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Abstract. Multiple lines of evidence from observation- and model-based studies show that anthropogenic greenhouse gas emis-

sions cause ocean warming and oxygen depletion, with adverse impacts on marine organisms and ecosystems. Temperature

is considered as one of the main indicators of climate change, but, in the thermocline, anthropogenic changes in biogeo-

chemical tracers such as oxygen may emerge from the bounds of natural variability before changes in temperature. Here, we

compare the local time of emergence (ToE) of anthropogenic temperature and oxygen changes in the thermocline within an5

ensemble of Earth system model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5).

Anthropogenic deoxygenation emerges from natural internal variability before warming in 35±11% of the global thermocline.

Earlier emergence of oxygen than temperature change is simulated by all models in parts of the subtropical gyres of the Pacific

and the Southern Ocean. Earlier detectable changes in oxygen than temperature are typically related to decreasing trends in

ventilation. The supply of oxygen-rich surface waters to the thermocline is reduced as evidenced by an increase in apparent10

oxygen utilisation over the simulations. Concomitantly, the propagation of the warming signal is hindered by slowing ven-

tilation, which delays the warming in the thermocline. As the magnitudes of internal variability and simulated temperature

and oxygen changes, which determine ToE, vary considerably among models, we compute the local ToE relative to the global

mean ToE within each model. This reduces the inter-model spread in the relative ToE compared to the traditionally evaluated

absolute ToE. Our results underline the importance of an ocean biogeochemical observing system and that the detection of15

anthropogenic impacts becomes more likely when using multi-tracer observations.
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1 Introduction

Carbon emissions from human activities are causing ocean warming (Rhein et al., 2013) and ocean deoxygenation, i.e. a

decrease in the oceanic oxygen (O2) concentration (Sarmiento et al., 1998; Bopp et al., 2002; Matear and Hirst, 2003; Battaglia

and Joos, 2018). Both warming and deoxygenation adversely affect marine organisms and ecosystems and the services they

provide (e.g. Pörtner et al., 2014; Deutsch et al., 2015; Gattuso et al., 2015; Magnan et al., 2016).5

All major ocean basins have experienced a significant warming over the last few decades. Warming is generally strongest

at the surface and weaker at deeper layers, indicative of heat penetrating from the surface towards the deep ocean as expected

from atmospheric greenhouse gas forcing. The strongest warming in the top 2000 m has been observed in the Southern Ocean

(Roemmich et al., 2015) and the tropical/subtropical Pacific and Atlantic Ocean (Cheng et al., 2017). On regional to local scale,

the anthropogenic warming signal may be masked by natural interannual to multi-decadal variability. For example, decadal-10

scale cooling trends in the tropical Pacific and Indian oceans may arise from natural El Nino-Southern Oscillation and/or Indian

Ocean Dipole variability (Han et al., 2014). Similarly, decadal variability in the Atlantic Meridional Overturning is observed

to modulate temperature and heat content change in the North Atlantic (Chen and Tung, 2018). Global climate models, such

as the Earth system models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) reproduce

the long-term trend in global ocean heat content over the last 50 years when uncertainties of observation-based estimate and15

internally generated natural variability are taken into account (Frölicher and Paynter, 2015; Cheng et al., 2019).

Concomitant with ocean warming, observation-based studies indicate that the global ocean oxygen content has decreased

since 1960 (e.g. Schmidtko et al., 2017). Increased ocean surface temperature reduces oxygen solubility, limiting atmospheric

oxygen dissolution into the upper ocean. In subsurface waters, oxygen concentration is also affected by ventilation, remineral-

isation of organic matter and air-sea disequilibrium but the oxygen decrease is mostly dominated by a reduction in ventilation20

and increased consumption (Bopp et al., 2002, 2017; Hameau et al., 2019). The largest losses are located in the Pacific Ocean

(equator and northern hemisphere) and the Southern Ocean. However, observations are relatively sparse and only start during

the late industrial period. It remains therefore still difficult to precisely distinguish human caused trends from natural variations

in O2. Modelling studies also agree on the sign of oceanic O2 changes, but likely underestimate the magnitude of loss (Cocco

et al., 2013; Bopp et al., 2013). In particular in the tropical regions, models are not able to reproduce observed O2 decrease in25

equatorial low-oxygen zones (Stramma et al., 2008; Cocco et al., 2013; Cabré et al., 2015).

It is expected that ocean warming and deoxygenation, and the combination thereof, increases the risk of adverse impacts on

marine organisms and ecosystem services (Pörtner et al., 2014). Warming of the ocean influences the physiology and ecology

of almost all marine organisms. Reduced oceanic O2 concentrations can disrupt marine ecosystems by pushing organisms

to their species-specific limits of hypoxic tolerance, below which the species are no longer able to meet their metabolic O230

demand. The species-specific metabolic demand of O2 is also a function of temperature, as warmer temperatures increase

metabolic rates and oxygen requirements. At the same time, higher ocean temperatures also decrease oxygen supply through

reduced ventilation, enlarging the regions with limited O2 concentrations and thus shifting ecosystem distribution (Cheung

et al., 2011).
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Beyond the combined impact of physical and biogeochemical changes, an interesting question is whether anthropogenic

changes in the ocean are first detectable in physical variables such as temperature (T) or in biogeochemical variables such as

