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Abstract. Micronekton – small marine pelagic organisms mostly in the size range 1-10 cm– is a key component of the ocean

ecosystem, as it constitutes the main source of forage for all larger predators. Moreover, the mesopelagic component of mi-

cronekton that undergoes Diel Vertical Migration (DVM) likely plays a key role in the transfer and storage of CO2 in the deep

ocean: the so-called ‘biological pump’ mechanism. SEAPODYM-MTL is a spatially explicit dynamical model of micronek-

ton. It simulates six functional groups of migrant and non-migrant micronekton, in the epipelagic and mesopelagic layers.5

Coefficients of energy transfer efficiency between primary production and each group are unknown. But they are essential as

they control the predicted biomass. Since these coefficients are not directly measurable, a data assimilation method is used

to estimate them. In this study, Observing System Simulation Experiments (OSSE) in the framework of twin experiments are

used to test various observation networks at a global scale regarding energy transfer coefficients estimation. Observational

networks show a variety of performances. It appears that environmental conditions are crucial to determine network efficiency.10

According to our study, ideal sampling areas are warm, non-dynamic and productive waters like the eastern side of tropical

Oceans. These regions are found to reduce the error of estimated coefficients by 20% compared to cold and dynamic sampling

regions. The results are discussed in term of interactions between physical and biological processes.

1 Introduction

Micronekton organisms are at the mid-trophic level of the ocean ecosystem and have thus a central role, as prey of all larger15

predator species and as a potential new resource in the blue economy (St John et al., 2016). Diel Vertical Migrations (DVM)

characterizes a large biomass of the mesopelagic component of micronekton inhabiting the twilight zone (200-1000 m) of the

world ocean. Through these daily migrations, the mesopelagic micronekton potentially contributes to a substantial transfer

of atmospheric CO2 to the deep ocean, after its metabolization by photosynthesis and export through the food chain. The

understanding and quantification of this mechanism, called the ‘biological pump’, are crucial in the context of climate change20

(Zaret and Suffern, 1976; Benoit-Bird et al., 2009; Davison et al., 2013; Giering et al., 2014; Ariza et al., 2015). However, there

is a lack of comprehensive dataset at global scale to properly estimate micronekton biomass and composition. The few existing

estimates of global biomass of mesopelagic micronekton vary considerably between less than 1 and ∼ 20 Gt (Gjosaeter and
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Kawaguchi, 1980; Irigoien, 2014; Proud et al., 2018), so that micronekton has been compared to a "dark hole" in the studies

of marine ecosystems (St John et al., 2016). Therefore, a priority is to develop the datasets, methods and models needed to25

simulate and quantify the dynamics and functional roles of these species’ communities.

Observations and biomass estimations of micronekton rely traditionally on net sampling and active acoustic sampling (e.g.,

Handegard et al., 2009; Davison, 2011). Each method has limitations. Micronekton species can detect approaching fishing

gears and part of them can move away to avoid the net. This phenomenon leads to biomass underestimation from net trawling

(Kaartvedt et al., 2012). Conversely, acoustic signal intensity may overestimate biomass due to presence of organisms with30

strong acoustic target strength, e.g. many mesopelagic species but also siphonophores that have gas inclusion inducing strong

resonance (Davison, 2011; Proud et al., 2017). Some organisms like squids, have both excellent skills to escape the trawl net and

a low response to acoustic signal, making this component strongly underestimated with both methods. Progress are expected in

the coming years thanks to the use of multiple acoustic frequencies associated to traditional net sampling and optical techniques

(Kloser et al., 2016; Davison et al., 2015). More accurate biomass estimates should benefit from this combination of techniques35

and the developments of algorithms that can attribute acoustic signal to biological groups.

While these techniques of observation and methods of in situ estimates of biomass are progressing, new developments are

also achieved in the modeling of ocean ecosystem including micronekton components. SEAPODYM (Spatial Ecosystem And

POpulation Dynamics Model) is an eulerian ecosystem model that includes one lower- (zooplankton) and six mid-trophic (mi-

cronekton) functional groups, and detailed target fish populations (Lehodey et al., 1998, 2008). Given the structural importance40

of DVM, the functional groups are defined based on the daily migration behavior of organisms between three broad epi- and

meso-pelagic bio-acoustic layers (Lehodey et al., 2010, 2015). The spatial dynamics of biomass in each group is driven by the

ocean circulation, while a diffusion coefficient account for local random movements. The time of development and the natural

mortality of organisms in the functional groups are linked to the temperature in the vertical layers inhabited during the day

or night. These mechanisms are simulated with a system of advection-diffusion-reaction equations. Primary production is the45

source of energy distributed to each group according to a coefficient of transfer efficiency. Eleven parameters control the bio-

logical processes: a diffusion coefficient, six coefficients (E′i)i∈[[1,6]] of energy transfer from primary production toward each

mid-trophic functional group and four parameters for the relationship between water temperature and time of development

(mortality, recruitment) (Lehodey et al., 2010). The later four parameters were estimated from a compilation of data found

in the scientific literature (Lehodey et al., 2010). Therefore, the largest uncertainty remains on the energy transfer efficiency50

coefficients, that control the total abundance of each functional group.

A method to estimate the model parameters has been developed using a Maximum Likelihood Estimation (MLE) approach

(Senina et al., 2008). Its implementation is based on an adjoint technique (Errico, 1997) to iteratively optimize a cost function

that represents the discrepancy between model outputs and observations. A first study has shown that this method can be used

to estimate the parameters E′i using relative ratios of observed acoustic signal and predicted biomass in the three vertical layers55

during daytime and nighttime (Lehodey et al., 2015). A single acoustic transect was used, with the strong assumption that

acoustic signal and predicted biomass were directly proportional. While we can expect that improved estimates of micronekton

biomass become available in the coming years, they will likely still require costly operations at sea. Therefore, it is useful to use
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the model and its MLE approach to evaluate the potential that these observations contain for the model parameters estimation

through Observing System Simulation Experiments (OSSE) (Arnold and Dey, 1986).60

The objective of the present study is to characterize and identify the sampling regions, regarding oceanic variables, in which

micronekton biomass observation gives the most useful information for the model energy transfer coefficients estimation. For

this purpose, we use OSSE based on twin experiments. A set of synthetic observations is generated with SEAPODYM using a

reference parameterization. Then, the set of parameter values is changed and an error is added to the forcing field in order to

simulate more realistic conditions. The MLE is used to estimate the set of parameters from the set of synthetic observations.65

The difference between the reference and estimated parameters provides a metric to select the best sampling zones. A method

based on the clustering (Jain et al., 1999) of oceanic variables (temperature, currents velocity, stratification and productivity) is

presented to investigate the sensitivity of the parameters estimation to the oceanographic conditions of the observation regions.

