Reply to RC1:

Dear reviewer,

Thank you for your helpful comments. We have addressed your comments and make changes accordingly. Please find related contents in the document file with changes marked.

General comments:

The English in this manuscript needs to be improved to increase the readability of the text. The authors are advised to carefully review the entire manuscript for grammatical and syntax errors. Some examples of language that needs improvement are:

Response: Thanks for the comments. In the revised version, we have checked English expression both in grammatical and syntax.

Line 35: Need to change “were synthesized” to "are synthesized.”

Response: Done. Pls see line 36.

Line 241: Authors refer to sediment trap studies (plural) but only include one reference.

Response: In fact there are numerous sediment trap studies, so we change “(Rosell-Melé and Prahl, 2013)” to “(e.g., Rosell-Melé and Prahl, 2013 and references therein)” Pls see lines 265–266.

Awkward Syntax:

Line 13-15: “The applicability of these proxies has been examined in the South China Sea, but most of these studies were focused on a single proxy and hence did not allow for a direct comparison between them.”

Response: Sentence has been rephrased as “The applicability of these proxies has been examined in the South China Sea (SCS), but only one or two of them were studied in each work. Thereby, it is difficult to make a direct comparison between these proxies in this region.” Pls see lines 13–15.

Lines 49-50: “Due to the distinctive ecology of their source organisms, these temperature proxies differ in reflecting water temperatures in terms of, e.g., water depth and seasonality.”

Response: Sentence has been rephrased as “Due to the distinctive ecology of their source organisms (e.g., depth habitat and seasonal bloom), the temperature signals from these biologically derived proxies may differ substantially between each other.” Pls see lines 51–52.
Lines 321-323: “It should be noted that it remains unclear what causes the different iGDGTs distribution between those two eco-types, and the depth boundary to separate the two, likely 200–300 m, is not exactly determined (Jia et al., 2017; Kim et al., 2015, 2016).”

Response: Sentence has been rephrased as “The difference in iGDGTs distributions between those two eco-types of Thaumarchaeota is due to the use of different enzymes for iGDGTs synthesis (Kim et al., 2016; Villanueva et al., 2015).” (Pls see line 360-361) and “The occurrence of low $[2]/[3]$ ratios and low [Cren’] fractional abundances for most of our study sites is in agreement with the shallow water depths of these sites, as the depth boundary to separate the deep and shallow Thaumarchaeota, although not exactly determined, is likely 200–300 m (Jia et al., 2017; Kim et al., 2015, 2016).” (Pls see lines 365–367).

The discussion section on the seasonal bias of $U_{37}^{K'}$ is weak. Reported measured SSTs approach the upper limits of the Conte et al. (2006) calibration so a nonlinear relationship between $U_{37}^{K'}$ and SST is likely. Linear calibrations, including the one from Conte et al. (2006) used in this study, are hindered by a tendency to underestimate SSTs in warm regions. As such, it’s possible that the apparent bias towards production of alkenones during cool-seasons inferred from $U_{37}^{K'}$-reconstructed temperatures might be an artifact of this limitation. An example of this in the SCS is illustrated in Tierney and Tingley (2018). Furthermore, support for the authors’ hypotheses on the role of nutrients in driving the ecology of alkenone-producers in the SCS is lacking. Why not use nutrient and salinity data provided by the WOA to support your hypotheses on the effect of the PRE on the study region? According to the paper from Chen et al. (2007) cited in this study, alkenone-producer populations in the SCS are more mesotrophic-to-oligotrophic and only outcompete diatoms when nitrate concentrations are relatively depleted. Chen et al. (2007) further state that haptophyte algae populations are sensitive to water column structure, a point that you don’t consider in your discussion.

Response: Thanks for the comments. (1) We have checked the difference between linear and nonlinear calibrations, especially the BAYSPLINE (Tierney and Tingley, 2018) SST estimate. Indeed, BAYSPLINE SST estimate yields slightly higher temperature values by ~0.5 °C in average than the linear calibration. But this is not against our conclusion of spring bias of alkenone temperature but reinforces it. Pls see related statements in lines 218–220 and 274–277. (2) As far as we know, the ecology of alkenone-producers in the SCS shelf is largely unknown except the paper of Chen et al. (2007). Even in that paper, the focus is on the oligotrophic basin and the relatively nutrient replete shelf is only marginally investigated. Their data showed that on the SCS shelf, coccolithophores, especially the alkenone producer $E. huxleyi$, were lowest during winter, when nutrients are higher, but were abundant during spring, summer and autumn. Our conclusion is basically consistent with their data. (3) The use of the water column structure, nutrient and salinity data in phytoplankton ecology studies is really a common practice. However, our study sites are mostly shallow with water depths of most of them <50 m, where water stratification does not extensively occur and WOA data fail to provide high-resolution data. So we didn’t rely our interpretation on those information.
The authors’ discussion on iGDGTs is also an incomplete representation of current knowledge on the TEX$_{86}$ proxy. First, the authors mention that the correlation between TEX$_{86}^{H_r}$-reconstructed SSTs and observed SSTs could be improved with a “shallow water” calibration, yet then proceed to apply the Jia et al. (2017) calibration which is exclusively based on sediments from >329 m water depth. Furthermore, the Jia et al. calibration was calculated against water column temperatures across the upper 30-125 m whereas a number of samples in this study were collected at depths <30 m. The authors should consider re-evaluating their data using BAYSPAR (Tierney and Tingley, 2015) cf. de Bar et al., 2019 (doi:10.1029/2018PA003453).

Response: (1) The “shallow-water” calibration from Jia et al. (2017) is based on the surface SPM from 5 m water depth, thereby is really a “shallow-water calibration”, but not the “sediments from >329 m water depth” as you said. We thought here you are referring to the work of Jia et al. (2012), in which they pointed out that in the SCS basin sedimentary TEX$_{86}$ reflects best the temperature at 30–125 water depth. We rephrase related contents in lines 398–403. (2) We re-evaluated our data using BAYSPAR according to the comment, and did not find substantial differences. Comparatively, the local “shallow-water” calibration yielded smallest temperature residuals. Pls see our discussion in lines 392–393 and 398–403.

Second, it is well known that Thaumarchaeota inhabit a range of depths in the marine water column, but most typically reside at the base of the euphotic zone. A previous study in the SCS identified the depth of maximum Thaumarchaeotal abundance ca. 50 m (Dong et al., 2019), and line 50 of this manuscript states that iG DGTs in the SCS are likely produced between 30 m-125 m. As many samples in this study lie above these depths, it would be interesting to know how iGDGT concentrations vary across the region and how accumulation rates of sedimentary iGDGTs relate to measured TEX$_{86}$.

Response: The line 50 is saying about the scenario happening in the basin of the SCS, where water depth is >300 m (Jia et al., 2012) and the finding of depth of maximum Thaumarchaeotal abundance ca. 50 m is based on iGDGT concentration in seawater SPM (Dong et al., 2019). It is really interesting to know how iGDGTs, and hence Thaumarchaeotal abundance, change with depth on the shallow shelf. We think this question could be answered by means of iGDGTs measurement in particulate matter in the water; but due to that the water depths are quite shallow (mostly <50 m) and the water are well mixed in this study region, we do not expect iGDGT concentration would change substantially with depth. We also don’t believe iGDGTs concentration in sediment can do such a work, because iGDGT concentration in sediment is not only determined by Thaumarchaeotal abundance, but also controlled by bulk accumulation rate that is variable among sites. The bulk accumulation rate for each site is unknown in this study, so we are unable to relate accumulation rates of sedimentary iGDGTs with measured TEX$_{86}$.

The authors also reference Zhang et al. (2017), which found that iGDGT distributions in the East China Sea from locations at <70 m water depth were significantly impacted by non-temperature influences such as nutrient from upwelling, lateral transport, or resuspension of sedimentary material. These results have significant implications for the interpretation of the data presented here, yet these factors are not thoroughly acknowledged.
Response: Lateral transport and resuspension could exert some impacts on the TEX$_{86}$ proxy in shallow dynamic environment. This factor may be studied through, e.g., a comprehensive comparison between SPM and sedimentary data as did by Zhang et al. (2017). In this work, only sedimentary data were available and hence lateral transport and resuspension can only tentatively acknowledged. Pls see lines 378-382.

The OH-GDGT discussion is complicated by the lack of acknowledgment that the extraction technique employed in this study may have biased the results. Yang et al. (2018) demonstrated that ultrasonic extraction of GDGTs from South China Sediments resulted in significantly lower apparent concentrations of OH-GDGTs relative to samples extracted following a Bligh-Dyer method. In Yang et al., decreased extraction efficiency of OH-GDGTs using an ultrasonic method additionally led to significant biases in SST reconstructions using the RI-OH proxy. You should acknowledge this in the manuscript in the methods or discussion sections on OH-GDGTs.

Response: In the revision we mentioned the method of Yang et al. (2018) (Lines 412–417), but we did not say more about it because it beyond this work. However, we expanded our discussion including their data and findings. Pls see related discussion in lines 418–430.

For all of the proxy data presented in this manuscript, it would be beneficial to see it placed in the context of other regional studies, similar to Figure 8. Lastly, the figures do not represent the data well and need to be updated, as do the figure captions which I also found generally uninformative. Figures 2, 3, and 4 are especially difficult to interpret.

Response: We updated figures and figure captions.

In Figure 2, the use of the same colors for both the WOA-derived SSTs and the markers related to the proxy data is confusing. This figure could be improved by splitting up the data, for example by having a 4-panel figure with 1-panel per proxy.

Response: Following your suggestions, in the revision, we made a 4-panel figure with 1-panel per proxy, and used a different color to show proxy-derived data. Pls see related changes in Fig. 2.

Figure 3 would be more useful as just a single map showing the spatial trends in the %C$_{32}$ 1,15 index that is referenced in Line 198 instead of plotting the fractional abundance of each of these 4 diols.

Response: We prefer to keep maps of fractional abundance of each of these 4 diols, because it is obvious to find that some C$_{28}$ and C$_{30}$ 1,13-diols come from the discharge of the Pearl River. Together with its high positive correlation with C$_{32}$ 1,15-diols, these could explain the unusual low LDI values in the inshore areas. Besides, we also add a map exhibiting annual residuals in study area to better show the relation between annual residuals and fractional abundance of C$_{28}$ and C$_{30}$ 1,13-diols and C$_{32}$ 1,15-diols. Pls see Fig. 4.
For Figure 4, consider averaging the fractional abundances for certain depth classes then plotting the mean for that group in a bar graph similar to your Figure 5.

Response: Thanks for comments. This is a good suggestion to make the distribution pattern of the individual iGDGTs more clear, but it may be hard to select appropriate depths. For the same goal, we split Fig. 4a into 6 panels and include data from other regional studies. Pls see related changes in Fig. 5a–5f.

Again, since both the spatial and depth patterns are important in this study, I think it would be best to plot each index in panels 4b and 4d individually as a map similar to your Figure 3.

Response: To be honest, for each index, our data only varied in a small range in the study region, with except of two samples (PRE-A8 and LD-21), which were marked in Fig. 5g–5i.

Specific comments:

Line 39: Cite Kim et al. (2010) after referring to TEX_{86}^H and TEX_{86}^L.

Response: Done. Pls see line 40.

Line 40-41: Crenarchaeol has 4 cyclopentane moieties as well as the cyclohexane ring, so you should rephrase this sentence to something like “...(iGDGTs) containing 0-3 cyclopentane moieties (GDGT-0, 1, 2, 3, respectively) or 4 cyclopentane moieties with an additional cyclohexane moiety (crenarchaeol and its isomer, Cren and Cren’, respectively)...”

Response: Rephased. Pls see lines 41–42.

Line 41: Recent studies (Sinninghe Damsté et al., 2018 doi:10.1016/j.orggeochem.2018.06.005; Liu et al., 2018 doi:10.1016/j.orggeochem.2017.09.009) have determined that the crenarchaeol isomer is not actually a regio-isomer, so you should update your text by removing all instances of ‘regio.’

Response: “regio-” was deleted in the revision.

Line 44: Though there is still a lot to learn about the biological source of LCDs, I don’t agree with the statement that the source is “albeit not unambiguously identified yet” as there are several papers that have isolated LCDs in culture studies of diatoms and eustigmatophyte algae, in addition to many phylogenetic studies that link the lipids to source organisms in natural environments.

