is probably also less sensitive to very localized impacts than a community level analysis. One

of the main differences of the method applied here to the classical ecological indicators is that the trajectories observed here are
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Figure 9. Trajectories of the first two Principal Components for single pixels. (a) Deforestation increases the seasonal amplitude of the first

two PCs (Brazilian rainforest, 9.5°S 63.5°W).
:::
The

:::
red

:::
line

:::::
shows

:::
the

:::::::
trajectory

:::::
before

:::::
2003,

:::
the

:::
blue

::::
line

::
the

::::::::
trajectory

::::
2003

:::
and

::::
later,

::
a

:::::
strong

:::::::
increase

::
in

::::::
seasonal

::::::::
amplitude

:::
can

::
be

:::::::
observed

:::
after

:::::
2003. (b) The heatwave is clearly visible in the trajectory (red, Russian heatwave,

summer 2010, 56°N 45.5°E). (c) Rainfall in the short raining season (November/December) influences agricultural yield and can cause

flooding (extreme flooding after drought, 11/2006, 3°N 45.5°E). (d) European heatwave in Summer 2003 was one of the strongest on record

(France, 47.2°N 3.8°E). The mean seasonal cycle of the trajecotries is shown in purple.

embedded into the space spanned by a single global PCA and therefore we can compare a much broader range of ecosystems450

directly.

:::
The

::::::::
seasonal

::::::::
amplitude

:::
of

:::
the

::::::::
trajectory

::
in

:::
the

::::::::
Brazilian

::::::::
Amazon

::::::::
increases

:::
due

::
to
::::::::::::

deforestation
:::
and

::::
crop

:::::::
growth

::::::
cycles.

Figure 9a shows an area in the Brazilian Amazon in Rondônia (9.5°S, 63.5°W) which has been
:::
was affected by large scale land

use change and deforestation. It can be seen that the seasonal amplitude increases strongly after the beginning of 2003. Reasons

for this increased amplitude could lie in any of the following reasons or a combination of them: Deforestation decreases water455

storage capability and dries out soils causing larger variability in ecosystem productivity. Therefore, during periods of no rain,

large scale deforestation can cause a shift in local scale circulation patterns causing lower local precipitation (Khanna et al.,
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2017). Crop growth and harvest causes an increased amplitude in the cycle of productivity. An analysis of the trajectory can

point to the nature of the change, however finding the exact causes for the change requires a deeper analysis.

Figure
:::
The

:::::
2010

:::::::
Russian

::::::::
heatwave

:::
has

::
a
::::
very

:::::
clear

:::::
signal

::
in

:::
the

::::::::::
trajectories,

::::
fig. 9b shows the deviation of the trajectory460

during the Russian heatwave (red line) in an area east of Moscow (56°N 45.5°E). In the southern grass- and croplands, the

heatwave caused the productivity to drop significantly during summer due to a depletion of soil moisture. In the northern

forested parts affected, the heatwave caused an increase in ecosystem productivity during spring due to higher temperatures

combined with sufficient water availability. This shows the compound nature of this extreme event (see fig. 8a and Flach et al.

2018). The analysis of the trajectory points directly towards the different types of extremes and responses that happened in the465

biosphere during the heatwave.

Variability of rainfall during the November rainy season in the Horn of Africa (3°N 45.5°E, fig. 9c) shows the trajectory

and points in November of the observed time. The November rain has implications for food security because the second crop

season depends on it. In 2006, the rainfall events were unusually strong and caused widespread flooding and disaster but also

higher ecosystem productivity (cf.
:

also fig. 8). This was especially devastating because it followed a long drought that caused470

crop failures. Note also the two rainy seasons in the mean seasonal cycle (purple line if fig. 9c).

:::
The

:::::
2003

::::::::
European

::::::::
heatwave

:
is
::::::::
reflected

::
in

:::
the

:::::::::
trajectories

:::
just

::
a

:::
the

::::
2010

:::::::
Russian

::::::::
heatwave.

:
Figure 9d shows the trajectory

during the August 2003 heat wave in Europe (France, 47.2°N 3.8°E). The heatwave was unprecedented and caused large scale

environmental, health, and economics losses (Ciais et al., 2005; García-Herrera et al., 2010; Miralles et al., 2014). The 2010

heatwave was stronger than the 2003 heatwave but the strongest parts of the 2010 heatwave were in eastern Europe (cf., fig. 8),475

while the center of the 2003 heatwave was located in France.

As we have seen here, observing single trajectories in reduced space can give us important insights into ecosystem states and

changes that occurring
:::::
occur. While the trajectories can point us towards abnormal events, they can only be the starting points

for deeper analysis to understand the details of such state changes.