This method aims at determining which conditions are the most favorable for collecting observations in order to estimate the

energy transfer efficiency coefficients.70

The paper is organized as follows: Section 2 describes the model set-ups and forcings. The method developed to characterize

regions of observations and the metrics used to evaluate the parameters estimation are detailed as well. Section 3 describes

the outcome of the clustering method to define oceanographic regimes and synthesizes the main results of our estimation

experiments. The results are then discussed in Section 4 in the light of biological and dynamical processes. Some applications

and limitations of our study are also identified along with suggestions for possible future research.75

2 Method

2.1 SEAPODYM-MTL and its configuration

SEAPODYM-MTL models six functional groups of micronekton in the epi- and upper and lower mesopelagic layers at a

global scale. These layers encompass the upper 1000 m of the ocean, as observed from acoustic detection and net sampling.

The euphotic depth (zeu) is used to define the depth boundaries of the vertical layers. These boundaries are defined as follows:80

z1(x,y, t) = 1.5× zeu(x,y, t), z2(x,y, t) = 4.5× zeu(x,y, t), z3(x,y, t) = min(10.5× zeu(x,y, t),1000), where zeu is given

in meters. The six functional groups are called (1) epi (for the organisms inhabiting permanently the epipelagic layer); (2)

umeso (for the organisms inhabiting permanently the upper mesopelagic layer); (3) ummeso (for migrant-umeso, the organisms

inhabiting the upper mesopelagic layer at day and the epipelagic layer at night); (4) lmeso (for the organisms inhabiting

permanently the lower mesopelagic layer); (5) lmmeso (for migrant-lmeso, the organisms inhabiting the lower mesopelagic85

layer at day and the upper mesopelagic layer at night) and (6) lhmmeso (for highly migrant lmeso, the organisms inhabiting

the lower mesopelagic layer at day and the epipelagic layer at night). The model is forced by current velocities, temperature

and net primary production (see Appendix A for detailed equations).

This work is based on a ten-year (2006-2015) simulation of SEAPODYM-MTL, called hereafter the TRUTH simulation.

Due to high computational demand, the original resolution of forcing fields (0.25°×week) has been degraded to 1°×month.90

Euphotic depth, horizontal velocity and temperature fields come from the ocean dynamical simulation FREEGLORYS2V4
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produced by Mercator-Ocean1. Temperature and horizontal velocity fields are depth-averaged over the water column of each

three trophic layers ending with a three-layers forcings field set. Net primary production is estimated using the Vertically

Generalized Production Model (VGPM) of Behrenfeld and Falkowski (1997) with satellite derived chlorophyll a concentration.

This product is available at Ocean Productivity Home Page of the Oregon State University2. Initial conditions of SEAPODYM-95

MTL come from a two-years spin-up based on a monthly based climatology simulation in order to reach equilibrium. Reference

values of SEAPODYM-MTL parameters in the TRUTH simulation are those published in Lehodey et al. (2010).

2.2 Clustering approach to characterize potential sampling regions

In this section we describe the method we use to select different observation sets for OSSE, based on environmental character-

istics. We define the spatio-temporal discrete observable space Ω as the set of the 1◦×1◦ grid points belonging to SEAPODYM-100

MTL discrete domain. The characterization of each observation point relies on four indicators defined from the environmental

variables: the depth-averaged temperature T , a stratification index S, the surface velocity norm V and a bloom index B, for

which different regimes of intensity are defined. The averaged temperature T over the water-column is defined as:

T (x,y, t) =
1
3

(T1(x,y, t) +T2(x,y, t) +T3(x,y, t)), (1)

where Tk is the depth-averaged temperature over the kth trophic layer of the model. The stratification index S is defined as the105

absolute difference of temperature between the surface and subsurface layers:

S(x,y, t) = |T2(x,y, t)−T1(x,y, t)|. (2)

The surface velocity norm V is defined as:

V(x,y, t) =
√
u2

1(x,y, t) + v2
1(x,y, t), (3)

where u1 and v1 are respectively the zonal and meridional components of the depth-averaged velocity in the first layer of110

the model. The phytoplankton bloom index B is defined following Siegel et al. (2002) and Henson and Thomas (2007) as a

Boolean: 1 for bloom regions and 0 for no bloom regions according to temporal variation relative to annual median threshold

overshooting. More precisely, we define:

B(x,y) =





1 if there exists t such that |PP (x,y, t)− P̃P (x,y)|> 0.05× P̃P (x,y),

0 elsewhere.
(4)

where P̃P (x,y) is the temporal median of the primary production PP (x,y, t) at point (x,y). Note that contrary to the previous115

indicator variables, the bloom index does not depend on time. For each indicator variable G ∈ {T ,S,V,B} we define several

ordered value-based regimes. The number of regimes together with regime boundary values are obtained by partitioning the

set GN of the values of the indicator variable G at N observable locations constituting an ensemble SN ⊂ Ω.