Response: We change “not unambiguously identified” to “not fully clear”. Pls see line 45.

Line 45-48 Include references to Elling et al., 2014, 2015 & 2017. Nevertheless, I don’t think you represent current knowledge on the source of OH-GDGTs fairly here. See Lipp et al., 2009; Zhu et al., 2016; Sollai et al., 2019.
Response: References were included, and we changed this sentence to “Culture studies suggest that Thaumarchaeota Group 1.1a (e.g., Nitrosopumilus maritimus) (Elling et al., 2014, 2015, 2017; Lipp and Hinrichs, 2009; Liu et al., 2012), SAGMCG-1 (e.g., Nitrosotalea devanaterra) (Elling et al., 2017), and a strain of thermophilic euryarchaeota Methanothermococcus thermolithotrophicus could synthesize OH-GDGTs (Liu et al., 2012).” Pls see our related changes in lines 47–50.

Line 167-170: As nearly half of your samples were collected in years not represented in the WOA13 V2 product, I recommend you update the manuscript with the WOA18 data that was released this summer. Furthermore, given that the studies you contrast your results to later on calculate seasonal averages from different months than those defined in the WOA product, you should use the monthly data from the WOA18 instead of the pre-defined seasonal means to strengthen the comparisons you draw in the discussion section.

Response: Thanks for comments. We updated the MS with WOA18 data. We prefer to use the pre-defined seasonal means in WOA product, because after comparing monthly mean SST in studied sites, we find that three coldest months are from Jan to Mar and warmest months are July, August and September. The definition method of 4 seasons by WOA18 already better reflect the seasonal variance of SST in this study area.

Line 177: You use the acronym “WD” yet this acronym was never defined previously in the text.

Response: Defined. Pls see line 93.

Line 205/Section 3.4: You should separate the results related to iGDGTs and those related to OH-GDGTs.

Response: Separated. Pls see.

Line 223-224: Are these relationships significant?

Response: p value was added. These relationships are very significant. Pls see related statements in lines 414–415.

Line 233-234: Why do you refer to the Chinese Marginal Sea here instead of the South China Sea?

Response: There is no local RI-OH-SST calibration for the SCS. However, the calibration proposed by Lü et al. (2015) is based on data from both East China Sea and South China Sea, which together is called the Chinese Marginal Sea.

Line 235-236: It is confusing that you refer to residuals here when the figure you reference (Fig 2) does not show the Proxy-Obs. SST residuals.

Response: In the Fig. 2, we only can see the difference between proxy-derived and observed SST. So we changed “Fig. 2 and Suppl. Table 5” to “Suppl. Table 5”

Line 239: Include references to culture studies that support this statement.
Response: We added references “(Conte et al., 1998; Prahl and Wakeham, 1987; Prahl et al., 1988; Sawada et al., 1996; Volkman et al., 1995)”. Pls see lines 266–267.

Line 244-245: You really should discuss why you think your results indicate that \(U_{37}^{K'} \)-SST are biased towards spring temperatures as there is nothing in Figure 2 that demonstrates this. You could do a simple linear regression between \(U_{37}^{K'} \)-derived temperatures and seasonal SSTs and if there is a significant relationship with observation spring SSTs, then your claims are valid.

Response: Thanks for the comments. We thought that here you want to say “do a simple linear regression between \(U_{37}^{K'} \) index and seasonal SSTs”. This method is really a common practice, but in our study region, spatial SSTs in each season varied in a very small range, with the largest in winter but still <6 °C. Together with influences of factors other than SST on proxies, this usually leads to poor SST-proxy correlations for all seasons, albeit slightly better for winter data. So we did not use correlation as a criterion to decide seasonality. Instead, we used another common criterion, i.e., temperature residuals between calculated temperatures from established calibrations and measured seasonal SS. We used this method for consistency in the whole paper. Pls see related statements in lines 195–199.

Line 270: Either here or in the methods section you should provide more details on how you conducted this statistical analyses.

Response: We added details in method section. Pls see our related statements in lines 138–141.

Line 279: Based on your above discussion on the different sources of these three lipids and the results of the previous studies on LCD distributions in coastal environments that you cite, this supposition about an opposite relationship between \(C_{28} \), \(C_{30} \), and \(C_{32} \) diols and temperature is unlikely and seems unnecessary to include.

Response: This sentence was deleted.

Line 285 - 287: The statement explaining why a threshold of \(\%C_{32} \) 1,15 <20% was used from Lines 288-290 should be moved here.

Response: Sentences have been rearranged. Pls see lines 313–315 and 317–320.

Line 305: Replace “methane-related” with something more accurate such as “...iGDGTs from archaea involved in methane cycling...”

Response: Replaced. Pls see lines 341–342.

Line 306: Please indicate what "substantially elevated" values for the [2]/[Cren] and [0]/Cren indices are as you do for the MI.
Response: “substantially elevated” values for the [2]/[Cren] is >0.2, and [0]/[Cren] indices is deleted from here. Pls see line 340.

Lines 309-312: Another paper you cite elsewhere in the text, Zhou et al. (2014), concluded that brGDGTs in the PRE are also likely derived from in situ production in the river rather than solely originating from erosion of catchment soils.

Response: The ability of the BIT index to indicate soil input in this region has recently been discounted by finding that branched GDGTs may be aquatically in-situ produced (Zhou et al., 2014). Nevertheless, considering that the sample PRE-A8 is located at the upper river mouth, together with the highest %C_{32} 1,15 values as discussed above, we believe iGDGTs may be impacted to some extent by terrestrial input. Pls see related statements in lines 345–3448.

Response: Changed. Pls see lines 360–361.

Line 339-343: In Kim et al.’s 2008 paper, the authors note that the difference in their TEX_{86} calibration for core top sediments from depths < 200 m relative to the calibration for the entire data set is negligible, likely because contribution of iGDGTs from deep dwelling archaea to the sediment floor is minimal relative to the contributions from shallow-dwelling Thaumarchaeota, a point that has been highlighted in many other studies. As such, I don’t believe this is the cause of the mismatch between the TEX_{86}^{H}-reconstructed temperatures and observations you report in your manuscript.

Response: We note that the influence of water depth on the TEX_{86} proxy have not reached an agreement. The contribution of iGDGTs from deep dwelling archaea to the sediment floor has been estimated to be >50% in the deep seas (e.g., Kim et al., 2016; Jia et al., 2017), although the abundance of Thaumarchaeota and GDGTs have been found maximum at the lower euphotic zone. We thought the contribution of deep dwelling archaea might be a background for sedimentary GDGTs in a specific site, where TEX_{86} could be mainly controlled by the variable shallow-water iGDGTs. Nevertheless, when considering spatial distributions, the contribution of the deep dwelling archaea could change some extent, which may be a cause of the significant TEX_{86}-SST scatters. Of course, these are beyond this paper, and we did not say more about that in the paper.

Line 390: In Line 315 you draw the opposite conclusion that your samples are not appreciably impacted by TEX_{86}^H?

Response: We suspect “by TEX_{86}^H” could be “by soil input”. Our opinion is that judged from the BIT value, the sample of PRE-A8 is influenced by soil input (Lines 345–347). However, [Cren’] data could also suggest the predominance of Euryarchaeota (Lines 354–357) for the sample. We think this is not controversy as the two factors may co-occur at this site.
Reply to RC2:

Dear reviewer,

Thank you for your constructive comments. We have addressed your comments and make changes accordingly. Please find related contents in the document file with changes marked.

Section 2.1: How as the sedimentation rate determined (1–2 mm/yr, stated in line 170)? The sediment accumulation rate is likely to vary across the offshore transect. Therefore, assuming that all core-top samples represent the mean conditions of a 7-year interval (from 2005–2012) is probably not appropriate. This assumption also does not account for bioturbation, which almost certainly has caused some mixing of material from the past few decades into the upper few centimeters. Making sure that the core-tops in this study are “calibrated” to observational temperatures from the appropriate time interval is especially important given the large SST trends observed over the past decade in the SCS (e.g., Yu, Y., Zhang, HR., Jin, J. et al. Acta Oceanol. Sin. (2019) 38: 106. https://doi.org/10.1007/s13131-019-1416-4).

Response: Thanks for the comments. The sedimentation rate here is unknown. In the revision, we updated SSTs data from WOA18 (from 2005–2017), a wider time interval could better cover sampling time. Although SST have increased over the past decade in the SCS, but it has less influence to the average SST data within the time interval (e.g., WOA13 vs. WOA18, the average difference is less than 0.5 °C, which is lower than the calibrations error for each proxies).

Uk37-derived temperatures: A number of studies have pointed out the non-linearity of the $U_{37}^{K'}$-Temperature relationship at SSTs >24–26°C (e.g., Sonzogni et al., 1997, Conte et al., 2006, Tierney and Tingley, 2018). Since SSTs are >24°C for most of the year at these SCS core sites, it would be worthwhile to calibrate the $U_{37}^{K'}$ data in this study using BAYSPLINE (Tierney and Tingley, 2018), which accounts for the attenuation of the $U_{37}^{K'}$ signal at higher SSTs.

Response: We have checked the difference between linear and nonlinear calibrations, especially the BAYSPLINE (Tierney and Tingley, 2018) SST estimate. Indeed, BAYSPLINE SST estimate yields slightly higher temperature values by ~0.5 °C in average than the linear calibration. But this is not against our conclusion of spring bias of alkenone temperature but reinforces it. Pls see related statements in lines 218–220 and 275–277.

Supplemental figure 1. If the $U_{37}^{K'}$-derived SST ends up being significantly different using alternative $U_{37}^{K'}$-SST equations, it will have implications for the inferred seasonality of the $U_{37}^{K'}$ signal and needs to be addressed more thoroughly in the main body of the paper.

Response: In the revision, we moved the supplementary figure 1 to Fig. 3, and all derived $U_{37}^{K'}$-SSTs exhibited similar values that differed from the calibration of Conte et al. (2006) by <0.5 °C (0.2 °C average).
Lines 60–79: There is a substantial body of literature discussing sources of uncertainty and biases in these four biomarkers (especially TEX86 and Uk37) from sediment traps, surface sediments and culture studies. This section should be expanded to include some discussion of those factors. Just a few examples: lateral advection of sediments, light limitation, diagenesis (e.g., preferential degradation of C37:3 in sediments), sensitivity to redox conditions, etc.

Response: In the revision, we add “Nevertheless, environmental and physical parameters may also bias these proxies, including: (1) lateral advection (Benthien and Müller, 2000; Kim et al., 2009); (2) different resistance to degradation (Goni et al., 2001; Kim et al., 2009); (3) nutrient stress and light limitation (Hurley et al., 2016; Park et al., 2019; Prahl et al., 2003; Versteegh et al., 2001).” Pls see related changes in lines 71–74.

Line 167: Why not use the latest WOA18 data?

Response: We updated our data with the latest WOA18.

Line 181–182: Looking at the local hydrographic data, the depth of the mixed layer appears to vary seasonally, with a much deeper winter mixed layer. This should be considered when discussing the potential seasonal and/or depth distribution of the biomarker source organisms.

Response: The use of the water column structure data in phytoplankton ecology studies is really a common practice. However, our study sites are mostly shallow with water depths of most of them <50 m, where water stratification does not extensively occur and WOA data fail to provide high-resolution data. So we didn’t rely our interpretation on those information.

Overall, there needs to be a much more thorough treatment of uncertainty in the manuscript. There are no error bars or uncertainties shown in any of the figures, nor are they discussed in the results or the supplementary data table. Uncertainty in the various transfer functions used to convert each of these indices to temperature needs to be considered. Analytical uncertainty could be addressed via replicate measurements of samples or standards. The analytical error and calibration error should be propagated and reported when converting proxy index to SST.

Response: In the revision, both calibration and analytical errors are considered and described in the Method section. Our analytical errors for different proxies are much lower than calibration errors. Pls see related contents in lines 114, 116–118, 132, 138, 166, 170–172, 181, 185–187.

Lines 198–204: In order to maintain the organizational flow of the paper, this section belongs in the Discussion. Also, instead of making the argument that you omit these 6 samples because of their large SST residuals, it makes more sense to omit them because the river input index (%C32 1,15) values are 4x higher than those of the other 19 samples.

