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1 Introduction

Lines 39ff: Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) have often been interpreted as prox-

ies for vegetation activity (Zeng et al., 2013; De Keersmaecker et al., 2015; Hawinkel et al., 2015; Kogan and Guo, 2017; Pan et al., 2018)

despite well-known limitations of only reflecting vegetation greenness

Lines 48ff: Therefore, short—term and long—term processes can be obscured by the dominant influence of the annual cycle
Lines 52ff: Such approaches have proven useful e. g. to characterize at what scales vegetation responses are dampened
or amplified in comparison with their climate forcing (Stoy et al., 2009), how ecosystem variability is confined by hydrom-
eteorological variability (Pappas et al., 2017), what scales of variability need to be considered to relate forcing variables and

vegetation state comprehensively (Katal-etal52001)(Katul et al., 2001; Braswell et al., 2005), or to remove confounding ef-

fects from processes acting on longer time scales than the process in question (Mahecha et al., 2010b).
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2 Methods
2.1 Data

Lines 77ff: Corresponding records of air temperature (T,;,), from the European Centre for Medium—Range Weather Fore-
casts (ERA Interim v4, Dee et al., 2011) and precipitation (Prec) from the Multi-Source Weighted—Ensemble Precipitation
(MSWEP, Beck et al., 2019) were aggregated to match spatial-and-temporal resolution by summation (Prec) or averaging

(T4ir). Spatial resolution of T,;,. was preserved (0.5°), while MSWEP values were averaged for spatial resampling (0.083°

to 0.5°). Spatial and temporal resolution were fixed based on the coarsest resolution among the input datasets to ensure
conservative results.

2.2 Pre—processing

Lines 90ff: Analyses were performed on Lat-Lon grid due to software and data considerations. In all spatial analyses on
Lat-Lon grid, the difference in size of grid cells between high latitudes and the equator was accounted for through weighting
values by grid cell size. Similarly, in all analyses that involved sampling of data points, the sampling frequency was weighted
by grid cell size.

2.3 Time series decomposition

Lines 101ff: The longer—term signal was reconstructed from all remaining periods >1.1 year, representing inter—annual

and longer time scales.

sub-signal binning was centered on the definition of the seasonal/annual bin similarly to Mahecha et al. (2010a) and Fiirst (2009).

The bin ranges were slightly adapted due to the FFT approach, which yields signals of different frequencies compared to the
approach chosen by Mahecha et al. (2010a).

2.4 Variance per time scale and co-oscillation regimes

Lines 121ff: The final land surface assessed was 758712486 km?, corresponding to 70% of vegetated GLC2000 area

(Sup. Fig. S1). For the same area, we calculated the V-measure (V), a spatial association index based on homogeneity and
complementarity criteria proposed specifically for thematic map comparison (Nowosad and Stepinski, 2018). The index ranges
from O to 1, with 1 being a perfect association, and was used to provide an overall comparison between the co—oscillation regime
map with Koppen-Geiger and GLC2000 maps.

2.5 Correlations between variables at each time scale

Lines 139ff: NDVI was lagged one time step (15 days) behind Prec in order to allow response time of vegetation to changes in

water availability. Due to the 15—daily temporal resolution of the data, a response time of up to 15 days is intrinsically included
in our analyses. Each time lag is therefore an additional 15 days, and shorter responses cannot be assessed. We compared
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six different lags (from 15 to 90 days, Sup. Fig. S3). When correlating NDVI and precipitation instantaneously, we found
almost exclusively negative correlations for the short—term scale. A lag of one time step was sufficient to arrive at expected
positive correlations between NDVI and precipitation, while increasing the lag time did not substantially improve or alter the
results. We thus chose to globally use a lag of one time step (representing 15-30 days response time) between precipitation and
NDVI across all scales. Globally, temperature appeared to be most strongly correlated to NDVI instantaneously (not lagged),
thus no time lag was introduced between air temperature and NDVI. Recent studies assessing time lags and memory effects
between vegetation and climate also indicate that time lags of around one month generally carry most explanatory power for
predicting vegetation dynamics (Krich et al., 2019; Kraft et al., 2019; Papagiannopoulou et al., 2017). Correlation of NDVI-

T, and NDVI-Prec were binned into five quantiles and presented in a bivariate color map (Teuling et al., 2011). In addition,
we compared differences in the sign of correlation (+/— or —/+) between seasonal and longer—term oscillations to detect areas

where the correlation was inverted between scales.

3 Results
3.1 Time series variance across time scales

Lines 183ff: Assessing the contribution of each time scale sub—signal to the signal variance at each grid cell, we find that for
NDVI most of the temporal variability is expectedly captured by the seasonal cycle (71% of the global variance), especially
above the Tropic of Cancer (23.5°N).

Lines 189ff: Similarly, T,;, is strongly dominated by seasonal oscillations in the extratropics above/below 23.5° N/S (94%
and 90%, respectively, Sup. Table S2) as would be expected. Even in the tropics, short—term and longer—term components
contribute with only 30% of variance (and 11%, 4% of global variance, respectively, Sup. Table S2).

3.2 Classification of co—oscillations regimes

Lines 205ff: Dominant seasonal cycles of NDVI and T,;,., as well as fast oscillation regimes in Prec, are expected over large
arts of the globe, which is reflected by the large extent of the AAS and AAA classes in this analysis. Beyond this expected
solar cycle induced behaviour, a number of differentiated oscillation classes stands out: Short—term NDVI oscillations occur

mainly ...