O2, pH, or DIC (Joos et al., 2003; Keller et al., 2015). The answer may have implications for measurement strategies to detect

anthropogenic changes as well as for the impacts of physical and biogeochemical change on marine life. On the one hand,

physical processes generally influence the biogeochemistry of the ocean. For example, global warming increases surface ocean5

temperature, which reduces O2 solubility and decreases air-sea gas exchange of O2. On the other hand, O2 is also influenced by

non-thermal processes, such as respiration and the redistribution by ocean circulation and mixing. Respiration of organic matter

in the ocean interior will have a larger influence on O2 in a more stratified and less ventilated ocean. One could therefore expect

that, under global warming, the combined effect of increased O2 consumption and decreased O2 solubility will accelerate the

O2 depletion in subsurface waters and that O2 be detectable before the warming reaches that layer.10

In the context of climate change, the distinction between anthropogenic induced changes and natural variability is pivotal to

gain understanding on O2 and temperature changes. The concept of Time of Emergence (ToE; Christensen et al., 2007; Hawkins

and Sutton, 2012) is often used to determine the point in time when the anthropogenic signal becomes larger than natural

variability. ToE has been broadly used in climate change detection for physical climate variables (e.g. surface temperature:

Hawkins and Sutton, 2012; Frame et al., 2017), land carbon fluxes (Lombardozzi et al., 2014) or marine biogeochemical15

variables (e.g. pH, alkalinity, DIC, pCO2: Hauri et al., 2013; Keller et al., 2014; marine biological productivity: Henson et al.,

2016). A limited number of studies addressed anthropogenic deoxygenation detection in the subsurface layers (Rodgers et al.,

2015; Frölicher et al., 2016; Henson et al., 2016; Long et al., 2016; Henson et al., 2017; Hameau et al., 2019). Only one study

(Hameau et al., 2019), using a single model, investigated ToE of temperature in the thermocline. One main finding of their

study is that anthropogenic driven ocean warming emerges much earlier than the O2 signal in low and midlatitude regions.20

This is due to the opposite effect of decreases in O2 solubility and O2 consumption, delaying the O2 changes. In the high

latitudes and the Pacific subtropical gyres, deoxygenation emerges before ocean warming in their model. This is because the

decrease in oxygen solubility is reinforced by an increase in O2 consumption, leading to strong O2 depletion.

Even though this earlier study indeed identifies regions with earlier emergence of O2 in comparison with temperature, con-

sistent with our outlined hypothesis above, it is currently unclear if this single-model result is robust across a suite of different25

Earth system model simulations. A multi-model study that addresses and compares the emergence of anthropogenic warming

and of deoxygenation in the thermocline is currently missing. However, such a comparison across models is delicate, as the ab-

solute years of emergence (Keller et al., 2014; Henson et al., 2017) is highly dependent of the ToE methodology. We therefore

introduce a relative ToE, considered as a deviation relative to the model mean ToE for improved model intercomparison.

In this study, we analyse and compare the relative ToE(T) and ToE(O2) in the thermocline (200 – 600 m) using nine different30

CMIP5 Earth system models. We also assess the impact of using the relative ToE in comparison to the classical approach using

absolute ToE. In addition, we discuss the magnitude of background internal variability and anthropogenic signal, and their

translation into ToE. Finally, we analyse the role of solubility, ventilation and respiration for the emergence of anthropogenic

changes in oxygen and temperature.
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2 Method

2.1 Earth system models

We use output from eight different configurations of four Earth system models (ESMs) that participated in the Coupled Model

Intercomparison Project 5 (CMIP5; Taylor et al., 2012): GFDL-ESM2M, GFDL-ESM2G, HadGEM2-CC, IPSL-CM5A-LR,

IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-ESM-LR and MPI-ESM-MR (Table 1). In addition, output from simulations with the5

Community Earth System Model (CESM1.0) conducted at the Swiss Supercomputing Centre are included in the analysis. The

horizontal ocean model resolution is generally about 1° (both GFDL models and CESM1.0). Exceptions are the HadGEM2-CC

and IPSL models, which have a horizontal resolution of about 2° and the MPI models, which have a horizontal resolution of

about 0.4° (MR) and 1.5° (LR). Of the nine models, all but one (GFDL-ESM2G, isopycnal vertical coordinate) use a pressure-

based vertical coordinate. For additional information on the individual model setups, the reader is referred to the references10

listed in Table 1.