Section 4.2.2: Is there any correlation between the BIT and diol river input index in this sample set?

Response: BIT exhibited a linear relation with diol river input index ($R^2 = 0.66$, $p < 0.001$). We added it in line 320.

TEX86: There is a large body of literature on the TEX86 proxy that is overlooked in this manuscript. Marine Thaumarchaeota are living throughout the water column in many locations, and it’s likely that the TEX86 is integrating the entire water column in these shallow (<200 m) sites. As with the Uk37-SST equations, I would suggest including BAYSPAR-derived SSTs in the TEX86-SST analysis (Tierney and Tingley, 2015).

Response: We re-evaluated our data using BAYSPAR according to the comment, and did not find substantial differences. Comparatively, the local “shallow-water” calibration yielded smallest temperature residuals. Pls see related discussion in lines 392–393 and 398–402.

Section 4.3.1: The Ring Index (RI), as defined by Zhang et al., 2015, could easily be calculated from the GDGT data used to calculate TEX86 in this study. This is another tool (in addition to the MI, [2]/[cren], and [0]/[cren]) that could be used to screen for non-thermal influences on iGDGT distribution in this sample set.

Response: We admitted that we need to be thoughtful. In the revision, we added these related contents. Pls see our discussion in lines 368–377.

Figures:

The uncalibrated index values (uk37, LDI, RI-OH and TEX86) are not reported in your figures. I think there should be at least a table that shows the primary data from each of the core-top sites.

Response: In the revision, we added related contents in Table 1. Pls see.

Figure 2: This figure is not a very effective way to present these data. I would consider presenting SST maps to show the mean annual, winter and summer SST distribution in the study area (showing spring and autumn is unnecessary in my opinion). Perhaps create separate panels for each of the SST indices. If the authors decide to keep this figure, the lines connecting WOA data points need to be removed, they are distracting. The use of the same colors for the WOA SST data and the proxy-SST data is confusing.

Response: In the revision, this figure was split to a 4-panel figure with 1-panel per proxy. Although the lines connecting WOA data still exist, but they have no impacts on showing the differences between WOA SST and proxy SST.

Figure 4: As with Figure 2, panels a and b are not a very informative. Dividing the samples into “inshore and offshore” as is done in Figure 5 and presenting the relative abundances and ratios/indices as bar graphs would be more effective. Again, if the authors chose to keep these panels, refrain from connecting data points with lines.
Response: In the revision, we changed related figures. Pls see Fig. 5.

Figures 3 & 5: The inshore versus offshore comparison of the fractional abundances of diols in figure 5 illustrates the same point as the maps in Figure 3. Therefore, I think Figure 3 is unnecessary. It could be moved to the supplement or removed altogether without losing any information.

Figure 6: I would suggest adding panel d from figure 3 as a second panel in Figure 6 to better illustrate the elevated influence of terrestrially sourced diols in the PRE.

Response: Yes, there are some repetition between Fig. 3 and Fig. 5, but we want to keep this map, because it not only emphasizes the similar spatial variation of C_{28} and C_{30} 1,13-diols and C_{32} 1,15-diols, but also exhibits the “unusual” data points. Fig. 5 emphasizes the comparison of LCDs composition between SPM and surface sediments in this study. In the revision, we combined Fig. 3, 5 and 6 in the new Fig. 4. Pls see.

Figure 7: There is no reason to plot the residuals of 3 different calibrations versus the BIT index. If the purpose of the figure is to illustrate that there is no systematic relationship between BIT and SST residuals, then you need only illustrate this using one of the calibrated data sets. If the purpose of the figure is to illustrate the calibration equation that results in the smallest residuals, I would suggest a simpler way of showing the distribution of the data (e.g., box and whisker plots).

Response: The purpose of this figure is to show that residuals from local calibration is smallest compared to global and Bayspar calibrations. Following your suggestion, we changed it to box and whisker plots (Fig. 6b).

Figures 7b & 9: I don’t think it’s terribly informative to regress any of these indices over a <2 °C temperature gradient (as in the case of summer and autumn SST gradients), however, if you are going to make this plot, why not make a 4-panel figure that does the same for all 4 indices?

Response: Yes, linear regression is not an appropriate method applied to such narrow temperature intervals here. In the revision, we deleted this plot and related discussion.

Figure 8: The source of the data from a “previous study” needs to be cited in the caption.

Response: In the revision, Fig. 8 was moved to Fig. 7, and the source of data was added. Pls see the caption of Fig. 7.

Figure 8: In the caption, the authors need to clearly state what “annual residuals” are. Also, “fitting lines” is not a mathematical term. Are these ordinary least squares regression lines? Something else?

Response: The explanation of “residuals” could see Eq. (14). We added related statements in the caption. Pls see the caption of Fig. 7.

Minor Comments:
Lines 49–50: This sentence is awkward to read. I would suggest changing to something like “Due to the distinctive ecology of their source organisms (e.g., depth habitat and seasonal preference), coeval temperature records from each of these proxies may differ substantially”

Response: Changed. Pls see lines 51–52.

Line 51: Remove the “however” from this sentence.

Response: Removed.

Lines 57–59: Remove “while” from the beginning of the sentence. These two sentences seem to contradict each other. Also, what is the southeast Australian Ocean?

Response: “while” is removed. We think that these two sentences does not contradict each other. We change “southeast Australian Ocean” to “Australian southern and eastern coasts”. Pls see in line 60.

Line 60: This sentence doesn’t make sense: “The accuracy of organic thermometers is also prone to be impaired by a low specificity of related biomarkers.”

Response: We changed “The accuracy of organic thermometers is also prone to be impaired by a low specificity of related biomarkers.” to “The accuracy of organic thermometers is also interfered by the diverse origins of related biomarkers.”

Line 83: Should be northeasterly and southwesterly winds

Response: Changed. Pls see line 88.

Response: Changed. Pls see line 194.

Line 199: Instead of stating “three samples with low LDI values”, it would be more descriptive to state, “three samples with LDI values lower than predicted from local SST”.

Response: This sentence was deleted in the revision.

Line 244: Explain what is meant by “complex sedimentation processes”. If the authors are talking about lateral transport of the fine sediment fraction, or diagenetic alteration of the signal, this could be expanded on significantly here.

Response: “complex sedimentation processes” means lateral advection and resuspension processes. Due to a narrow SST intervals, the impact of lateral advection may be minor. For examining the diagenetic alteration, it is better to use SPM from different water depths or downcore sediments. It is beyond our paper, because our samples are core-top sediments.
Lines 257–258: This sentence is confusing and should be rewritten for clarity.
Response: This sentence was deleted. Because if we take the calibration error and analytical errors into consideration, the slightly lower U_{37}^K-SST observed in the river mouth is possibly due to the above errors.

Line 279: It is unclear what is meant by “an opposite response to ambient temperature of $C_{30}\text{1,15-diols}$ to C_{28} and $C_{30}\text{1,13-diols}$”.

Response: Deleted. Pls see.

Line 305: Change “methane-related” to methanotrophic archaea

Response: In the revision, we changed “methane-related” to “archaea involved in methane cycling”. Pls see lines 341–342.
Comparison of the $U_{37}^{K'}$, LDI, TEX_{86}^{H} and RI-OH temperature proxies in the northern shelf of the South China Sea

Bingbing Wei1,2, Guodong Jia1, Jens Hefter2, Manyu Kang1, Eunmi Park2,3,4 and Gesine Mollenhauer2,3,4

1State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
2Alfred Wegener Institute, Helmholtz Center for Polar and Marine Sciences, Bremerhaven, 27570, Germany
3Department of Geosciences, University of Bremen, Bremen, 28359, Germany
4MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, 28359, Germany

Correspondence to: Guodong Jia (jiagd@tongji.edu.cn), Gesine Mollenhauer (gesine.mollenhauer@awi.de)

Abstract. The temperature proxies $U_{37}^{K'}$, LDI, TEX_{86}^{H} and RI-OH are derived from lipid biomarkers, namely long-chain alkenones from coccolithophorids, long-chain diols ascribed tentatively to eustigmatophytes, glycerol dialkyl glycerol tetraethers (GDGTs) and OH-GDGTs produced by Archaea, respectively. The applicability of these proxies has been examined in the South China Sea (SCS), but only one or two of them were studied in each work. Thereby, it is difficult to make a direct comparison between these temperature proxies. In this study, we investigated the above 4 proxies in the same set of surface sediment samples in the northern SCS shelf and related them to local sea surface temperature (SST), which allowed us to assess whether they represent certain seasons or are impaired by terrestrial influences, as well as to infer the preferred habitats of their source organisms. Terrestrial organic inputs appeared to have an impact on LDI, TEX_{86}^{H} and RI-OH proxies near the coast and lead to colder LDI and TEX_{86}^{H} derived temperatures, but a warmer RI-OH estimate. After excluding samples influenced by terrestrial organic input, we found that LDI-derived temperature agreed well with annual SST, while $U_{37}^{K'}$, TEX_{86}^{H} and RI-OH indices reflected mainly spring, winter and summer, respectively. The differential seasonal biases of these biomarker-derived temperatures observed here suggest that each biomarker’s source organism responds differently to regional marine environmental changes in an annual cycle. Specifically, marine eustigmatophytes are likely insensitive to nutrient variations and hence show the lowest seasonal variations, while coccolithophorids could have bloomed in late spring, when nutrient inputs by freshwater are usually highest. GDGT-producing planktonic archaea likely thrive in winter, when conditions are favorable, although not clearly known, such as relatively high nutrients levels, low light, and high concentrations of SPM in the upper water due to the enhancement of vertical mixing driven by a combination of surface cooling and strong winter monsoon winds. However, OH-GDGTs likely originate from a different archaeal community, which mainly dwells in summer.
1 Introduction

Over the past three decades, organic proxies have been successfully applied to reconstruct the Quaternary or even Cenozoic temperature history of the Earth’s surface ocean. The two most widely used proxies are the U_{37}^K from alkenones (Brassell et al., 1986) and the TEX86 based on archaeal isoprenoid tetraethers (Schouten et al., 2002). More recently, two additional organic thermometers, the LDI (long chain diol index) and RI-OH (ring index of hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs)), have been proposed by Rampen et al. (2007) and Lü et al. (2015).

The U_{37}^K proxy is based on the unsaturation of C$_{37}$-alkenones that are synthesized by a very restricted group of haptophyte algae, most notably the coccolithophores *Emiliania huxleyi* and *Gephyrocapsa oceanica* in typical marine environments (Farrimond et al., 1986; Volkman and L, 1995). Haptophyte algae are light-dependent and live near the sea surface with a competitive advantage in phosphorous-limited environments (Müller et al., 1998; Paasche, 2002). The TEX86, as well as its modified versions TEX$^H_{86}$ and TEX$^L_{86}$ (Kim et al., 2010), is based on the relative abundance of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) containing 0–3 cyclopentane moieties (GDGT-0, 1, 2, 3, respectively) or 4 cyclopentane moieties with an additional cyclohexane moiety (crenarchaeol and its isomer, Cren and Cren’), produced by marine planktonic Thaumarchaeota (Schouten et al., 2013). Thaumarchaeota play an important role in pelagic ammonia oxidation in marine environments, and tend to maximize in abundance at subsurface depths <200 m (Schouten et al., 2013). The LDI index is derived from the long-chain diols (LCDs), the producers of which, albeit not fully clear yet, likely are eustigmatophyte algae in marine environments (Rampen et al., 2007, 2014a). Comparatively, little is known about the biological sources of OH-GDGTs and their influence on the RI-OH proxy. Culture studies suggest that Thaumarchaeota Group 1.1a (e.g., *Nitrosopumilus maritimus*) (Elling et al., 2014, 2015, 2017; Lipp and Hinrichs, 2009; Liu et al., 2012b), SAGMCG-1 (e.g., *Nitrosotalea devanaterra*) (Elling et al., 2017), and a strain of thermophilic euryarchaeota *Methanothermococcus thermolithotrophicus* could synthesize OH-GDGTs (Liu et al., 2012b).