3.7.1 Trends in Trajectories480

3.8
:::::

Trends
:::
in

::::::::::
Trajectories

The accumulation of CO2 in the atmosphere should cause an increase in global productivity of plants due to CO2 fertilization,

while large
:::::
larger and more frequent droughts and other extremes may counteract this trend. Satellite observations and models

have shown that during the last decades the world’s ecosystems have greened up during growing seasons. This is explained by

CO2 fertilization, nitrogen deposition, climate change and land cover change (Zhu et al., 2016; Huang et al., 2018; Anav et al.,485

2015). Tropical forests especially showed
::::::
showed

::::::::
especially

:
strong greening trends during growing season.

To find local trends, we used the Theil-Sen estimator to calculate robust slopes on the trajectories. Figure 10 shows positive

and negative trends of the principal components over time. General patterns
::::::
General

:::::::
patterns

::
of

:::::
trends

:
that can be observed are

a positive trend (higher productivity) on the first principal component in the arctic regionsand higher temperatures
:::::
many

:::::
arctic

::::::
regions,

:::::
many

::
of

:::::
these

::::::
regions

::::
also

::::
show

::
a
:::::::
wetness

:::::
trend,

::::
with

:::
the

::::::
notable

::::::::
exception

::
of

:::
the

:::::::
western

::::
parts

::
of

::::::
Alaska

::::::
which

::::
have490
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Figure 10.
:::
(a),

:::
(c),

:::
(e) Trends in PC1 and PC2 indicators

:::::::
PC1–PC3:::::::::

respectively
::::::::::
(2001–2011).

:::
(b),

:::
(d),

::
(f)

:::::::
Bivariate

:::::::::
distribution

::
of

::::::
trends.

Trends were calculated using the Theil-Sen
::::::::
Theil–Sen estimator.

:
, (a)The spatial distribution of slopes, only significant slopes are shown

(p < 0.05, Benjamini-Hochberg adjusted
:
c). The maximum cutoff for the legend limits was set symmetrically around zero to the maximum

absolute value of the 0.1 ,
:

and 0.9 quantiles. (be) Distribution of spatial points in the space of the first two PCs. The colors correspond to the

ones used in
::::
show

::::::::
significant

:::::
trends

::::
only (a

:::::::
p < 0.05,

::::::::::::::::
Benjamini–Hochberg

:::::::
adjusted).
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::::::
become

:::::
dryer,

::::
this

::
is

::::::::
important,

:::::::
because

::::::::
wildfires

::::
play

:
a
:::::
major

::::
role

::
in

:::::
these

:::::::::
ecosystems

:::::::::::::::::::::::::::::::
(Jolly et al., 2015; Foster et al., 2019)

:
,
::::
these

:::::::
changes

:::
are

::::
also

:::::::::::
accompanied

:::
by

:
a
::::::::
decrease

::
on

::::
PC3:::

due
:::

to
:
a
::::
loss

::
in

:::::
snow

:::::
cover. A large scale dryness trend can

:::
also

be observed across large parts of western Russia. Increasing productivity can also be observed on almost the entire
::::
large

:::::
parts

::
of

:::
the

:::
the

:
Indian subcontinent and eastern Australia. Negative trends in the first component can also be observed: they are

generally smaller and appear in regions around the Amazon and the Congo basin, but also in parts of western Australia. The495

main difference from previous analyses on the observations presented here is that e.g. Zhu et al. (2016) looked only at trends

during the growing season while this analysis uses the entire time series to calculate the slope.

In the Amazon basin, we find a dryness trend accompanied by a decrease in productivity
:::
and

::
a

:::::
slight

:::::::
increase

::
in

::::
PC3; In

the Congo basin, we find a wetness trend and an increasing productivity in the northern parts, while the southern part and

woodland south of the Congo basin show a strong dryness trend with decreased productivity. This is different to the findings of500

Zhou et al. (2014), who found a widespread browning of vegetation in the entire Congo basin for the April-May-June seasons

during the period 2000–2012. The finding of Zhou et al. (2014) is not reflected in our data, especially compared to the areas

surrounding the Congo basin, we can find only minor browning effects . Inside
::::
inside

:
the basin and our findings are more in

line with the global greening (Zhu et al., 2016), which show a browning mostly outside the Congo basin.

Almost the entire
::
In

::::::
eastern

::::::::
Australia

:::
we

::::
find

::
a

:::::
strong

:::::::
wetness

::::
and

:::::::::
greenness

::::
trend

::::::
which

::
is

::::
due

::
to

::::::::
Australia

::::::
having

::
a505

::::::::::
“milennium

:::::::
drought”

:::::
since

:::
the

:::
mid

:::::::
nineties

::::
with

::
a

::::
peak

::
in

:::::
2002

:::::::::::::::::::::::::::::::
(Nicholls, 2004; Horridge et al., 2005)

:::
and

:::::::
extreme

::::::
floods

::
in

:::::::::
2010–2011

::::::::::::::::::
(Hendon et al., 2014).

