

Response to the review comments on „Salinity-depending carbon and nitrogen uptake of two intertidal foraminifera (*Ammonia tepida* and *Haynesina germanica*)“ by Lintner et al.

ad Anonymous Referee #1

major points:

1: We agree with your suggestion – only values of the 1d samples are now compared.

2: There are several explanations for that listen here and we included them in the discussion.

- An important aspect to consider is the method used when processing the samples. Foraminiferal tests are dissolved with hydrochloric acid and due to that carbonate is lost, but also new mineral phases are formed which influence the total weight of the sample. This step is needed to remove the ^{13}C , which may be bound in the test. Comparing with other studies like Wukovits et al. 2017, it can be seen, that the uptake values of our experiments lay in the same order of magnitude.
- Another aspect is, that foraminifera are stressed during experimental conditions and therefore may have a lower turnover. It should be noted, that the food uptake is determined by the isotope content in the cytoplasm, which, as recommended in major point 1, can also vary over time.
- Since these experiments were all carried out under laboratory conditions, we would not consider pC and pN as absolute values, due to seasonal and environmental fluctuations. However, a difference in food uptake can be shown in our experiments with varying salinity.

Specific comments:

Title: Good point, title has been changed.

Lines 74-75: We added the tested temperature range (line 77).

Line 94: The meaning is the same; it only serves to avoid repetition. But we changed it now and wrote “salinity of 24” to avoid confusion.

Line 108: In the method used here, the algae were processed in the „most gentle“ way, which means that no further degradation of algae or gross damage of the cells occurred. During the „normal“ freezing, the algae could be decomposed by further microbial activities or burst and therefore lose cytoplasm, which would lead to a change of the ^{13}C and ^{15}N content.

Line 124: No, the algae powder was added directly into the crystallization dishes and mixed there. The algae settled down on the bottom of the dish and were available for foraminifera.

We added this information now.

Line 135: Potential effect was added to the discussion. In general, all samples were always treated the same way, which means they were all washed with the same volume of distilled water. This way any impact that may have arisen from using the distilled water has the same effect on all samples.

Line 229: It has been changed and all graphs are plotting in Fig. 1 now.

Line 275: The content of $\text{at}\%^{13}\text{C}$ and $\text{at}\%^{15}\text{N}$ was added in line 109. This helps to calculate the atomic C:N ratio. We added this information.

Line 310: “Labeling” was added.

Line 317: We corrected the sentence.

Line 326: 33 is the salinity used in the experiments. 37 PSU are extreme values, that Maywald (1991) has found in the North Sea.

Line 338: They used d13C to estimate the origin of OM and as a consequence they could differentiate between a brackish and marine milieu. Below, an example is described in detail, that can be directly related to our experiments (Mackie et al. 2005).

Line 341 and 349: We improved the text here in accordance to the reviewer.

Line 367: We added this information.

Line 371: We would suggest to keep the structure here and add only interesting aspects, that have not been mentioned yet. In our opinion, a new chapter would disrupt the flow of reading.

Line 377: . was replaced with ,

Line 395: We improved the text here.

Response to the review comments on „Salinity-depending carbon and nitrogen uptake of two intertidal foraminifera (*Ammonia tepida* and *Haynesina germanica*)“ by Lintner et al.

ad Anonymous Referee #2

Main point:

Line 93: For our experiments, we only used foraminifera with densely filled cytoplasm. In addition, we only used individuals with an intense yellowish color of the cytoplasm. The incubation time of foraminifera in the crystallization dishes before feeding was used for the „crawling test“. Foraminifera were placed in the center of the crystallization dish immediately after removal from the cultures. After 24 hours individuals could be identified that have moved away from the center. Accordingly, these individuals have active pseudopodia and are alive. After finishing the experiments, the individuals were also checked for the intense yellowish color, but no „crawling test“ has been carried out, since additional stress and time (with continuing breathing and excretion) could strongly affect the isotope content and therefore the results. In all our experiments is was very rare (below 4%), that single individuals did not show colored cytoplasm and they were therefore counted as „survive“. Completely empty tests, which would clearly stand for dead individuals, were not found. We added this information to the methods.

General Questions:

1, 2 & 4: In order not to disturb the experiments, no water change was carried out. O₂ and pH were also not measured, since we did not expect a significant change due to the small amount of added food.

3: The crystallization dishes were sealed tightly with parafilm. The water level and regular control of the salinity showed, that there was no evaporation. We added this information to the methods.

Specific comments:

Line 91: We used water from the location. We added this information to the methods.

Line 94 and 104: ad 94: The 21 °C correspond to the room temperature of the laboratory, where the foraminiferal cultures were placed. Ad 104: the 20°C refer to the temperature in the

incubator, where algae were cultivated. Experience shows, that algae grow very well at 20°C. The feeding experiments were also carried out at 20°C in the incubator, for optimal food uptake conditions. This experience is based on the experiments of Wukovits et al. (2017).

Line 121: 0.45 µm – We added this information to the manuscript.

Line 125: No, the food was directly put into the crystallization dishes and mixed there. See response to Referee #1.

Line 126: “Untreated” means not fed. Foraminifera were removed directly from the stock culture and processed. We improved this sentence to avoid confusion here.

Line 141: It is difficult to say what is inside of the foraminifera. But before foraminifera were further processed, they were cleaned with a brush to remove any organic or inorganic residues that were visible on their test.

Line 377: . was replaced with ,

Line 400: We agree with the reviewer. However, in this chapter we only refer to the availability of food.

1 **Salinity-depending algae uptake and subsequent carbon and nitrogen
2 metabolisms of two intertidal foraminifera (*Ammonia tepida* and
3 *Haynesina germanica*)**

5 Michael Lintner¹, Bianca Biedrawa¹, Julia Wukovits¹, Wolfgang Wanek² and Petra
6 Heinz¹

7 ¹University of Vienna, Department of Palaeontology, Vienna, Austria

8 ²University of Vienna, Department of Microbiology and Ecosystem Science, Terrestrial
9 Ecosystem Research, Vienna, Austria

10 **Abstract**

12 Benthic foraminifera are abundant marine protists which play an important role in the transfer
13 of energy in the form of organic matter and nutrients to higher trophic levels. Due to their
14 aquatic lifestyle, factors such as water temperature, salinity and pH are key drivers controlling
15 biomass turnover through foraminifera. In this study the influence of salinity on the feeding
16 activity of foraminifera was tested. Two species, *Ammonia tepida* and *Haynesina germanica*,
17 were collected from a mudflat in northern Germany (Friedrichskoog) and cultured in the
18 laboratory at 20 °C and a light / dark cycle of 16: 8 h. A lyophilized algal powder from
19 *Dunaliella tertiolecta*, which was isotopically enriched with ¹³C and ¹⁵N, was used as a food
20 source. The feeding experiments were carried out at salinity levels of 11, 24 and 37 practical
21 salinity units (PSU) and were terminated after 1, 5 and 14 days. The quantification of isotope
22 incorporation was carried out by isotope ratio mass spectrometry. *Ammonia tepida* exhibited a
23 10-fold higher food uptake compared to *H. germanica*. Furthermore, in *A. tepida* the food
24 uptake increased with increasing salinity but not in *H. germanica*. Over time (from 1-5 d to 14
25 d) food C retention increased relative to food N in *A. tepida* while the opposite was observed
26 for *H. germanica*. This shows, that if the salinity in the German Wadden Sea increases, *A.*
27 *tepida* is predicted to exhibit a higher C and N uptake and turnover than *H. germanica*, with
28 accompanying changes in C and N cycling through the foraminiferal community. The results
29 of this study show how complex and differently food C and N processing of foraminiferal
30 species respond to time and to environmental conditions such as salinity.