Due to the distinctive ecology of their source organisms (e.g., depth habitat and seasonal bloom), the temperature signals from these biologically derived proxies may differ substantially between each other. For instance, in the basin of the South China Sea (SCS), the U_{37}^K and TEX$^H_{86}$ indices likely reflect temperatures of the mixed layer (<30 m) and the subsurface (30–125 m), respectively (Jia et al., 2012). However, in the shallow coastal area of the SCS, the U_{37}^K-derived SST estimates are biased toward the spring and summer temperatures, but those based on TEX$^H_{86}$ toward the winter temperature, likely due to different blooming times (Zhang et al., 2013). By contrast, in the East China Sea (ECS), both TEX$^H_{86}$ and RI-OH signals are summer biased (Lü et al., 2014, 2019; Zhang et al., 2017). Lopes et al. (2013) compared the U_{37}^K, TEX$^H_{86}$ and LDI indices in sediments from offshore southeast Australia, and found that LDI-derived temperature compares well with the temperatures of the warmest month, TEX$^H_{86}$ with the temperatures of the coolest month and U_{37}^K with mean annual temperature. In the Australian southern and eastern coasts, U_{37}^K and LDI provide better estimates of winter temperature at the surface, and TEX$^H_{86}$ matches well with annual temperature within 75–100 m (Smith et al., 2013).
The accuracy of organic thermometers is also prone to be interfered by the diverse origins of related biomarkers. For example, the noncalcifying haptophyte genera *Isochrysis galbana* and *Chrysotila lamellose*, are predominantly restricted to non-marine and marginal settings and expected to produce distinctly different alkenone records, which are likely to “contaminate” the U_{37}^K signal in marginal seas (Bijma et al., 2001). GDGTs synthesized by soil archaea and marine Euryarchaeota are likely different in composition from those produced by marine Thaumarchaeota, which could introduce biases to TEX$_{86}$ values in conditions with inputs of archaeal lipids from multiple sources (Schouten et al., 2013; Turich et al., 2007; Weijers et al., 2006). Recently, the LDI proxy was found to be limited by the input of 1,13 and 1,15-diols from freshwater eustigmatophyte algae, especially in the coastal seas (Balzano et al., 2018; de Bar et al., 2016; He et al. 2020). Similarly, OH-GDGTs may occur also in terrestrial environments including rivers (Chen et al., 2016; Kang et al., 2017), lakes (Liu et al., 2012a) and soils (Kang et al., 2017), which could also bias the RI-OH index in marginal seas. Nevertheless, environmental and physical parameters may also bias these proxies, including: (1) lateral advection (Benthien and Müller, 2000; Kim et al., 2009); (2) different resistance to degradation (Goni et al., 2001; Kim et al., 2009); (3) nutrient stress and light limitation (Hurley et al., 2016; Park et al., 2019; Prahl et al., 2003; Versteegh et al., 2001).

Coastal seas are an ideal place for evaluation of the influences on the organic temperature proxies of various confounding factors, due to its environmental and ecological seasonality and transition from the land to the deep-sea. In this study, we analysed alkenones, LCDs and GDGTs in surface sediments from the northern SCS shelf. U_{37}^K, TEX$_{86}$, LDI and RI-OH indices have been studied in this area (Chen et al., 2018; Ge et al., 2013; Jia et al., 2017, 2012; Wei et al., 2011; Zhang et al., 2013; Zhu et al., 2018). However, only one or two of them were studied in each work. Thereby, it is difficult to make a direct comparison between them. Here, we investigated all of the above 4 temperature proxies in the same surface sediment samples and evaluated their applicability as water temperature indicators. This effort would benefit regional multi-proxy sea temperature reconstructions, which could be more comprehensive and objective than those based on any single ones (Eglinton and Eglinton, 2008). In addition, such kind of investigation can shed light on the ecology of the related biomarker producers in this region, which is not entirely understood at present.

2 Material and methods

2.1 Study area and sample collection

The Pearl River estuary (PRE) and the northern shelf of SCS lie in a (sub)tropical monsoon climate region, with strong northeasterly winds in winter and weak southwesterly winds in summer (Liu and Xie, 1999). As a result, coastal currents flow southwestward in winter (Fig. 1b), causing a strong vertical mixing and an inshore-offshore temperature gradient, while in summer, coastal currents reverse direction, except for one, which was near the western coast of the Pearl River (PR) and flow southwestward due to the large outflow of the PR (Fig. 1c, Liu and Xie, 1999; Su, 2004).
In the study area, a total of 23 core-top sediments (0–1 or 0–2 cm depths) were collected from the PRE and the coastal northern SCS, from water depths (WD) ranging from 6.5 to 1307 m (Suppl. Table 1). The samples were collected using a gravity box corer or grab sampler and then frozen at −20 °C in the laboratory before treatment.

2.2 Lipid extraction and separation

After being freeze-dried and homogenized, about 5 g of sediments were ultrasonically extracted three times with DCM: MeOH (9:1, v/v) for 15 min. Before extraction, known amounts of 2-nonadecanone, androstanol and C46 GDGT were added as internal standards. Supernatants of each extraction were obtained by centrifugation. The total lipid extracts were combined and concentrated with rotary evaporation to ~1 mL, and saponified for 2 h at 80 °C with 1 mL of KOH (0.1 M) in MeOH: H2O (9:1, v/v). The neutral fractions were extracted with n-hexane, and were further separated into alkane, alkenone and alcohol sub-fractions (containing diols and GDGTs) by column chromatography on silica gel using n-hexane, DCM: n-hexane (2:1, v/v) and DCM: MeOH (1:1, v/v), respectively.

2.3 Alkenone analysis and \(U_{37}^{K'} \) index

Alkenones were analysed using a 7890A gas chromatograph (GC, Agilent Technologies) equipped with a cold on-column injection system, a DB-5MS fused silica capillary column (60 m, ID 250 µm, 0.25 µm film coupled to a 5 m, ID 530 µm deactivated fused silica precolumn) and a flame ionization detector (FID). Helium was used as carrier gas (constant flow, 1.5 mL/min) and the GC oven was heated using the following temperature program: 60 °C for 1 min, 20 °C/min to 150 °C, 6 °C/min to 320 °C and a final hold time of 35 min. Di-unsaturated (C37:2) and tri-unsaturated (C37:3) alkenones were identified by comparison of the retention times with a reference sample composed of known compounds. Peak areas were determined by integrating the respective peaks, and concentrations were calculated using the response factor of the internal standard 2-nonadecanone.

The \(U_{37}^{K'} \) index was calculated using Eq. (1) after Prahl and Wakeham (1987).

\[
U_{37}^{K'} = \frac{C_{37:2}}{C_{37:2} + C_{37:3}}
\]

115 SST was estimated using Eq. (2) from Conte et al., (2006) with a calibration error of 1.1 °C:

\[
SST \ (°C) = \frac{U_{37}^{K'} - 0.0709}{0.0322}
\]

The uncertainty of \(U_{37}^{K'} \) index (0.01) was determined from a reference standard, which was co-analysed with samples for half year in our lab (n = 24). After converted to SST using Eq. (2), the analytical error for \(U_{37}^{K'} \)-derived SST is 0.31 °C, which is much lower than the calibration error.
2.4 Long chain diol analysis

One half of each alcohol fraction was silylated with N, O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA)/1% trimethylchlorosilane (TMCS) and acetonitrile (30 µL each) and heated at 60 °C for 1 h. Diols were analysed by gas chromatography-mass spectrometry (GC/MS) on an Agilent 6850 GC coupled to an Agilent 5975C MSD operating in electron impact (EI) mode with an ionization energy of 70 eV. The GC was equipped with a fused silica capillary column (Restek Rxi-1ms, length 30 m; 250 µm ID, film thickness 0.25 µm). Helium was used as carrier gas at a constant flow rate of 1.2 mL/min. Samples (1 µL) were injected in splitless mode in a split/splitless injector (S/SL) held at 280 °C. The GC temperature program was as follows: 60 °C start temperature, held for 3 min, increased to 150 °C at a rate of 20 °C/min, increased further to 320 °C at a rate of 4 °C/min and finally held at 320 °C for 15 min. The source temperature of the MS was set to 230 °C and the quadrupole to 150 °C.

For identification of the diols, the MS was operated in single-ion monitoring (SIM) mode with the following m/z: 313.3 (C_{28} 1,13-diol, C_{30} 1,15-diol), and 341.3 (C_{30} 1,13-diol, C_{32} 1,15-diol) (Versteegh et al., 1997; Rampen et al., 2012). Fractional abundances of the long chain diols were calculated from integrated relevant peak areas in respective mass chromatograms.

The LDI was calculated and converted to SST using Eq. (3) and Eq. (4) from Rampen et al. (2012) (The calibration error of SST is 2 °C):

$$LDI = \frac{[C_{30} 1,15]}{[C_{28} 1,13] + [C_{30} 1,13] + [C_{30} 1,15]}$$

(3)

$$SST (°C) = \frac{LDI - 0.095}{0.033}$$

(4)

The %C_{32} 1,15 index reflecting riverine input was calculated using Eq. (5) given by Lattaud et al. (2017) as follows:

$$%C_{32} 1,15 = \frac{[C_{32} 1,15]}{[C_{32} 1,15] + [C_{30} 1,15] + [C_{28} 1,13] + [C_{30} 1,13]} \times 100$$

(5)

During the analysis there was no reference sample for diol measurement in our lab, so the uncertainty of LDI is unknown. To confirm the potential sources of different diols in our study area, we performed a Pearson correlation coefficient (PCC) analysis using the SPSS software according to the SPSS tutorials: Pearson correlation (https://libguides.library.kent.edu/SPSS/PearsonCorr).

2.5 GDGT analysis and indices (TEX^{H_{26}}_6, BIT, MI, and RI-OH)

GDGTs were analysed by high performance liquid chromatography (HPLC) coupled via an atmospheric pressure chemical ionization (APCI) interface to a single quadrupole mass spectrometer (MS), with a method slightly modified from Hopmans et al. (2016). Analyses were performed on an Agilent 1200 series HPLC system and an Agilent 6120 MSD. Separation of the individual GDGTs including the 5-/6-methyl isomers of branched-GDGTs was achieved on two UPLC silica columns in series (Waters Acquity BEH HILIC, 2.1×150 mm, 1.7 µm), with a 2.1×5 mm pre-column of the same material maintained at
30 °C. Mobile phase A and B consisted of n-hexane: chloroform (99:1, v/v) and n-hexane: 2-propanol: chloroform (89:10:1, v/v/v), respectively. After sample injection (20 µL) and 25 min isocratic elution with 18 % mobile phase B, the proportion of B was linearly increased to 50 % within 25 min, and thereafter to 100 % for the next 30 min. After another 5 min and prior to the analysis of the next sample, the column was re-equilibrated with 18 % B for 15 min. The flow rate was 0.22 mL/min and a maximum back pressure of 220 bar was obtained. The total run time was 100 min.

GDGTs were detected using positive ion APCI-MS and selective ion monitoring (SIM) of their (M+H)+ ions (Schouten et al., 2007) or abundant ion-source fragmentation products of OH-GDGTs (Liu et al., 2012). APCI spray-chamber conditions were as follows: nebulizer pressure 50 psi, vaporizer temperature 350 °C, N2 drying gas flow 5 L/min and 350 °C, capillary voltage (ion transfer tube) −4 kV and corona current +5 µA. The MS-detector was set for SIM of the following (M+H)+ ions: m/z 1302.3 (GDGT-0), 1300.3 (GDGT-1+OH-GDGT 0), 1298.3 (GDGT-2+OH-GDGT-1), 1296.3 (GDGT-3+OH-GDGT-2), 1292.3 (GDGT-4+4′/Crenarchaeol+isomer), 1050 (GDGT-IIIa/IIIa′), 1048 (GDGT-IIib/IIib′), 1046 (GDGT-IIIc/IIIc′), 1036 (GDGT-IIa/IIa′), 1034 (GDGT-IIb/IIb′), 1032 (GDGT-IIc/IIc′), 1022 (GDGT-Ia), 1020 (GDGT-Ib), 1018 (GDGT-Ic) and 744 (C46 standard), with a dwell time of 57 ms per ion.

Quantification of the individual GDGTs was achieved by integrating the respective peak areas. Compound contents were calculated using the response factor obtained from the C46 standard and by normalizing to the amount of extracted sediment. Due to the lack of appropriate standards, individual relative response factors between the C46 standard and the different GDGTs could not be considered, the obtained concentrations should therefore be regarded as being only semi-quantitative.