:

:::::
Large

::::
parts

::
of

:::
the Indian subcontinent shows a trend towards higher productivity and an overall wetter climate. The greening

trend in India happens mostly over irrigated cropland, however
:
.
::::::::
However browning trends over natural vegetation have been

observed but do not show up
::::::
emerge

:
in our analysis (Sarmah et al., 2018).

::
A

::::
very

::::::
notable

::::::::
greening

::::
and

:::::::
wetness

::::
trend

::::
can510

::
be

::::::::
observed

::
in

::::::::
Myanmar

::::
due

::
to

::
an

:::::::
increase

::
in
:::::::
intense

::::::
rainfall

::::::
events

:::
and

::::::
storms,

::::::::
although

:::
the

::::::
central

::::
part

::::::::::
experienced

:::::
some

:::::
strong

::::::::
droughts

:
at
:::
the

:::::
same

::::
time

:::::::::::::::
(Rao et al., 2013).

::
In

:::::::::
Myanmar

::
we

::::
also

::::
find

:::
one

::
of

:::
the

::::::::
strongest

:::::
trends

:::
in

:::
PC3:::::::

outside
::
of

:::
the

:::::
Artic.

In
::::
large

:::::
parts

::
of

:
the Arctic, a general trend towards higher productivity can be observed, vegetation models attribute this

general increase in productivity to CO2 fertilization and climate change. The changes also cause changes to the characteristics515

of the seasonal cycles (Forkel et al., 2016). Stine et al. (2009) found a decreased seasonal amplitude of surface temperature

over norther latitudes due to winter warming.

The seasonal amplitude of atmospheric CO2 concentrations has been increasing due to climate change causing longer grow-

ing seasons and changing vegetation cover in northern ecosystems (Forkel et al., 2016; Graven et al., 2013; Keeling et al.,

1996). Therefore we checked for trends in the seasonal amplitude, but because each time series only consists of 11 values (one520

amplitude per year), after adjusting the p-values for false discovery rate, we could not find a significant slope. However, there

were many significant slopes with the unadjusted p-values, see the appendix, fig.
:
E1.

:::::::
Another

:::
way

::
to

::::::
detect

::::::
changes

::
to
:::
the

:::::::::
biosphere

::::::
consists

::
in
:::
the

::::::::
detection

::
of

::::::::::
breakpoints,

::::::
which

:::
has

::::
been

::::::
applied

:::::::::::
successfully

::
to

:::::
detect

:::::::
changes

::
in

::::::
global

:::::
NDVI

::::
time

:::::
series

:::::::::::::::::::::::::::::::::
(de Jong et al., 2011; Forkel et al., 2013)

:
,
::
or

::::::::
generally

::
to

:::::
detect

:::::::
changes

:::
in

::::
time
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:::::
series

:::::::::::::::::::
(Verbesselt et al., 2010)

:
.
::
A

:::::
proof

::
of

:::::::
concept

:::::::
analysis

::::
can

:::
be

:::::
found

::
in

::::
fig.

:::
F1,

:::
we

:::::
hope

:::
that

::::::::
applying

::::
this

::::::
method

:::
to525

::::::::
indicators

::::::
instead

::
of

::::::::
variables

:::
can

:::::
detect

::
a
:::::
wider

:::::
range

::
of

::::::::::
breakpoints

::::::::
analyzing

:
a
::::::
single

::::
time

:::::
series.

:

3.9
::::::::
Relations

:::
to

:::::
other

:::::::::
PCA-type

:::::::
analyses

:::
One

:::
of

:::
the

::::
most

:::::::
popular

::::::::::
applications

:::
of

::::
PCA

::
in

:::::::::::
meteorology

:::
are

::::::
EOFs,

:::::
which

:::::::
applies

::::
PCA

::::::::
typically

::
on

::
a
:::::
single

:::::::::
variables,

::
i.e.

:::
on

::
a

::::
data

:::
set

::::
with

:::
the

::::::::::
dimensions

:::::::::::::
lat× lon× time,

::::::::
although

:::::
EOFs

::::
can

::
be

:::::::::
calculated

::::
from

::::::::
multiple

::::::::
variables.

:::::
EOFs

::::
can

::
be

:::::::::
calculated

::
in

:::::::
S-mode

:::
and

::::::::
R-mode.

::
If
:::
we

::::::::
matricize

::::
our

::::
data

::::
cube

::
so

::::
that

:::
we

::::
have

:::::
time

::
in

::::
rows

::::
and

:::::::::::::::::
lat× lon× variables530

::
in

:::::::
columns,

:::::
then

:::::::
S-mode

::::
PCA

::::::
works

::
on

:::
the

::::::::::
correlation

::::::
matrix

::
of

:::
the

:::::::::
combined

:::::::
variable

:::
and

:::::
space

::::::::::
dimension.

::
In

::::::::
T -mode,

::
the

:::::
PCA

:::::
works

:::
on

:::
the

:::::::::
correlation

::::::
matrix

:::::::
formed

:::
the

::::
time

:::::::::
dimension

::::::::::::
(Wilks, 2011).