Lines 226ff: We find-that-these-investigated to what extent our classification into “oscillation regimes” show-shows patterns

of temporal vegetation—climate relations that are not represented by conventional elassifications—When-comparing-our-—‘static”
classifications of the land surface. To determine overlap and differences between the classification of temporal vegetation—

climate co—oscillations with static classifications of land cover (GLC2000) and Képpen—Geiger climate classes we assessed
their spatial association by the V-measure (Nowosad and Stepinski, 2018). The V—measures of co—oscillation regimes with

Koppen—Geiger and GLC2000 were V =0.17 and V =0.11, respectivel
Hence, our classification contains information largely complementary to the compared climate and land cover classfications.

indicating weak association to both static classifications.




Yet we observed a slightly stronger association with Koppen—Geiger than with GLC2000, also when comparing homogeneit
and complementarity (Sup. Table S4). Comparing the three classifications among each other, we find that dominant temporal

75 patterns in NDVI can be linked to certain land cover types such as shrubs and broadleaf forest ...

3.3 Correlations of NDVI with climate on multiple scales

Lines 264ff: The Differences exists across the tropics, where South America and South—East Asia display mainly negative

correlation with Prec, whereas African tropics display positive correlation with Prec. Semi-arid regions show negative correlations

with Tg;,. as would be expected. While some of the patters are known, this correlation of decomposed oscillations reveals a
80 more differentiated picture of ecosystem variability in comparison with the undecomposed data (Sup. Fig. $7)-S8). Notably,

correlations on short— and longer—term scales partially show opposite signs compared to the seasonal scale, e. g. in South
America, South Africa and Central America. Repeating the analysis with Spearman correlation and partial correlation returned
similar results (Sup. Fig. S8-9)-S9-10). Due to the known saturation effects of NDVI against plant productivity over areas of

dense biomass, we repeated the analysis with MODIS EVI. We found overall similar results across time scales, but correlations
with T;

85 turned from negative to positive in parts of Central and South America, as well as India (Sup. Fig. S11), indicatin

that NDVI saturation may affect the results obtained from GIMMS long—term records in some areas.

Lines 275ff: In-thecorrelation—analysis5—We again compared the observed patterns with vegetation types, to understand
how different ecosystems react at different time scales, and found that different land cover classes showed distinct correlation

patterns.
90 3.4 Comparison of Fast Fourier Transformation with Empirical Mode Decomposition

Lines 304ff: Although resulting power spectra and frequency—invariant modes of oscillation are conveniently interpretable,

not all ecological processes can be expected to follow regular periodic and additive oscillatory patterns approximated by sine

and cosine waves over time. The-We chose FFT decomposition due to its superior computational speed and stable global
applicability, i. e. its ability to return homogeneous spatiotemporal patterns in our analysis. To ensure that the above limitations
95 did not confound our results, we compared the FFT approach to the data—adaptive empirical mode decomposition (EMD),

which could be expected to be better suited for exploring instationary ecological processes over time.

Lines 314ff: However, because CEEMDAN is a data adaptive method a higher spatial heterogeneity was—and spatiall
varying sensitivity to the noise parameter were observed, which currently constrains a global implementation of the analysis.
4 Discussion

100 4.1 Comparison across time scales point-points to complex temporal signatures

Lines 331ff: The classification provides an additional layer of ecosystem characterization beyond common classifications such

as land cover classes or the effective Koppen—Geiger climate classifications (Kottek et al., 2006; Koeppen, 1900; Geiger, 1954)
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which only consider seasonality besides mean climate states, increasing our understanding of dynamic vegetation properties

across time scales. We-find-The complementarity of this data—driven classification of vegetation dynamics, extracted from the

time series and summarized in the co—oscillation classification, is supported by the low spatial association calculated from the
V-measure. Our findings show that the dominant oscillation of NDVI is often, but not always, related to dominant oscillations

of T, and Prec.
Lines 343ff: In the tropics, radiation is proposed to be the-main-driver-one of the main drivers of NDVI (Nemani, 2003; Sed-
don et al., 2016), which could partially explain the lack of temporal coherence between NDVI, T,;, and Prec. Thus;comparing

Dominant short-term oscillations of NDVI (SSS, SAS, SAA) might be explained by climate intraseasonality in the tropics
due to the Madden Julian Oscillation (MJQ). The MJO is defined as anomalies in the atmospheric pressure between 10°N
and 10°S in the Indian Ocean region that propagates eastward to the Eastern Pacific Madden and Julian (1971). Depending
on the region and phase, its oscillatory period ranges between 20 and 90 days. MJO is considered the dominant component

of intra—seasonal climate variability in the tropics (Zhang, 2013). We see MJO as one feasible driver of short-term NDVI

opscillations through alterations of precipitation and temperature (Zhang, 2013; Hidayat, 2016; Mayta et al., 2019). However.
2013; Wang et al., 2019). Short-term

MJO impacts, teleconnections and predictability are still insufficiently understood (Zhan

oscillations of vegetation in those regions need to be further investigated; including other sources of intra—seasonal variation
connections with climatic events, and data constraints. Additionally, regional analysis at higher spatial resolution might reveal

details in local climatic variability, and other non—climatic processes such as land use change or crop rotations, among others.
Comparing variables across multiple time scales can point to areas with complex temporal signatures that require further

attention.
4.2 Non-dominant sub-signals reveal short— and longer—term ecosystem dynamics

Lines 379ff: Some of these patterns match regions where vegetation is stressed during ENSO events due to precipitation

decrease (Ahlstrom et al., 2015; Kogan and Guo, 2017), generating a possible link between short—term and longer—term

scalesand-hightighting—, Previous studies suggest that climate forcing on one time scale can be amplified or dampened in
corresponding vegetation responses (Stoy et al., 2009), or transferred to another time scale (Katul et al., 2001), preserving the
system’s entropy but creating complex interactions across scales. This highlights the need to further investigate interactions
between different sealestime scales globally in long—term EO records.

4.3 Differences between land cover classes highlight the tropics

Lines 404ff: Similarly, temperature is not usually limiting canopy development in the tropics (rather the contrary, Huang et al.