GN = {gi = G(Xi) Xi ∈ SN}1≤i≤N . (5)
1https://www.mercator-ocean.fr/
2http://www.science.oregonstate.edu/ocean.productivity/
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The partition ofGN is computed using a k-mean clustering method (Kanungo et al., 2002) and the number of clusters is chosen120

according to the Elbow score (Kodinariya and Makwana, 2013; Tibshirani et al., 2001). The k-mean method leads to n clusters

(Γk)k∈[[1,n]] (called indicator variable regimes), that satisfy the following properties:




⋃n
k=1 Γk =GN and

⋂n
k=1 Γk = ∅

and

∀i ∈ [1,N ],gi ∈ Γk if k = argmin
l∈[1,n]

‖gi−µl‖,
(6)

where µl is the mean of values in Γl. Note that Γk depends on the variable G. In the following, we explicit this dependence

by denoting Γk(G). We define a configuration as the intersection of a selection of regimes of given indicator variables. For125

i ∈ [[1,nT ]], j ∈ [[1,nS ]], k ∈ [[1,nV ]] and l ∈ [[1,nB]], the configuration C is defined as:

C = Ti⊗Sj ⊗Vk ⊗Bl = Γi(T )∩Γj(S)∩Γk(V)∩Γl(B), (7)

where nG is the number of clusters for the indicator variable G. For sake of simplicity we may also say that an observation

point belongs to a configuration when the values of the indicator variables at this point belong to the corresponding regimes of

the configuration. Each configuration corresponds to a subset SM ⊂ SN of observable points.130

2.3 Twin experiments

In this paper, the inverse model and MLE are used in the framework of twin experiments as in (Lehodey et al., 2015). A

reference simulation (TRUTH) is generated from the reference configuration. The reference simulation is used to compute

synthetic observations. The goal is to retrieve back the reference energy transfer coefficients of the six micronekton functional

groups E′i by assimilating the synthetic observations into a twin simulation of SEAPODYM. However, contrary to Lehodey135

2015, an error is introduced to the reference forcing fields as input of the twin simulation. This is to consider more realistically

the discrepancy between the real state of the ocean (represented here by the TRUTH simulation) during data collection and

the simplified representation of these conditions by the ocean circulation model used for the parameter optimization. The twin

simulation (TWIN) differs thus from the reference simulation (TRUTH) by the forcing fields and the coefficients E′i. The

reference forcing fields are perturbed with a white noise whose maximal amplitude is a fraction of the averaged fields. Let F140

be the considered forcing field and let F be its global average (in space and time), we define the perturbed field as

F̃ (x,y, t) = F (x,y, t) + γ(αF ), (8)

where α ∈ [0,1] is the amplitude of the perturbation and γ ∈ [−1,1] is a uniformly distributed random number. The amplitude

α is set to 0.1 for all experiments. The parameters E′i are randomly sampled between 0 and 1. This first guess is used as initial-

ization of the optimization scheme. We run each experiment several times with different random sampled first guess in order145

to ensure that the inverse model is not sensitive to the initial parameters. The set-up of the TRUTH and TWIN simulations are

summarized in Table 1.
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In the framework of OSSE, we perform estimation experiments with different sets of fixed number (Ne = 400) of synthetic

observation points. The synthetic observations are sampled in the different configurations constructed as explained in the150

previous section. Let M be the number of points in a given configuration. If M <Ne, we consider that the configuration is too

singular to be relevant for our study and is ignored. If M >Ne we randomly extract a sub-sample SNe ⊂ SM of observation

points. In order to study the influence of one indicator at a time, we compare experiments for which the regime of the studied

indicator varies and the regime of the other indicator variables remain fixed. In the following we call primary variable the

studied indicator variable and secondary variables the ones whose regimes are fixed. For a given group of experiments, we155

check that the configurations are statistically comparable between each others by ensuring that the distribution of secondary

variables are close enough between configurations (cf. marginal distribution plots in Section 3). If this not the case, they are

not presented.

2.4 Estimation evaluation metrics

The estimation experiments are evaluated using three metrics: (i) the performance of the estimation, (ii) its accuracy and (iii)160

its convergence speed.

(i) The performance is measured with the mean relative error between the estimated coefficients and the reference coefficients

as defined in Eq. 9:

Er =
1
6

6∑

i=1

∣∣∣∣∣
Ê′i−E′i
E′i

∣∣∣∣∣ . (9)

(ii) The accuracy is measured by the residual value of the likelihood which provides a good estimate of the discrepancy165

between the estimated and observed biomass.

(iii) The convergence speed is measured by the iterations number of the optimization scheme.

The residual likelihood and iterations number metrics are provided by the Automatic Differentiation Model Builder (ADMB)

algorithm (Fournier et al., 2012) that implements the MLE. Each metric provides different and independent information.170

For example, it is possible to obtain good performance and bad accuracy with an experiment that estimates correctly the

energy transfer parameters for the different functional groups but over- or under-estimates the total amount of biomass. The

performance is generally used to discriminate the different experiments since the aim of the study is to find the networks that

better estimate energy transfer coefficients and thus directly minimize the errorEr (Eq. 9). However, the accuracy and precision

of the experiment are discussed. The convergence is necessary to ensure that the optimization problem is well defined.175

6

https://doi.org/10.5194/bg-2019-353
Preprint. Discussion started: 6 September 2019
c© Author(s) 2019. CC BY 4.0 License.

Cyril Germineaud


Cyril Germineaud


Anonymous
conducted OSSEs?

Anonymous
OSSE system validation?

Anonymous
If those three metrics have been used in others studies, add the corresponding references here?