Both the CMIP5 ESMs and the CESM1.0 were run under prescribed anthropogenic and natural greenhouse gas and aerosol

forcing. All simulations span the historical 1861-2005 period and the 2006-2100 period following the Representative Con-

centration Pathway 8.5 (RCP8.5) scenario. The RCP8.5 represents a high emission scenario with a radiative forcing of 8.515

Wm−2 in year 2100 (Riahi et al., 2011). These simulations are complemented with output from corresponding control runs

with constant preindustrial forcing. The CESM1.0 simulations differ from the CMIP5 simulations only with regard to the spin-

up procedure: The CMIP5 model simulations are branched off from preindustrial control simulations, whereas the CESM1.0

simulation is an extension of a last millennium simulation (Lehner et al., 2015). For this study, all CMIP5 models are used

for which the 3-d output of oxygen, temperature and salinity for all simulations were available on the Earth System Grid. We20

regridded all model output onto a 1° x 1° grid. Even though the model drift in the control simulations is relatively small in

the thermocline (3.6±2.4 x 10−3 mmol m−3 year−1 for trend in global mean oxygen concentration and 7.2±6.6 x 10−5 °C

year−1 for trend in global mean temperature averaged over 200 – 600 meters), we detrended all model output with a linear

trend obtained from the preindustrial control simulation in each grid cell. The CESM1.0 simulation also shows some model

drift.Therefore, an exponential curve was fitted to the annual output of its associated control simulation at each grid cell. The25

detrending procedure is described in detail in Hameau et al. (2019).

2.2 Multi-model analysis methods

We use the concept of Time of Emergence (ToE; e.g. Hawkins and Sutton 2012) to compare anthropogenic changes in O2

and temperature (signal; S) with internal natural variations (background noise; N ). We define the absolute ToE as the first

year when the anthropogenic signal S becomes equal or larger than twice the noise of internal natural variability N (Eq. 1;30

following Hameau et al., 2019).

ToE :
S

N
> 2 (1)
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We estimate N at each grid cell by calculating one standard deviation (SD) of the annual means in O2 and T from the prein-

dustrial control simulation. Thus, N represents the noise due to the internal chaotic variability of the climate system. Note

that this definition of the noise differs from Hameau et al. (2019), who used internal plus externally-forced natural variability

from a last millennium simulation to assess the standard background noise. S is estimated at each grid cell from the forced

simulation by fitting the annual evolution of the considered variable with a low-pass filter (cut-off period of 80 years; Enting,5

1987) in order to remove short term variations, e.g. associated with internal natural variability. To ensure that S indeed detects

anthropogenic trend, we also apply a criterion for the sign of S to define ToE: S needs to have the same sign as the difference

between the last 30 years of the future simulation and the preindustrial average for the corresponding variable and grid cell.

Annual O2 and T data are first averaged over the thermocline (200 – 600 m) at each horizontal grid cell and local S and N are

computed from these depth-averaged values for each model, variable and grid-point.10

In order to minimise inter-model differences and to highlight the common spatial patterns of ToE, we introduce a new metric,

the relative ToE (ToE rel). It is defined as the absolute ToE (ToE abs) minus the global area-averaged ToE (ToEglob; Eq. 2).

ToE rel = ToE abs−ToE glob (2)

Median and spread (interquartile range) of the multi-model estimations are computed from the annual outputs of the model15

ensemble and uniform weights are applied to each model configuration to compute those statistics. Tests have been performed

using a weighted median as several simulations stem from the same model family (CESM x 1; GFDL x 0.5; HadGEM2 x 1;

IPSL x 0.3; MPI x 0.5). However, median and interquartile range of the multi-model ensemble are not sensitive to the weighting

scheme applied (not shown). Because an anthropogenic signal may not emerge before the end of the simulation in year 2100,

ToE can be undefined. We therefore request that ToE values is defined for at least seven out of nine models to compute the20

multi-model statistics (median and spread). If more than two models have an undefined ToE, we mask the grid points in maps

of the multi-model median and of the multi-model the spread.

To understand the processes behind the simulated changes in ocean O2, we decompose the O2 changes into solubility (O2, sol)

or thermal components and Apparent Oxygen Utilisation (AOU) or non-thermal components:25

[O2] = [O2, sol] + [-AOU] (3)

The solubility component for each model is computed following Garcia and Gordon (1992), which requires local salinity and

temperature output. The solubility depends mostly on temperature with a small contribution of salinity. The non-thermal com-

ponent ([-AOU]) is deduced from the difference between O2, sol and O2 following Eq. 3. In Sect. 3.4, we will use changes in

[-AOU] as a proxy for changes in water mass age and ventilation. Output of an ideal age tracer is not available for most models.30

A decrease in water exchange between the surface ocean and the thermocline typically leads to an increase in water mass age

in the thermocline. Therefore, changes in ventilation affect the balance between the rate of supply of O2-rich waters from

the surface and the rate of O2 consumption by remineralisation of organic matter. It has been demonstrated in earlier studies
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(e.g. Gnanadesikan et al., 2012; Bopp et al., 2017; Hameau et al., 2019) that a decrease in [-AOU] typically corresponds to a

decrease in ventilation and an increase in water mass age, as simulated changes in the remineralisation rates of organic material

and in associated O2 consumption are relatively small over the 21st century.
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3 Results

3.1 Relative Time of Emergence

We start by discussing the multi-model median and spread of relative ToE estimates for potential temperature (Fig. 1a, b) and

dissolved oxygen (Fig. 1d, e) changes in the thermocline (200 – 600m).

