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Abstract. FLUXNET comprises globally-distributed eddy covariance-based estimates of carbon fluxes between 51 

the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are 52 

distributed unevenly across the world, upscaling the observations is necessary to obtain global-scale estimates of 53 

biosphere-atmosphere exchange. Based on cross-consistency checks with atmospheric inversions, sun-induced 54 

fluorescence (SIF) and dynamic global vegetation models (DGVM), we provide here a systematic assessment of 55 

the latest upscaling efforts for gross primary production (GPP) and net ecosystem exchange (NEE) of the 56 

FLUXCOM initiative, where different machine learning methods, forcing datasets, and sets of predictor 57 

variables were employed. 58 

Spatial patterns of mean GPP are consistent across FLUXCOM and DGVM ensembles (R
2
>0.94 at 1° spatial 59 

resolution) while the majority of DGVMs show, for 70% of the land surface, values outside the FLUXCOM 60 

range. Global mean GPP magnitudes for 2008-2010 from FLUXCOM members vary within 106 and 130 PgC yr
-

61 

1
 with the largest uncertainty in the tropics. Seasonal variations of independent SIF estimates agree better with 62 

FLUXCOM GPP (mean global pixel-wise R
2
 ~ 0.75) than with GPP from DGVMs (mean global pixel-wise R

2
 ~ 63 

0.6). Seasonal variations of FLUXCOM NEE show good consistency with atmospheric inversion-based net land 64 

carbon fluxes, particularly for temperate and boreal regions (R
2
>0.92). Interannual variability of global NEE in 65 

FLUXCOM is underestimated compared to inversions and DGVMs. The FLUXCOM version which uses also 66 

meteorological inputs shows a strong co-variation of interannual patterns with inversions (R
2
=0.87 for 2001-67 

2010). Mean regional NEE from FLUXCOM shows larger uptake than inversion and DGVM-based estimates, 68 

particularly in the tropics with discrepancies of up to several hundred gC m
2
 yr

-1
. These discrepancies can only 69 

partly be reconciled by carbon loss pathways that are implicit in inversions but not captured by the flux tower 70 

measurements such as carbon emissions from fires and water bodies. We hypothesize that a combination of 71 

systematic biases in the underlying eddy covariance data, in particular in tall tropical forests, and a lack of site-72 

history effects on NEE in FLUXCOM are likely responsible for the too strong tropical carbon sink estimated by 73 

FLUXCOM. Furthermore, as FLUXCOM does not account for CO2 fertilization effects carbon flux trends are 74 

not realistic. Overall, current FLUXCOM estimates of mean annual and seasonal cycles of GPP as well as 75 

seasonal NEE variations provide useful constraints of global carbon cycling, while interannual variability 76 

patterns from FLUXCOM are valuable but require cautious interpretation. Exploring the diversity of Earth 77 

Observation data and of machine learning concepts along with improved quality and quantity of flux tower 78 

measurements will facilitate further improvements of the FLUXCOM approach overall. 79 

1 Introduction 80 

Upscaling local eddy covariance (EC) measurements (Baldocchi et al., 2001) from tower footprint to global 81 

wall-to-wall maps uses globally-available predictor variables such as satellite remote sensing and meteorological 82 

data (Jung et al., 2011). This forcing data is first used to establish empirical models for fluxes of interest at site 83 

level, and then to estimate gridded fluxes by applying these models across all vegetated grid cells. Previous 84 

FLUXNET upscaling efforts using machine learning techniques (Beer et al., 2010; Jung et al., 2009; Jung et al., 85 

2011) yielded global products that present a data-driven ‘bottom-up’ perspective on carbon fluxes between the 86 

biosphere and the atmosphere. These ‘bottom-up’ products are complementary to process-based model 87 

simulations and ‘top-down’ atmospheric inversions. However, estimates of carbon fluxes are subject to 88 

uncertainty from choice of machine learning algorithm and predictor variables, forcing data, FLUXNET 89 
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measurements and incomplete representation of the different ecosystems therein. The FLUXCOM initiative 90 