The TEX86 and TEX86H were calculated following Eq. (6) and Eq. (7) and converted to SST according to Eq. (8) given by Kim et al. (2010), which is suitable to reconstruct SST between 15 and 30 °C with a calibration error of 2.5 °C.

\[
\text{TEX}_{86} = \frac{\text{GDGT-2} + \text{GDGT-3} + \text{Cren'}}{\text{GDGT-1} + \text{GDGT-2} + \text{GDGT-3} + \text{Cren'}}
\]
\[\text{TEX}_{86}^H = \log(\text{TEX}_{86}) \]
\[\text{SST (°C)} = 68.4 \times \text{TEX}_{86}^H + 38.6 \]

The uncertainty of TEX86H index (0.01) was also determined from a reference standard, which was co-analysed with samples for 3 months in our lab (n = 20). After converted to SST using Eq. (8), the analytical error for TEX86H-derived SST is 0.68 °C, which is much lower than the calibration error.

The BIT index was calculated according to Hopmans et al. (2004) including 6-methyl brGDGTs (DeJonge et al., 2013):

\[
\text{BIT} = \frac{\text{Ia} + \text{IIa} + \text{IIIa} + \text{IIa}′ + \text{IIIa}′}{\text{Ia} + \text{IIa} + \text{IIIa} + \text{IIa}′ + \text{IIIa}′ + \text{Cren}}
\]

where Ia is the basic tetramethyl brGDGT; IIa and IIIa are 5-methyl brGDGTs; IIa’ and IIIa’ are 6-methyl brGDGTs (DeJonge et al., 2013).

The methane index (MI) was calculated using the Eq. (10) given by Zhang et al. (2011):
$MI = \frac{GDGT-1 + GDGT-2 + GDGT-3}{GDGT-1 + GDGT-2 + GDGT-3 + Cren + Cren'}$ \hspace{1cm} (10)

The ring index (RI) was calculated using the Eq. (11) (Zhang et al., 2016):

$$RI = 0 \times [GDGT-0] + 1 \times [GDGT-1] + 2 \times [GDGT-2] + 3 \times [GDGT-3] + 4 \times [Cren] + 4 \times [Cren']$$ \hspace{1cm} (11)

The RI-OH index was calculated using Eq. (12), and converted to annual mean SST with the calibration error of 2 °C according to Eq. (13) (Lü et al., 2015):

$$RI-OH = \frac{[OH-GDGT-1]+2\times[OH-GDGT-2]}{[OH-GDGT-1]+[OH-GDGT-2]}$$ \hspace{1cm} (12)

$$SST (°C) = \frac{RI-OH - 0.92}{0.028}$$ \hspace{1cm} (13)

The uncertainty of RI-OH index (0.01) was also determined from a reference standard, which was co-analysed with samples for 3 months in our lab (n = 20). After converted to SST using Eq. (13), the analytical error for RI-OH-derived SST is 0.36 °C, which is much lower than the calibration error.

2.6 Climatological mean temperature data and temperature residuals of proxies

Annual and seasonal SST data (Table 1) for each sampling site were 13-years average values (2005–2017) taken from the NOAA World Ocean Atlas 2018 (WOA18) on a 0.25° grid resolution (https://www.nodc.noaa.gov/cgi-bin/OC5/woa18/woa18.pl), which is the latest version and close to the estimated deposition time ([sampling time, 2012–2017]) – [depth, 0–2 cm])/[deposition rate, 2-6 mm yr$^{-1}$] = [deposition time, 2002-2014]) (Ge et al., 2014; Liu et al., 2014). According to the description of WOA18, seasons were defined as follows: Winter: January–March; Spring: April–June; Summer: July–September; Autumn: October–December.

In our study region, spatial SSTs in each season varied in a small range, with the largest in winter but still <6 °C. Together with influences of factors other than SST on proxies, this usually leads to poor SST-proxy correlations for all seasons, albeit likely slightly better for winter data. So we did not use correlation as a criterion to decide seasonality. Instead, we used another common criterion, i.e., temperature residuals between calculated temperatures from established calibrations and WOA18-derived seasonal SSTs, calculated as below:

$$Residual (°C) = [proxy-derived temperature] – [WOA18-derived temperature]$$ \hspace{1cm} (14)

3 Results

3.1 Hydrological parameters

Except one sample taken from deeper waters (LD-21, WD = 1307 m), the sites of surface sediment samples in this study were mainly located on the shelf area (WD <200 m) (Fig. 1a). The measured annual mean SSTs (0 m depth, from the
WOA18 dataset) in the study area ranged between 24.2 °C and 27.0 °C (25.6 °C average), and showed clear seasonal variations exhibiting low values in winter (21.6 °C average), highest in summer (29.0 °C average), and intermediate in spring (26.2 °C average) and autumn (25.6 °C average) (Fig. 2 and Table 1). Note that spring, autumn and annual temperatures are very close to each other. The temperatures of the mixed layer (0–30 m) were slightly (<0.7 °C) lower than SST and also varied seasonally in a similar pattern (Suppl. Table 1). The annual mean and seasonal SSTs displayed an increasing trend offshore with the largest difference of ca. 6 °C in winter between inshore and offshore (Fig. 2).

3.2 $U_{37}^{K'}$ and alkenone-derived temperatures

The $U_{37}^{K'}$ index ranged between 0.81 and 0.94 (0.91 average, Table 1), corresponding to 23.0–27.0 °C (26.0 °C average, Fig. 2a) based on the linear calibration proposed by Conte et al. (2006). Compared with the measured SSTs, the $U_{37}^{K'}$-SSTs were closest to the spring or annual mean SSTs at most sites, except the two inshore samples (WD <50 m) showing slightly lower $U_{37}^{K'}$-SSTs (Fig. 2a). Since $U_{37}^{K'}$-Temperature relationship has been found to be non-linear at SSTs >24–26° C (e.g., Conte et al., 2006, Sonzogni et al., 1997, Tierney and Tingley, 2018), we also compared results from different calibrations, including linear and non-linear calibrations for 0 m or 0–30 m SSTs (Fig. 3), and found that all derived $U_{37}^{K'}$-SSTs exhibited similar values within 0.5 °C (0.2 °C average; Suppl. Table 2). Specially, the recently proposed Bayesian B-spline regression model, BAYSPLINE (Tierney and Tingley, 2018), yielded higher values by 0.5 °C than those from the linear calibration of Conte et al. (2006).

3.3 LCD distribution and LDI-derived temperatures

In the total 1,13- and 1,15-diols, the C$_{30}$ 1,15-diol was the most abundant (>80 %) at most sites outside the PRE, followed by C$_{32}$ 1,15-diols (<15 %) and C$_{28}$ and C$_{30}$ 1,13-diols (<4 %) (Fig. 4a–4d). However, the C$_{32}$ 1,15-diols were more abundant (>41 %) than the C$_{30}$ 1,15-diols (>19 %) in the PRE sediments (Fig. 4c and 4d). The C$_{28}$ and C$_{30}$ 1,13-diols exhibited a similar spatial distribution pattern as the C$_{32}$ 1,15-diol, showing higher relative abundances in the PRE and coastal area (Fig. 4a, 4b and 4d). PCC analysis also showed C$_{28}$ and C$_{30}$ 1,13-diols and C$_{32}$ 1,15-diols were significantly correlated between each other (correlation coefficient: 0.56–0.83, p <0.005, Table 2). In contrast, these three diols were negatively correlated with C$_{30}$ 1,15-diol (correlation coefficient from −0.68 to −0.90, p <0.005, Table 2), with the latter exhibiting an opposite pattern and showing an overall increasing trend towards the offshore.

The LDI values of surface sediments varied from 0.56 to 0.98 (Table 1), but were ≥0.90 at most sites, corresponding to LDI-derived temperatures (LDI-SST) varying from 14.0 to 26.9 °C (Fig. 2b). The river input index (%C$_{32}$ 1,15) values ranged from 1.9 % to 66.3 %, showing an overall decreasing trend offshore (Fig. 4d and Suppl. Table 3).
3.4 Distribution of iGDGTs and TEX$_{86}^H$-derived temperatures

The iGDGTs were dominated by crenarchaeol ([Cren], 43.2–65.9 %) and GDGT-0 ([0], 18.1–37.0 %) (Fig. 5a–5f), and the ratios of both compounds, i.e. [0]/[Cren], ranged between 0.28 and 0.75 (Fig. 5h). Two samples with relatively high values of [0]/[Cren] were from the PRE (0.75, PRE-A8) and the deep sea (0.69, LD-21) (Fig. 5h). The least abundant iGDGTs is the crenarchaeol isomer ([Cren’], 0.8–5.4 %), showing an overall increasing trend offshore (Fig. 5f). The ratio of GDGT-0 and crenarchaeol isomer, i.e. [0]/[Cren’], maximized in the river mouth (47.3, PRE-A8) and exhibited a declining trend offshore (Fig. 5i). The ratio of GDGT-2 versus GDGT-3, i.e. [2]/[3], ranged from 2.6 to 7.2, and was low at shelf and coastal sites (WD <200 m, 2.6–3.6), but high at the deep-sea site (7.2, LD-21) (Fig. 5i). Similar spatial distribution patterns appeared for the [2]/[Cren] ratio and the MI value, exhibiting low values of 0.07–0.15 for [2]/[Cren] and 0.16–0.26 for MI at shelf and coastal sites, and slightly higher values of 0.25 for [2]/[Cren] and 0.31 for MI at the deep-sea site (LD-21) (Fig. 5g). In addition, higher BIT values (0.49) were found in the PRE, relative to the inshore area (0.1–0.3, WD <50 m) and the offshore area (<0.1) (Fig. 5h).

TEX$_{86}^H$ values varied in the range between −0.33 and −0.18 (Table 1), corresponding to SST values of 16.2 to 26.0 °C based on the global calibration by Kim et al. (2010) (Fig. 2c and Suppl. Table 4). The annual residuals ranged from −8.8 to −1.0 °C. Seasonally, the mean absolute values of residuals were 2.0 °C, 5.9 °C, 8.6 °C and 5.3 °C, respectively, from winter to autumn (Suppl. Table 4), indicating TEX$_{86}^H$-SSTs were closer to winter temperature. Spatially, consistently low temperature estimates were found in the coastal area and PRE with water depth <50 m, some of them even colder than winter SST (Fig. 2c). However, the offshore samples had relatively high TEX$_{86}^H$-SSTs, which were ca. 2 °C higher than winter SST and close to autumn and annual SSTs (Fig. 2c). We also applied the recently proposed BAYSPAR (Bayesian SPAtially-varying Regression) calibration to our data, which yielded similar results but slightly reduced residuals (Fig. 6b and Suppl. Table 4).

3.5 Distribution of OH-GDGTs and RI-OH-derived temperatures

The OH-GDGTs contributed 1.5–4.1% to the total GDGT pool (Suppl. Table 5), consistent with the lower relative OH-GDGTs abundance found in (sub)tropical regions (Huguet et al., 2013). The most abundant OH-GDGT is OH-GDGT-2 ([OH-2], 39.2–67.0 %), with high values at shelf and coastal sites (WD ≤186 m) (Fig. 5l), but low contribution at the deep-sea site (LD-21). In contrast, the relative abundance of OH-GDGT-0 ([OH-0]) remained low at shelf and coastal sites, but was elevated at the deep-sea site (Fig. 5j).

The RI-OH values varied from 1.57 to 1.79 (Table 1), which agrees with recently reported data for the same region (1.50–1.75) (Lü et al., 2015; Yang et al., 2018). SST estimates based on the calibration suggested by Lü et al. (2015) for the Chinese marginal sea (CMS), were within a range of 23.3–31.2 °C (Fig. 2d and Suppl. Table 5). In comparison with the measured annual SST, three higher RI-OH-SSTs occurred in the PRE, with annual residuals of 2.4–6.0 °C, and other samples exhibited slightly higher or lower RI-OH-SSTs, with annual residuals of −2.4–2.9 °C (Suppl. Table 5).
4 Discussion

4.1 Seasonality of the U_{37}^{K} proxy

Although the relationship between U_{37}^{K} and SST is robust and well supported by culture studies (Conte et al., 1998; Prahl and Wakeham, 1987; Prahl et al., 1988; Sawada et al., 1996; Volkman et al., 1995), the seasonality of production of alkenones and the response of U_{37}^{K} to temperature at very warm and cold environments remain unresolved (Tierney and Tingley, 2018). Sediment trap studies demonstrated that alkenone production varies markedly across the oceans (e.g., Rosell-Melé and Prahl, 2013 and references therein), with factors such as temperature, nutrients, light availability, and competition regulating the timing of haptophyte blooms (Rosell-Melé and Prahl, 2013). The seasonality of alkenone production may be transferred to sediments, but this signal could also be altered by the complex sedimentation processes, e.g., lateral advection and resuspension (Rosell-Melé and Prahl, 2013).