31
32 keywords: benthic foraminifera, feeding experiments, salinity, isotope tracing

33
34 **1. Introduction**

35 The intertidal zone is one of the most extreme habitats on earth. This ecotone, also known as
36 the foreshore or seashore, is determined by tidal activity. It is an important habitat for various
37 living organisms like starfishes, sea urchins, corals and foraminifera (Allen 2000). Due to the
38 alternating presence/absence of water, organisms living here must adapt to the specific
39 environmental conditions. Important factors shaping the intertidal environment are the
40 fluctuating water temperature and salinity, pH, available food sources, sediment organic matter

41 content and fresh water supply. These environmental factors significantly influence the activity
42 of foraminifera (e.g. Schafer et al. 1996, Caldeira and Wickett 2005, Keul et al. 2013, Wukovits
43 et al. 2017).

44 Foraminifera are unicellular organisms, which live predominantly in marine environments. A
45 recent field study showed that benthic foraminifera can account for up to 84% of total protozoan
46 biomass in mudflats (Lei et al. 2014). Many foraminifera feed on phytoplankton (algae,
47 diatoms) and thus play an important role in passing on energy in form of organic matter to
48 higher trophic levels (Azam et al. 1983, Beringer et al. 1991). Due to the large quantity of
49 foraminifera in the deep and shallow ocean waters and their large contribution to the uptake of
50 primary produced organic material, foraminifera significantly contribute to the global marine
51 carbon and nitrogen cycles (Altenbach 1992, Graf 1992, Gooday et al. 1992, Nomaki et al. 2008,
52 Glock et al. 2013).

53 Foraminifera can even change between active feeding and passive ingestion diets
54 depending on how much food is available (Sliter 1965). Some foraminifera can retain organelles
55 (chloroplasts) from certain food sources and integrate them into their own metabolic cycle. This
56 process is commonly referred to as kleptoplastidy. Currently nine benthic foraminiferal genera
57 are known to follow this lifestyle: *Bulimina*, *Elphidium*, *Haynesina*, *Nonion*, *Nonionella*,
58 *Nonionellina*, *Reophax*, *Stainforthia* und *Virgulinella* (Lopez 1979, Lee et al. 1988, Cedhagen
59 1991, Bernhard & Bowser 1999, Correia & Lee 2000, Grzymski et al. 2002, Goldstein et al
60 2004, Pillet et al. 2011, Lechliter 2014, Tsuchiya et al. 2015). In the temperate Wadden Sea,
61 being a part of the North Sea, two foraminifera species occur most frequently, *Ammonia tepida*
62 and *Haynesina germanica*, and have been relatively well studied in terms of trophic ecology.
63 While *Ammonia* does not seem to be able for kleptoplastidy (Jauffrais et al. 2016), *H. germanica*
64 possesses chloroplasts which are absorbed from food (microalgae) and are retained as organelles
65 (Lopez 1979). Cesborn et al. (2017) demonstrated that the plastids in *H. germanica* are
66 photosynthetically active, based on changes in O₂ consumption rates during dark-light
67 transitions. *Haynesina germanica* therefore follows a mixotrophic lifestyle, with autotrophic
68 and heterotrophic nutrition (Cesborn et al. 2017). While *Ammonia* can rapidly ingest organic
69 carbon (Moodley et al. 2000) and *A. tepida* has a higher potential to convert algal organic matter
70 into cellular biomass in a short time frame compared to *H. germanica* (Wukovits et al. 2018),
71 the latter species (*H. germanica*) can eventually reduce its dependency on external food due to
72 the presence of kleptoplasts.

73 The uptake of food by foraminifera depends on several factors such as food quality and
74 quantity, temperature and salinity (Lee et al. 1966, Dissard et al. 2009, Wukovits et al. 2017).
75 Past experiments with *A. tepida* and *H. germanica* showed that increasing temperature had a
76 negative effect on food uptake of foraminifera (Wukovits et al. 2017). Highest food uptake rates
77 were recorded at 20 °C in comparison the other tested temperatures 25 and 30 °C. As the
78 temperature increased foraminifera of both species consumed less food (Wukovits et al. 2017).
79 Today not only increasing temperature but also salinity changes play an important role in the
80 oceans, mainly because of anthropogenic influence, however effects of salinity on food uptake
81 and digestion by foraminifera have not yet been studied. Based on the strong variability and
82 fluctuations in salinity levels in the intertidal systems we studied food uptake of *A. tepida* and

83 *H. germanica* at different salinity levels to provide a better understanding of the turnover of
84 phytoplankton by foraminifera with changing physical conditions (salinity).

85

86 **2. Materials and Methods**

87

88 2.1. Sampling

89 The sample material was collected in May 2018 during low tide at Friedrichskoog Spitze
90 (German Wadden Sea, at 54° 02' N, 8° 50' E). At that time the seawater had a salinity of 24.2
91 PSU and a temperature of 13 °C, and the air temperature was 11 °C. The collected sediment
92 was directly wet-sieved **with seawater from the location** at the site through a 125 and a 63 µm
93 sieve to remove larger meiofauna and smaller organic particles. In the laboratory, the sediments
94 (size class 63-125 µm) containing living benthic foraminifera were fed regularly with
95 *Dunaliella tertiolecta* (green algae) until the start of the experiment and were kept at a
96 temperature of 21 °C and a **salinity of 24 PSU**. 1 PSU (1 practical salinity unit) corresponds
97 approximately to 1 g salt per kg seawater.

98

99 2.2. Preparation of ^{13}C ^{15}N -labeled phytodetritus

100 A f/2 medium (Guillard & Ryther 1962, Guillard 1975), enriched with ^{13}C (1.5 mmol
101 $\text{NaH}^{13}\text{CO}_3/\text{L}$) and ^{15}N (0.44 mmol $\text{Na}^{15}\text{NO}_3/\text{L}$) was used as a nutrient solution for the cultivation
102 and production of isotopically labeled *D. tertiolecta*, a common food source in laboratory
103 experiments with benthic foraminifera (e.g. Heinz et al. 2002, Wukovits et al. 2017). It should
104 be noted that *H. germanica* prefers to eat diatoms (Austin et al. 2005), however significant
105 uptake of *D. tertiolecta* was also previously reported (Wukovits et al. 2017). The algal culture
106 was kept in an incubator at 20 °C with a light/dark cycle of 16:8 h. Once the algae had grown
107 to high density in the medium, they were collected by centrifugation at 800 xg for 10 minutes.
108 The algal pellet was washed three times with artificial seawater (Enge et al. 2011). After each
109 washing step the culture was centrifuged and the supernatant decanted. For the storage of the
110 labelled algae, the pellet was shock frozen in liquid nitrogen and then lyophilized for 4 days at
111 0.180 mbar. The labeled algal powder was isotopically enriched at about 3.3 at% ^{13}C and 32.3
112 at% ^{15}N (**C:N ratio is about 5,58**).