(2019)), which may explain negative correlations with T,

~As NDVI saturates over regions of dense
vegetation, results in the tropics need to be interpreted with caution, and negative correlation with T;,. could alternatively be

explained by underestimation of the seasonal cycle over tropical EBF. In fact, negative correlations with T,,;,. were observed

less frequently when repeating the analysis with MODIS EVI (Sup. Fig. S11), indicating that saturation of NDVI against plant




productivity might affect our results in densely vegetated areas such as the tropics. Overall, despite known drawbacks of NDVI
as proxy for plant productivity, the long—term NDVI record generally agrees well with results obtained from the considerably.
shorter EVI time series, suggesting that it is a good proxy for vegetation activity across time scales over large parts of the
global land surface.

140 Lines 419ff: The observed scale—specific patterns highlight the need to assess dynamic vegetation properties in time as
differentiating factors beyond land cover type and mean climate.

4.4 Limitations and Outlook

Lines 442ff: The-Known limitations of NDVI include saturation effect at high canopy cover, especially relevant in the tropics
as well as influence by soil reflectance in sparsely vegetated areas. These effects could thus influence our results and the

145 emerging patterns should be compared with newer satellite products such as sun—induced fluorescence (SIF), which are coupled
more directly to plant physiology and photosynthesis (Badgley et al., 2017; Koren et al., 2018), but are only available for short

time periods.

Lines 448ff: In future studies, longer—term climate signals could be compared with climate oscillations such as ENSO to
ain further understanding of their effect on long—term ecosystem variability. Analysis of time lag effects between atmospheric

150 forcing and vegetation response may bring additional valuable insights into ecosystem functioning, yet assessing meaning-

ful time lags across time scales is challenging due to a variety of-different-proeesses-at-play—Infutare-studies; longer—term

long-term-ecosystem—variabilityprocesses involved. Plausible time lags from months to years have been suggested between
climate forcing and vegetation response and/or ecosystem carbon exchange through direct and indirect effects (e. g. Braswell et al., 1997, 2
155 Assessing lagged vegetation responses across time scales may help to disentangle such co—existing time lags to form a global

time—scale—resolved picture of vegetation responses to climate. To account for the confounding effect of autocorrelation and

spurious links between variables, methods like causal inference (Runge et al., 2013, 2019; Krich et al., 2019) should be applied

in order to retrieve causal time lags between variables.
Our analyses are conducted at 0.5° spatial and 15-daily temporal resolution, which may obscure short-term and local
160  vegetation—climate relations, and instead only provide average relationships of variables within each grid cell. Qur analyses
may thus not be representative in heterogeneous landscapes such as coastlines or mountains. Regions standing out through het-
erogeneous patterns, such as the Amazon, should be further investigated attemporalty-and-spatialty higherresotution-regionally
at higher temporal and spatial resolution whenever consistent data streams permit this, to better understand local influence of

climate, vegetation and topography on atmosphere—biosphere co—variation.

165 Supplementary Information

Page 6: New Supplementary Figure S3; Page 13: New Supplementary Figure S11; Page 24: New Supplementary Table 4
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Abstract. Climate variables carry signatures of variability at multiple time scales. How these modes of variability are reflected
in the state of the terrestrial biosphere is still not quantified, nor discussed at the global scale. Here, we set out to gain a global
understanding of the relevance of different modes of variability in vegetation greenness and its co—variability with climate.
We used >30 years of remote sensing records of Normalized Difference Vegetation Index (NDVI) to characterize biosphere
variability across time scales from sub—monthly oscillations to decadal trends using discrete Fourier decomposition. Climate
data of air temperature (T,;,-) and precipitation (Prec) were used to characterize atmosphere—biosphere co—variability at each
time scale.

Our results show that short—term (intra—annual) and longer—term (inter—annual and longer) modes of variability make re-
gionally highly important contributions to NDVI variability: Short—term oscillations focus in the tropics where they shape 27%
of NDVI variability. Longer—term oscillations shape 9% of NDVI variability, dominantly in semi—arid shrublands. Assessing
dominant time scales of vegetation—climate co—variation, a natural surface classification emerges which captures patterns not
represented by conventional classifications, especially in the tropics. Finally, we find that correlations between variables can
differ and even invert signs across time scales. For southern Africa for example, correlation between NDVI and T,;,. is positive
for the seasonal signal, but negative for short—term and longer—term oscillations, indicating that both short and long—term tem-
perature anomalies can induce stress on vegetation dynamics. Such contrasting correlations between time scales exist for 15%
of vegetated area for NDVI with T,;,-, and 27% with Prec, indicating global relevance of scale—specific climate sensitivities.

Our analysis provides a detailed picture of vegetation—climate co—variability globally, characterizing ecosystems by their
intrinsic modes of temporal variability. We find that (i) correlations of NDVI with climate can differ between scales, (ii) non—

dominant sub—signals in climate variables may dominate the biospheric response, and (iii) possible links may exist between
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short—term and longer—term scales. These heterogeneous ecosystem responses on different time scales may depend on climate
zone and vegetation type, and are to date not well understood, nor always correspond to transitions in dominant vegetation
types. These scale dependencies can be a benchmark for vegetation model evaluation and for comparing remote sensing prod-

ucts.

1 Introduction

Ecosystems and climate interact on multiple spatial and temporal scales. For example, the main driver of photosynthesis
during the daily cycle typically is light availability, assuming no other resource limitation. At annual time scales, temperature
can limit growth and development during certain phases of the year, particularly in the extratropics. While climate variability
is traditionally very well characterized across time scales (e. g. Viles (2003); Cao et al. (2012); Bala et al. (2010); Hannachi
et al. (2017)), it is less well known how the biosphere responds to variations in climate on different scales. Understanding the
implications of such time—scale dependencies of climate—vegetation interactions is challenging due to the variety of interwoven
processes. These dependencies range from short—term climate extremes and biotic stress (e. g. insect outbreaks) to seasonal
dynamics in climate—driven phenology and long—term dynamics that can again either reflect intrinsic ecosystem dynamics
(e. g. vegetation successional dynamics) or climate—change or land—use induced process alterations. Investigating vegetation—
climate dynamics globally across multiple time scales requires long—term observation on relevant vegetation dynamics and
climate variables in combination with a method to separate ecosystem variability at different time scales.

