1	Supplement of
2	Formation and origin of Fe-Si oxyhydroxide deposits at the ultra-slow spreading
3	Southwest Indian Ridge
4	
5	Kaiwen Ta ^{1, 2} , Zijun Wu ^{1*} , Xiaotong Peng ² and Zhaofu Luan ¹
6	
7	¹ School of Ocean and Earth Science and State Key Laboratory of Marine Geology,
8	Tongji University, Shanghai, China.
9	² Deep Sea Science Division, Institute of Deep Sea Science and Engineering, Chinese
10	Academy of Sciences, Sanya, China.
11	
12	Correspondence: Zijun Wu (wuzj@tongji.edu.cn)
13	
14	
15	
16	Contents of this file
17	
18	Supplementary Figure S1: Hydrothemal Fe-Si oxyhydroxide deposits were recovered
19	from the ultra-slow spreading SWIR. (a) DIV95, (b) 21V-T7, (c) 21V-T1, (d) 20V-T8,
20	(e) 34II-T22.
21	Supplementary Figure S2: XRD patterns of hydrothemal Fe-Si oxyhydroxide deposits
22	at the SWIR. S1-S6 showing samples DIV95-1, DIV95-2, 34II-T22, 21V-T7, 21V-T1,
23	20V-T8, respectively.
24	Supplementary Figure S3: TEM images displaying the mineralized Fe-Si
25	oxyhydroxides in samples 34II-T22 (a) and 20V-T8 (b). (c) EDS from the area
26	defined by the red dot in panel a. (d) EDS from the area defined by the red dot in
27	panel b. Cu came from Cu net in Figures c and d.

28	Supplementary Figure S4: (a) Fe-oxidizing bacteria gradient tube cultured with FeS2.
29	(b) Fluorescence micrographs of cells showing filamentous morphologies (green),
30	stained with SYBR Green I. (b) Fe-oxidizing bacteria (green).
31	Supplementary Table S1: Investigated hydrothermal Fe-Si oxyhydroxide deposits
32	from the SWIR.
33	Supplementary Table S2: . Sequential extraction procedure of iron speciation studies
34	and targeted minerals.
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

Supplementary Figure S2. XRD patterns of hydrothemal Fe-Si oxyhydroxide deposits
at the SWIR. S1-S6 showing samples DIV95-1, DIV95-2, 34II-T22, 21V-T7, 21V-T1,
20V-T8, respectively.

Supplementary Figure S4. (a) Fe-oxidizing bacteria gradient tube cultured with FeS₂.

- (b) Fluorescence micrographs of cells showing filamentous morphologies (green),
- stained with SYBR Green I. (c) Fe-oxidizing bacteria (green).

Supplementary Table S1. Investigated hydrothermal Fe-Si oxyhydroxide deposits from the SWIR.

S	Sample [#]	Latitude (E)	Longitude (N)	Depth (m)	Hand sample description
]	DIV95-1	49.6482°	37.7794°	2764.3	Orange-yellowish layer of deposits collected by Jiaolong human occupied vehicle (HOV) during the cruise of XYH09 in Feb 2015
]	DIV95-2	49.6482°	37.7794°	2764.3	Black layer of deposits collected by Jiaolong HOV during the cruise of XYH09 in Feb 2015
	34II-T22	49.2580°	37.9425°	1499	Purple-red deposits collected by a TV-grabber during the cruise of R/V DaYang One in Jan 2015
	21V-T1	49.3888°	37.4697°	2784	Yellowish deposits collected by a TV-grabber during the cruise of R/V DaYang One in Jan 2010
	21V-T7	49.3894°	37.4699°	2746	Brown deposits containing volcanic glass shards collected by a TV-grabber during the cruise of R/V DaYang One in Jan 2010
	20V-T8	50.2803°	37.3952°	1740	Brown deposits collected by a TV-grabber during the cruise of R/V DaYang One in Nov 2008
132					
133					
134					

147 Supplementary Table S2. Sequential extraction procedure of iron speciation studies148 and targeted minerals.

	Pool	Extraction Agent	Fe Fractions
1	Fe _{carb}	25 mL, 1 M Na-acetate, pH 4.5, 24 h 50 °C	Carbonate iron and siderite
2	Fe _{ox1}	25 mL, 1 M hydroxylamine-HCl, 48 h	Poorly crystalline Fe (oxyhydr)oxides, ferrihydrite and lepidocrocite
3	Fe _{ox2}	25 mL, 0.28 M Na-dithionite, pH 4.8, 2 h	Goethite, hematite, and akaganeite
4	Feprs	30mL, 12M HCl, 1 min boiling	Poorly reactive sheet silicate iron
49			
.50			
51			
.52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			