113

114 **3. Sample preparation and analysis**

115

116 3.1. Sample preparation

117 The experiment was run in triplicates. For each salinity level (11, 24 and 37 PSU) and each time
118 point of harvest (1, 5 and 14 days) three glass crystallization dishes were setup for *A. tepida* and
119 for *H. germanica*. The selected salinities correspond to a brackish milieu (11 PSU), to the
120 natural conditions in the North Sea (24 PSU) and to a highly saline basin (37 PSU). For *A.*
121 *tepida* 55 individuals and for *H. germanica* 60 individuals were prepared per replicate to obtain
122 a dry mass of cytoplasm between 1 and 2 mg. The crystallization dishes were filled with 280 ml
123 of filtered (**pore size: 0.45 µm**) natural seawater from the sampling site. The salinity was
124 previously adjusted to the desired PSU value by adding NaCl or distilled water. The

125 foraminifera were then placed in the dishes (without sediment) and acclimated at 20 °C and a
126 light/dark cycle of 16:8 h for three days in an incubator. The crystallization dishes were sealed
127 tightly with parafilm.

128 For our experiments, we only used foraminifera with densely filled cytoplasm. In addition, we
129 only used individuals with an intense yellowish color of the cytoplasm. The incubation time of
130 foraminifera in the crystallization dishes before feeding was used for the „crawling test“.
131 Foraminifera were placed in the center of the crystallization dish immediately after removal
132 from the cultures. After 24 hours individuals could be identified that have moved away from
133 the center. Accordingly, these individuals have active pseudopodia and are alive. In all
134 experiments it was very rare (below 4%), that single individuals did not show colored cytoplasm
135 and they were therefore counted as “survive”. Completely empty tests, which would clearly
136 stand for dead individuals, were not found.

137 In order not to disturb the experiments, no water change was carried out. O₂ and pH were also
138 not measured, since we did not expect a significant change due to the small amount of added
139 food.

140 Following the acclimation period, 5 mg lyophilized labelled algal powder was added as the only
141 food source to each replicate and left in the incubator for the desired incubation time. The algae
142 powder settled down on the bottom of the dish and was available for foraminifera. In addition,
143 untreated (not fed) foraminifera were taken to obtain the natural abundance of ¹³C and ¹⁵N as a
144 reference. At the end of the experiments a precipitate of the algal powder was still visible in the
145 crystallization dishes, which confirms the continuous availability of food during the
146 experiments. The salinity was checked daily and corrected when necessary.

147

148 3.2. Sample preparation and processing

149 Before the start of the experiments all glassware was cleaned by combusting at 500 °C for 5 h
150 in a muffle furnace. The „picking tools“ and tin capsules were cleaned by rinsing with a 1:1
151 (v:v) mixture of dichloromethane (CH₂Cl₂) and methanol (CH₃OH). After the incubation period,
152 foraminifera were removed from the crystallization dishes, cleaned and washed three times with
153 distilled water. Then they were transferred into the tin capsules (Sn 99,9%, IVA
154 Analysentechnik GmbH & Co. KG) and excess water was removed. The samples were air dried
155 for three days (Enge et al. 2018) and then decarbonated with 4% HCl (3 x 5 µL for *A. tepida*
156 and 2 x 5 µL for *H. germanica*). During the decarbonatization of foraminiferal tests, the samples
157 were kept at 60 °C for 24 h. Finally, the samples were dried for three days at 60 °C, before being
158 weighed to the nearest hundredth of a milligram.

159

160 3.3. Analyses

161 The measurements of C and N contents as well as the isotope ratios of the samples were carried
162 out in the Stable Isotope Laboratory for Environmental Research (SILVER) laboratory of the
163 University of Vienna. The ratios of ¹³C/¹²C and ¹⁵N/¹⁴N were measured by an isotope ratio mass
164 spectrometry (IRMS, Delta^{PLUS}, coupled by a ConFlo III interface to an elemental analyzer EA
165 1110, Thermo Finnigan). In the following calculations, X stands for the heavy isotopes of C and
166 N, i.e. ¹³C and ¹⁵N, respectively. The atomic percentage of heavy isotopes (at%¹³C and at%¹⁵N)

167 was calculated using the measured $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values and the international standards for C
168 (Vienna PeeDee Belemnite $R_{\text{VPDB}} = 0.0112372$) and N isotopes (atmospheric nitrogen $R_{\text{atmN}} =$
169 0.0036765) according to the following equations:

170

171 $\delta X = (R_{\text{sample}}/R_{\text{standard}} - 1) \times 1000$ (1)

172

173 where R depicts the ratio of heavy isotope to light isotope i.e. $^{13}\text{C} : ^{12}\text{C}$ or $^{15}\text{N} : ^{14}\text{N}$ in samples and
174 international standards, respectively.

175

$$176 \text{at. \%} = \frac{100 \times R_{\text{standard}} \times \left(\frac{\delta X_{\text{sample}}}{1000} + 1 \right)}{1 + R_{\text{standard}} \times \left(\frac{\delta X_{\text{sample}}}{1000} + 1 \right)}.$$

(2)

177

178 Subsequently, the values needed to be corrected for the at% X present in the natural
179 environment, i.e. in unlabeled foraminifera. The so-called isotope excess (E) was calculated
180 according to Middelburg et al. (2000):

181

$$182 E = \frac{\text{atom}X_{\text{sample}} - \text{atom}X_{\text{background}}}{100} \quad (3)$$

183

184 In the next step, the isotope incorporation was determined according to the following equation:

185

186 $I_{\text{iso}} [\mu\text{g mg}^{-1}] \text{ or } [\mu\text{g ind}^{-1}] = E \times C (\text{N}) [\mu\text{g mg}^{-1}] \text{ or } [\mu\text{g ind}^{-1}]$ (4)

187

188 Depending on the biomass units used, I_{iso} results in the unit $\mu\text{g mg}^{-1}$ (based on dry matter of the
189 cytoplasm) or $\mu\text{g ind}^{-1}$ (based on the number of individuals).

190

191 Finally, the uptake of phytodetrital C (pC) and phytodetrital N (pN) was calculated for the
192 cytoplasm of foraminifera:

$$193 pX = \frac{I_{\text{iso}}}{\frac{\text{at. \%}X_{\text{phyto}}}{100}} \quad (5)$$

194

195 where at% $_{\text{phyto}}$ represents the isotopic enrichment in ^{13}C and ^{15}N of the labelled *D. tertiolecta*
196 food. All results were additionally converted to time-based food uptake rates ($\mu\text{g mg}^{-1} \text{ h}^{-1}$).