::::
The

::::
PCA

:::::::::
presented

::::
here

:::::
works

:::::::
slightly

:::::::
different:

:::
(1)

:::
We

:::
did

::
a
:::::::
different

:::::::::::
matricization

::::::::::::::
(lat× lon× time

::
in

:::::
rows

:::
and

::::::::
variables

::
in

::::::::
columns)

:::
and

::::
then

:::
(2)

:::
the

::::
PCA

::::::
works

::
on

:::
the

:::::::::
correlation

::::::
matrix

::::::
formed

:::
by

:::
the

::::::::
variables,

:::::::
therefore

::
in
::::
this

:::::::::
framework

:::
we

:::::
could

:::
call

::::
this

:
a
:::::::
V -mode

:::::
PCA.

:

:::::::::
Ecological

:::::::
analyses

:::
use

:::::
PCA

:::::::
usually

::::
with

:::::::
matrices

:::
of

:::
the

:::::
shape

:::::::::::::::::
object× descriptors,

:::::
when

::::::::::
calculating

:::
the

:::::
PCA

:::
on

:::
the535

:::::::::
correlation

::::::
matrix

::::::
formed

:::
by

:::
the

:::::::
objects,

::::
then

::
it

::
is

:::::
called

::
a
:::::::
Q-mode

::::::::
analysis,

:::::
when

:::
the

:::::
PCA

::
is

::::::
applied

:::
on

:::
the

::::::::::
correlation

:::::
matrix

:::::::
formed

::
by

:::
the

:::::::::
variables,

::::
then

::
it

:
is
::::::

called
::
an

::::::::
R-mode

:::::::
analysis

::::::::::::::::::::::::::
(Legendre and Legendre, 1998).

::::
The

::::
PCA

:::::
done

::
in

::::
this

::::
study

::
is
::::::
closest

::
to

:::
an

:::::::
R-mode

:::::::
analysis,

:::
in

:::
the

::::::
present

::::
case

:::
the

:::::::::
descriptors

:::
are

:::
the

:::::::
various

:::
data

:::::::
streams

::::
and

:::
the

::::::
objects

:::
are

:::
the

::::::::::::
spatiotemporal

::::::
pixels.

:::::
Using

::::
PCA

:::
as

::
a
:::::::
method

:::
for

::::::::::::
dimensionality

:::::::::
reduction

::::::
means

::::
that

:::
we

:::
are

::::::::
assuming

::::::
linear

::::::::
relations

::::::
among

:::::::
features.

:::
A540

::::::::
nonlinear

::::::
method

::::::
could

:::::::
possibly

:::
be

:::::
more

:::::::
efficient

:::
in

:::::::
reducing

::::
the

:::::::
number

::
of

:::::::::
variables,

:::
but

::::::
would

::::
also

:::::
have

:::::::::
significant

::::::::::::
disadvantages.

::
In

::::::::
particular:

::::::::
nonlinear

::::::::
methods

:::::::
typically

::::::
require

::::::
tuning

::::::
specific

::::::::::
parameters,

:::::::
objective

:::::::
criteria

::
are

:::::
often

:::::::
lacking,

:
a
::::::
proper

::::::::
weighting

:::
of

::::::::::
observations

::
is
::::::::
difficult,

:::
the

:::::::
methods

:::
are

:::::
often

:::
not

:::::::::
reversible,

:::
and

::
it
::
is

::::::
harder

::
to

:::::::
interpret

:::
the

::::::::
resulting

::::::::
indicators

:::
due

::
to
:::::
their

::::::::
nonlinear

:::::
nature

:::::::::::::::::::
(Kraemer et al., 2018).

::::
The

:::::
salient

:::::::
feature

::
of

::::
PCA

::
is

::::
that

::
an

::::::
inverse

:::::::::
projection

::
is

::::
well

::::::
defined

:::
and

::::::
allows

:::
for

::
a
::::::
deeper

:::::::::
inspection

::
of

:::
the

::::::
errors,

::::::
which

::
is

:::
not

:::
the

::::
case

:::
for

:::::::::
nonlinear

:::::::
methods

::::::
which

::::
learn

::
a
::::::
highly545

::::::
flexible

::::::::::::
transformation

::::
that

::
is

::::
hard

:::
to

:::::
invert.

:::::::::
Therefore

::::::::::::
interpretability

:::
of

:::
the

::::::::
transform

:::
in

:::::::::
meaningful

::::::::
physical

::::
units

:::
in

:::
the

::::
input

:::::
space

::
is
:::::
often

:::
not

::::::::
possible.

::
In

:::
the

::::::::
machine

:::::::
learning

::::::::::
community,

:::
this

::::::::
problem

::
is

::::::
known

::
as

:::
the

::::::::::::
“pre-imaging

::::::::
problem”

::::::::::::::::::::::::::::::::::::::
(Mika et al., 1999; Arenas-Garcia et al., 2013)

::
and

::
is
::
a

:::::
matter

::
of

:::::::
current

:::::::
research.