3.1.1 Anthropogenic warming5

ToE rel(T) shows early emergence in low latitudes and between 30° S and 60° S, and late emergence in the western tropical

Pacific, in the Atlantic subpolar gyre and the subtropical gyres of the Indian and Pacific Ocean (Fig. 1a). The northern Indian

Ocean and the eastern equatorial Atlantic stand out as the regions with earliest emergence in anthropogenic warming, i.e. 70

years (median of nine ToE rel(T)) before the global average ToE. No emergence by the end of the 21st century (for at least 3

models; cf. Sect. 2.2) is simulated in the subtropical gyres of the Indian and the Pacific oceans, south of Greenland and locally10

south of 60° S.

The multi-model spread in ToE rel(T) is generally small in regions with early emergence (Fig. 1b). This is the case in many

regions of the Pacific and the Southern Ocean (±15 years). However, in the Atlantic subtropical gyres and in the Arabian Sea,

the early ToE rel(T) estimates are associated with a wider spread across models (±25 to ±45 years). Large inter-model spread15

is also found in the Kuroshio extension and in the Indian and Atlantic region of the Southern Ocean (±50 years). In the global

average, the multi-model spread for ToE rel(T) is 25 years.

The patterns of ToE rel(T) for each individual model are shown in Fig. 2. As described previously, low latitude regions and

parts of the Southern Ocean show earlier emergence compared to mid- and other high-latitude regions. The HadGEM2-CC20

model (Fig. 2c) is an exception in that respect as temperature emerges later (+30 to +50 years) than the global average in

the tropical Atlantic and Pacific. In the Pacific and Indian subtropical gyre regions, the models show late (IPSL family) or no

emergence. And finally, CESM and the IPSL family models are the only models that show emergence before the end of the

21st century in the subtropical gyres of the Pacific.

25

3.1.2 Anthropogenic deoxygenation

In contrast to ToE rel(T), the pattern of ToE rel(O2) is relatively homogeneous (Fig. 1d) and only varies by about ±40 years

between regions. Early emergence is found in the subtropical gyre of the North Pacific, the northern North Atlantic, the At-

lantic sector of the Southern Ocean, and generally south of 60° S. No emergence is simulated in 47 % of the ocean area by the

end of the 21st century including large parts of the tropics and the subtropical gyres of the Atlantic Ocean and the Indian Ocean.30
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The multi-model spread for ToE rel(O2) is 20 years in the global average and thus somewhat smaller than for ToE rel(T). The

models show a high spread for ToE rel(O2) (±50 years) at low latitudes, such as in the southern Arabian Sea or in the equatorial

Atlantic, whereas high model agreement is found in parts of the central North Pacific and the northern Indian Ocean (spread

of ±15 years) (Fig. 1e). In the eastern tropical Atlantic, the spread for ToE rel(O2) is, despite a smaller global mean spread,

larger than for ToE rel(T). In summary, even though the median pattern of ToE rel(O2) is relatively uniform in comparison to5

ToE rel(T), the spread for ToE rel(O2) varies between regions as for ToE rel(T).

The multi-model median O2 signal does not emerge in 47 % of the global thermocline as noted above. Mid and low latitudes

show no emergence by the end of the 21st century in most of the models (Fig. 3). However, the exact regions of no emergence

differ between models. This regional mismatch, in combination with the requirement that at least seven out of nine models10

need to show an emerging signal (Sect. 2.2), explains why in the multi-model analysis many grid cells are masked, indicating

no emergence in the median (Fig. 1d-f). The area fraction with no emerging O2 signal is smaller in individual models than in

the multi-model median and ranges between 10 and 30 %.

The analysis of ToE rel(O2) for individual models reveals some additional notable differences (Fig. 3). GFDL-ESM2M,15

GFDL-ESM2G, HadGEM2-CC and CESM1.0 simulate early emergence in the Southern Ocean, but the IPSL models project

no emergence of deoxygenation in this region by the end of the 21st century. In addition, the IPSL models and the CESM1.0

model show relatively early emergence in many grid cells of the western tropical Pacific, a region with no emergence in other

models. ToE rel(O2) also diverges across the models in the Atlantic subtropical gyres: in the HadGEM2 and IPSL simulations,

oxygen changes are simulated to emerge relatively early (ToE rel(O2)∼ 40 to 60 years), whereas in the GFDL, MPI and CESM20

simulations, the changes are not yet detectable by the end of the 21st century.

3.2 Relative versus absolute ToE

Mapping ToErel for different models is intended to emphasise common patterns across models by removing the global mean

bias between models, while model-model differences in ToEabs are indicative of an overall model uncertainty.

The multi-model spread for ToEabs is by design larger than the multi-model spread for ToErel for temperature (Fig. 1b, c) and25

oxygen (Fig. 1e, f), while spatial patterns are similar for ToErel and ToEabs. On global average, the spread is reduced from ±30

years for ToEabs(T) to ± 23 years for ToE rel(T) and from ±20 years for ToEabs(O2) to ±17 years for ToE rel(O2). Regionally,

the reduction can be larger. For example, in the equatorial regions, the Atlantic and the Southern Ocean, the spread is reduced

by 20 to 50 years when computed for ToErel(T) instead for ToEabs(T). Similarly, the spread in ToE(O2) is reduced from ±35 to

±5 years in parts the North Pacific.30
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3.3 Internal natural variability and anthropogenic signals

The ToE allows for a comparison across climate models, by combining climate sensitivity to anthropogenic forcing and natural

variability in one metric. The magnitude and the spatial patterns of the internal natural variability (SD) and of the anthropogenic

signal for both thermocline temperature and oxygen are discussed next.