197

198 3.4. Statistics

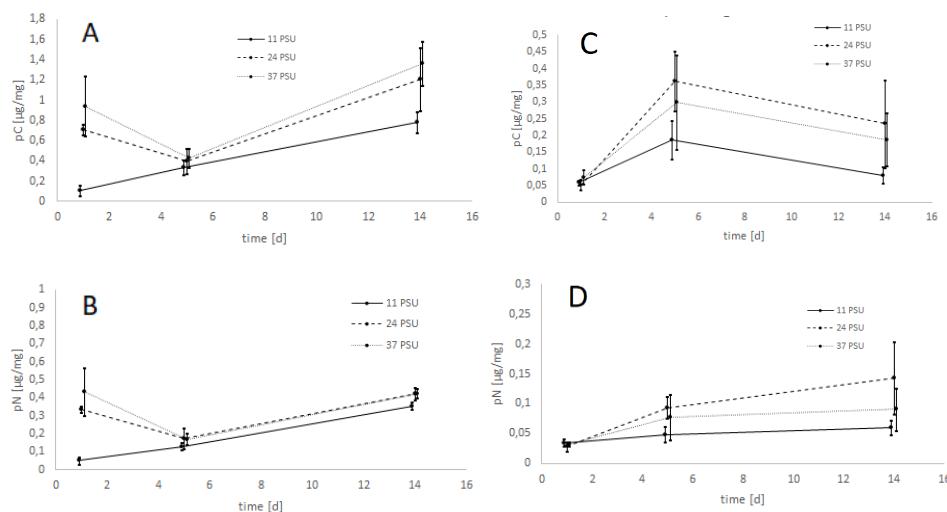
199 Regression analysis was applied to statistically test for time effects on food uptake, and linear
200 and curvilinear models were tested. The best models were selected based on the highest
201 coefficient of determination (R^2). Three-way analysis of variance (ANOVA) was applied to test
202 for main effects of species, salinity and time, and two-way ANOVA for salinity and time effects

203 on pC and pN within species, followed by Fisher's LSD post hoc tests. All statistical tests were
204 performed using R (R development Core Team, 2008).

205

206 4. Results

207


208 4.1. Carbon uptake

209 The isotope measurements showed that the offered labeled food source was utilized by both, *A.*
210 *tepida* and *H. germanica*. Three-way ANOVA showed a significant effect of species (*A.*
211 *tepida* > *H. germanica*, $p < 0,001$), time ($p < 0,001$) and salinity ($p < 0,001$) on pC. Moreover, two-
212 way ANOVA highlighted a significant effect of time ($p < 0,001$) and salinity ($p < 0,001$) on pC in *A. tepida*, and of time ($p < 0,001$) but not salinity ($p = 0,0739$) on pC in *H. germanica*. Salinity
213 had a major impact on food uptake (pC) only in *A. tepida*.

214
215 As shown in Fig. 1A, *A. tepida* had the highest pC value at a salinity level of 37 PSU
216 for the most dates, followed by 24 PSU. At lowest salinity (11 PSU) pC further decreased. It
217 should be noted that from day 1 to day 5 the uptake of C at 24 PSU and 37 PSU decreased
218 considerably before it increased again towards day 14. This intermediate minimum was not
219 recognizable at 11 PSU. At 11 PSU pC increased linearly with time ($f(d) = 0,05163 \cdot d + 0,06530$, $R^2 = 0,9985$, based of mean values of pC).

220
221 Time kinetics were different for *H. germanica*. After one feeding day the measured pC
222 values did not differ between salinity levels and were lowest. Food C uptake peaked after five
223 days and thereafter declined. However, salinity did not affect pC in this species.

224

225

226
227 Figure 1: Time kinetics of algal C and N uptake (pC, pN) by (A, B) *A. tepida* and (C, D) *H. germanica*. pC and pN were
228 measured at three salinity levels: 11, 24 and 37 PSU.

229

230 In addition to pC values, C uptake rates for the 1 day sample were also determined. *Ammonia*
231 *tepida* showed highest uptake rates at 24 ($0,029 \mu\text{g}/(\text{mg} \cdot \text{h})$) and 37 PSU ($0,036 \mu\text{g}/(\text{mg} \cdot \text{h})$)
232 after one day of food supply. For 11 PSU, C uptake rates were much lower ($0,004 \mu\text{g}/(\text{mg} \cdot \text{h})$).
233 For *H. germanica*, C uptake rates at salinities of 11 ($0,002 \mu\text{g}/(\text{mg} \cdot \text{h})$), 24 ($0,003$
234 $\mu\text{g}/(\text{mg} \cdot \text{h})$) and 37 ($0,002 \mu\text{g}/(\text{mg} \cdot \text{h})$) PSU are in the same area.

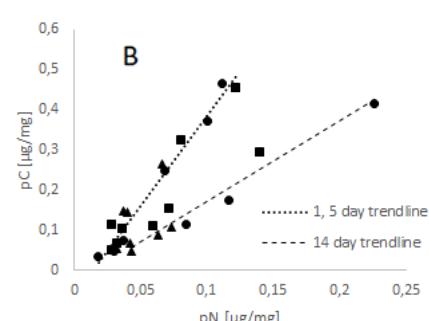
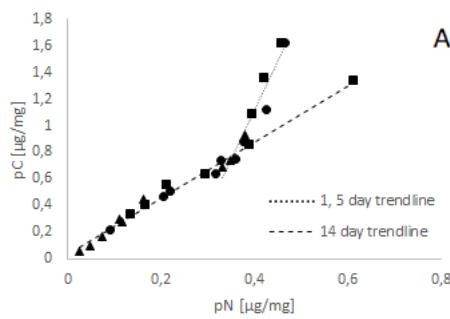
235

236 4.2. Nitrogen uptake

237 Two-way ANOVA showed a significant effect of salinity ($p<0,001$) and time ($p<0,001$) on
238 nitrogen uptake (pN) for *A. tepida*. For *H. germanica*, as with pC, pN was only affected by time
239 ($p=0,0027$) but not by salinity ($p=0,0690$).

240 Nitrogen uptake of *A. tepida* showed a highly comparable pattern to C uptake (Figure
241 1). Minimum N uptake was always recorded at the lowest salinity level. However, the uptake
242 of N after 5 days was approximately the same at 24 and 37 PSU, and reached here a minimum
243 at both salinities. The development of pN at 11 PSU could be described by a straight line ($f(d)$
244 = $0.02354*d + 0.02011$) with a very high coefficient of determination ($R^2 = 0.9978$).

245 *Haynesina germanica* exhibited lower values of pN compared to *A. tepida* (Figure 1D).
246 The highest N uptake after 5 and 14 days was at the moderate salinity level (24 PSU), though
247 this was not significant. Again, food N uptake increased linearly with time ($f(d) = 0.00185*d +$
248 0.03522 , $R^2 = 0.9317$) at the lowest salinity level, but showed a saturating behavior at 24 and
249 37 PSU.



250 Food N uptake rates are also calculated. For *A. tepida* the N uptake rates is similar to
251 the C uptake rates and C uptake rates were approximately twice as high as N uptake rates. For
252 *H. germanica* the average N uptake rates were very close at all three salinity levels, suggesting
253 similar N uptake rates independent of salinity in *H. germanica*.

254

255 4.3. Relations between food C and N incorporation

256

257 All data of C and N uptake obtained in this study were plotted as pC to pN relationships in
258 Figure 2.

263 Fig. 2: Relationship between food N uptake (pN) and food C uptake (pC) for *A. tepida* (A) and *H. germanica* (B) for
264 the time windows day 1 to 5, and day 14. Regressions were run separately for these time windows. The triangles
265 correspond to the values at 11 PSU, the circles to those at 24 PSU, and the squares to the values at 37 PSU.