Anonymous
is used to implement

Anonymous
the



3 Results

3.1 Environmental regimes clustering

The number of points by regime defined for each environmental variable (Table 2) shows a large variability. Some regimes

present a larger amount of observable points. For instance, the tropical temperature regime covers 31% of the observable

points. Almost 50% of the observable show a weak stratification and only 10% of them have a positive bloom index or high ve-180

locities. When they are shown on a map (Figure 1) these regimes reproduce classical spatial patterns described in the scientific

literature (Fieux and Webster, 2017). The regimes of the temperature variable (T ) show a latitudinal distribution. The polar

regime (T1) is located south of the Polar front (Southern hemisphere) and in the Arctic Ocean. The subpolar regime is located

between the Polar front and the South Tropical front (Southern Ocean), in the Labrador and Greenland Seas (North Atlantic)

and in the Bering Sea (North Pacific). The temperate regime covers the subtropical zones of the Southern Atlantic, Indian and185

Pacific Oceans, located north of the South Tropical front, and extends as well in the eastern part of the Atlantic and Pacific

Ocean. The tropical regime covers most of the tropical ocean and the Indian ocean. The regimes of the stratification variable

(S) are also structured according to the latitude as stratification depends on the temperature. The stratification decreases from

the tropical oceans (where the surface waters are warm compared to the deep waters) to the pole (where the surface waters

are almost as cold as the deep waters). The regimes of the velocity variable (V) highlight the main energetic structures of the190

oceanic circulation. The high currents regime thus covers the intense jet-structured equatorial currents, the western boundary

currents (the Gulf Stream in the Atlantic and the Kuroshio in the Pacific), the Agulhas current along the South Africa coast

and the Antarctic Circumpolar Current in the Southern Ocean. The regimes of bloom index (B) separate mostly the productive

regions (North Atlantic and North Pacific, Southern Ocean, Eastern side of Tropical Atlantic, along the African coast) from the

non productive regions (center of subtropical gyres mostly, as well as coastal regions of Arctic and Antarctic).195

Based on this result, we construct and select configurations to conduct the OSSE (section 2.2). The choice of the configura-

tion is limited by the number of observation points available in each of them. Among the 48 possible configurations, 22 of them

are considered non-existent because they have less than 0.5% of all observable points. In addition, we study the influence of

the primary variable by selecting only groups of configurations whose distributions along secondary variables are similar. This200

leads to a selection of 7 groups of experiments (Table 3). The first three groups of Experiments 1a-b, 1c-d and 1e-f are meant

to study the influence of the velocity regimes V1 and V2. The group of Experiments 2a-d will be used to study the influence

of the temperature regimes T1, T2, T3 and T4. The group Experiments 3a-c will be used to investigate the influence of the

stratification index regimes S1, S2 and S3. Finally, Experiments 4a-b and 4c-d are used for the study the influence of the bloom

index regimes B1 and B2.205
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3.2 Estimation performance with respect to environmental conditions

Table 3 shows the selected configurations for each experiment as well as their evaluation metrics. All experiments converged

after 16 to 28 iterations. This confirms that the optimization problem is well defined. Since the number of iterations is partially

dependent on the random initial first guess, it is not used as a criterion of discrimination between experiments.

3.2.1 Influence of the horizontal currents velocity210

The influence of the currents velocity regimes (high currents system or low currents system) on the performance of the pa-

rameters estimation is studied considering three groups of experiments (Table 3, Exp. 1a to 1f). The observation points are

randomly sampled in a subset of the considered configuration for which the primary variable is the currents velocity norm V .

From these sets of experiments, it appears that the performance on the estimation of parameters decreases with the cur-

rents velocity at the observation point. This conclusion is valid whatever the regime of the secondary variables: either low215

or high temperatures, positive or null bloom index and weak or strong stratification (Table 3). Lower velocity reduces the

error on the estimated energy transfer coefficients for functional groups that are impacted by currents in the epipelagic and

upper mesopelagic layers. The currents decrease with depth and are almost uniform over the different regions in the lower

mesopelagic layer (not shown). Consequently, the estimate of the parameters for the non migrant lower mesopelagic (lmeso)

group is not sensitive to the regime of currents (Figure 2). Conversely, the estimation is the most sensitive for the epipelagic220

group, whose dynamics is entirely driven by the surface currents.

Note that the influence of low and high velocities is not explored for all secondary variable fixed regimes. Indeed, even

with fixed regimes, the secondary variables distribution along observation points might not be statistically comparable between

two experiments. This could lead to a potential bias introduced by a secondary variable, which is not the target of the study.

For instance, the influence of velocity in a polar temperature regime can be investigated by comparing the configurations225

C ′ = T1⊗S1⊗V1⊗B2 and C ′′ = T1⊗S1⊗V2⊗B2. The corresponding twin experiments Exp. 1’ (observations sampled in

C’) and Exp. 1” (observations sampled in C”) estimate two sets of parameters whose relative distances to the target parameters

are 48% and 10% respectively. Before concluding that observations in very cold (polar regimes) and highly dynamics waters

improve the performance of the estimation, it is necessary to check the distributions of the observations along the secondary

variables. The temperature shows the presence of a strong bias is (Figure 3). Therefore, despite it has been fixed to "polar230

regime", the temperature in configuration C’ is on average lower (−0.7◦C) than the temperature of configuration C” (2.1◦C).

Thus Experiments 1’ and 1” measure correlatively the influence of the velocity and of the temperature. The lower velocities are

coupled with lower temperatures and the higher velocities with higher temperatures. Therefore, it seems here that the difference

observed in the temperature values of the two datasets has a stronger impact on the parameter estimation than the regime of

currents.235

In the following, although distribution along secondary variables are not always shown, they have always been used in the

analysis to check that the results of twin experiments are not biased by this type of difference between the distributions of

randomly selected datasets. Experiments with such cross-correlation between indicator variables are not presented.
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3.2.2 Influence of the temperature

In experiments 2a to 2d (Table 3), temperature is the primary variable, ranging from polar regime (Exp. 2a), to subpolar240

(Exp. 2b), temperate (Exp. 2c) and tropical (Exp. 2d) regimes. All other indicator variables (stratification, velocity and bloom

index) are secondary variables that are set to weak, low and 1 respectively. Figure 5 shows that the distributions along the

secondary variables of each configuration are close enough for the experiments to be compared, avoiding any risk of cross-

correlation. The performance of the estimation increases with the temperature (Figure 4). The mean error on the parameter

estimates decreases respectively from polar (Exp. 2a; 9.1%) to subpolar (Exp. 2b; 7%), temperate (Exp. 2c; 3%) and tropical245

(Exp. 2d; 1.4%) configurations (Table 3).