The assessment of ecosystem variability e. g. in responses to climate at the global scale has only become feasible in the last
decades. Long—term Earth observations (EOs) are now allowing us to assess ecosystem states consistently over more than 30

years. Vegetation indices such as the Normalized Difference Vegetation Index (NDVI) have often been interpreted as proxies for

vegetation activity (Zeng et al., 2013; De Keersmaecker et al., 2015; Hawinkel et al., 2015; Kogan and Guo, 2017; Pan et al., 2018),

despite well-known limitations of only reflecting vegetation greenness 5 3: s 5 :

While novel EOs may be more closely related to actual rates of photosynthesis (e. g. Solar Induced Fluorescence, SIF (Guanter
et al., 2007)), NDVI from the Advanced Very High Resolution Radiometer (AVHRR) has the advantage of offering the longest
updated records of vegetation remote sensing data every 15 days. In tandem with climate time series from the same period,
this record provides a solid basis to globally assess biosphere—atmosphere interactions across time scales ranging from weeks
to decades.

Temporal biosphere dynamics carry the imprint of different drivers across time scales, yet EOs can only record one in-
tegrated signal over time. This signal reflects a mixture of processes acting on different scales, which cannot be observed
independently (Mahecha et al., 2007; Defriez and Reuman, 2017; Pan et al., 2018). Therefore, short—term and long—term
processes can be obscured by the dominant influence of the annual cycle (Braswell et al., 2005; Mahecha et al., 2010c). In
order to study relevant ecosystem—climate interactions across temporal scales, information contained for each time scale
thus first needs to be extracted from this integrated signal. Time—series decomposition allows to extract different frequen-

cies such as annual, intra—annual and inter—annual oscillations from vegetation and climate time series. Such approaches
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have proven useful e. g. to characterize at what scales vegetation responses are dampened or amplified in comparison with
their climate forcing (Stoy et al., 2009), how ecosystem variability is confined by hydrometeorological variability (Pappas
et al., 2017), what scales of variability need to be considered to relate forcing variables and vegetation state comprehensively
Iatul-et-al;2006H)(Katul et al., 2001; Braswell et al., 2005), or to remove confounding effects from processes acting on longer
time scales than the process in question (Mahecha et al., 2010b). However, to date most studies employing time—series decom-
position to study vegetation dynamics have focused on disentangling time scales from minutes to few years based on flux
data (Stoy et al., 2009; Katul et al., 2001; Mahecha et al., 2007, 2010c). Studies investigating long—term vegetation records by
time—series decomposition do exist, but focus only on a specific region (Martinez and Gilabert, 2009; Canisius et al., 2007,
Hawinkel et al., 2015) or do not provide co—interpretation with climate signals (Pan et al., 2018). Earth observation time series
of vegetation and climate covering more than 30 years now allow us to characterize the time—scale resolved variability in the
biosphere and its relation to climate globally across several decades. Additionally, the global coverage of these records allows
one to attain a broader understanding in climate space and across vegetation types, which to date is equally lacking.

In this study, we set out to gain a global understanding of the relevance of the different modes of variability in vegetation
greenness and its co—variability with climate at time scales from sub—monthly oscillations to long—term trends. These time—
scale—specific vegetation—climate co—oscillations are expected to serve as reference benchmark for comparing remote sensing
products and terrestrial biosphere models. Specifically, we aim to (i) characterize variability of biosphere and climate time
series explicitly on multiple time scales, (ii) understand spatial patterns of this scale-resolved variability and co—variability
globally, (iii) assess whether characteristic time—scale specific dynamics in biosphere and climate relate to established climate
classifications or land cover, and (vi) assess differences in correlations of biosphere with climate on short—term, seasonal, and

longer—term time scales.

2 Methods
2.1 Data

A global gridded dataset of NDVI AVHRR was retrieved from the Global Inventory Monitoring and Modeling System (GIMMS,
Pinzon and Tucker, 2014) at 15—daily temporal and 6-50.083° spatial resolutions (GIMMS NDVI v3.1). Original data was ag-
gregated to 0.5° by taking the mean of corresponding 0.083° pixels. Corresponding records of air temperature (T;,-), from the
European Centre for Medium—Range Weather Forecasts (ERA Interim v4, Dee et al., 2011) and precipitation (Prec) from the
Multi—Source Weighted—Ensemble Precipitation (MSWEP, Beck et al., 2019) were aggregated to match spatial-and-temporal
resolution by summation (Prec) or averaging (T,;,). Spatial resolution of T, was preserved (0.5°), while MSWEP values were
averaged for spatial resampling (0.083° to 0.5°). Spatial and temporal resolution were fixed based on the coarsest resolution
among the input datasets to ensure conservative results. The time period considered was from 1 January 1982 to 31 December
2015.
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2.2 Pre—processing

Gaps in NDVI time series were filled with values from the mean seasonal cycle computed separately for each grid cell.
Missing values were mostly present at high Northern latitudes (Sup. Fig. S1). Each time series (for each pixel) was nor-
malized to zero mean and unit variance prior to performing Fast Fourier transformation (FFT). For further analysis, the gap

filled data was discarded. Normalization, gap filling and FFT were performed in the Earth System Data Lab thttps:/www-

earthsystemdatalab-net/)(https://www. earthsystemdatalab.net/, Mahecha et al., 2019), using the implementation based on the
programming language Julia. Analyses were performed on Lat-Ton grid due to software and data considerations. In all spatial
analyses on Lat-Lon grid, the difference in size of grid cells between high latitudes and the equator was accounted for through
weighting values by grid cell size. Similarly, in all analyses that involved sampling of data points, the sampling frequency was
weighted by grid cell size.