:

4 Conclusions

To monitor gradual and abrupt changes
::
the

::::::::::
complexity

::
of

:::
the

:::::::
changes

::::::::
occurring in times of global change

::
an

:::::::::
increasing

::::::
human550

:::::
impact

:::
on

:::
the

:::::::::::
environment, we used PCA to construct indicators from a large number of data streams that track ecosystem

state in space and time on a global scale. We showed that a large part of the variability of the terrestrial biosphere can be

summarized using two indicators. The first emerging indicator represents carbon exchange, while the second indicator shows

the availability of water in the ecosystem,
:::
the

:::::
third

:::::::
indicator

:::::::::
represents

::::::
mostly

:
a
::::::
binary

:::::::
variable

:::
that

::::::::
indicates

:::
the

::::::::
presence

::
of

::::
snow

:::::
cover. The distribution in the space of the first two principal components reflects the general limitations of ecosystem555

productivity. Ecosystem production can either be limited by water or energy.
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The first two
::::
three

:
indicators can detect many well-known phenomena without analyzing variables separately due to their

compound nature. We showed that the indicators are capable of detecting seasonal hysteresis effects in ecosystems, as well as

breakpoints, e.g.
:
large scale deforestation. The indicators can also track other changes to the seasonal cycle such as patterns

of changes to the seasonal amplitudes and trends in ecosystems. Deviations from the mean seasonal cycle of the trajectories560

indicate extreme events such as the large scale droughts in the Amazon during 2005 and 2010 and the Russian heat wave of

2010. The events are detected ina
::
in a similar fashion as with classical multivariate anomaly detection methods while directly

providing information on the underlying variables.

Using compound
::::::::::
multivariate indicators we gain a high level overview of phenomena in ecosystems and the method therefore

provides an interesting tool for analyses where it is required to capture a wide range of phenomena which are not necessarily565

known a priori. Future research should consider nonlinearities, and
:::::
adding

::::
data

:::::::
streams

::::
that

::::::::
represent

:::::::
different

:::::::
aspects

::::
(e.g.

::::::::::
biodiversity,

:::
and

::::::
habitat

:::::::
quality),

::::
and work to include different subsystems, such as the atmosphere or the anthroposphere.

Code and data availability. The data are available and can be processed at https://www.earthsystemdatalab.net/index.php/interact/data-lab/,

last accessed 28 June 2019

Appendix A: Breakpoints in Trajectories570

Breakpoint detection, (a) on PC1, (b) on PC2, the color indicates the year of the biggest breakpoint if a significant breakpoint

was found, grey if there was no significant breakpoint found.

As the environmental conditions change, due to climate change and human intervention, the local ecosystems may change

gradually or abruptly. Detecting these changes is very important for monitoring the impact of climate change and land use

change onto the ecosystems. We applied breakpoint detection on the trajectories (fig. F1).575

Breakpoints on the first component were found in the entire Amazon and the largest breakpoint is dated in the year 2005

during the large drought event. The entire eastern part of Australia shows its largest breakpoint towards the end of the time

series because of a La Niña event, which caused lower temperatures and higher rainfall than usual during the years 2010 and

2011.
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Appendix A: Reconstruction Error580

The reconstruction error of the first two pca dimensions aggregated over variables an time by the mean of the square error. The

right plot shows the mean reconstruction error aggregated over latitudes.

In order to find ecosystems that do no fit well your model of two indicators, we calculated the reconstruction error of the first

two PCA axes. Ecosystems that do not fit our model well show a higher reconstruction error, see fig. 3. Higher reconstruction

errors appear in extreme latitudes, areas with especially high reconstruction error are at the southern part of the Hudson Bay585

area. Very limited regions in central and eastern Russia and northern Siberia.

Appendix A: Bowen Ration

The background shading show the distribution of the mean seasonal cycle of the spatial points (see fig. 4). The contour lines

represent the reconstruction of the variables from the first two principal components. The reconstructed variables are (a) Latent

Heat, (b) Sensible heat, and (c) log10
( Latent Heat

Sensible Heat

)
, the log10 of the Bowen Ratio.590

Appendix A: Mean Seasonal Cycle Extrema

Shows the minimum (left column) and maximum (right column) mean seasonal cycles of GPP (upper row), Latent Heat (middle

row), and Sensible heat (lower row). This illustrates the similarity of possibly very different ecosystems in terms of productivity

and limitations. During peak growing season, many mid latitude areas have a similar productivity and latent energy release as

tropical rainforests (subfigure b and d). The highest maximum seasonal sensible heat loss can be found in dry areas around the595

world and is lowest in areas with a wet climate such as tropical rainforests and maritime climates (subfigure f).

Appendix A: Changes in the Seasonal Amplitude

Trends in the amplitude of the yearly cycle, Theil-Sen estimators only significant slopes (p < 0.05), unadjusted, are shown.