5

The multi-model median of internal natural variability for thermocline temperature fluctuates with an amplitude typically

ranging between ±0.1 °C in the tropics and the Arctic Ocean, and ±0.5 °C in mid-to-high latitudes (Fig. 4a). SD(T) is the

largest (up to ±0.9 °C) in the Western Boundary Currents such as the Kuroshio Current and the Gulf Stream. The variability is

also relatively large along the equatorward flanks of the subtropical gyres. It is also in these regions where SD(T) differs most

among models (up to ±0.5 °C along the North Atlantic Current; Fig. 4c).10

In the multi-model median, temperature in the thermocline is projected to increase on global average by 1.2±0.7 °C (Fig.

4b) by the end of the 21st century under the RCP8.5 scenario relative to the period 1861-1959, in accordance with (Levitus

et al., 2009, 2012; Bilbao et al., 2019). Large warming of more than 4.0±0.7 °C is projected in the northern North Atlantic

and around the subantarctic water in the Indian and Atlantic Oceans (Fig. 4b and Fig. S4). We note that these regions are15

also characterised with the largest inter-model spread (±1.5 °C; Fig. 4d and Fig. S4). Finally, disagreement among models in

simulating changes in thermocline temperature is also large in the Arctic Ocean, possibly related to different simulated changes

in sea ice cover (Stroeve et al., 2012; Wang and Overland, 2012).

The combination of a strong signal and small variability typically results in early detection of the changes. This is the case20

in the Southern Ocean at 45° S (in the Atlantic and Indian regions; Fig. 1a), where the anthropogenic warming is strong (up

to 4 °C; Fig. 4b) but the variability is relatively small (0.1 °C to 0.3 °C; Fig. 4a). However, early emergence of anthropogenic

changes can also occur when the signal is relatively small, if the variability is even smaller. This is the case in the tropical

oceans such as in the Arabian Sea and the equatorial Atlantic, where water masses warm modestly (up to 1.5 °C), but vary

naturally between 0.1 °C and 0.2 °C only.25

Natural variability of dissolved oxygen concentrations is particularly large in the northern North Pacific and North Atlantic,

the Southern Ocean and along the equatorward boundaries of the subtropical gyres with SD(O2) of up to 10 mmol m−3 (Fig.

5a). The multi-model spread of SD(O2) (Fig. 5c) is about equally large as the median of SD(O2) (Fig. 5a) along the equa-

torward boundaries of the subtropical gyres. Looking at the individual model responses, the O2 natural variability shows a30

wide range of different patterns (Fig. S5). The GFDL and MPI models simulate high natural variability of oxygen in the entire

thermocline, whereas CESM, HadGEM2 and IPSL models show high variability regionally.
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The O2 concentration in the thermocline (Fig. 5b) is projected to decrease under global warming, in accordance with previ-

ous model studies (e.g. Sarmiento et al., 1998; Cocco et al., 2013; Bopp et al., 2017). The anthropogenic decrease in O2 is large

in the Southern Ocean, in the North Pacific subtropical gyre and in the North Atlantic subpolar gyre. In tropical regions, the

changes are projected to be small, except for the western Indian ocean, where more than 70% of the models project an increase

of O2 concentration. The simulated O2 changes differ most across models in high latitudes and in the subopolar gyres, as well5

as in the equatorial Indian ocean (Fig. 5d).

Despite differences in the simulated magnitude of O2 changes and natural variability patterns of O2 between the different

models, the resulting ToE rel(O2) are surprisingly robust across models. For example, the decrease in O2 spans from -12 to -40

mmol m−3 (Fig. S6) and SD(O2) spans from±5 to±15 mmol m−3 (Fig. S5) in the central North Pacific. Moreover, the spatial10

locations of the maximum O2 depletion differ across the models. However, ToE rel(O2) in this region is within ±10 years (Fig.

1d), with a relatively high confidence interval (±10 years). Another example is the CESM model. The very early detection of

anthropogenic changes (for temperature and oxygen) in the CESM model described in Sect. 3.1, results from a particularly

weak of internal variability (Figs. S3i and S5i; see also Hameau et al., 2019) combined with a high climate sensitivity of the

model (Figs. S4i and S6i). Using the ToErel allows the comparison of ToE resulting from CESM output with the results from15

the 8 models in spite of these biases (Figs. 3 and 2).

3.4 Comparison of ToE(O2) with ToE(T)

Are changes in O2 detectable earlier than warming in the thermocline? We examine this question with the help of Fig. 6, which

shows ToE(T) minus ToE(O2) for the individual models. In general, temperature changes are detectable before O2 changes in20

around 64±11 % of the thermocline (yellow to brown colours in Fig. 6). As discussed in section 3.1, the anthropogenic O2 sig-

nal emerges late or not at all in many low latitude regions, while the anthropogenic warming signal is emerging in most regions

and typically early around the equator. However, there are also areas where anthropogenic deoxygenation is detectable earlier

than anthropogenic warming in all models (green to blue colours in Fig. 6). These cover 35±11 % of the global thermocline

in the nine models. They are mainly located in the mid latitudes, especially between ∼15° N and 30° N in the North Pacific,25

around Antarctica (including the Ross and Weddell Sea), along the Western Australian Current and the Pacific southern sub-

tropical gyre region. Model results for the Atlantic are mixed. Some models suggest O2 changes to be detectable earlier than T

changes in the subtropical gyres (HadGEM2 and the IPSL family), whereas in other models the O2 signal does not even emerge.