266

267 *Ammonia tepida* showed a continuous increase in pC with pN (Fig. 2). The 1-day and 5-day
268 samples were all plotting on a straight line, with the lowest salinity samples having the lowest
269 pC and pN values. At later stages (day 14) the slope and therefore the pC:pN ratios increased
270 markedly (from 2.1 to 7.4). *Haynesina germanica* also showed a general increase in pC with
271 pN. However, the slope between both of them decreased over time in contrast to *A. tepida*,
272 indicating a decrease in pC:pN (from 4.5 at day 1 and 5 to 2.0 at day 14) and thereby an increased
273 relative retention of food N compared to food C over time.

274

275 **5. Discussion**

276

277 5.1. Influence of salinity on food uptake

278 Both examined foraminifera species showed different responses to salinity variations in terms
279 of food uptake and food uptake rates. The time course of pC and pN in *A. tepida* showed a
280 noticeably minimum after five days. This partial decrease in pC and pN was already reported in
281 experiments testing the effects of temperature on food uptake in the same species (Wukovits et
282 al. 2017). In the latter study food uptake was highest on day one and then decreased sharply (5
283 days) and remained nearly constant thereafter (14 days). These data suggest that *A. tepida* was
284 „starved“ due to the 3-day acclimatization period and immediately responded with rapid food
285 uptake, when food was added. The pseudopodia of *A. tepida* are particularly stimulated by the
286 green algae *Dunaliella* (Lee et al 1961). Excessive food uptake in the short time (1 day) can
287 lead to longer lasting saturation, which explains the significantly lower uptake rates at the
288 intermediate time points.

289 There are some points, which could lead to the low (0,1%) uptake of food in comparison to
290 the biomass of the foraminifera. An important aspect to consider is the method used when
291 processing the samples. Foraminiferal tests are dissolved with hydrochloric acid and due to
292 that carbonate is lost, but also new mineral phases are formed which influence the total weight
293 of the sample. This step is needed to remove the ^{13}C , which may be bound in the test.
294 Comparing with other studies like Wukovits et al. (2017), it can be seen, that the uptake
295 values of our experiments lay in the same order of magnitude.

296 Another aspect is, that foraminifera are stressed during experimental conditions and therefore
297 may have a lower turnover. It should be noted, that the food uptake is determined by the
298 isotope content in the cytoplasm, which can also vary over time.

299 Since these experiments were all carried out under laboratory conditions, we would not
300 consider pC and pN as absolute values, due to seasonal and environmental fluctuations.

301 The time course of food uptake at the lowest salinity level was different in *A. tepida*,
302 starting slow but then pC and pN increased continuously over time. This might be caused by
303 lowest salinity levels being suboptimal in the short term and that therefore metabolic
304 activation takes longer, causing the linear increase in pC and pN. This explanation supported

305 by the observation that after five days food uptake was similar across all three salinity levels.
306 *Haynesina germanica* showed a different pattern than *A. tepida* in terms of time-dependency
307 of pC and pN. In the former species the presence of kleptoplasts may have attenuated the
308 „starvation effect“, with the result that only a small amount of ingested C and N can be
309 measured after one day. This low initial C and N uptake can be related to the results of
310 Cesborn (2017), which show that kleptoplasts are potential C or N sources for foraminifera in
311 starvation periods. However, it should be considered that *H. germanica* less readily absorbed
312 the offered food compared to *A. tepida*. Although there was a greater increase in pN between
313 day 1 and 5 than between day 5 and 14, the C and N uptake rates were much lower than those
314 of *A. tepida*.

315 It must be noted that while food C and N uptake are related through the C:N of the food
316 source, internal foraminiferal metabolism and release processes can cause a decoupling of C
317 and N metabolism and of isotope labeling patterns. Carbon is incorporated into organic
318 molecules as well as into the calcareous shells or simply released during cellular respiration
319 (e.g. Hannah et al 1994). The latter leads to a release of carbon into the environment, whereby
320 the measured values of C isotope incorporation are influenced. Nitrogen is also utilized for the
321 production of organic molecules such as DNA or proteins (DeLaca 1982, Nomaki et al 2014).
322 Again the release of nitrogen-rich excretion products into the environment has an impact on the
323 nitrogen isotope incorporation patterns.

324 It should be mentioned, that the processing method could result in loss of the cytoplasm. After
325 the experiment, foraminifera were washed with distilled water to remove any salts around their
326 tests, which could influence the mass. This washing process should be carried out carefully,
327 because the tests could burst. In general, all samples were always treated the same way, which
328 means they were all washed with the same volume of distilled water. This way any impact that
329 may have arisen from using the distilled water has the same effect on all samples.

330 According to Stouff et al. (1999) *A. tepida* shows hardly any shell deformations at
331 normal marine conditions of 37 PSU. This observation is consistent with the results of this
332 study, as *A. tepida* had a higher uptake and turnover of organic matter at higher salinities (24 –
333 37 PSU) and therefore its optimal living conditions at higher salinity levels. Yet, in the
334 hypersaline environment (50 PSU) this species generates a high number of deformed juvenile
335 individuals (Stouff et al. 1999). The German Wadden Sea is subject to seasonal salinity
336 fluctuations and has a mean salinity of 30.7 – 32.5 PSU (Postma 1983). Depending on the
337 supply of fresh water and evaporation rates, the water in this region can drop to salinities of 25
338 and reach up to 37 PSU (Maywald 1991). Our experiments showed that the change in salinity
339 from 24 to 33 PSU had a smaller impact on food uptake than that between 11 and 24 PSU.
340 This shows once again that the two commonly occurring species, *A. tepida* and *H. germanica*,
341 have adapted very well to these fluctuations. The lowest salinity (11 PSU) in our experiments
342 represents the transition from brackish to a marine milieu. It turned out that at this salinity
343 level the food uptake tended to be the lowest for both species. From the literature it is known
344 that such brackish marshes are mainly inhabited by agglutinated foraminifera (Sen Gupta
345 1999). Considering the uptake of C and N by *A. tepida* and *H. germanica* in our experiments

346 (Fig. 1), it can be seen that the low salinities do not correspond to the optimum conditions of
347 these foraminifera.

348

349 5.2. Effect of salinity on cytoplasmic C:N ratios and $\delta^{13}\text{C}$ values

350 Foraminiferal C:N ratios and $\delta^{13}\text{C}$ signatures in the cytoplasm have been applied as a salinity
351 proxy for marine systems for some time (e.g. Scott and Medioli 1986. Chmura and Aharon
352 1995. Mackie et al. 2005). According to Mackie et al. (2005) $\delta^{13}\text{C}$ values in the range of -16 to
353 -22‰ represent organic matter and organisms of marine origin. Brackish and freshwater
354 organisms have **lighter** $\delta^{13}\text{C}$ values (-22 to -25‰ and -25 to -30‰ respectively) (Mackie et al.
355 2005). The foraminiferal species studied here showed background $\delta^{13}\text{C}$ values of -13.9‰ (*H.*
356 *germanica*) and -15.9‰ (*A. tepida*). These values clearly point towards marine isotope
357 signatures, concordant with a salinity of 24.2 PSU measured during the sampling of the
358 foraminifera.