2.3 Time series decomposition

All pixel time series were first detrended using a linear model. We then used discrete FFT to decompose the detrended
time series into underlying harmonic functions at different frequencies (Brockwell and Davis, 2006). The resulting Fourier
spectra (Sup. Fig. S2) were reconstructed by inverse FFT into binned scale—specific sub—signals for short—term, seasonal
and longer—term oscillations: The seasonal signal was reconstructed from the Fourier spectrum at periods of 0.9-1.1 years,
plus semi—annual and 4-monthly harmonics at 0.5—yr and 0.33—yr periods. The short—term signal was reconstructed from
the Fourier spectrum of all periods <0.9 year, except the two seasonal harmonics, representing inter—annual oscillations
that are not directly linked to periods of seasonality. The longer—term signal was reconstructed from all remaining peri-

ods >1.1 year, representing inter—annual and longer time scales.

Maheecha-et-al;20H0a; Fiirst; 2009 The sub-signal binning was centered on the definition of the seasonal/annual bin similarl
to Mahecha et al. (2010a) and Fiirst (2009). The bin ranges were slightly adapted due to the FFT approach, which yields signals
of different frequencies compared to the approach chosen by Mahecha et al. (2010a). To identify emerging features occurring

at different latitudinal bands, mean values weighted by pixel area were calculated in the tropics (23.5°N to 23.5°S), extratropics
(above 23.5°N and below 23.5°S), and globally.

2.4 Variance per time scale and co-oscillation regimes

For each time scale—specific signal, we calculated the proportion of variance of the original signal explained for each variable
per grid cell. Each pixel of the global land surface was then classified into oscillation regimes depending on which scale
explained the largest amount of variance in each variable (abbreviations: S — short-term, A — seasonal, L — longer—term, T —
trend). For example, if the variance was dominated by the seasonal sub—signal in NDVI and Tj;,., and by the short-term scale
in Prec, this pixel would be classified as AAS (in order NDVI, Tg;,., Prec). Theoretically, the superimposition yields 64 (4%)
possible combinations, of which only 26 occurred. For simplicity, our analysis was focused on the 11 most abundant oscillation

regimes (99.7% of pixels).



120

125

130

135

140

145

In order to complement static/traditional classifications, we compared our oscillation regimes with the Global Land Cover
Map Project coordinated by the Joint Research Center (GLC2000, Bartholomé and Belward, 2005), and climate zones from the
updated Koppen—Geiger global classification (Kottek et al., 2006, see Sup. Fig. S1). Only those pixels that contained data from
all three data streams (Koppen—Geiger classes A—D, GLC2000, and our oscillation regimes) were considered in this analysis.
Non-vegetated and non—natural areas as defined by GLC2000 were disregarded for this analysis and onward (Sup. Table S1).
The final land surface assessed was 75%,8712,486 km?, corresponding to 70% of vegetated GLC2000 area (Sup. Fig. S1).

For the same area, we calculated the V-measure (V), a spatial association index based on homogeneity and complementarit
criteria proposed specifically for thematic map comparison (Nowosad and Stepinski, 2018). The index ranges from 0 to 1, with
1 being a perfect association, and was used to provide an overall comparison between the co—oscillation regime map with

Koppen—Geiger and GLC2000 maps.
To assess the influence of gap—filling performed in the original GIMMS NDVI data due to influence of cloud cover or

snow, we excluded time points that were retrieved by splines or mean seasonal cycle due to lack of direct observation in
NDVI (Pinzon and Tucker, 2014) at five different quality flag thresholds in our classification of oscillation regimes. Quality
flags were aggregated from 0.083° to 0.5° by calculating the fraction of direct observations per 0.5° pixel at each time step.
Subsequently, the dominant classification was repeated, excluding time steps with less than 30%, 50%, 70%, 90% and 95%
direct observations for each grid cell. Furthermore, we repeated the time series decomposition method for NDVI and the
Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer MODIS. The vegetation indices
product MOD13C1.006 is provided by NASA EOSDIS LP DAAC at 0.05°. Data was aggregated spatially by averaging valid
pixels to 0.5° for the overlapping period with GIMMS NDVI (2001-2015). A comparison of the dominant oscillations regimes

between products was carried out at pixel basis.
2.5 Correlations between variables at each time scale

We correlated time scale—specific sub—signals of NDVI, T;, and Prec using Pearson’s correlation coefficient, Spearman cor-
relation, and partial correlation. For this analysis, all time points with NDVI<0.2 were masked in order to consider only data
points corresponding to active vegetation (Sup. Fig. S1). NDVI was lagged one time step (15 days) behind Prec in order to al-
low response time of vegetation to changes in water availability. Due to the 15—daily temporal resolution of the data, a response
responses cannot be assessed. We compared six different lags (from 15 to 90 days, Sup. Fig. S3). When correlating NDVI and
precipitation instantaneously, we found almost exclusively negative correlations for the short—term scale. A lag of one time step
was sufficient to arrive at expected positive correlations between NDVI and precipitation, while increasing the lag time did not
substantially improve or alter the results. We thus chose to globally use a lag of one time step (representing 15-30 days response
time) between precipitation and NDVI across all scales. Globally, temperature appeared to be most strongly correlated to NDVI
instantaneously (notlagged), thus no time lag was introduced between air temperature and NDVI, Recent studies assessing time

lags and memory effects between vegetation and climate also indicate that time lags of around one month generally carry most

explanatory power for predicting vegetation dynamics (Krich et al., 2019; Kraft et al., 2019; Papagiannopoulou et al., 2017).
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Correlation of NDVI-T,;, and NDVI-Prec were binned into five quantiles and presented in a bivariate color map (Teuling
et al., 2011). In addition, we compared differences in the sign of correlation (+/— or —/+) between seasonal and longer—term

oscillations to detect areas where the correlation was inverted between scales.
2.6 Assessment of land cover change on time series decomposition

