Answers to the questions:

Reviewer #3:

1. Comment: Chen et al. used a long transect dataset to reveal the relationships between leaf delta15N and leaf metallic nutrients. This study is good and dataset is valuable.

Answer: Thanks for your comments.

2. Comment: It should give a more general introduction about the leaf 15N. What is the meaning of leaf 15N value can be given?

Answer: Thanks for your comments. We have added the statement about leaf $\delta^{15}N$ (mark in blue color) in the introduction section as follows,

Nitrogen (N) cycling has received considerable attention, because N is the key element in regulating productivity of terrestrial ecosystems (Fay et al., 2015; Wieder et al., 2015) and many nitrogenous compounds generating from N cycling are associated with major environment issues (Bourgeois et al., 2018; Desmit et al., 2018). Natural N isotopic technique has been widely taken as a powerful tool in exploring the N biogeochemical cycling (Evans, 2001; Robinson, 2001), and nitrogen isotopic composition (δ^{15} N) in leaf has been usually regarded as an integrator of N cycling (Evans, 2001; Robinson, 2001; Houlton et al., 2006, 2007; McLauchlan et al., 2007, 2013). This might be associated with the fact that leaf δ^{15} N could indicate soil N availability (Craine et al., 2009; Högberg et al., 2007). Thus, revealing the potential factors that influence leaf δ^{15} N and investigating the relationships between these factors and leaf δ^{15} N could help improve our current understanding of N cycling (Craine et al., 2009; Högberg, 2012).

3. Comment: Why did not include the climate factors into the analysis? As we know the climatic factors are the most important factors in controlling leaf isotope values. **Answer:** Yes, as we had mentioned in the introduction section, climatic factors, such

as temperature and precipitation, have been reported to exert important influences on the variations in leaf δ^{15} N. However, we have emphatically explored the relationships between leaf δ^{15} N and temperature and precipitation in another manuscript (Chen et al., under review). So in this manuscript, we just focused on the relationships between leaf δ^{15} N and metallic nutrients and did not include the climate factors.

4. Comment: The AIC value is more useful to select which modeling is more powerful to build the relationships between isotope values and nutrients (Tables 1). Answer: Thanks for your comments. We have calculated the *AIC* values of each model as in Table 1. The model 3 has the lowest *AIC* value of 1058.3, thus, the model 3 is the best for explaining the variations of leaf δ^{15} N. Meanwhile, we find that the *AIC* value of model 3 is only slightly higher than that of model 1, which means adding leaf Fe, Mn and Zn could not significantly improve the goodness of fit of the model 3 compared with that of model 1. Thus, the results of *AIC* values are also consistent with the results of R^2 or adjust R^2 , i.e. the R^2 or adjust R^2 of model 3 is only a little larger than that of model 1. Comparison of the two models shows that leaf K, Ca, Mg are the major factors the main driving factors of leaf δ^{15} N.

Table 1. Multiple linear regressions of leaf δ^{15} N against leaf metallic nutrients based on ordinary least-square (OLS) estimation.

Model	R^2	Adjust R ²	AIC	Р	
1	0.543	0.540	1091.5	< 0.001	
2	0.150	0.145	1404.6	< 0.001	
3	0.557	0.551	1058.3	< 0.001	

Note: Model-1 is the multiple regression of leaf δ^{15} N against leaf K, Ca and Mg; Model-2 is the multiple regression of leaf δ^{15} N against leaf Fe, Mn and Zn. Model-3 is the multiple regression of leaf δ^{15} N against leaf K, Ca, Mg, Fe, Mn and Zn. AIC, Akaike Information Criterion.