3.2.3 Influence of the vertical gradient of temperature

The influence of the stratification is investigated with a first set of three configurations combining tropical temperature regime,

low velocity regime, null bloom index regime and three regimes of weak (Exp. 3a); intermediate (Exp. 3b) and strong (Exp. 3c)

stratification. A marginal distribution plot of observation sets for all experiments (not shown) indicates that the three data sets250

differ only along the stratification variable (primary variable). The observation points display a temperature between 14◦C

and 17◦C, a velocity between 0 and 0.07 m s−1 and a null bloom index for each experiments. The performance decreases

with the intensity of stratification (Figure 6 and Table 3). The mean error is: 3.5% for a weak stratification and a vertical

gradient of about 0.4◦C (Exp. 3a), 5.9% for an intermediate stratification with a gradient of about 5.9◦C (Exp. 3b) and 8% for

a strong stratification, around 11.7◦C (Exp. 3c). A strong stratification seems to deteriorate the estimate for all migrant groups255

(Figure 6). These results are not specific to the choice of regimes for the secondary variables. The same kind of experiments

were carried out in a temperate regime (not shown) and if the mean error on the estimated parameters were higher in average,

the result does not change: a weak stratification always leads to a better estimation than a strong stratification. The comparison

was not fully possible in other temperature or velocity regimes because these configurations are not sufficiently well represented

(see Section 3.2.1 §2).260

3.2.4 Influence of the primary production

In order to investigate the influence of the primary production on the performance of the estimation, we compare the results

of estimation in configurations with different bloom index regimes (primary variable). Temperature, stratification index and

velocity have been fixed (secondary variables) to subpolar, weak and low regimes respectively (Exp. 4a and 4b) and to tropical,

strong and low for Exp. 4c and 4d. Distributions of the observation points along the secondary variables indicate that the ex-265

periments are not biased by secondary variables as the distributions present similar modes centered at 5◦C for the temperature,

at 0.5◦C for the stratification index and at 0.04 m s−1 for the velocity (Exp. 1a and 1b) and at 15.5◦C, 11◦ and 0.05 m s−1

respectively for Exp. 4c and 4d (not shown).

Exp. 4a and 4b result both in an averaged error of 7% on the estimated parameters (Table 3). Exp. 4d (averaged error of 8%)

gives a similar value as Exp. 4b. Indeed, not only the temperature is higher but also the vertical gradient of temperature. As270
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we concluded it from the two previous sections, the temperature improves the performance of the estimation when increasing

and the gradient deteriorates the performance when increasing. So, the two effects might compensate in this case and result

in a similar estimation. However, when considering bloom regions (Exp. 4c), the estimation error falls to 1.5% in average. In

addition, this experiment estimates the energy transfer coefficients for migrant micronekton groups with less than 1% error

(Figure 7).275

3.3 Global map of parameters estimation errors

When considering all possible experiments, and given the fact that all these configurations are associated to specific locations

and times, it is possible to represent a global map of averaged estimation error (Eq. 9). This map shows that on average, the

error increases from the equator towards the poles (Figure 8). The lowest performances (errors > 40%) are mostly found in the

Arctic and Southern Ocean. Low performances are also found at some specific locations along the veins of the main currents.280

The signature of the Antarctic Circumpolar Current can be found in the Southern Ocean with error over 10%. Similarly, the

signature of the North Atlantic Drift can be seen with a patch of high errors between Canada and Ireland (Figure 1c and 8).

The patch of high errors in the North Pacific Ocean is however difficult to interpret. The equatorial regions show interesting

patterns that are similar across the three oceans. In the vicinity of the equator, good performances are observed (mean error

2%). On both northern and southern sides of this low error band, the performance is degraded with errors reaching about 8%.285

The equatorial regions are characterized by strong currents and warm waters. As demonstrated above, these environmental

features have antagonistic effects on the performance of the estimation. Therefore, a possible explanation of this distribution

of errors is that water temperature is high enough to overcome the effect of currents velocity in the equatorial band, but when

moving poleward, the temperature decreases cannot compensate anymore for the negative effect of currents which is still quite

strong.290

3.4 Testing realistic networks

The above experiments are based on random selection of observation points within a large subset. This technique was chosen

to avoid any bias related to the temporal or spatial potential correlation of observation networks. However, sampling at sea is

rarely randomly distributed and can generate correlations. To relax this strong assumption, we made twin experiments based on

positions from real acoustic transects. Two regions are compared using positions data collected during the maintenance cruises295

of the PIRATA network of moorings in the Equatorial Atlantic Ocean (PIRATA3) and during research cruises of the British

Antarctic Survey in Antarctic peninsula region (BAS4) (Figure 9).

The same forcing, method and initial parameterization were used with a random noise amplitude (α) increasing from 0

to 0.2. Subsets of Ne = 400 observations were selected along the transects to run the experiments. The resulting averaged

relative error on the coefficients is shown as a function of the amplitude of perturbation (Figure 10a) for both networks. It300

appears that the estimation error increases with the amplitude of the error introduced on the forcing field. Also, whatever the

3http://www.brest.ird.fr/pirata/pirata
4https://www.bas.ac.uk/project/poets-wcb
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perturbation, the estimation error is always lower when using PIRATA observation networks than BAS observation networks.

These results are fully consistent with the previous results indicating that networks located in tropical warm waters, as for

PIRATA, give better estimates than the ones located in cold waters, as for the BAS (Figure 10b). The PIRATA network is thus

a very promising observatory for the micronekton, especially since it already includes a complete set of various physical and305

biogeochemical parameters measurements (Foltz et al., 2019).

4 Discussion

The modeling of micronekton in SEAPODYM-MTL relies on relatively simple mechanisms with a few parameters and three

fundamental environmental forcing variables: temperature, horizontal currents and primary production, that influence the dy-

namics of the model. They also influence the skills of the MLE to estimate its parameters, assuming that a reasonable set of310

accurate micronekton biomass values can be collected at sea. This study allowed characterizing oceanic configurations based

on the four variables used to drive the model. Given the definition of micronekton functional groups based on the DVM behav-

ior between vertical layers, the stratification can effectively result in important changes in the dynamics of micronekton and the

resulting biomass distribution. Once defined with the clustering method, the configurations were used to run twin experiments

allowing to identify which associated environmental conditions were the most favorable to the estimation of energy transfer315

efficiency coefficients of the model. We found that observations from warm temperature regions (such as temperate or tropical

regions) were more effective than those from cold regions. The presence of a bloom at the location of observation also improves

the performance of the estimation (especially in warm environment). Conversely, high temperature stratification and high in-

tensity of currents are both found to deteriorate the estimation. Thus, at global scale, we found that the better conditions for the

estimation of energy transfer coefficient are warm waters, low currents, low vertical temperature gradients and seasonally high320

primary production.