We assessed whether land cover change over the 30—year time period influenced our results by extracting pixels with sub-
stantial land cover change as determined by Song et al. (2018). While linear trends were removed from the time series before
decomposition, changes in amplitude or piecewise linear and non-linear trends may have an impact on our analyses. First, we
aggregated original 0.05° data to match our 0.5° spatial resolution by averaging. We then determined 0.5° pixels with >25%
gain or loss of trees, short vegetation, or bare ground, and assessed whether the observed changes in land cover (Song et al.,
2018) were reflected in the NDVI time series to a degree that substantially affected the classification of dominant oscillation

regimes.
2.7 Comparison of Fourier Transform with Empirical Mode Decomposition

While the FFT approach is the most classical time—series decomposition technique, there are more data adaptive alternatives
available (Huang et al., 1998; Ghil, 2002; Palus and Novotnd, 2008). In order to understand whether different methods would
lead to different insights, we compared the employed FFT approach with the more data—adaptive Empirical Mode Decompo-
sition (EMD). EMD repeatedly extracts sub—signals (intrinsic mode functions, IMFs) from the time—series by interpolating a
spline between local minima and maxima until the residuals converge to approximately constant values (Huang et al., 1998).
We used an ensemble—based modification of the EMD algorithm, the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN, Colominas et al., 2014; Torres et al., 2011) and a frequency binning approach to obtain frequency
bands comparable to the ones chosen for FFT. In contrast to the regular EMD, CEEMDAN employs an ensemble approach
in which noise is added to the data before decomposition and ensemble averages for each IMF are returned, so that a more
robust end result is obtained (Colominas et al., 2014; Torres et al., 2011). Briefly, in CEEMDAN each IMF is computed as
the mean of an ensemble of IMFs retrieved from noisy data copies. This IMF is subtracted from the original signal, and the
residual signal used as input for retrieving the next IMF (Colominas et al., 2014; Torres et al., 2011). As such, CEEMDAN is
less prone to mode mixing than EMD while still fulfilling the completeness property of EMD (i. e. the sum of all IMFs equals
the original signal). As IMFs resulting from EMD do not have a fixed frequency assigned, we then associated each IMF with
a time scale by measuring the distance between all local maxima and minima as a proxy for the dominating wavelength of
the signal. Distances between each two maxima or minima were classified as short—term, seasonal or longer—term depending
on their length. The IMF was then categorized by the majority distance category and added into the respective time scale bin.
For example, if an IMF contained 25 seasonal cycles and 5 short-term cycles, it was classified as seasonal and added to the

seasonal signal bin. IMFs in each bin were combined by summation.
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3 Results
3.1 Time series variance across time scales

Assessing the contribution of each time scale sub—signal to the signal variance at each grid cell, we find that for NDVI most of
the temporal variability is expectedly captured by the seasonal cycle (71% of the global variance), especially above the Tropic
of Cancer (23.5°N) (Fig. 1, Sup. Table S2). Short-term oscillations contribute dominantly in parts of tropical America and
Southeast Asia, while longer—term components are mainly observed in Australia, South Africa, parts of Argentina, and northern
Mexico. Specifically, short—term and longer—term signals together contribute with 27% of total NDVI variance globally, and
with 38% in the equatorial region (23.5°N to 23.5°S).

Similarly, T,;, is strongly dominated by seasonal oscillations in the extratropics above/below 23.5° N/S (94% and 90%,
respectively, Sup. Table S2) as would be expected. Even in the tropics, short—term and longer—term components contribute
with only 30% of variance (and 11%, 4% of global variance, respectively, Sup. Table S2). In contrast, short—term oscillations
dominate global precipitation variance before the seasonal cycle (52% and 41% of global variance each, Sup. Table S2).
An East—West gradient of precipitation over Eurasia stands out, changing from predominantly short—term to predominantly
seasonal signal variance. In the tropics, a similar contribution from both oscillations is found (42% and 41%, respectively,
Sup. Table S2). Linear trends removed before FFT decomposition had a minor influence on overall variance (Fig. 1). In
summary, short-term and longer—term signals show substantial, regionally focused contributions to signal variance. These

regions differ between variables, suggesting complex patterns of temporal interaction.
3.2 Classification of co—oscillations regimes

Given the contrasting, spatially heterogeneous patterns observed in different variables in Fig. 1, we investigated how scale—
specific oscillations of biosphere and climate co—occur globally. We combined the dominant scale of variability for each
variable in each grid cell (Sup. Fig. $3S4) and found that 84.5% of the assessed area is dominated by seasonal oscillations
of NDVI, 9% by short—term oscillations in NDVI, and 6.5% longer—term oscillations in NDVI (0.03% captured by the trend).
Combining the maps for all three variables into a map of co—dominant “oscillation regimes” (Fig. 2, Sup. Table S3), we

find that seasonal NDVI regimes co—occur predominantly with seasonal T,;,-, and seasonal or short—term Prec regimes (blue

regions). Dominant seasonal cycles of NDVI and T,;,., as well as fast oscillation regimes in Prec, are expected over large parts
of the globe, which is reflected by the large extent of the AAS and AAA classes in this analysis. Beyond this expected, solar
cycle induced behaviour, a number of differentiated oscillation classes stands out: Short—term NDVT oscillations occur mainly