Because there is only a single amplitude per year and therefore only 11 data points per time series, the adjusted significances

are not significant.600

Appendix A: Description of variables

Variables used describing the biosphere can be found in tab. 1, here we provide a more complete description of all variables:

Black Sky Albedo is the reflected fraction of total incoming radiation under direct hermispherical reflectance, i.e. direct

illumination (Muller et al., 2011).
:::
This

:::::::
dataset

:
is
:::::::
derived

::::
from

:::
the

::::::::::::::::::::
SPOT4-VEGETATION,

:::::::::::::::::::::
SPOT5-VEGETATION2,

::::
and

:::
the

::::::
MERIS

:::::::
satellite

:::::::
sensors.605
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White Sky Albedo is the reflected fraction of total incoming radiation under bihemispherical reflectance, i.e. diffuse illumi-

nation (Muller et al., 2011). Together with black sky albedo it can be used to estimate the albedo under different illumination

conditions.
::::
This

::::::
dataset

::
is

::::::
derived

::::
from

:::
the

::::::::::::::::::::
SPOT4-VEGETATION,

:::::::::::::::::::::
SPOT5-VEGETATION2,

:::
and

:::
the

::::::
MERIS

:::::::
satellite

:::::::
sensors.

Evaporation [mm/day] is the amount of water evaporated per day(Martens et al., 2017), depends on the amount of available610

water and energy.
:::
This

::::::
dataset

::
is

:::::
based

::
on

:::
the

::::::::::
GLEAMv3

:::::
model

::::::::::::::::::
(Martens et al., 2017)

:
,
::::
using

:::::::
satellite

::::
data

::::
from

:::::
ESA

:::
CCI

::::
and

:::::
SMOS

:::
to

:::::
derive

:
a
:::::::
number

::
of

::::::::
variables.

:

Evaporative Stress modeled water stress for plants, zero means that the vegetation has no water available for transpiration

and one means that transpiration equals potential transpiration(Martens et al., 2017).
::::
This

::::::
dataset

::
is
:::::
based

:::
on

:::
the

::::::::::
GLEAMv3

:::::
model

:::::::::::::::::::
(Martens et al., 2017),

:::::
using

:::::::
satellite

::::
data

::::
from

::::
ESA

::::
CCI

::::
and

:::::
SMOS

:::
to

:::::
derive

:
a
:::::::
number

::
of

::::::::
variables.615

fAPAR the fraction of absorbed photosynthetically active radiation, a proxy for plant productivity (Disney et al., 2016).
::::
This

::::::
dataset

:
is
:::::
based

:::
on

:::
the

::::::::::
GlobAlbedo

::::::
dataset

:
(http://globalbedo.org

:
)
:::
and

:::
the

:::::::
MODIS

:::::::
fAPAR

:::
and

::::
LAI

::::::::
products.

Gross Primary Productivity (GPP) [gCm−2day−1] the total amount of carbon fixed by photosynthesis (Tramontana et al.,

2016).
:::
This

:::::::
dataset

::
is

::::::
derived

:::::
from

::::::::
upscaling

:::::
eddy

:::::::::
covariance

:::::
tower

:::::::::::
observations

::
to

::
a

:::::
global

:::::
scale

:::::
using

:::::::
machine

::::::::
learning

:::::::
methods.

:
620

Terrestrial Ecosystem Respiration (TER) [gCm−2day−1] the total amount of carbon respired by the ecosystem, includes

autotrophic and heterotropic respiration (Tramontana et al., 2016).
::::
This

::::::
dataset

::
is
:::::::
derived

::::
from

:::::::::
upscaling

::::
eddy

::::::::::
covariance

:::::
tower

::::::::::
observations

::
to

::
a

:::::
global

:::::
scale

::::
using

::::::::
machine

:::::::
learning

:::::::
methods.

:

Net Ecosystem Exchange (NEE) [gCm−2day−1] The total exchange of carbon of the ecosystem with the atmosphere

NEE = GPP−TER (Tramontana et al., 2016).
:::
This

::::::
dataset

::
is
:::::::
derived

::::
from

::::::::
upscaling

:::::
eddy

:::::::::
covariance

:::::
tower

::::::::::
observations

::
to

::
a625

:::::
global

:::::
scale

:::::
using

::::::::
machine

:::::::
learning

:::::::
methods.

:

Latent energy (LE) [Wm−2] the amount of energy lost by the surface due to evaporation (Tramontana et al., 2016).
::::
This

::::::
dataset

:
is
:::::::
derived

::::
from

::::::::
upscaling

:::::
eddy

:::::::::
covariance

:::::
tower

::::::::::
observations

::
to
::
a
:::::
global

:::::
scale

:::::
using

:::::::
machine

:::::::
learning

::::::::
methods.