(www.fluxcom.org) aims to improve our understanding of the multiple sources and facets of uncertainties in 91 

empirical upscaling and, ultimately, to provide an ensemble of machine learning-based global flux products to 92 

the scientific community. Within FLUXCOM an intercomparison was conducted for two complementary 93 

experimental setups of input drivers and resulting global gridded products. These setups systematically vary 94 

machine learning and flux partitioning methods as well as forcing datasets to separate measured net ecosystem 95 

exchange (NEE) into gross primary productivity (GPP) and Terrestrial Ecosystem Respiration (TER) (Jung et 96 

al., 2019; Tramontana et al., 2016). 97 

 98 

Evaluating the strengths and weaknesses of the FLUXCOM products and the approaches used therein is crucial 99 

to inform potential scientific uses, and to guide future methodological developments. An evaluation based on 100 

site-level cross-validation analysis (Tramontana et al., 2016) showed a general high consistency among machine 101 

learning algorithms, experimental setups and flux partitioning methods applied in FLUXCOM. However, the 102 

conclusions from site-level cross-validation may be limited by potential systematic measurement errors that are 103 

inherent in the underlying EC measurements (e.g. Aubinet et al., 2012), or the spatially biased distribution of 104 

FLUXNET sites (Papale et al., 2015). Therefore, cross-consistency checks of the FLUXCOM products with 105 

independent estimates are important to consider. But such checks are complex due to limitations of the 106 

independent approaches or the lack of comparability of similar but not identical variables. In this study, we 107 

contextualize FLUXCOM products in relation to independent state-of-the-art estimates of carbon cycling. The 108 

comparison strategy prioritises robust features of the independent datasets, and discusses residual uncertainties.  109 

 110 

The objectives of this paper are (1) to present a synthesis and evaluation of FLUXCOM ensembles for GPP and 111 

NEE against patterns of remotely sensed sun induced fluorescence (SIF) and atmospheric inversion results 112 

respectively, (2) to discuss limitations of FLUXCOM and synthesize lessons learned, and (3) to outline potential 113 

future paths of FLUXCOM development. Due to limitations of the SIF product with respect to interannual 114 

variability (Zhang et al., 2018), the evaluation of GPP against SIF is restricted to seasonal variations of 115 

photosynthesis. To reduce the impact of atmospheric transport-related uncertainties of inversion products, mean 116 

annual and seasonal variations of NEE are compared at regional scales while interannual variability is assessed 117 

at global scale. In addition, we contextualize our comparisons with FLUXCOM by providing comparisons with 118 

the previous Model Tree Ensemble (MTE) results of Jung et al., 2011 (Ju11) as well as an ensemble of process-119 

based Global Dynamic Vegetation Model (DGVM) simulations from the TRENDY DGVM Projects (Le Quéré 120 

et al., 2018; Sitch et al., 2015). Even though FLUXCOM also produced global products of TER, these are not 121 

shown here due to a lack of an independent observational benchmark. 122 

2 Data and methods 123 

2.1 FLUXCOM 124 

We used the cross-validated and trained machine learning techniques for the FLUXCOM carbon fluxes of 125 

Tramontana et al. (2016) and generated large ensembles (n = 120) of global gridded flux products for two 126 

different setups: remote sensing (RS) and remote sensing plus meteorological/climate forcing (RS+METEO) 127 

setups (Fig. 1). In the RS setup, fluxes are estimated exclusively from Moderate Resolution Imaging 128 

http://www.fluxcom.org/
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Spectroradiometer (MODIS) satellite data. In RS+METEO, fluxes are estimated from mean seasonal cycles of 129 

satellite data and daily meteorological information (see Table S1). For the rationale of these setups, we refer the 130 

interested reader to Tramontana et al., 2016 and Jung et al., 2019. For the RS setup, nine machine learning 131 

methods were used to generate gridded products at an 8-daily temporal and 0.0833° spatial resolution for the 132 

2001-2015 period. For the RS+METEO setup, three machine learning methods with five global climate forcing 133 

data sets (Table 1) yielded products with daily temporal and 0.5° spatial resolution and time periods depending 134 

on the meteorological data. The meteorological data included WATCH Forcing Data-ERA Interim (WFDEI; 135 

Weedon et al., 2014), Global Soil Wetness Project 3 forcing data (GSWP3, Kim, 2017), CRU-JRA version 1.1 136 

(Harris, 2019), ERA5 ((C3S), 2017), and a combination of observation-based radiation from CERES (Doelling 137 

et al., 2013) and precipitation from GPCP (Huffman et al., 2001) (CERES-GPCP) resampled to 0.5°. The wide 138 

range of data sources from reanalysis to station measurements to satellite observation is intentional and is meant 139 

to bracket potential uncertainties in meteorological forcing.  140 

 141 

For GPP and TER, we additionally considered uncertainty from flux partitioning methods by propagating two 142 

different variants, one based on night-time NEE data (Reichstein et al., 2005) and one on daytime data (Lasslop 143 

et al., 2010). Within the RS and RS+METEO setups, we followed a full factorial design of machine learning 144 

methods (9 for RS, 3 for RS+METEO), flux partitioning variants (2 for GPP and TER), and climate forcing 145 

input products (5, only for RS+METEO). Descriptions of machine learning methods, training, and validation 146 

setup are available in Tramontana et al., 2016. The methodology of generating the global products is documented 147 

in detail in the overview paper on global energy fluxes from FLUXCOM (Jung et al., 2019).  148 