359 A change in cytoplasmic C:N ratio of foraminifera in intertidal habitats is fundamentally
360 influenced by two factors: on the one hand by the composition of the local fauna and flora (food)
361 ([Stelzer and Lamberti 2001](#), [Bowman et al 2005](#), [LeKieffre 2018](#)) and on the other hand by
362 changes in the physiological processes in the organisms themselves ([Frost and Elser 2002](#), [Cross](#)
363 [et al 2005](#)). Both benthic foraminifera species showed divergent changes in C versus N
364 metabolism of ingested food over time. *Ammonia tepida* showed an increase in pC:pN with
365 feeding time, resulting from a combination of altered N metabolism (storage of N in form of
366 proteins or DNA versus N excretions) and/or changes in C metabolism (investment of C into
367 cellular components versus losses by cellular respiration). The observed increase in pC:pN may
368 therefore represent either an increase in C incorporation relative to N incorporation due to lower
369 stress (less cellular respiration) or a decrease in N retention (increased N excretion) in the
370 foraminifera after a prolonged feeding time. *Haynesina germanica* also showed a general
371 increase in pC with pN. However, the slope between pC and pN decreased over time, indicating
372 a decrease in pC:pN and thereby an increased relative retention of food N compared to food C.
373 In our experiments the change in salinity did not affect the pC:pN ratios. In other words the
374 salinity did not cause a change in relative C versus N metabolism in both species. Investigating
375 the behavior of other nutrients such as P or Mg alongside C and N might provide further
376 interesting insights into the intake and metabolism of food and its biochemical constituents.
377 Phosphorus serves as an important building block in nucleic acids and phospholipids and might
378 be an indicator for cellular energy status because it is used for the formation of energy storage
379 molecules such as ATP. The behavior of P at changing environmental conditions may therefore
380 indirectly indicate the stress behavior of foraminifera. Magnesium is an important component
381 of chlorophyll. Based on the Mg content of foraminifera it is possible to reconstruct the amount
382 of chlorophyll and therefore the presence of chloroplasts. **It is also possible to quantify**
383 **chlorophyll directly, for example via spectroscopy**. However, this is only possible if the pure
384 cytoplasm is examined without the residues of the shells.

385 An important point is the different affinity of foraminifera to food. As *H. germanica*
386 possesses kleptoplasts, which are absent in *A. tepida*, the two species have different metabolisms
387 and food dependencies. *Ammonia tepida* showed an approximately 10-fold higher food uptake

388 as *H. germanica*, partially explained by the preference of *A. tepida* for the green algae
389 *Dunaliella sp.* (Lee et al 1961) which served as the food source here while *H. germanica* prefers
390 to eat diatoms due to kleptoplastidy.

391 Furthermore, the alteration and aging of food sources can play an important role
392 affecting feeding and food metabolism, as indicated by the preference for „fresh“ or
393 „younger“ phytodetritus (Lee et al 1966). In the experiments here food from the same
394 lyophilized algal batch was always used to avoid this effect. Moreover, selective food uptake of
395 different species of foraminifera needs to be considered, and this was clearly demonstrated in a
396 study where a total of 28 different diatom and chlorophyte species were fed to three littoral
397 benthic foraminifera species but only 4-5 of these food sources were consumed at significant
398 rates (Lee and Müller 1973). Ultimately one needs to be aware that contamination by bacteria
399 or other microbes cannot be ruled out, particularly in longer-term experiments, as these
400 organisms also use the food offered as a C or N source (Murray et al 1986. Dobbs et al 1989.
401 Middelburg et al. 2000. Gähring et al 2009).

402

403 5.3. Effects of salinity on the foraminiferal community

404 The foraminifera of the mudflats of Friedrichskoog have been investigated for their
405 responses to environmental parameters such as temperature and organic matter flux (Llobret-
406 Brossa et al. 1998. Brasse et al. 1999. Tillmann et al. 2000). In this study we could show that *A.*
407 *tepida* and *H. germanica* reacts with a lower food uptake compared to a decreasing salinity. At
408 low tide the benthic organisms are strongly exposed to the ambient weather conditions such as
409 wind, rain or sunlight. Due to the geographic location the growth of organisms is strongly linked
410 to the spring and summer months. Past data from Tillmann et al. (2000) showed that growth of
411 phytoplankton in winter is limited or almost zero. During spring local phytoplankton blooms
412 may occur with a daily water column particulate gross production up to $2200 \text{ mg C m}^{-2} \text{ day}^{-1}$
413 (Tillmann et al. 2000). Over this period food availability is not a limiting factor for foraminifera
414 and this situation corresponds to the conditions in our experiments.

415 The composition of the foraminiferal community in the German Wadden Sea changes
416 within small areas (subzones) (Müller-Navarra et al. 2016). The specific microhabitats are
417 formed by natural parameters such as sediment grain size, pH or food source availability but
418 also by anthropogenic influences such as diking, ditching or sheep grazing (Müller-Navarra et
419 al. 2016). This leads to changes in the hydrological situation, and in combination with natural
420 factors such as precipitation or seepage of ground water, the salinity in mudflats varies
421 significantly in relation to the open ocean (De Rijk 1995). It seems that the assemblage of
422 foraminifera in such human-influenced salt marshes is controlled mainly by changes in salinity
423 (De Rijk 1995). De Rijk (1995) showed that in areas with widely varying salinity only few
424 different types of foraminifera occur. Moreover, it was shown that in years with high
425 precipitation the salinity in areas such as the Wadden Sea or in salt marshes is reduced, causing
426 the density of foraminifera to decrease sharply. (Murray 1968). So the tidal habitats in the region
427 around Friedrichskoog are characterized by multiple environmental factors. This leads to the
428 formation of subzones, where particularly physical influences such as pH, salinity, temperature
429 or tides play an important role. This area is also of particular interest for the future as the

430 anthropogenic impact on fluctuating ecosystems can be monitored very well here. Changes in
431 salinity therefore are a major factor shaping the composition and activity of foraminiferal
432 communities. In this study we could show that the two tested foraminiferal species, *A. tepida*
433 and *H. germanica*, responded very differently to salinity in terms of food intake and C and N
434 metabolism. Moreover, a former study demonstrated that the temperature response and
435 temperature optima also differ between these two most abundant foraminifera species of the
436 German Wadden Sea (Wukovits et al. 2017). Therefore environmental and climate change can
437 strongly affect the composition of the foraminiferal community, thereby causing changes in the
438 feeding rates and in the C-N metabolism of the foraminiferal community, and ultimately altering
439 the C-N cycling of these intertidal ecosystems.

440

441

442 **6. Literature**

443 Allen J.: Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and
444 southern North Sea coast of Europe; Quaternary Science Reviews. v. 19. pp: 1155-
445 1231, 2000.

446 Altenbach A.: Short-term processes and patterns in the foraminiferal response to organic flux
447 rates. Mar Micropaleontol 19:119–129, 1992.

448 Austin H., Austin W., Paterson D.: Extracellular cracking and content removal of benthic
449 diatom *Pleurosigma angulatum* (Quenkett) by the benthic foraminifera *Haynesina*
450 *germanica* (Ehrenberg). Mar. Micropaleontol.. 57. 68-73, 2005.

451 Azam F., Fenchel T., Field J., Gray J., Meyer-Reil L. and Thingstad F.: The ecological role of
452 water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10:257-263, 1983.