in the South American and Asian tropics, in a multitude of combinations with predominantly seasonal or short—term T,
and Prec (light green, red and light red regions). Longer—term oscillation regimes of NDVI co—occur with seasonal T, and
short—term Prec regimes (dark green regions) around the west side of South Africa, east side of southern South America, and
Australia. Interestingly, the dominant scales in climatic variables are not always associated with similar dominant regimes in
NDVI dynamics, suggesting complex or additional driving mechanisms in these heterogeneous regions. In fact, even in areas

where temperature or precipitation has a seasonal cycle, NDVI can be dominated by short—term or longer—term oscillations:
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Figure 1. Global distribution of time—scale specific variance (relative spectral powers) of NDVI, temperature (T,;.), and precipitation
(Prec). Normalized time series of NDVI, T,;, and Prec (columns) were decomposed by Fast Fourier transformation and reconstructed into
short—term (intra—annual), seasonal(annual), and longer-term (inter—annual) components (rows). Relative contribution of each scale—specific
signal to overall variance was determined at each grid cell. Globally, most variance of NDVI and T, is contained in the seasonal component
(red colors), while Prec shows a high contribution of variance from the short—term component. The semi—annual cycle is included in the

seasonal band. Upper right corner values show the percentage of overall variance explained by each time scale.
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More than 90% of the area with short—term NDVI regimes exhibits predominantly seasonal T,;,, of which 36% also show
predominantly seasonal Prec (SAA), and 55% predominantly short—term Prec (SAS, Sup. Table S3). All areas where NDVI is
predominantly longer—term are classified as seasonal T,;, and short—term Prec regimes (LAS, Sup. Table S3).

To account for the influence of clouds and snow cover in the GIMMS NDVI record, especially in the tropics and northern
regions, we excluded time points where pixels contained a high proportion of gap—filled values. We found that overall less than
1.5% of pixels changed their dominant oscillation class when only pixels with more than 0.7 direct observation fraction were
considered. Even when the highest quality threshold was applied (0.95 direct observation fraction), only 2.6% of pixels changed
dominant oscillation class (Sup Fig. S3). Short—term pixels were the most affected by changes in dominant oscillation (12.9%
and 20.8% for 0.7 and 0.95 direct observations threshold respectively), while seasonal pixels showed the highest fraction of
gap—filling overall (Sup. Fig. S4S5). As a further validation, we found very similar results when repeating the time series
decomposition and the dominant oscillation regime classification based on EVI and NDVI from MODIS (Didan et al., 2015;
Huete, 1997; Huete et al., 2002) for the years 2001-2015 (Sup. Fig. S5S6).

We find-that-these-investigated to what extent our classification into “oscillation regimes” show-shows patterns of tem-

poral vegetation—climate relations that are not represented by conventional elassifications—When—comparing—our—‘static”
classifications of the land surface. To determine overlap and differences between the classification of temporal vegetation—

climate co—oscillations with static classifications of land cover (GLC2000) and K6éppen—Geiger climate classes we assessed

their spatial association by the V-measure (Nowosad and Stepinski, 2018). The V—measures of co—oscillation regimes with

Koppen-Geiger and GLC2000 were V=017 and V = 0.11, respectively, indicating weak association to both static classifications.
Hence, our classification contains information largely complementary to the compared climate and land cover classfications.
Yet we observed a slightly stronger association with Koppen-Geiger than with GLC2000, also when comparing homogeneity.
and complementarity (Sup. Table S4). Comparing the three classifications among each other, we find that dominant temporal

patterns in NDVI can be linked to certain land cover types such as shrubs and broadleaf forest: Sankey diagrams (Fig. 2b+c)

display which proportion of land surface is commonly classified across different class combinations in the three data layers
of co—oscillation regime, GLC2000, and Koppen—Geiger for evergreen broadleaf forest (EBF, Fig. 2b) and areas dominated
by longer—term NDVI (Fig. 2c). We find that EBF is the most diverse among land cover classes in terms of our temporal
classification, with 35% dominated by short—term NDVI oscillation (Fig. 2b). In contrast, more than 95% of deciduous and
evergreen needleleaf forests (DNF, ENF) and deciduous broadleaf forests (DBF) are dominated by seasonal NDVI regimes
(Sup. Table S3). We further find a strong association of longer—term NDVI regimes with shrubs (21% of the area dominated by
longer—term NDVI), herbaceous (26%) and sparse shrubs/herbaceous (49%) land cover types in arid regions (Fig. 2¢c, overall
93% of LAS area coincides with Képpen—Geiger class B). Thus, differences within and among land cover and climate types

exist when assessing temporal co—oscillations of vegetation and climate.
3.3 Assessment of land cover change on time series decomposition

In the above analyses we did not aim to explicitly detect the effect of land cover or land use change (LCLUC), but nevertheless

LCLUC could have an influence on our NDVI classification (Fig. 2). We assessed whether changes in vegetation cover over the
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Figure 2. Classification of land surface by dominant scale of variability in NDVI and climate, and its relation to land cover and mean
climate. a. Dominant scale of variability was determined for NDVI, T, and Prec separately for each grid cell and summarized as unique
combinations between variables (S — short—term, A — seasonal, L — longer—term, T — trend, listed in order NDVI, Tq;,, Prec). Only the
11 most common classes are shown. The semi-annual cycle is included in the seasonal band. b+c. Sankey diagrams (river plots) showing
associations of pixels for (b) Evergreen broadleaf forest (EBF) and (c) regions of dominant long—term oscillations in NDVI (LAS class) to
oscillation regime (FFT), land cover class (GLC2000) and Koppen—Geiger (KG) climate class. The width of the ribbons is proportional to the
area that is commonly classified into the corresponding GLC2000, KG or oscillation classes. DBF: Deciduous broadleaf forest, Hb_closed:
closed herbaceous land cover, DSh: deciduous shrublands, HbSh_sparse: sparse herbaceous and shrub vegetation, Equatorial: KG class A,