 149 

To allow for a better reuse of the large archive, we generated ensemble products of monthly values where 150 

individual ensemble members were first aggregated to monthly means (Fig. 1). The ensemble products 151 

encompass estimates of different machine learning estimates, flux partitioning variants for GPP and TER, and 152 

different climate input data for RS+METEO. For the RS+METEO setup, this was also done separately for each 153 

climate forcing data to allow modellers to compare their simulations with the FLUXCOM ensemble product 154 

driven by the same forcing. The ensemble products (hereafter referred as FLUXCOM-RS and FLUXCOM-155 

RS+METEO) were generated as the median over ensemble members for each grid cell and month. The 156 

FLUXCOM-RS products are based on 9 ensemble members for NEE and on 18 for GPP and TER. The 157 

FLUXCOM-RS+METEO is based on 15 ensemble members for NEE and on 30 for GPP and TER.  158 

2.2 Process-model simulations (TRENDY) 159 

Dynamic Global Vegetation Models (DGVMs) represent an independent, process-based and bottom-up approach 160 

to represent the terrestrial carbon cycle and its evolution with changing environmental conditions. Here we use 161 

data from an ensemble of 16 DGVMs that were forced with the same climate (CRU-JRA v1.1), global 162 

atmospheric CO2 concentration, and land-use and land cover change data (S3 simulation) over the period 1700 – 163 

2017, following a common protocol (TRENDY-v7) (Le Quéré et al., 2018; Sitch et al., 2015). This ensemble 164 

provides fluxes at a monthly temporal resolution harmonized to a common 1° spatial resolution with simulations 165 

from: CABLE-POP, CLASS-CTEM, CLM5.0, DLEM, ISAM, JSBACH, JULES, LPJ-GUESS, LPJ, OCN, 166 

ORCHIDEE-CNP, ORCHIDEE-Trunk, SDGVM, SURFEX and VISIT. TER was calculated as the sum of 167 

heterotrophic and autotrophic respiration; NEE as heterotrophic respiration minus net primary productivity. NBP 168 
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from models incorporates additional fluxes as well: fire emissions (10 DGVMs), land use change (all DGVMs), 169 

harvest (14 DGVMs), grazing (6 DGVMs), and any other carbon flux in/out of the ecosystem (e.g. erosion, 1 170 

DGVM, VISIT). LPJ-GUESS was excluded from comparisons of NEE or NBP since monthly output on 171 

heterotrophic respiration was not available. 172 

2.3 Independent observation-based products 173 

For the comparison with GPP, we used gridded monthly SIF GOME-2 (Köhler et al., 2015) retrievals from the 174 

far-red spectral range, and for the evaluation of NEE atmospheric inversion-based estimates from Jena 175 

CarboScope (Rödenbeck et al., 2018), CAMSv17r1 (Chevallier et al., 2005; Chevallier et al., 2019), and 176 

CarbonTracker-EU (CTE2018, Peters et al., 2010; van der Laan-Luijkx et al., 2017). We further include 177 

comparisons to the previous GPP and NEE upscaling products of Jung et al., 2011 (hereafter referred as Ju11). 178 

2.4 Comparison approach 179 

2.4.1 General considerations 180 

All products were harmonized to a common 1° spatial resolution with monthly temporal resolution as a basis of 181 

all comparisons shown here. Cross-consistency checks for mean annual and mean seasonal variations of GPP 182 

and NEE are based on the three year period 2008-2010. The time period is constrained by the availability of 183 

GOME-2 data starting in 2008 and the corresponding end year of the RS+METEO ensemble with the GSWP3 184 

forcing ending in 2010. The NEE interannual variability was initially assessed for 2001-2010 which is the 185 

common period of the RS and RS+METEO ensembles while comparisons for longer-time periods were also 186 

facilitated by using meteorological forcing specific RS+METEO products that cover longer time periods (Table 187 