A mechanistic explanation of early or late emergence of the O2 signal relative to the temperature signal is not straightforward30

as two ratios (S/N ) are involved. Nevertheless, changes in apparent oxygen utilisation (∆[-AOU]; Fig. 7) provide some insight

into underlying mechanisms. We use ∆[-AOU] as a proxy for changes in water mass age and ventilation as noted in Sect 2.2.

10
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It is striking that regions with early emergence of anthropogenic O2 compared to T show typically a decrease in [-AOU]

in the future (Fig. 6 versus Fig. 7). [-AOU] is decreasing in 77±8 % of the areas with early emergence of O2, while only

22±8 % of these regions show an increase in [-AOU] (Fig. 8; blue). On the other hand, [-AOU] is increasing in most of the

regions (62±12 %) where T is emerging before O2 (Fig. 8; green). We interpret these results as follows. A decrease in [-AOU]

suggests that the ventilation of the thermocline is decreasing. Under global warming, this can be due to an increase in surface5

stratification (not shown; see also Gnanadesikan et al., 2007). In turn, the supply rate of O2 from the surface is decreasing,

and consequently thermocline [O2] and [-AOU] are both decreasing inducing a strong and thus early detectable anthropogenic

deoxygenation. At the same time, a decrease in ventilation tends to slow down the penetration of the anthropogenic warming

signal from the surface into the thermocline, and similarly the penetration of the thermally driven O2 signal ([O2, sol]). The

detection of these signals is thus delayed compared to AOU and this may partly counteract the effect of ventilation on the early10

detection of O2. There are some exceptions to this mechanism. For example, the GFDL models simulate an increase in [-AOU]

around 30° S - 120° W, while O2 emerges before T. The GFDL models simulate weak warming and even some cooling in this

part of the thermocline (Fig. S4), moderate T variability (Fig. S3) and, therefore, no or late emergence of the warming signal

(Fig. 2). Thus, in this special case, the early emergence of O2 relative to T is due to the absence of large warming in a region

with noticeable temperature variability.15

Regions where the warming signal is detectable before the deoxygenation are typically associated with an increase in [-

AOU]. Such increase counteracts the decrease in [O2, sol], leading to small changes in [O2], which are thus often not detectable.

There are again a few exceptions. For example, the IPSL models simulate a decrease in [-AOU] in the northern North Pacific,

but an earlier ToE for T than for O2 in this region.20

In summary, temperature is in general detectable earlier than anthropogenic O2. However, there are large ocean regions

where anthropogenic O2 changes are detectable earlier in the thermocline in all models. Early emergence of deoxygenation

relative to warming is typically detected in regions where thermocline ventilation and [-AOU] are decreasing over the simula-

tion and late emergence of O2 changes where ventilation and [-AOU] are increasing.25
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4 Discussion and conclusions

We analysed the time of emergence (ToE) of human-induced changes in oxygen (O2) concentrations and temperature (T) in the

thermocline (200 – 600 m) using nine Earth system model simulations of the climate over the historical and the future period.

Using ToE as a metric allows for the assessment of anthropogenic changes by comparing the magnitude of the anthropogenic

trend with the magnitude of natural variability. Both these magnitudes vary among models, e.g., due to different climate sensi-5

tivities, and this metric was thus found to be relatively strongly model-dependent. Here, we introduced a new metric, the relative

ToE (ToE rel), to better compare ToE across different models and variables. ToE rel is computed by subtracting the global mean

ToE from the ToE field. Absolute years of emergence are thus not considered by this metric and it only illustrates whether a

signal emerges relatively early or late within a model. We investigated whether anthropogenic T or O2 changes emerge first

and link patterns in ToE(T)-ToE(O2) to changes in apparent oxygen utilisation (∆[-AOU]) and ventilation of the thermocline.10

In addition, we also identified the processes for earlier/later detection in O2 changes compared to temperature changes.

A short-coming of our study is that all the Earth system models included have a relatively coarse resolution for simulating the

complex processes in the O2 minimum zones (Margolskee et al., 2019). Perhaps not surprising, Earth System models diverge

in projecting physical and biogeochemical changes in these regions (Brandt et al. 2015; Cabré et al. 2015). Some models used15

in this study project a large increase in [-AOU] (Fig. 7) and considerable warming (Fig. S6) in the eastern tropical Atlantic,

likely indicative of an increasing ventilation (Gnanadesikan et al., 2007). Observations show a decrease in O2 and an expan-

sion of hypoxia in the tropics (Stramma et al., 2008, 2012) over recent decades, contradicting the long-term projections from

some models. However, these observed trends in the tropics may also be a result of natural variability acting on multi-decadal

timescales associated with the Pacific Decadal Oscillation.20

Comparing ToE estimates from different studies is delicate due to the model and method dependencies of ToE. Hameau

et al. (2019) showed that ideally the noise (N ) component of ToE should be estimated from simulations that include natural

variability forced by explosive volcanic eruptions and changes in total solar irradiance, especially when assessing regional to

global scale ToE estimates. However, these authors also find that on a grid cell scale, internal natural variability is typically the25

dominant contribution to overall natural variability during the last millennium. Therefore, estimating the noise from control

simulations that include internal natural variability only, as done in this study, appears justified.