Arid: KG class B, WarmTemp: KG class C.
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30-year period severely affected our classification by inspecting pixels with >25% change in fraction of trees, short vegetation,
or bare ground according to (Song et al., 2018). Notably, very few of such pixels showed marked signs of land cover change
reflected in NDVI time series at all, which is likely due to the coarse spatial resolution of the data used in this study as compared
to previous studies focused on detecting LCLUC (Song et al., 2018; Fensholt et al., 2015): At-at half-degree resolution, most
pixels represent mixed signals which obscure most of the details that would allow for detecting land cover changes. In those
pixels where we did see a clear progression in NDVI over time, the method did adequately capture this progression, e. g. by
correctly reflecting an increasing amplitude of the seasonal cycle and/or shifting baseline (Sup. Fig. $6S7). However, most of
such pixels with pronounced positive or negative NDVI progression located in agricultural areas or areas of urbanization, which
had a priori been excluded from downstream analyses. Overall, the change of vegetation over time did not have a widespread

influence on the classification of dominant scale and oscillation regimes at the given spatial resolution.
3.4 Correlations of NDVI with climate on multiple scales

To inspect relationships of vegetation with climate at multiple time scales, we correlated NDVI with T,;,- and Prec at each
pixel for each time scale (Fig. 3). We found different correlation patterns depending on the time scale: While-while all possible
combinations of correlation between NDVI and T,;,- or Prec exist at the seasonal scale, short—term and longer—term scales
show predominantly T,;,.+/Prec— (+/-) or T,;.—/Prec+ (—/+) relationships. On the seasonal scale, NDVI correlates positively

with T,;,- and Prec above 40°N, whereas in the other latitudes all possible relations are observed. Especially South America

shows a highly diverse pattern of correlations. The-Differences exists across the tropics, where South America and South—East
Asia display mainly negative correlation with Prec, whereas African tropics display positive correlation with Prec. Semi-arid
regions show negative correlations with Ty, as would be expected. While some of the patters are known, this correlation of
decomposed oscillations reveals a more differentiated picture of ecosystem variability in comparison with the undecomposed
data (Sup. Fig. $7)-S8). Notably, correlations on short— and longer—term scales partially show opposite signs compared to the
seasonal scale, e. g. in South America, South Africa and Central America. Repeating the analysis with Spearman correlation
and partial correlation returned similar results (Sup. Fig. $8-9>-59-10). Due to the known saturation effects of NDVI against
plant productivity over areas of dense biomass, we repeated the analysis with MODIS EVI. We found overall similar results

across time scales, but correlations with T,;,. turned from negative to positive in parts of Central and South America, as well

as India (Sup. Fig. S11), indicating that NDVI saturation may affect the results obtained from GIMMS long—term records in

2

Some arcas.
Tn-the-correlation-analysis—We again compared the observed patterns with vegetation types, to understand how different
ecosystems react at different time scales, and found that different land cover classes showed distinct correlation patterns
(Fig. 3b+c). Broadleaf evergreen forest shows the most diverse correlations on seasonal scale (Fig. 3b). For short—term os-
cillations, the strongest correlations were found in semi—arid shrublands and savannas, which spatially coincide with patterns
observed in the longer—term: For-for longer—term oscillations, the strong correlation Prec+ and T,;,,— was again related primar-
ily to shrublands and savannas (Fig. 3a blue areas, Fig. 3c). We also observed a widespread positive longer—term correlation of

NDVI with T;, in the northern latitudes.
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Comparing with static classifications, we found that Koppen—Geiger climate classes had the most prominent differentiating
effect for correlation patterns, and different climate classes occupy distinct patterns in this “correlation space” across scales
(Sup. Fig. S16S12). Different land cover types generally show similar correlations within one climate zone, but exceptions
exist (Sup. Fig. S19S13). Most prominently, EBF shows the most heterogeneous, spatially varying correlations on seasonal
scale. All land cover types show a confined correlation pattern of mainly T,;,.+/Prec— or T,;.—/Prec+ at the longer—term scale
(Fig. 3c), which is further differentiated by climate zone (Sup. Fig. SH—12S14).

Assessing correlations across the different time scales, we find that the majority of northern temperate regions (Kdppen class
D) is positively correlated with T,;,- on all time scales, but correlation with Prec varies (zero for short—term and longer—term,
seasonal scale: generally negative on the coast, positive in the interior continent). The equatorial region, South America, Africa,
and Southeast Asia exhibit different correlation patterns with climate despite similar land cover types (tropical forest). In some
regions, opposing correlations can be observed across time scales (Fig. 4a). For example, correlation of NDVI with T,;,- in
South Africa varies from negative on the short—term scale, over positive on seasonal scale, back to negative on longer—term
scale. As another example, on the east coast of Australia, NDVI has low correlation with precipitation on the seasonal scale but
high in the longer—term. Assessing this globally, correlations between NDVI and T,;, show inverted signs between seasonal
and longer—term scales in 15.4% of vegetated land surface area (Fig. 4a+c). The same is true for NDVI and Prec in 27.3% of
vegetated land surface area (Fig. 4b+c).

In summary, we find that correlations between NDVI and climate variables can change strongly between time scales. Semi—
arid ecosystems show most prominent short-term and longer—term signatures, while tropical rainforest show the most diverse
relationships between variables. These patterns point to complex ecosystem responses to climate at different time scales,

indicating that scale—specific ecosystem characterization is necessary to fully understand their temporal dynamics.
3.5 Comparison of Fast Fourier Transformation with Empirical Mode Decomposition

FFT decomposes a signal in the frequency domain under the assumption that the underlying signals are sinusoidal, time—
invariant, and additive (Brockwell and Davis, 2006). Although resulting power spectra and frequency—invariant modes of
oscillation are conveniently interpretable, not all ecological processes can be expected to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>