Sensible Heat (H) [Wm−2] the amount of energy lost by the surface due to radiation (Tramontana et al., 2016).
::::
This

::::::
dataset

:
is
:::::::
derived

::::
from

::::::::
upscaling

:::::
eddy

:::::::::
covariance

:::::
tower

::::::::::
observations

::
to
::
a
:::::
global

:::::
scale

:::::
using

:::::::
machine

:::::::
learning

::::::::
methods.630

Root-Zone Soil Moisture [m3m−3] the moisture content of the root zone, estimated by the GLEAM model (Martens et al., 2017)

:
.
::::
This

::::::
dataset

:
is
:::::
based

:::
on

:::
the

:::::::::
GLEAMv3

::::::
model

::::::::::::::::::
(Martens et al., 2017),

:::::
using

:::::::
satellite

::::
data

::::
from

::::
ESA

::::
CCI

:::
and

::::::
SMOS

::
to

::::::
derive

:
a
::::::
number

:::
of

:::::::
variables.

Surface Soil Moisture [mm3mm−3] the soil moisture content at the soil surface(Martens et al., 2017)
:
.
::::
This

::::::
dataset

::
is

:::::
based

::
on

:::
the

:::::::::
GLEAMv3

::::::
model

::::::::::::::::::
(Martens et al., 2017),

:::::
using

:::::::
satellite

:::
data

:::::
from

::::
ESA

::::
CCI

:::
and

::::::
SMOS

::
to

::::::
derive

:
a
::::::
number

:::
of

:::::::
variables.635
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Appendix B:
::::::::::
Time–Space

::::::::
patterns

::
of

:::::::::::
Components

::::
1–3
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Figure B1.
:::

Time
:::
and

:::::
space

::::::
patterns

::
of

::::::::
PC1–PC3,

::
the

:::::::
cutpoints

:::
are

:::
the

::::
same

::
as

::
in

::
fig.

::
8.
::::::::::
Brown–green

:::::::
contrast

:::::
shows

::
the

::::
state

::
of

::::
PC1,

::::
from

:::
low

::
to

:::
high

::::::::::
productivity.

:::::::
Blue–red

::::::
contrast

:::::
shows

:::
the

::::
state

::
of

::::
PC2,

::::
from

::::
cold

::
to

:::
dry.

:::::::::::
Brown–purple

::::::
contrast

:::::
shows

:::
the

::::
state

::
of

::::
PC3,

::::
from

:::
dark

::
to

::::
light.

:::
(a),

:::
(e),

:::
and

::
(i)

:::
are

::::
map

::::::
showing

:::
the

::::
state

::
of

:::::::
PC1–PC3::

on
:::
the

:::::::
1/1/2001

:::::::::
respectively.

:::
(b),

:::
(c),

:::
and

:::
(d)

::::
show

:::::::::
longitudinal

::::
cuts

::
of

:::::::
PC1–PC3 ::

at
::
the

:::
red

::::::
vertical

:::
line

::
in

::::::::
sub-figure

::
(a)

::::::::::
respectively.

:::
(f),

:::
(g),

:::
and

::
(h)

:::::
show

:::::::::
longitudinal

:::
cuts

::
of

:::::::
PC1–PC3::

at
:::
the

:::
red

::::::
vertical

:::
line

::
in

:::::::
sub-figure

:::
(e)

:::::::::
respectively.

:::
(j),

:::
(k),

:::
and

::
(l)

::::
show

:::::::::
longitudinal

::::
cuts

::
of

:::::::
PC1–PC3 ::

at
::
the

:::
red

::::::
vertical

:::
line

::
in

:::::::
sub-figure

:::
(i)

:::::::::
respectively.
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Appendix C:
:::::
Mean

::::::::
Seasonal

:::::
Cycle

::::::::
Extrema
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Figure C1.
::::
Shows

:::
the

:::::::
minimum

::::
(left

::::::
column)

:::
and

::::::::
maximum

:::::
(right

::::::
column)

::::
mean

:::::::
seasonal

:::::
cycles

::
of

:::
GPP

::::::
(upper

::::
row),

:::::
Latent

::::
Heat

::::::
(middle

::::
row),

:::
and

:::::::
Sensible

::::
heat

:::::
(lower

:::::
row).

::::
This

:::::::
illustrates

:::
the

::::::::
similarity

::
of

:::::::
possibly

::::
very

:::::::
different

:::::::::
ecosystems

::
in

:::::
terms

::
of

:::::::::
productivity

::::
and

::::::::
limitations.

::::::
During

:::
peak

:::::::
growing

::::::
season,

::::
many

:::
mid

::::::
latitude

::::
areas

::::
have

:
a
::::::
similar

:::::::::
productivity

:::
and

::::
latent

:::::
energy

::::::
release

::
as

::::::
tropical

::::::::
rainforests

:::::::
(subfigure

::
b

:::
and

::
d).