4.1 An interpretation of the performance in term of observability

The differences in the performance of parameter estimation can be interpreted in regard of the characteristic times of physical

and biological processes. The parameters we want to estimate (E′i) control the energy transfer efficiency between the primary

production (PP ) and micronekton production (P ) (Eq. A3; Appendix A). These parameters are thus directly related to the325

relative amount of P at age τ = 0 in each functional group and we have:

E′i =
Pi(τ = 0)
cEpp

∫
PPdz

(10)
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It is possible to rewrite the initial condition (Eq. A3) as a system of six equations involving the energy transfer coefficients.




ρ1,d(P|τ=0) = E′1

ρ1,n(P|τ=0) = E′1 +E′3 +E′6

ρ2,d(P|τ=0) = E′2 +E′3

ρ2,n(P|τ=0) = E′2 +E′4

ρ3,d(P|τ=0) = E′4 +E′5 +E′6

ρ3,n(P|τ=0) = E′4

(11)

where ρK,ω(P|τ=0) is the ratio of age 0 potential micronekton production in the layer K ∈ {1,2,3}, at the time of the day330

ω ∈ {day,night}.
The micronekton predicted biomass in a given time and place (grid cell) results from two main mechanisms. First, the

potential production evolves in time from age τ = 0, and is redistributed by advection and diffusion until the recruitment

time τr when it is transferred into biomass (B). Then, the biomass is built by accumulation of recruitment over time in each

grid cell and is lost due to a temperature mortality rate, while the currents redistribute the biomass. The observations are the335

relative amount of biomass in each layer, i.e. the ratios of biomass ρK,ω(B|t=to) (Eq. A5), where to is the time at which the

observation is collected. Therefore, the observation will be as close as the energy transfer parameters we want to estimate

if ρK,ω(B|t=to) is close to ρK,ω(P|τ=0). This requires the integrated mixing of biomass during the elapsed time between

the age 0 of potential production and the time of observation (i.e.. at least the recruitment time) being as weak as possible.

This can be achieved in different ways: (i) either the currents are weak so that the advective mixing is also weak (but still340

the diffusive mixing will remain); (ii) Or the temperature is high, leading to a short recruitment time with reduced period of

transport and redistribution. These two mechanisms can explain why warm temperatures and weak currents were found to

improve the estimations compared to cold temperatures or high velocities (Sections 3.2.1 and 3.2.2). An additional effect of

warm temperature is to induce a higher mortality rate. When warm waters are combined with high primary production (e.g. the

equatorial upwelling region), there is a rapid turnover of biomass and relative ratios of biomass by layer closer to the initial ratio345

of energy transfer efficiency coefficients. Conversely, at cold temperature, the mortality rate is lower; biomass is accumulated

from recruitment events with a more distant origin and carries with it the integrated mixing and the perturbed ratio structures.

This can explain why, at warm temperature, high productivity was needed for a better estimation (section 3.2.4). A side effect is

that if temperature is not homogeneous across layers, then the mortality rate λ will differ for each functional group, depending

on the layers it inhabits. This will be an additional driver of perturbation on the observed ratios of biomass. This is consistent350

with the result that a strong thermal stratification degrades the performance of estimation (section 3.2.3).

An observation will thus be the most effective for the estimation of parameters if it carries the information of the initial

distribution of primary production into functional groups. This is the case if the biomass is renewed quickly enough compared

to the time it takes for the currents and diffusive coefficient to mix it. This condition can be seen in term of equilibrium between

the biological processes (production, recruitment and mortality) and the physical processes (advection and diffusion). In other355

words, for an observation to be effective for the estimation and not to introduce errors, it is necessary that the characteristics
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time governing biological processes (τβ) is shorter than the one governing physical processes (τφ) at the location of the obser-

vation : τβ � τφ.

This interpretation highlights the problem of observability of the parameters E′i from the measurements ρK,Ω(B). The param-

eters are directly observable at the age τ = 0 of the primary production, but the measurements and the information we can get360

on the system are available only after a time τr. The observability will then be the better if the observable variables have not

changed too much during the time τr (short τr, slow ocean dynamics). This is intrinsically linked to governing equations of the

system (Eq. A1-A3) and therefore should not be dependent of the framework of the study.

4.2 Towards eco-regionalization ?

The clustering approach we propose allowed identifying oceanic regions that provide optimal oceanic characteristics for our365

parameters estimation by discriminating regions where the distribution of biomass is driven by physical processes from regions

where it is driven by biological processes. It gives an essential information on the optimal regions for implementing observation

networks. This could be seen as a new definition of eco-regions based on similar ecosystem structuring dynamics. The definition

of ocean eco-regions has been proposed based on various criteria (Emery, 1986; Longhurst, 1995; Spalding et al., 2012; Fay and

McKinley, 2014; Sutton et al., 2017; Proud et al., 2017). A convergence from these different approaches to identify regions370

characterized by homogeneous mesopelagic species communities would be of great interest to facilitate the modeling and

biomass estimate of these components. Acoustic observation models could be developed and validated at the scale of these

regions. Then, the observation models integrated to ecosystem and micronekton models as the one used here, would serve

to convert their predicted biomass into acoustic signal to be directly compared to all acoustic observations collected in the

selected region. This approach would allow to account for (and estimate) the sources of biases and errors linked to acoustic375

observations directly in the data assimilation scheme.