Our results indicate that the linear calibration-derived U_{37}^{K}-SST reflect approximately the annual mean SST but slightly spring biased in this region (Fig. 2a and 3a). And if BAYSPLINE-derived U_{37}^{K}-SST is considered, the spring bias is more apparent (Fig. 3a). But the small temperature difference between the annual mean and spring SSTs precludes a clear discrimination between them. However, an inshore-offshore transect study by Zhang et al. (2013) proposed U_{37}^{K}-SST to be spring- and summer-biased in this region. We note that the summer in that work included June, July and August, differing from the definition used here that the month of June is included in spring. So we are disposed to believe that the alkenone production is biased to warm season, when alkenone-sourced organisms likely develop. This proposition is consistent with the observations that coccolithophores, especially the alkenone producer *E. huxleyi*, are lowest during winter but abundant during warm months on the SCS shelf (Chen et al., 2007). During cool months, diatoms outcompete other phytoplankton due to replete surface nutrient on the shelf (Chen et al., 2007). This scenario is in contrast to the oligotrophic basin of the SCS, where elevated nutrients, still insufficient to support diatom dominancy, lead to highest coccolithophore abundance during cool months due to strong winter wind-induced mixing (Chen et al., 2007). Besides, we surmise that the warm season development of coccolithophores could also be associated with the Pearl River input, which is highest in late spring (May to June) in an annual cycle with high nutrient levels characterized by N:P ratios as high as ~100:1 (Dai et al., 2008; Lu and Gan, 2015; Xu et al., 2008; Zhang et al., 2013). Such an unbalanced nutrient ratio could stimulate the growth of alkenone-producing haptophytes, e.g., *E. huxleyi*, during this period, since both in situ investigations and experiments have reported that *E. huxleyi* have a competitive advantage over other phytoplankton at high N:P ratios (Riegman et al., 1992, Tyrrell and Taylor, 1996). This phenomenon is likely because the species has a greater activity of the enzyme alkaline phosphatase, facilitating its assimilation of dissolved organic phosphates (Bijma et al., 2001). Nevertheless, the ecology of coccolithophores on the shallow SCS shelf has not been extensively studied and future works are needed to combine phytoplankton, nutrients, water column structure and salinity investigations.
4.2 LCDs and LDI-derived temperatures

4.2.1 Source of LCDs in the surface sediments

The unusually low LDI-derived SST estimates relative to the measured SSTs observed near the coast and close to the river mouth (Fig. 2a and 4e) suggest that LDI may be influenced by terrestrial/freshwater sources other than marine producers. Similar findings were reported from the Iberian margin (de Bar et al., 2016), in the Gulf of Lion, the Berau Delta, the Kara Sea (Lattaud et al., 2017) and the East China Sea (He et al., 2020), suggestive of terrestrial influence on LCD compositions. Culture studies show that marine eustigmatophyte algae mainly produce 1,13 and 1,15-diols (Rampen et al., 2007, 2014a; Volkman et al., 1999). In freshwater environments, eustigmatophyte algae primarily produce C$_{32}$ 1,15-diol, especially in stagnant waters during dry seasons, when rivers have low-stands (Häggi et al., 2019; Lattaud et al., 2017; Rampen et al., 2014b). However, C$_{30}$ 1,15-diols are generally found to be dominant both in the marine water column and sediments and are likely produced by marine eustigmatophyte algae (Balzano et al., 2018).

In this study, the co-occurrence of high abundance of C$_{28}$ and C$_{30}$ 1,13-diols and C$_{32}$ 1,15-diols in the PRE and along the coast rather than in the offshore area (Fig. 4a, 4b, 4d) is consistent with the PCC analysis, and further suggests a terrestrial/freshwater source of them. Such a spatial distribution pattern becomes more apparent when diol compositions in SPM and sediments are illustrated from the PRE to the offshore (Fig. 4g). In contrast, the negative correlation of C$_{30}$ 1,15-diol with three other diols could be attributed to their different sources, i.e. marine vs. terrestrial.

4.2.2 Influence of riverine LCDs

It has been pointed out that LCDs delivered by rivers can substantially affect LDI temperature estimates in coastal regions close to river mouths (e.g., Lattaud et al., 2017; He et al., 2020). Lattaud et al. (2017) pointed out that %C$_{32}$ 1,15 in the typical marine sediments generally does not exceed a value of 20%, which may be used as a cut-off for the reliable reconstruction of LDI-SST, and %C$_{32}$ 1,15 >20 % implies an increased contribution of riverine LCDs. In our samples, the LDI-SST was similar to the measured annual SST at most sites (Fig. 2b), with 6 exceptions at shallow sites (<26 m) in the PRE and the near-coastal area showing temperature values underestimated by as great as −11.0 °C (Fig. 2b and 4e). We found the greater underestimations corresponded to %C$_{32}$ 1,15 values that are >20 % and 4× higher than those of the other samples and the samples with %C$_{32}$ 1,15 <20 % have smaller annual residuals ranging between −0.2 °C and 1.2 °C (Fig. 4e and Suppl. Table 3). Besides, the %C$_{32}$ 1,15 values correlated positively (R$^2 = 0.66$, p <0.001) with the BIT index that is often used to indicate terrestrial input in the coastal area (Fig. 4f). So %C$_{32}$ 1,15 is also effective to indicate river input in this region. After removal of data points (n = 6) with %C$_{32}$ 1,15 >20%, indicating significant influence of riverine LCDs, the LDI-SST of the reduced data set yield a mean value of absolute annual SST residuals of 0.5 °C, nearly half of those of the full data set.
4.2.3 Seasonality of LDI index

Our results indicated that LDI-SSTs with minimal river influences may reflect annual SSTs (Fig. 2b and Suppl. Table 3), suggesting unbiased seasonal production of the source organisms of LDI in this study area. Similar results have been reported by Zhu et al. (2014), who found that LDI-SSTs in downcore sediments matched well with local annual SSTs in the northern SCS. Rampen et al. (2007) found comparable annual flux of 1,15-diols at different stations in the Arabian Sea, and suggested that the biological producers of 1,15-diols do not require a high level of nutrients as needed by, e.g., *Proboscia* diatoms. Thus, LDI may reflect annual SST due to a lack of sensitivity of marine eustigmatophytes to nutrient variations in an annual cycle in the northern SCS shelf.

4.3 TEX$_{86}^{H}$ and isoprenoid GDGT-derived temperature estimates

4.3.1 Sources of iGDGTs in the surface sediments

In marine sediments, the iGDGTs composition may sometimes be impacted with or even controlled by non-thermal factors, e.g., sources of iGDGTs other than Thaumarchaeota (Zhang et al., 2016). Several indices, e.g., the MI, BIT, and the [2]/[Cren] ratio have been developed to assess these impacts. Relatively low MI values (≤0.25) were observed at most sites here accompanied by low [2]/[Cren] ratios (0.07–0.15) (Fig. 5g). These values may suggest little input of iGDGTs from archaea involved in methane cycling that are typically characterized by a high MI value (>0.3) or substantially elevated [2]/[Cren] ratio (>0.2) (Weijers et al., 2011; Zhang et al., 2016). The exception was the deep-sea sample (LD-21), showing a slightly higher MI value (0.31) and a higher [2]/[Cren] ratio of 0.25, which could be slightly associated with the archaea involved in methane cycling. The constantly low BIT values at most sites are typical for marine sediments with little terrestrial impact. The highest BIT value (0.49) observed in the PRE (sample PRE-A8) (Fig. 5g) is similar to the finding of Zhang et al. (2012). As the BIT index in soils generally tends to be >0.9 (Hopmans et al., 2004), the highest BIT value at the site likely indicates a significant input of soil-derived GDGTs. However, the ability of the BIT index to indicate soil input in this region has recently been discounted by the finding that branched GDGTs may be aquatically in-situ produced (Zhou et al., 2014). Nevertheless, considering that the sample PRE-A8 is located at the upper river mouth, together with the highest %C$_{32}$ 1,15 values as discussed above, we believe iGDGTs may be impacted to some extent by terrestrial input. The [0]/[Cren] ratio was also high at the site PRE-A8. This is likely associated with river input, as the [0]/[Cren] ratio has been found to be high (>2) in soils and river sediments likely due to in situ methanogenic archaea or imported soil-derived methanogens (Wang et al., 2015; Zhu et al., 2011). Slightly different from other iGDGTs, [Cren’] increased clearly with increasing water depth, with the lowest value of 0.8 % found in the PRE (PRE-A8) and ~1.0 % close to the PRE (Fig. 5f). This pattern was unlikely caused by soil iGDGTs input, as [Cren’] in the soils in the catchments of the Pearl River is ~3 % (Wang et al., 2015). Recently, [Cren’] as low as 0.2–0.7 %, with a mean of 0.4 %, was observed in the SPM of the lower Pearl River, which was attributed to the predominance of Euryarchaeota (Wang et al., 2015; Xie et al., 2014). In contrast,
[Cren’] in deep-sea sediments in the SCS is also characterized by higher values $>4\%$ (Jia et al., 2017). So, iGDGTs close to and within the PRE could also be impacted by in situ archaea input other than Thaumarchaeota.

Recently, several studies suggest that tetraether lipids of Thaumarchaeota dwelling in shallow waters are characterized by $[2]/[3]$ ratios <4 and [Cren’] $<4\%$, whereas for “deep-water” Thaumarchaeota lipids are characterized by higher values (Jia et al., 2017; Kim et al., 2015, 2016). The difference in iGDGTs distributions between the two eco-types of Thaumarchaeota is due likely to the use of different enzymes for iGDGTs synthesis (Kim et al., 2016; Villanueva et al., 2015). Based on these criteria, only one sample, i.e. the deep-sea sample LD-21 with a $[2]/[3]$ ratio of 7.2 and [Cren’] of 5.4\% (Fig. 5f, 5i), likely received some contributions from deep Thaumarchaeota. The sample at the second deepest site, i.e. E503 at 186 m, showed a $[2]/[3]$ ratio of 3.6 and [Cren’] of 4.3\% (Fig. 5f, 5i), which suggests only a small contribution from deep Thaumarchaeota.

The occurrence of low $[2]/[3]$ ratios and low [Cren’] fractional abundances for most of our study sites is in agreement with the shallow water depths of these sites, as the depth boundary to separate the deep and shallow Thaumarchaeota, although not exactly determined, is likely 200–300 m (Jia et al., 2017; Kim et al., 2015, 2016).

Recently, Zhang et al. (2016) proposed that the relation between TEX$_{86}$ and Ring Index (RI) can be used to assess if the TEX$_{86}$ is influenced by non-thermal factors. Unexpectedly, using the global TEX$_{86}$-RI relationship (Zhang et al., 2016), we found most of our sediment data lay out of the 95\% prediction band (Fig. 6a), likely negating TEX$_{86}$ of our sample to indicate seawater temperature. However, except the two samples (LD-21 and PRE-A8) that may be influenced by other factors as discussed above, our data lay within the 95 \% prediction of “shallow-water” TEX$_{86}$-RI relationship (Fig. 6a) derived from the surface water SPM (Jia et al., 2017). We think the latter is reasonable because: (1) our study sites receive predominantly shallow Thaumarchaeota input as demonstrated above, and (2) the shallow Thaumarchaeota likely respond to ambient temperature differently from the deep ones (Jia et al., 2017; Kim et al., 2015, 2016; Taylor et al., 2013; Villanueva et al., 2015), hence causing a different shallow-water TEX$_{86}$-RI relationship from the global that contains mainly deep-sea sedimentary data. Therefore, TEX$_{86}$ in most of our sediments may still indicate seawater temperature changes.