Another limitation of our study lies in the assumption that the anthropogenic signal emerges from interannual to multidecadal

variability. The anthropogenic signal S and the noise N is estimated by smoothing the model output with a multi-decadal spline30

filter. Any potential natural centennial variations are retained in the signal S and removed from the noise N . Results from a

forced simulation over the past millennium with CESM1.0 show that potential biases in ToE arising from the neglect of long-

term natural variability are small for this model (Hameau et al., 2019). However, our multi-model analysis reveals centennial

variations in some grid cells and models causing multiple emergence of the signal from the noise (Fig. A1). This may bias the
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detection of the anthropogenic signal towards early emergence. Here, we constrained detection to partly circumvent problems

with re-emerging signals; we require that the trend of the signal at the time of emergence must have the same sign as the change

between the last and first 30 model years. Re-emerging signals are found in only a few grid cells, except in HadGEM2, and

centennial natural variability appears to play a minor role in these simulations. We expect therefore that our estimates of ToE

are reliable for the model ensemble.5

Published studies addressing the detection of anthropogenic ocean warming focus on the sea surface temperature. To our

knowledge, only a single study Hameau et al. (2019) using output from a single model is assessing ToE(T) in the thermocline.

Yet, the thermocline is habitat for many fish and other species. Warming in combination with other stressors such as deoxy-

genation, ocean acidification and hypocapnia, may reduce marine life habitat suitability and extent (e.g. Deutsch et al., 2015;10

Gattuso et al., 2015; Breitburg et al., 2018; Cheung et al., 2018).

We find that thermocline anthropogenic warming emerges first in low latitudes, followed by the Southern Ocean and the

high northern latitudes. No emergence is detected in parts of the subtropical gyres of the Pacific and Indian Ocean. The rapid

emergence at low latitudes is explained by the small internal natural variability, but moderate warming signals. Exceptions are15

the subtropical gyres in the Atlantic and the eastern equatorial Pacific, where it takes approximately two additional decades to

detect the temperature changes, mainly because of the relatively large internal natural variability there. The warming in mid- to

high latitude thermocline emerges approximately 60 to 80 years later than in low latitudes. No emergence is simulated for the

Pacific and Indian subtropical gyres, because the changes in temperature are relatively small and the internal natural variability

relatively high there (in accordance with Hameau et al., 2019). For comparison, surface temperature changes emerge at first in20

low latitudes and then in midlatitudes (Henson et al., 2017).

The time of emergence pattern of thermocline oxygen changes is almost opposite to the one of temperature. Rapid emergence

for O2 is simulated at midlatitudes, whereas low latitudes generally do not experience emergence of the O2 signal by the end

of the 21st century (Rodgers et al., 2015; Frölicher et al., 2016; Long et al., 2016). Even though the internal natural variability25

is low in the tropical regions, the O2 signal does not emerge from the noise, because the changes projected by the models are

even smaller. This is due to the opposite responses of O2 components. The thermal component is simulated to decrease (due

to temperature increase), but [-AOU] is on average projected to increase, counteracting the O2, sol trend (Frölicher et al., 2009;

Cocco et al., 2013; Bopp et al., 2017). Some regions show similar relative ToE but for different reasons. For example, in the

North Pacific subtropical gyre and the Southern Ocean, both the oxygen depletion and the natural variability are strong. In the30

Arabian Sea, natural variability and anthropogenic response are both rather weak. Nevertheless, the S/N ratio results in very

similar relative ToE for all these regions.

Comparing ToE across models is not straightforward. For example, the transient climate response of the individual models

and therefore the ocean heat uptake, thermocline warming and deoxygenation can be highly different (Bopp et al., 2013). In35
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addition, the simulated internal natural variability largely differs across models (e.g. Resplandy et al., 2015; Frölicher et al.,

2016). The CESM1.0, for example, shows very different absolute ToE values for oxygen and temperature compared to other

models, mostly due to a very weak internal natural variability (Hameau et al., 2019). We partly resolved these inter-model

discrepancies by introducing a new metric, the relative time of emergence. By normalising the ToE using the global averaged

ToE as reference allows for a more direct comparison with the other models. As a result, the patterns and time of emergence of5

anthropogenic changes in O2 and warming in CESM1.0 are more coherent with the other models for ToE rel than for the raw

(absolute) ToE.