4.3 Limitations and perspectives

We have chosen to model the error between the true state of the ocean and the twin simulation by adding a white noise

perturbation to the forcings. This method has been chosen to introduce a spatial homogeneous error to avoid any bias. A

random noise ensures that the results obtained in different location are directly comparable. Nevertheless, other approaches380

would be interesting to explore. For instance, implementing an error proportional to the deviation of the climatological field

should be more realistic because it would be based on the natural and intrinsic variability of the ocean. In addition to the

uncertainty on ocean models outputs, other sources of uncertainties remain to be explored to progress toward more realistic

estimation experiments. For instance, we considered that the observation operator (Eq. A5) is perfect but field observations

are always tainted by errors. The micronekton biomass estimates at sea require a chain of extrapolation and corrections to385

account for the sampling gear selectivity and the portion of water layer sampled. For acoustic data, many factors need to be

considered sources of potential error: the correction with depth, the target strength of species, the intercalibration between

instruments and the signal processing methods (Handegard et al., 2009, 2012; Kaartvedt et al., 2012; Proud et al., 2018). This

is an important research domain that requires to combine multiple observation systems, including new emerging technologies
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as broadband acoustic, optical imagery and environmental DNA to reduce overall bias in estimates of micronekton biomass390

(e.g., Kloser et al., 2016) and use those estimates to assess, initiate and assimilate into ecosystem models. Finally, the results

of the clustering approach need to be confirmed with other ocean circulation model outputs, especially at higher resolution to

check the impact of the mesoscale activity on the definition of optimal regions for energy transfer efficiency estimation.

5 Conclusions

Understanding and modelling marine ecosystem dynamics is considerably challenging. It generally requires sophisticated395

models relying on a certain number of parameterized physical and biological processes. SEAPODYM-MTL provides a par-

simonious approach with only a few parameters and a MLE to estimates these parameters from observations. The energy

transfer efficiency coefficients directly control the biomass of micronekton functional groups, including those that undergo

DVM and contribute to the sequestration of carbon dioxide into the deep ocean (Davison et al., 2013; Giering et al., 2014;

Ariza et al., 2015). Therefore, a correct assessment of energy transfer coefficients is crucial for climate studies. Given the400

high cost of observation at sea, the design of optimal observation networks through simulation experiments (OSSE) is a valu-

able approach before the deployment of observing platforms. This study provides a methodology for implementing such an

observation network, based on the definition of oceanic regions using only four variables: the depth-averaged temperature, a

thermal stratification index, the surface currents velocity norm and a bloom index. Twin experiments that were conducted in

these regions with random sampling or based on realistic existing networks have shown that the quality of the estimation of the405

energy transfer efficiency coefficients is mainly linked to environmental conditions. The optimal combination of environmental

factors is found for productive, warm and moderately stratified waters, with weak dynamics, such as the eastern side of the

tropical Oceans. An interpretation in term of balance between characteristic times of biological and physical processes has

been proposed to explain these results. In a future study, in addition to test the impact of introducing noises in the observations,

the same approach could be used to directly estimate also the model parameters that control the relationship between the water410

temperature and the time of development of micronekton organisms.

Appendix A: SEAPODYM-MTL underlying equations

SEAPODYM-MTL is based on a system of advection-diffusion-reaction equations for each functional group i, i ∈ [[1,6]],

involving two state variables: the potential production Pi (expressed in gramm of wet weight by squared meters by day,

gWWm−2d−1) and the biomass Bi (expressed in gramm of wet weight by squared meters, gWWm−2):415

∂Bi
∂t

=−
(
∂

∂x
(uBi) +

∂

∂y
(vBi)

)
+D

(
∂2Bi
∂x2

+
∂2Bi
∂y2

)
−λ(T )Bi +Pi(τr(T )), (A1)

∂Pi
∂t

=−
(
∂

∂x
(uPi) +

∂

∂y
(vPi)

)
+D

(
∂2Pi
∂x2

+
∂2Pi
∂y2

)
− ∂Pi
∂τ

, (A2)
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where x,y, t and τ are the variables for space, time and age respectively. u,v (ms−1) and T (◦C) are the currents velocities

and temperature respectively. These variables are integrated over each layer K, K ∈ [[1,3]] and weighted by the time each

functional group i spends in the layer. D is the diffusion coefficient accounting for both the physical diffusion and the ability of420

micronekton organisms to swim short distances. τr (days) is the recruitment coefficient corresponding to the age for which the

potential production converts into biomass of micronekton. λ (days−1) is the mortality coefficient which accounts for natural

mortality. Note that these two last parameters depend on the temperature.

The initial conditions for this system are :

Bi(t= 0) =B0, Pi(t= 0) = P0, (A3)425

Pi(τ = 0) = cE′iEpp

0∫

z3

PP dz, (A4)

where B0 and P0 are obtained by spinup, PP (in milimol of carbon per cubic meters per day, mmolCm−3d−1) is the net

primary production, Epp (adimensional) is the total energy transfer from the primary production to the mid-trophic level, E′i
(adimensional) is the distribution of this energy into the different functional groups, c is the conversion coefficient between

mmolC and gWW and z3 =min(10.5× zeu,1000), zeu the euphotic depth (in meters).430

A module estimates SEAPODYM-MTL parameters by a variational data assimilation method : a Maximum Likelihood

Estimation (MLE) (Senina et al., 2008). This method minimizes a cost function (the likelihood) that measures the distance

between the biomass predicted by the model and the observed biomass. As the model outputs and the observations are not

directly comparable, they are transformed with an observation model operatorH.H is defined for each layer K as :435

H : B 7→ ρK,ω=
∑

i|K(i,ω)=K Bi∑6
i=1Bi

(A5)

where K(i,ω) denotes the layer that the functional group number i occupies at the time of the day ω. H gives for each layer

the relative amount of biomass that we call ratio (Lehodey et al., 2015).