Besides, in a recent study in the East China Sea shelf, Zhang et al. (2017) noted the impact of the resuspension and lateral transport on the TEX$_{86}$ proxy, which could not break the TEX$_{86}$-RI relationship but may make the TEX$_{86}$-SST relationship irregular. In our results, some large scatters of TEX$_{86}^{H}$-derived SSTs from the measured SSTs (Fig. 2c) perhaps were partly associated with the resuspension and lateral transport. However, as shown below the scatters are more likely caused by the calibration.

4.3.2 Seasonality of TEX$_{86}^{H}$ index

Based on the above discussion on iGDGTs indices, only two samples, one in the PRE (PRE-A8) and the other in the deep sea (LD-21), are markedly different from the remaining samples that appear minimally influenced by soil/freshwater-derived archaea and deep-dwelling Thaumarchaeota or methane-cycling archaea. After excluding these two samples, we examined the temperature signal of the TEX$_{86}^{H}$ index as below.
In the coastal area of northern SCS, TEX\textsubscript{86}H derived SST in surface sediments and surface water SPM has been found lower than annual SST and hence attributed to winter-biased archaeal production and associated iGDGTs burial (Ge et al., 2013; Wei et al., 2011; Zhang et al., 2012; Zhou et al., 2014). Our TEX\textsubscript{86}H-SST estimates were 0.9–8.8 °C lower than annual SST, similar to previous studies. However, when compared with winter SST, the residuals varied between ~4.7 and 2.1 °C, still showing some large negative residuals (Fig. 6b and Suppl. Table 4). The BAYSPAR estimates yielded similar results to TEX\textsubscript{86}H-SST estimates, although the residuals were slightly reduced by ~0.3 °C (Fig. 6b and Suppl. Table 4).

We noted that different from the global dataset utilized to establish the TEX\textsubscript{86}H-SST (i.e. Eq. (8)), which includes a large number of deep-sea sediment samples, our data here were exclusively from shallow sediments receiving iGDGTs predominantly from shallow dwelling Thaumarchaeota. Therefore, we surmise that the global TEX\textsubscript{86}H-SST calibration might not be accurate for our study area, due to that the shallow and deep Thaumarchaeota exhibit slightly different tetraether compositions. Alternatively, a local “shallow-water” calibration could be more appropriate for temperature reconstruction in this study. So a recent seasonal calibration based on winter surface water SPM in the SCS (Jia et al., 2017) was applied to our data as a comparison. By applying the equation established from winter SPM (SST\textsubscript{winter} = 47.18×TEX\textsubscript{86}H + 34.44, n = 45, R² = 0.6; Jia et al., 2017), we found that the winter residuals were greatly reduced, ranging between ~2.1 to 2.0 °C (Fig. 6b), with only two samples having residuals greater than 2 °C. This suggests that iGDGTs-derived temperature is really winter biased in the SCS shelf, and the local calibration is powerful for temperature reconstruction.

4.4 RI-OH and RI-OH-derived temperatures

4.4.1 Source of OH-GDGTs and their influences on RI-OH-SST estimates

A few studies have detected OH-GDGTs in marine, river, lacustrine and soil environments, indicating ubiquitous and multiple sources of OH-GDGTs (Chen et al., 2016; Huguet et al., 2013; Kang et al., 2017; Liu et al., 2012; Park et al., 2019; Wang et al., 2012). Kang et al. (2017) noted that OH-0 (OH-GDGT-0) dominated in marine and estuarine environments (56 ± 10 %), but OH-2 (OH-GDGT-2) was abundant in lake, river and soil environments, which may lead to overestimated RI-OH-SSTs in case of substantial terrestrial input. Consistently, our results showed that RI-OH-SSTs were warm-biased in the PRE (Fig. 2d), where terrestrial input is significant.

In the SCS, there have been some sedimentary OH-GDGTs data reported previously from water depths ranging between 3 m and 4405 m (Lü et al., 2015; Yang et al., 2018). By combining our data with those published SCS data, there was a very significant positive logarithmic correlation between [OH-0] and water depth (R² = 0.66, p <0.001, Fig. 5j), but a very significant negative logarithmic correlation between [OH-2] and water depth (R² = 0.53, p <0.001, Fig. 5l). We also found that, with the exception of one sample (WD = 41 m), two clusters of samples can be separated based on the [OH-0]/[OH-2] ratio, with the ratio value <0.55 for the shallow-water samples (WD ≤186 m, including all data in this study) and >0.55 for the deep-water samples (WD ≥330 m) (Fig. 7a). This is abnormal because the deep-water samples were located in slope and basin of the SCS at the lower latitudes with higher SSTs (Yang et al., 2018), which should induce more abundance of OH-2
according to eq. (12). For the shallow-water samples the annual residuals were basically not affected by SST, whereas for the deep-water samples they became increasingly negative with the increase of SST from ca. 26–29 °C (Fig. 7b). This phenomenon is quite similar to the recent finding that the fractional abundance of OH-2 is negatively related with SST when SST is >25 °C (Yang et al., 2018), although data from a modified Bligh/Dyer method was analyzed in that work. Nevertheless, the data from the same ultrasonic extraction method showing that the shallow-water samples exhibited annual RI-OH-SST residuals of −2.5 °C to 3.4 °C, but the deep-water samples showed a larger and more negative range between −8.1 °C and 2.3 °C (Fig. 7b, c), likely implying a winter or deeper bias of the RI-OH in deep sea sediments. Considering the less degree of seasonality of the tropical SCS basin and the significant negative correlation of SST with the water depth (R² = 0.74, p <0.001, Fig. 7c), we postulate that archaea dwelling in the cool/cold deep water or sediments with lower abundance of OH-2 could have contributed to the deep-water sedimentary OH-GDGTs. This interpretation is different from Yang et al. (2018), who propose OH-2 abundance may respond to temperature inversely at higher SSTs (>25 °C). In fact, all of our samples belonged to the shallow-water samples, and their RI-OH (or [OH-2]) was positively correlated with annual SST although the annual SSTs of most data (n = 13 of 16) were above 25 °C (Fig. 7d). As a comparison, most samples of Yang et al. (2018) (n = 17 of 23) were located in the deep ocean (WD> 971 m) and SST generally increase coincidently with water depth (Fig. 7c).

4.4.2 Seasonality of RI-OH-temperature relation in surface sediments

In the China coastal seas (CCSs), in addition to the good relation between RI-OH and annual SSTs (R² = 0.81, p <0.01), Lü et al. (2015) also found that the RI-OH index is significantly correlated with seasonal SSTs with all R² >0.77, and hence proving a calibrations for each season. We applied these four seasonal calibrations to our RI-OH data and compared them with observed seasonal SSTs from WOA18 and found that the average absolute residuals for winter, spring, summer and autumn are 1.5 (−2.4–3.6 °C), 2.3 (−5.4–3.7 °C), 0.8 (−1.3–1.4 °C) and 1.9 °C (0.4–3.6 °C), respectively (Suppl. Table 5). Comparatively, the annual residuals ranged between −2.4 and 2.9 °C and averaged 1.2 °C. Thereby, the summer residuals are the lowest, suggesting that RI-OH may better represent summer SST in the SCS shelf. This occurrence is similar to the observations by Lü et al. (2015, 2019). However, TEXH^18-derived SST is biased to winter SST in this region as discussed above, this mismatch may suggest different sources of OH-GDGTs and iGDGTs. However, the source of OH-GDGTs has not been fully clear yet, and thus more studies on OH-GDGTs in various regions are needed for a better assessment of the proxy.

5 Conclusions

Temperature estimates from U^13C_37, LDI, TEXH^18_86 and RI-OH proxies in surface sediments from the northern South China Sea shelf, including the Pearl River Estuary and the coastal area, were compared with annual and seasonal satellite-derived SSTs (WOA18). U^13C_37-SST was mainly spring-biased, likely due to the blooming of alkenone source-organisms in late spring, when
river runoff, as well as the abundant terrestrial nutrients, are highest. The results also showed that terrestrial inputs have an appreciable impact on LDI, TExH and RI-OH proxies and lead to cold-biased (LDI and TExH) or warm-biased (RI-OH) temperature relative to SSTs. After excluding from the data set the samples subject to terrestrial input, these indices exhibited different seasonal variabilities, which reflect distinctive ecologies of their source organisms as results of seasonal changes in environmental conditions. LDI-SST matched well with annual SSTs, possibly related with the insensitivity of marine eustigmatophytes to nutrient variations in an annual cycle. For the TExH proxy, a local “shallow-water” calibration based on winter surface water SPM in the SCS appeared more appropriate for temperature reconstruction and greatly reduced winter residuals. The winter biased TExH can likely be attributed to favorable conditions for planktonic archaea in winter, impacted by the enhancement of local vertical seawater mixing. In contrast to the TExH indices, RI-OH seems to reflect summer SST, hence suggesting different source organisms of OH-GDGTs and iGDGTs that needs further investigations.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant No. 41676030). BW thanks the China Scholarship Council (201706260033) for the support during his stay at Alfred Wegener Institute (Germany). We acknowledge the captain, crew and scientists who participated in the expeditions for collecting samples used in this study. We appreciate the assistance from Jens Heft er for biomarker analysis at Alfred Wegener Institute. Two anonymous reviewers are grateful for their constructive comments.

Data availability

The data produced in this publication will be available from the PANGAEA database: https://doi.pangaea.de/10.1594/PANGAEA.905187.

Author contribution

GJ and GM conceived and designed the study. BW and MK collected the samples. BW conducted all the proxy analysis and was aided by JH in the instrument maintenance and data analysis. BW wrote the paper with inputs from GJ, GM and EP. All the authors reviewed the final manuscript.

Supplement

There is supplement related to this article.
References

Prah1, F. G., Muehlhausen, L. A. and Zahnle, D. L.: Further evaluation of long-chain alkenones as indicators of

Smith, M., Deckker, P. De, Rogers, J., Brocks, J., Hope, J., Schmidt, S., Lopes, R. and Schouten, S.: Comparison of U^K13C37, TEX^H 86 and LDI temperature proxies for reconstruction of south-east Australian ocean temperatures, Org. Geochem., 64,

Wang, J. X., Wei, Y., Wang, P., Hong, Y. and Zhang, C. L.: Unusually low TEX$_{86}$ values in the transitional zone between Pearl River estuary and coastal South China Sea: Impact of changing archaeal community composition, Chem. Geol., 402,