453 Beringer U., Caron D., Sanders R., and Finaly B.: Heterotrophic flagellates of planktonic
454 communities. their characteristics and methods of study. In: Patterson D. J. & Larsen.
455 J. (ed.). The Biology of Free-Living Heterotrophic Flagellates. Vol. 45. Clarendon
456 Press. Oxford. p. 39-56, 1991.

457 Bernhard J. and Bowser S.: Benthic foraminifera of dysoxic sediments: chloroplast
458 sequestration and functional morphology: Earth-Science Reviews. v. 46. p. 149–165,
459 1999.

460 Brassea S., Reimerb A., Seiferta R., Michaelis W., The influence of intertidal mudflats on the
461 dissolved inorganic carbon and total alkalinity distribution in the German Bight.
462 southeastern North Sea; ELSEVIER. Volume 42. Issue 2. pp:93-103, 1999.

463 Bowmann M., Chambers P., Schindler D.: Changes in stoichiometric constraints on epilithon
464 and benthic macroinvertebrates in response to slight nutrient enrichment of mountain
465 rivers; Freshwater Biology 50. doi 10.1111/j.1365-2427.2005.01457.x., 2005.

466 Caldeira K.. Wickett M.: Ocean model predictions of chemistry changes from carbon dioxide
467 emissions to the atmosphere and ocean. J. Geophys. Re., 110. C09S04.
468 doi:10.1029/2004JC002671, 2005.

469 Cedhagen T.: Retention of chloroplasts and bathymetric distribution in the Sublittoral
470 Foraminiferan *Nonionellina labradorica*: Ophelia. v. 33. p. 17–30, 1991.

471 Cesborn F., Geslin E., Kieffre E., Jauffrais T., Nardelli M., Langlet D., Mabilleau G., Jorissen
472 F., Jezequel D. and Metzger E.: Sequestered Chloroplasts in the benthic Foraminifer
473 *Haynesina germanica*: Cellular organization, oxygen fluxes and potential ecological
474 implications. *Journal of Foraminiferal Research* v. 47. no. 3. p. 268-278, 2017.

475 Chmura G., Ahron P.: Stable carbon isotope signatures of sedimentary carbon in coastal
476 wetlands as indicators of salinity regime. *Journal of Coastal Research*. 11: 124-135,
477 1995.

478 Cross W., Benstead J., Frost P. and Thomas S.: Ecological stoichiometry in freshwater benthic
479 systems: recent progress and perspectives; *Freshwater Biology* 50. pp: 1895-1912,
480 2005.

481 Correia M. and Lee J.: Chloroplast retention by *Elphidium excavatum* (Terquem). Is it a
482 selective process?: *Symbiosis*. v. 29. p.343-355, 2000.

483 DeLaca T.: Use of dissolved amino acids by the foraminifer *Notodendrodes antarcticus*; *Amer.*
484 *Zool.* 22:683-690, 1982.

485 De Rijk S.: Salinity control on the distribution of salt marsh foraminifers (Great Marshes.
486 Massachusetts). *Journal of Foraminiferal Research* v. 25. pp: 156-166), 1995.

487 Dissard D., Nehrke G., Reichart G. and Bijma J.: The impact of salinity on the Mg/Ca and
488 Sr/Ca ratio in the benthic foraminifera *Ammonia tepida*: Results from culture
489 experiments. *Geochimica et Cosmochimica Acta* 74 (2010) 928-940, 2009.

490 Dobbs F., Guckert B. and Carmin K.: Comparison of three techniques for administering
491 radiolabeled substrates to sediments for trophic studies: Incorporation by microbes;
492 *Microbiol. Ecol.* 17. 237-250, 1989.

493 Enge A., Nomaki N., Ogawa N., Witte U., Moeseneder M., Lavik G., Ohkouchi N., Kitazato
494 H., Kucera M. and Heinz P.: Response of the benthic foraminiferal community to a
495 simulated short-term phytodetritus pulse in the abyssal North Pacific. *Mar. Ecol.-*
496 *Prog. Ser.* 438. 129-142, 2011.

497 Enge A., Wanek W. and Heinz P.; Preservation effects on isotopic signatures in benthic
498 foraminiferal biomass; *Marine Micropaleontology*; Volume 144, Pages 50-59, 2018.

499 Frost P. and Elser J.: Effect of light and nutrients on the net accumulation and element
500 composition of epilithon in boreal lakes; *Freshwater Biology* 47. pp: 173-183, 2002.

501 Glock N., Schönfeld J., Eisenhauer A., Hensen C., Mallon J. and Sommer S.: The role of
502 benthic foraminifer in the benthic nitrogen cycle of the Peruvian oxygen minimum
503 zone; *Biogeoscience* 10, 4767-4783, 2013.

504 Goldstein S., Bernhard J. and Richardson E.: Chloroplast Sequestration in the Foraminifer
505 *Haynesina germanica*: Application of High Pressure Freezing and Freeze
506 Substitution: Microscopy and Microanalysis. v. 10. p. 1458-1459, 2004.

507 Gooday A.: The role of benthic foraminifera in deep-sea food webs and carbon cycling. In:
508 Rowe GT. Pariente V (eds) *Deep-sea food chains and the global carbon cycle*.
509 Kluwer Academic Publishers. Dordrecht. p 63-91, 1992.

510 Graf G.: Benthic-pelagic coupling: a benthic review. *Oceanogr Mar Biol Annu Rev* 30:149-
511 190, 1992.

512 Grzymski J., Schönfield O., Falkowski P. and Bernhard J.: The function of plastids in the
513 deep-sea benthic foraminifer. *Nonionella stella*. Limnology and Oceanography. v. 47.
514 p. 1569–1580, 2002.

515 Gihring T., Humphrys M., Mills H., Huet M. and J. Kostka: Identification of phytodetritus-
516 degrading microbial communities in sublittoral Gulf of Mexico sands; Limnology and
517 Oceanography 54. 1073-1083, 2009.

518 Guillard R.: Culture of phytoplankton for feeding marina Invertebrates. In: Culture of marine
519 invertebrates animals. Springer 29-60, 1975.

520 Guillard R. and Ryther J.: Studies of marina planktonic diatoms: I *Cyclotella nana* Hustedt.
521 and *Detonula confervacea* (CLEVE) Gran. Can. J. Microbiol. 8. 229-239, 1962.

522 Hannah F., Rogerson R. and Laybourn-Parry J.: Respiration rates and biovolumes of common
523 benthic Foraminifera (Protozoa); Cambridge University Press. Volume 72. Issue 2. pp
524 301-312, 1994.

525 Heinz P., Hemleben C. and Kitazato H.: Time-response of cultured deep-sea benthic
526 foraminifera to different algal diets; Oceanographic Research Papers Vol. 49, Issue 3,
527 pp: 517-537, 2002.

528 Jauffrais T., Jesus B., Metzger E., Mouget J., Jorissen F. and Geslin E.; Effect of light on
529 photosynthetic efficiency of sequestered chloroplasts in intertidal benthic
530 foraminifera (*Haynesina germanica* and *Ammonia tepida*); Biogeosciences. 13. 2715-
531 2726, 2016.