Following Hameau et al. (2019), we compared the ToE(T) with the ToE(O2). We find that in most of the thermocline, the

anthropogenic increase in temperature is expected to emerge before anthropogenic O2 changes. However, in 35±11 % of the10

global ocean the O2 signal emerges before the temperature signal. In the Pacific subtropical gyres, the Southern Ocean and the

West Australian Current, the O2 signal emerges before the temperature signal in all 9 models. Thus, our multi-model analysis

confirms earlier findings using output from a single model only (Hameau et al., 2019). The early emergence of O2 suggests

that the monitoring of biogeochemical variables would be particularly useful to detect early signals of anthropogenic change

(Joos et al., 2003). Multi-tracer observations of both physical and biogeochemical variables may enable an earlier detection of15

potential changes than temperature-only data (Keller et al., 2015) in specific regions and for specific processes.

Hameau et al. (2019) established a direct link between the early emergence in O2 with a slow down of ventilation. A weaker

ventilation leads to a decrease in [-AOU], and therefore to a reduction in O2, with a minor role for organic matter export

changes in their simulation. We used [-AOU] as a ventilation age proxy for our model ensemble and concluded that the slow20

down of the ventilation induces O2 changes to be detectable before T changes in many regions. A slower ventilation seems

to shift the balance between O2 supply from the surface and O2 consumption by organic matter remineralisation. Moreover, a

more stratified upper ocean delays the propagation of the temperature signal from the surface into the subsurface waters. Note

that the exact locations of early O2 emergence and reductions in [-AOU] and ventilation diverge between the models. This is

partly due to model biases in terms of ocean dynamics. In addition, the use of depth coordinates to define a thermocline layer25

from 200 – 600 m may lead in our analysis to the inclusion of different water masses for different models. Another approach

would be to perform the analysis on isopycnal levels instead on depth levels.

To conclude, normalising ToE across models (relative ToE) or estimating ToE in relation to another variable (ToE(T) -

ToE(O2)), reduces the multi-model spread arising from method and model dependencies. We find that in about 35% of the30

thermocline anthropogenic O2 depletion emerges before anthropogenic warming. This relative early emergence of O2 is linked

to a more sluggish ventilation of these subsurface waters under global warming. Our study also suggests that temperatures in

the thermocline have already left the bounds of natural variability in much of the tropical ocean and that temperatures will have

left these bounds in most of the thermocline by 2100 under unabated global warming.
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Data availability. The CMIP5 simulations are available on https://esgf-node.ipsl.upmc.fr. The CESM1.0 simulations are available upon

request.

5 Figures
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Figure 1. Multi-model median (top panel) and spread (middle panel) of relative ToE for temperature (left column) and dissolved oxygen

(right column) for the thermocline (200 – 600 m). The spread is computed as the interquartile range. Multi-model spread of (lower panel)

absolute ToE estimates for (c) temperature and (f) dissolved oxygen. The hatched areas show regions with no emergence for at least 3 models.

For temperature (oxygen), the relative ToE estimates are shown for each model in Fig. 2 (3) and the absolute estimates in Fig. S1 (S2).
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Figure 2. Time of Emergence (ToE) of T in the thermocline (200 – 600 m) relative to the averaged ToE in that layer for each simulation. The

hatched areas show regions with no emergence by the end of the 21st century.The values of the global average ToE, ToEglob, are given above

each panel. The absolute ToE estimates are shown in Fig. S1.
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Figure 3. Time of Emergence (ToE) of O2 in the thermocline (200 – 600 m) relative to the averaged ToE in that layer for each simulation.

The hatched areas show regions with no emergence by the end of the 21st century. The absolute ToE estimates are shown in Fig. S2. The

global average ToE, ToEglob, is shown for each model
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Figure 4. Median (top panels) and spread (bottom panels) of multi-model natural variability (standard deviation of control simulation; left

panels) and changes by the end of the 21st century (right panels) of ocean temperature between 200 and 600 m. The individual responses for

each model are shown in Figs. S3 and S4.
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Figure 5. Median (top panels) and spread (bottom panels) of multi-model natural variability (standard deviation of control simulations; left

panels) and changes by the end of the 21st century (right panels) of O2 between 200 and 600 m. The hatched areas in panel b show regions

where at least 70% of the models do not agree on ∆O2 sign. The individual responses for each model are shown in Figs. S5 and S6.
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Figure 6. ToE(T) minus ToE(O2) for each simulation in the thermocline. Blueish colours indicate earlier emergence of oxygen. Brownish

colours indicate earlier emergence of temperature. The saturated colours mean that one of the variables has not emerged by 2099.
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Figure 7. Anthropogenic changes ((2070-2099 CE) minus (1861-1959 CE)) in [-AOU] in the thermocline for each model.
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Figure 8. Density distribution of [-AOU] changes by 2099 for the grid points where the O2 signal emerges first (blue) and where the

temperature signal emerges first (green) in the thermocline for the ensemble of 9 models. Each distribution is centred around the median

(dashed blue: -10.8 mmol m−3; dashed green: 3.3 mmol m−3).
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Figure A1. Period outside the range of natural variability for (a) oxygen concentration and (b) temperature in the thermocline for the model

HadGEM2. The time series show two example of the temporal evolution of the oxygen concentration (c) and temperature (d) for a single

grid point (red crosses in the left panels: Arabian Sea (c) and equatorial Atlantic (d)).
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