Table 1: Sampling sites, SST and proxy values from the PRE and northern SCS shelf (water depth (WD), sea surface temperature (SST) obtained from WOA18, RI-OH, ring index of OH-GDGTs).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>WD (m)</th>
<th>SST annual (°C)</th>
<th>SST winter (°C)</th>
<th>SST spring (°C)</th>
<th>SST summer (°C)</th>
<th>SST autumn (°C)</th>
<th>U$_{37}^{K}$</th>
<th>LDI</th>
<th>TEX86</th>
<th>TEXH86</th>
<th>BIT</th>
<th>RI-OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-Y6</td>
<td>22.3</td>
<td>113.8</td>
<td>6.5</td>
<td>25.2</td>
<td>20.9</td>
<td>25.4</td>
<td>29.0</td>
<td>25.4</td>
<td>0.91</td>
<td>0.69</td>
<td>0.53</td>
<td>-0.28</td>
<td>0.28</td>
<td>1.69</td>
</tr>
<tr>
<td>PRE-Y11</td>
<td>22.1</td>
<td>113.7</td>
<td>8.0</td>
<td>25.2</td>
<td>20.9</td>
<td>26.3</td>
<td>29.0</td>
<td>25.7</td>
<td>0.91</td>
<td>0.81</td>
<td>0.56</td>
<td>-0.25</td>
<td>0.16</td>
<td>1.72</td>
</tr>
<tr>
<td>SXCB</td>
<td>21.5</td>
<td>112.7</td>
<td>14</td>
<td>25.7</td>
<td>21.7</td>
<td>25.8</td>
<td>28.9</td>
<td>25.2</td>
<td>0.90</td>
<td>0.90</td>
<td>0.49</td>
<td>-0.31</td>
<td>0.15</td>
<td>1.62</td>
</tr>
<tr>
<td>GLB</td>
<td>21.7</td>
<td>113.0</td>
<td>15</td>
<td>25.2</td>
<td>21.0</td>
<td>25.4</td>
<td>29.0</td>
<td>25.4</td>
<td>0.90</td>
<td>0.86</td>
<td>0.50</td>
<td>-0.30</td>
<td>0.19</td>
<td>1.62</td>
</tr>
<tr>
<td>PRE-A8</td>
<td>22.7</td>
<td>113.7</td>
<td>17.5</td>
<td>25.2</td>
<td>20.9</td>
<td>25.0</td>
<td>28.7</td>
<td>24.8</td>
<td>0.81</td>
<td>0.56</td>
<td>0.60</td>
<td>-0.22</td>
<td>0.49</td>
<td>1.79</td>
</tr>
<tr>
<td>QD00</td>
<td>21.1</td>
<td>110.8</td>
<td>18</td>
<td>24.2</td>
<td>18.2</td>
<td>25.4</td>
<td>29.0</td>
<td>25.4</td>
<td>0.88</td>
<td>0.93</td>
<td>0.48</td>
<td>-0.31</td>
<td>0.07</td>
<td>1.61</td>
</tr>
<tr>
<td>LD-GSD</td>
<td>22.1</td>
<td>113.8</td>
<td>21</td>
<td>25.2</td>
<td>20.9</td>
<td>25.5</td>
<td>28.9</td>
<td>25.4</td>
<td>0.91</td>
<td>--</td>
<td>0.57</td>
<td>-0.24</td>
<td>0.28</td>
<td>--</td>
</tr>
<tr>
<td>WSB</td>
<td>22.0</td>
<td>113.7</td>
<td>21</td>
<td>25.2</td>
<td>21.0</td>
<td>26.2</td>
<td>28.7</td>
<td>25.1</td>
<td>0.91</td>
<td>0.93</td>
<td>0.55</td>
<td>-0.26</td>
<td>0.25</td>
<td>--</td>
</tr>
<tr>
<td>MMDB</td>
<td>21.2</td>
<td>111.3</td>
<td>26</td>
<td>24.9</td>
<td>19.7</td>
<td>26.3</td>
<td>29.0</td>
<td>25.6</td>
<td>0.85</td>
<td>0.64</td>
<td>0.47</td>
<td>-0.33</td>
<td>0.10</td>
<td>1.59</td>
</tr>
<tr>
<td>E700</td>
<td>21.5</td>
<td>112.5</td>
<td>26</td>
<td>25.6</td>
<td>21.5</td>
<td>26.3</td>
<td>29.0</td>
<td>25.7</td>
<td>0.93</td>
<td>0.94</td>
<td>0.48</td>
<td>-0.32</td>
<td>0.08</td>
<td>1.60</td>
</tr>
<tr>
<td>YJXB</td>
<td>21.4</td>
<td>111.8</td>
<td>27</td>
<td>25.7</td>
<td>21.7</td>
<td>26.0</td>
<td>28.9</td>
<td>25.2</td>
<td>0.89</td>
<td>0.94</td>
<td>0.55</td>
<td>-0.26</td>
<td>0.22</td>
<td>--</td>
</tr>
<tr>
<td>E600</td>
<td>21.3</td>
<td>111.7</td>
<td>29</td>
<td>25.0</td>
<td>19.9</td>
<td>25.5</td>
<td>29.0</td>
<td>25.4</td>
<td>0.93</td>
<td>0.95</td>
<td>0.49</td>
<td>-0.31</td>
<td>0.05</td>
<td>1.60</td>
</tr>
<tr>
<td>A9</td>
<td>22.0</td>
<td>114.0</td>
<td>35</td>
<td>25.2</td>
<td>21.1</td>
<td>26.3</td>
<td>29.0</td>
<td>25.7</td>
<td>0.92</td>
<td>0.93</td>
<td>0.49</td>
<td>-0.31</td>
<td>0.06</td>
<td>1.58</td>
</tr>
<tr>
<td>E701</td>
<td>21.2</td>
<td>112.7</td>
<td>45</td>
<td>25.7</td>
<td>21.7</td>
<td>27.0</td>
<td>28.5</td>
<td>25.7</td>
<td>0.93</td>
<td>0.95</td>
<td>0.53</td>
<td>-0.27</td>
<td>0.06</td>
<td>1.63</td>
</tr>
<tr>
<td>QD04</td>
<td>20.4</td>
<td>111.1</td>
<td>47</td>
<td>25.7</td>
<td>21.6</td>
<td>25.8</td>
<td>29.0</td>
<td>25.6</td>
<td>0.91</td>
<td>0.94</td>
<td>0.49</td>
<td>-0.31</td>
<td>0.06</td>
<td>1.57</td>
</tr>
<tr>
<td>SW10</td>
<td>22.1</td>
<td>115.0</td>
<td>58</td>
<td>25.6</td>
<td>22.2</td>
<td>26.5</td>
<td>28.9</td>
<td>26.0</td>
<td>0.93</td>
<td>0.97</td>
<td>0.54</td>
<td>-0.27</td>
<td>0.04</td>
<td>1.66</td>
</tr>
<tr>
<td>LD-11</td>
<td>20.9</td>
<td>114.5</td>
<td>86</td>
<td>26.2</td>
<td>23.2</td>
<td>26.2</td>
<td>28.9</td>
<td>25.8</td>
<td>0.94</td>
<td>0.97</td>
<td>0.60</td>
<td>-0.22</td>
<td>0.02</td>
<td>1.73</td>
</tr>
<tr>
<td>A6</td>
<td>21.3</td>
<td>114.7</td>
<td>88</td>
<td>25.9</td>
<td>22.7</td>
<td>26.8</td>
<td>29.0</td>
<td>26.2</td>
<td>0.94</td>
<td>0.97</td>
<td>0.56</td>
<td>-0.25</td>
<td>0.05</td>
<td>1.65</td>
</tr>
<tr>
<td>LD-18</td>
<td>20.6</td>
<td>113.8</td>
<td>88</td>
<td>26.2</td>
<td>22.9</td>
<td>26.7</td>
<td>29.0</td>
<td>26.0</td>
<td>0.92</td>
<td>0.98</td>
<td>0.60</td>
<td>-0.22</td>
<td>0.03</td>
<td>1.73</td>
</tr>
<tr>
<td>QD11a</td>
<td>20.7</td>
<td>113.4</td>
<td>90</td>
<td>26.1</td>
<td>22.5</td>
<td>27.2</td>
<td>29.1</td>
<td>25.9</td>
<td>0.92</td>
<td>0.95</td>
<td>0.51</td>
<td>-0.29</td>
<td>0.06</td>
<td>1.61</td>
</tr>
<tr>
<td>QD41</td>
<td>20.1</td>
<td>112.1</td>
<td>90</td>
<td>26.2</td>
<td>22.4</td>
<td>28.0</td>
<td>29.4</td>
<td>26.2</td>
<td>0.91</td>
<td>0.97</td>
<td>0.59</td>
<td>-0.23</td>
<td>0.03</td>
<td>1.68</td>
</tr>
<tr>
<td>ES03</td>
<td>19.2</td>
<td>112.3</td>
<td>186</td>
<td>26.8</td>
<td>23.7</td>
<td>28.0</td>
<td>29.1</td>
<td>26.6</td>
<td>0.94</td>
<td>0.98</td>
<td>0.65</td>
<td>-0.19</td>
<td>0.03</td>
<td>1.72</td>
</tr>
<tr>
<td>LD-21</td>
<td>19.7</td>
<td>114.6</td>
<td>1307</td>
<td>27.0</td>
<td>24.1</td>
<td>25.4</td>
<td>29.0</td>
<td>25.4</td>
<td>0.94</td>
<td>0.98</td>
<td>0.65</td>
<td>-0.18</td>
<td>0.03</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Table 2: Pearson correlation coefficient analysis of different diols in surface sediments in this study.

<table>
<thead>
<tr>
<th>Pearson correlation coefficient</th>
<th>C_{28} 1,13-diol</th>
<th>C_{30} 1,13-diol</th>
<th>C_{30} 1,15-diol</th>
<th>C_{32} 1,15-diol</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{28} 1,13-diol</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{30} 1,13-diol</td>
<td>0.83**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{30} 1,15-diol</td>
<td>−0.68**</td>
<td>−0.90**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C_{32} 1,15-diol</td>
<td>0.56**</td>
<td>0.78**</td>
<td>−0.90**</td>
<td>1</td>
</tr>
</tbody>
</table>

** p < 0.005

Figure 1: (a) Sampling sites and patterns of the surface coastal currents in (b) winter and (c) summer, respectively (modified from Liu et al. (2014)).
Figure 2: Changes with water depth of WOA-derived and proxy-derived SSTs for: (a) $U_{37}^{K'}$, (b) LDI, (c) TEX_{86}^{H}, and (d) RI-OH.
Figure 3: (a) A comparison between U_{37}^K-SST values calculated using different calibrations and the measured annual/seasonal SST (0 m). Calibrations were based on: (1) Müller et al., 1998; (2) Müller and Fischer, 2003; (3) BAYSPLINE (Tierney and Tingley, 2018); (b) A comparison between U_{37}^K-SST values calculated using different calibrations and the measured annual/seasonal SST for the mixed layers (0-30 m). Calibrations were applied to (4) the SCS (Pelejero and Grimalt, 1997); (5) the Pacific Ocean (Conte et al., 2006); (6) the global Oceans (Conte et al., 2006).
Figure 4: Distribution of relative abundances of: (a) C_{28} 1,13-diol, (b) C_{30} 1,13-diol, (c) C_{30} 1,15-diol, and (d) C_{32} 1,15-diol (river input index); (e) Distribution of annual residuals (LDI-derived SST minus observed annual SST from WOA18); (f) Relationship between BIT and %C_{32} 1,15 (river input index) (curve shows linear fit); (g) Distribution of average diol abundance in SPM in the PRE (data from Zhu et al. (2018)), inshore and offshore surface sediments (data from this study) (Error bars indicate the standard deviations).
Figure 5: Depth profiles of the relative abundance of individual iGDGTs: (a) GDGT-0, (b) GDGT-1, (c) GDGT-2, (d) GDGT-3, (e) Cren, and (f) Cren' (dots with black marks from this study and without black marks from Ge et al. (2013), Jia et al. (2017), Wei et al. (2011), and Zhou et al. (2014); Black curves show lognormal fits for all surface sediments data in the SCS). Depth profiles of (g) [2]/[Cren] ratio and MI values, (h) [0]/[Cren] ratio and BIT values, and (i) [2]/[3] and [0]/[Cren'] ratios. Depth profiles of the relative abundance of individual OH-GDGTs: (j) OH-GDGT-0, (k) OH-GDGT-1, and (l) OH-GDGT-2 (dots with black marks from this study and without black marks from Lü et al. (2015) and Yang et al. (2018); Black curves show lognormal fits for all surface sediments data in the SCS).
Figure 6: (a) Ring index-TEX$_{86}$ crossplots for surface sediments in this study (red dots) and surface water SPM from Jia et al. (2017) (grey dots). Red curve is the quadratic fit for the SPM data in the SCS while blue curve have been presented by Zhang et al. (2016) for the global sediment data. Dashed curves are the 95% prediction limits for the quadratic fit; (b) Box-Whisker plot of annual residuals based on the global calibration (Kim et al., 2010) and BAYSPAR (Tierney and Tingley, 2014), as well as winter residuals based on the global calibration (Kim et al., 2010), BAYSPAR (Tierney and Tingley, 2014), and local calibration from winter SPM (Jia et al., 2017).
Figure 7: Changes of annual residuals with (a) [OH-0]/[OH-2] ratios (black curve is the lognormal fit for the surface sediment data in the SCS), and (b) annual SST; (Green and black curves are linear fits for “shallow-water” and “deep-water” samples in the SCS, respectively, and annual residuals are RI-OH-derived SSTs minus observed annual SSTs from WOA18; Previous study in (a) and (b) includes Lü et al. (2015) and Yang et al. (2018)); Relationship of (c) RI-OH with annual and seasonal SSTs for data from this study, Lü et al. (2015) and Yang et al. (2018) (black curve is lognormal fit), (d) Annual SST with RI-OH and [OH-2] for data in this study (red and black curves are linear fits).