::::
The

::::::
highest

::::::::
maximum

::::::
seasonal

::::::
sensible

::::
heat

:::
loss

:::
can

::
be

:::::
found

::
in

:::
dry

::::
areas

:::::
around

:::
the

::::
world

:::
and

::
is
:::::
lowest

::
in

::::
areas

::::
with

:
a
:::
wet

::::::
climate

:::
such

::
as

::::::
tropical

::::::::
rainforests

:::
and

:::::::
maritime

:::::::
climates

:::::::
(subfigure

:::
f).
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Appendix D:
::::::
Spatial

::::::::::
covariances

:::
of

:::
the

::::::::::
components
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Figure D1.
::::::
Pairwise

::::::::::
covariances

:::
of

:::
the

::::
first

:::::
three

:::::::
principal

::::::::::
components

:::::
mean

::::::::
seasonal

:::::
cycles

:::
by

::::::
space.

:::
(a)

:::::::::::::
cov(PC1,PC2),

::
(b)

::::::::::::
cov(PC1,PC3),:::

and
::
(c)

::::::::::::
cov(PC2,PC3).:::

The
:::
bar

:::::
charts

::::
show

::
the

:::::::::
distribution

::
of

:::
the

:::::::::
covariances.

:
It
:::
can

::
be

::::
seen

:::
that

:::::::
although

:::
two

:::::::
principal

:::::::::
components

::
are

:::::::
globally

:::::::::
uncorrelated

::
by

::::
their

::::
way

::
of

:::::::::
construction,

::::
they

:::::
covary

::::::
locally.
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Appendix E:
:::::::
Changes

::
in

:::
the

::::::::
Seasonal

::::::::::
Amplitude
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Figure E1.
::::

Trends
::

in
:::
the

::::::::
amplitude

::
of

::
the

:::::
yearly

:::::
cycle,

:::::::::
2001–2011,

::::::::
Theil–Sen

::::::::
estimators

:::
only

::::::::
significant

:::::
slopes

::::::::
(p < 0.05,

::::::::
unadjusted

:
)
:::
are

:::::
shown.

:::::::
Because

::::
there

:
is
::::
only

:
a
:::::
single

:::::::
amplitude

:::
per

::::
year

:::
and

::::::
therefore

::::
only

::
11

::::
data

:::::
points

::
per

::::
time

:::::
series,

::
the

::::::::::::::::
Benjamini–Hochberg

:::::::
adjusted

:
p
:::::
-values

:::
are

::
not

:::::::::
significant.
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Appendix F:
::::::::::
Breakpoints

::
in

:::::::::::
Trajectories640
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Figure F1.
::::::::
Breakpoint

::::::::
detection,

::
(a)

::
on

::::
PC1,

:::
(b)

::
on

::::
PC2,

:::
and

::
(c)

::
on

::::
PC3,

:::
the

::::
color

:::::::
indicates

::
the

::::
year

::
of

::
the

::::::
biggest

::::::::
breakpoint

::
if

:
a
::::::::
significant

::::::::
breakpoint

:::
was

:::::
found,

::::
grey

:
if
::::
there

:::
was

:::
no

::::::::
significant

::::::::
breakpoint

:::::
found.

::
As

:::
the

::::::::::::
environmental

:::::::::
conditions

:::::::
change,

:::
due

::
to
:::::::

climate
::::::
change

::::
and

::::::
human

::::::::::
intervention,

:::
the

:::::
local

:::::::::
ecosystems

::::
may

:::::::
change

::::::::
gradually

::
or

::::::::
abruptly.

::::::::
Detecting

:::::
these

:::::::
changes

::
is

::::
very

:::::::::
important

:::
for

:::::::::
monitoring

:::
the

::::::
impact

:::
of

::::::
climate

:::::::
change

:::
and

::::
land

::::
use

::::::
change

::::
onto

:::
the

::::::::::
ecosystems.

:::
We

::::::
applied

:::::::::
breakpoint

::::::::
detection

:::
on

:::
the

:::::::::
trajectories

::::
(fig.

::::
F1).

::::::::::
Breakpoints

::
on

:::
the

::::
first

::::::::::
component

::::
were

:::::
found

:::
in

:::
the

:::::
entire

:::::::
Amazon

::::
and

:::
the

::::::
largest

:::::::::
breakpoint

::
is

:::::
dated

::
in

:::
the

::::
year

:::::
2005

:::::
during

:::
the

:::::
large

:::::::
drought

:::::
event.

::::
The

:::::
entire

::::::
eastern

::::
part

::
of

::::::::
Australia

::::::
shows

:::
its

:::::
largest

::::::::::
breakpoint

:::::::
towards

:::
the

:::
end

::
of

::::
the

::::
time645

:::::
series

::::::
because

:::
of

:
a
:::
La

::::
Niña

::::::
event,

:::::
which

::::::
caused

:::::
lower

:::::::::::
temperatures

:::
and

::::::
higher

::::::
rainfall

::::
than

:::::
usual

::::::
during

:::
the

:::::
years

::::
2010

::::
and

:::::
2011.
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