532 Keul N., Langer G., Nooijer L. and Bijma J.: Effect of ocean acidification on the benthic
533 foraminifera *Ammonia* sp. is caused by a decrease in carbonate ion concentration.
534 2013.

535 Lechliter S.: Preliminary study of kleptoplastidy in foraminifera of South Carolina: Bridges. v.
536 8. p. 44, 2014.

537 Lee J., Price S., Tentchoff M. and McLaughin J.: Growth and Physiology of Foraminifera in
538 the Laboratory: Part 1: Collection and Maintenance – Micropaleontology Vol. 7. No.
539 4 pp. 461-466, 1961.

540 Lee J., McEnery M., Pierce S., Freudenthal H. and Müller W.: Tracer experiments in feeding
541 littoral foraminifera; J. Protozool. 13, 657-670, 1966.

542 Lee J., Lanners E. and Kuile B.: The retention of chloroplasts by the foraminifer *Elphidium*
543 *crispum*: Symbiosis. v. 5. p. 45–59, 1988.

544 Lee J. and Müller W.: Trophic dynamics and niches of salt marsh foraminifera; Am. Zool. 13.
545 215-223, 1973.

546 Lei Y., Stumm K., Wickham S. and Beringer U.: Distributions and Biomass of Benthic
547 Ciliates. Foraminifera and Amoebozoa in Marine, Brackish, and Freshwater
548 Sediments. J. Eukaryot. Microbiol. 61. 493-508, 2014.

549 LeKieffre C., Jauffrais T., Geslin E., Jesus B., Bernhard J. M., Giovani M. and Meibom
550 A.; Inorganic carbon and nitrogen assimilation in cellular compartments of a
551 benthic kleptoplastic foraminifer; Scientific Reports volume 8.
552 Article number: 10140, 2018.

553 Lopez E.: Algal chloroplasts in the protoplasm of three species of benthic foraminifera:
554 taxonomic affinity, viability and persistence. *Marine Biology*. v. 53. p. 201–211,
555 1979.

556 Lobet-Brossa E., Rossello – Mora R. and Aman A.: Microbial Community Composition of
557 Wadden Sea Sediments as Revealed by Fluorescence in Situ Hybridization;
558 *Environmental Microbiology* Vol. 64. No. 7, 1998.

559 Maywald A.: *Das Watt*. 1. Aufl. Ravensburg: Maier, 1991.

560 Mackie E., Leng M., Lloyd J. and Arrowsmith C.: Bulk organic d13C. C/N ratios as
561 paleosalinity indicators within a Scottish isolation basin; *Journal of Quaternary*
562 *Science* 20: 303–312, 2005.

563 Middelburg J., Barranguet C., Boschker H., Herman P., Moens T. and Heip C.: The fate of
564 intertidal microphytobenthos carbon: An in situ ^{13}C -labeling study. *Limnol. Oceanogr.*
565 45. 1224-1234, 2000.

566 Moodley L., Boschker H., Middelburg J., Pel R., Herman P. and De Deckere E.: Ecological
567 significance of benthic foraminifera ^{13}C labelling experiments. *Mar Ecol Prog Ser*
568 Vol. 202:289-295, 2000.

569 Murray J.: The living Foraminifera of Christchurch Harbour, England: *Micropal.* V. 14, no.4,
570 p:83-96, 1968.

571 Murray R., Cooksley K. and Priscu J.: Stimulation of bacterial DNA synthesis by algal
572 exudates in attached algal-bacterial consortia; *Appl. Environ. Microbiol.* 52. 1177-
573 1182, 1986.

574 Müller-Navara K., Milker Y. and Schmiedl G.: Natural and anthropogenic influence on the
575 distribution of salt marsh foraminifera in the bay of Tümlau. German North Sea;
576 *Journal of Foraminiferal Research* 46. pp 61-74, 2016.

577 Nomaki H., Ogawa N., Ohkouchi N., Suga H., Toyofuku T., Shimanaga M., Nakatsuka T. and
578 Kitazato H.: Benthic foraminifera as trophic links between phytodetritus and benthic
579 metazoans: carbon and nitrogen isotopic evidence; *MEPS* 357:153-164, 2008.

580 Nomaki H., Chikaraishi Y., Tsuchiya M., Ohkouchi N., Uematsu K., Tame A. and Kitazato H.:
581 Nitrate uptake by foraminifera and use in conjunction with endobionts under anoxic
582 conditions; *Limnology and Oceanography* Volume 59. Issue 6. pages 1879-1888,
583 2014.

584 Pillet L., Vargas C. and Pawlowski J.: Molecular identification of sequestered diatom
585 chloroplasts and kleptoplastid in foraminifera: *Protist*. v. 162. p. 394–404. 2011

586 Postma H.: Hydrography of the Wadden Sea: Movements and properties of water and
587 particulate matter. In: WOLFF, W. J. (Hrsg.): *Ecology of the Wadden Sea*. A. A.
588 Balkema, Rotterdam: 2/1-2/75, 1983.

589 Sen Gupta B.: Foraminifera in marginal marine environments. *Modern Foraminifera* 141 – 159,
590 1999.

591 Schafer C., Cole F., Fobel D., Rice N. and Buzas M.: An in situ experiment on temperature
592 sensitivity of nearshore temperate benthic foraminifera. *Oceanographic Literature*
593 *Review*. 9. 913, 1996.

594 Scott F. and Medioli D.: Foraminifera as sea-level indicators. *Sea Level Research*. pp: 435-
595 456, 1986.

596 Stelzer R. and Lamberti G.: Effect of N:P ratio and total nutrient concentration on stream
597 periphyton community structure, biomass and element composition; *Limnology and*
598 *Oceanography* 46. pp:356-367, 2001.

599 Stouff V., Geslin E., Debenaj J. and Lesourd M.: Origin of morphological abnormalities in
600 Ammonia (Foraminifera): studies in laboratory and natural environments. *Journal of*
601 *Foraminiferal Research* 29 (2). 152-170, 1999.

602 Sliter W.: Laboratory Experiments on the Life Cycle and Ecological Controls of *Rosalina*
603 *globularis* d'Orbigny. *Journal of Eukaryotic Microbiology* Volume 12. Issue 2.
604 pages 210-215, 1965.

605 Tillmann U., Hesse K. and Colijn F.: Planktonic primary production in the German Wadden
606 Sea; *Journal of Plankton Research*. Volume 22. Issue 7. Pages 1253–1276, 2000.

607 Tsuchiya M., Toyofuko T., Uematsu K., Bruchert V., Collen J., Yamamoto H. and Kitazato
608 H.: Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of
609 *Virgulinella fragilis* (Foraminifera): *Journal of Eukaryotic Microbiology*. v. 62. p.
610 454–469, 2015.

611 Wukovits J., Enge A., Wanek W., Watzka M. and Heinz P.: Increased temperature causes
612 different carbon and nitrogen processing patterns in two common intertidal
613 foraminifera (*Ammonia tepida* and *Haynesina germanica*). *Biogeosciences* 14. 2815-
614 2829, 2017.

615 Wukovits J., Oberrauch M., Enge A. and Heinz P.; The distinct roles of two intertidal
616 foraminiferal species in phytodetrital carbon and nitrogen fluxes – results from
617 laboratory feeding experiments; *Biogeoscience*. 15. 6185-6198, 2018.