The gradient of the likelihood function is computed using the adjoint state method. The parameters are then estimated using

a quasi-Newton algorithm implemented by the Automatic Differenciation Model Builder (ADMB) algorithm (Fournier et al.,440

2012). SEAPODYM-MTL and the exact formulation of the cost function are described in detail in Lehodey et al. (2015).
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Table 1. SEAPODYM-MTL parameters used for the two different simulation TRUTH and TWIN.E is the energy transferred by net primary

production to intermediate trophic levels, λ is the mortality coefficient, τr is the minimum age to be recruited in the mid-trophic functional

population, D is the diffusion rate that models the random dispersal movement of organisms. E′i, i ∈ [[1,6]] are the redistribution energy

transfer coefficients to the 6 components of the micronekton population. The parametrization of the TRUTH simulation is called the reference

parametrization and is taken from Lehodey et al. (2010).

Simulation 1/λ (d) τr (d) D (NM2d−1) E E1 E′2 E′3 E′4 E′5 E′6 Forcing

TRUTH 2109 527 15 0.0042 0.17 0.10 0.22 0.18 0.13 0.20 F

TWIN 2109 527 15 0.0042 ———— first guess ———— F̃ (Eq. 8)
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Table 3. Experiment table. List of experiments, their corresponding configurations and the evaluation diagnostics: mean relative error on

the coefficients, residual likelihood and number of iterations. The section in which each of these experiment is discribed is given in the last

column.

Experiment Configuration Er (Eq. 9) Residual Likelihood # Iterations Section

1a T2⊗S1⊗V1⊗B2 7.0% 0.9 28 3.2.1

1b T2⊗S1⊗V2⊗B2 9.7% 0.5 21

1c T3⊗S1⊗V1⊗B1 3.1% 0.5 24

1d T3⊗S1⊗V2⊗B1 8.3% 1.5 23

1e T4⊗S3⊗V1⊗B1 1.5% 1.1 16

1f T4⊗S3⊗V2⊗B1 8.5% 1.2 18

2a T1⊗S1⊗V1⊗B1 9.1% 1.7 19 3.2.2

2b T2⊗S1⊗V1⊗B1 7.0% 0.6 26

2c T3⊗S1⊗V1⊗B1 3.1% 1.3 20

2d T4⊗S1⊗V1⊗B1 1.4% 0.6 22

3a T4⊗S1⊗V1⊗B2 3.5% 0.7 21 3.2.3

3b T4⊗S2⊗V1⊗B2 5.9% 0.8 25

3c T4⊗S3⊗V1⊗B2 8.0% 1.1 21

4a T2⊗S1⊗V1⊗B1 7.0% 0.6 26 3.2.4

4b T2⊗S1⊗V1⊗B2 7.0% 0.9 28

4c T4⊗S3⊗V1⊗B1 1.5% 0.6 22

4d T4⊗S3⊗V1⊗B2 8.0% 0.8 21
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Anonymous
conducted OSSEs for each tested cluster’s configuration, along with their associated

Anonymous
that describes each experiment is mentioned in the last column

Anonymous
Might consider adding a column that indicates which regime is tested, as the notation for each configuration can be a bit "cryptic"

For instance, next to the Exp. 1a,b: the annotation velocity regimes could be added?



Figure 1. Spatial division of the different regimes. (a) Temperature : polar (pale blue), subpolar (yellow), temperate (gray), tropical (red).

(b) Stratification : weak (dark blue), intermediate (purple), strong (magenta). (c) Currents Velocities : low (blue), high (orange). (d) Bloom

Index : bloom (green), no bloom (beige). Each point of the subset SN has been plotted at its spatial location with a color corresponding to

the regime it belongs to. A transparency factor has been applied in order to account for the temporal fluctuation of regimes (a given point

may belongs to different regimes over time). The resulting color on the map corresponds to the most frequent regime the corresponding point

belongs to.
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Anonymous
1) suggest to add latitudes and longitudes

2) adding a colorbar will be helpful to identify the different regimes



Figure 2. Mean relative error (Er in %, Eq. 9) on each E′i coefficients. Exp. 1c and 1d : high vs low velocities in temperate temperatures,

weak stratification and bloom regimes.
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Anonymous
OSSE-1c and OSSE-1d present the following tested regimes:



Figure 3. Scatter plot and marginal distribution from kernel density estimation (Silverman, 2018) in the plane (V ,T ) of observation points

used in Exp. 1’ and 1” generated by random sampling in configurations C′ = T1⊗S1⊗V1⊗B2 and C′′ = T1⊗S1⊗V2⊗B2.
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Figure 4. Mean relative error (Er in %, Eq. 9) on each E′i coefficients for Exp. 2a, 2b, 2c and 2d : polar vs subpolar vs temperate vs tropical

temperatures in weak stratification, low velocity and bloom regimes.
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Anonymous
idem as Figure 3



Figure 5. Scatter plot and marginal distribution from kernel density estimation in the plane (a) (T ,V) and (b) (T ,S) for the configurations

corresponding to Exp. 3a, 3b, 3c and 3d from table 3.
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Figure 6. Mean relative error (Er in %, Eq. 9) on each E′i coefficients for Exp. 3a, 3b and 3c : comparison of weak, intermediate and high

stratification in tropical temperatures, low velocity and no bloom regimes.
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idem as figure 3



Figure 7. Mean relative error (Er in %, Eq. 9) on each E′i coefficients for Exp. 4c and 4d : bloom (4c) vs no bloom (4d) regimes in tropical

temperatures, strong stratification and low velocities.
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Figure 8. Averaged absolute value of relative error (Er in %, Eq. 9) between the estimated and the target energy transfer parameters (E′i)

according to the location of the chosen observation points in the twin experiment framework. Cells with no data have been shaded in grey.
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Figure 9. Map of PIRATA and BAS ship transects for the years 2013-2015.
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Anonymous
Suggest to add the type of data associated with each observing system, i.e., moored array for PIRATA and CTD casts for BAS?



Figure 10. (a) Mean relative error on the coefficientsEr (in %, Eq. 9) as a function of the perturbation amplitude α (Eq. 8) for PIRATA (blue)

and BAS (orange) observation networks. (b) Statistical distribution of all PIRATA (blue) and BAS (orange) observation location indicator

variables : Bloom Index (B), velocity norm (V), stratification index (S) and temperature (T ) estimated using kernel density estimation

(Silverman, 2018).
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