1).  188 

 189 

FLUXCOM-RS and FLUXCOM-RS+METEO products are evaluated mostly separately. We report estimates for 190 

the respective ensemble product (see section 2.1): the spread over individual ensemble members for uncertainty 191 

and the mean of the ensemble members; the latter can be different from the ensemble product estimate (see 192 

Sect.2.1). Occasionally, we use the range of estimates from the union of RS and RS+METEO ensemble 193 

members to show the full FLUXCOM uncertainty range across the two setups (labelled as “FLUXCOM” only). 194 

For the comparison of regional or global flux values, we used flux densities rather than integrated fluxes due to 195 

inconsistencies in land-sea masks in different products. A common mask of valid data from the intersection of 196 

FLUXCOM, TRENDY, and Ju11 was applied to all data streams, and a land area-weighted regional or global 197 

mean calculated. Globally integrated GPP was calculated by scaling the global mean GPP density flux with the 198 

global non-barren land area (122.4 Mio km
2
) derived from the MODIS land cover product (Friedl et al., 2010). 199 

All reported R
2
 values are squared Pearson’s correlation coefficients but negative correlation signs are 200 

maintained through by multiplying R
2
 values by -1. We aimed at structuring the cross-consistency checks with 201 

SIF and inversion data to minimize confounding factors and uncertainties of the independent data that may have 202 

affected the conclusions otherwise. 203 
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2.4.2 Rationale of GPP-SIF comparison 204 

As the GPP-SIF relationship is approximately linear over seasonal time scales (Zhang et al., 2016), the 205 

comparison was based on monthly values. To minimize confounding effects of canopy structure (e.g. 206 

Migliavacca et al., 2017), the comparisons were done over time when canopy structure changes relative to GPP 207 

changes are expected to be much weaker than spatial changes. The unstable orbit of the MetOp-A satellite that 208 

carries one of the GOME-2 instruments and sensor degradation effects do not permit conclusive comparisons 209 

with respect to interannual variability (Zhang et al., 2018). Therefore, we restricted the analysis to mean seasonal 210 

cycles and show 1° maps of the R
2
 between mean monthly GPP and SIF.  211 

 212 

There are remaining caveats and uncertainties associated with the GPP-SIF relationship (see e.g. Porcar-Castell 213 

et al., 2014 for an overview). Nevertheless, various studies have shown that SIF is currently the best proxy for 214 

photosynthesis that can be remotely-sensed directly, in particular at seasonal time scale and over regions with 215 

strong seasonal cycles. This is supported by strong empirical relationships between GPP and SIF across different 216 

satellites and retrieval methods as well as from EC data, crop inventories, and data-driven GPP methods 217 

(Frankenberg et al., 2011; Guanter et al., 2014; Joiner et al., 2018; Sun et al., 2017; Walther et al., 2016). This 218 

gives us confidence in using SIF as an independent data stream for photosynthesis to evaluate FLUXCOM 219 

products. 220 

2.4.3 Rationale of comparing net carbon fluxes with atmospheric inversions 221 

We compared atmospheric inversion-based net carbon release with FLUXCOM mean NEE at the seasonal scale 222 

over the established 11 TRANSCOM regions (see Fig.S1 for a map) as atmospheric inversions are better 223 

constrained over large spatial scales (Peylin et al., 2013). The comparison of interannual variability was 224 

conducted at global scale due to its smaller signal and larger transport uncertainties compared to the seasonal 225 

cycle. Due to various inversion uncertainties related to choices of atmospheric transport model, atmospheric 226 

station CO2 data, fossil fuel information, prior constraints, driving wind fields, and inversion strategy, we used 227 

three different products: Jena CarboScope (s99oc_v4.3, Rödenbeck et al., 2018), CAMSv17r1 (Chevallier et al., 228 

2005; Chevallier et al., 2019), and CarbonTracker-EU (CTE2018, Peters et al., 2010; van der Laan-Luijkx et al., 229 

2017). To evaluate global NEE interannual variability patterns for periods since the late 1950s until present, we 230 

further use two long-term atmospheric inversions (CarboScope s57Xoc_v4.3, sEXTocNEET_v4.3, Rödenbeck et 231 

al., 2018) and annual CO2 growth rate from the Global Carbon Budget (Le Quéré et al., 2018).  232 

 233 

It is important to note that FLUXCOM NEE is semantically different from inversion-based net carbon exchange 234 

between land and atmosphere. The former is solely the difference between gross fluxes (i.e., NEE = TER - GPP) 235 

while the latter integrates all vertical movement of CO2 including, for example, fire emissions, evasion from 236 

inland waters, respired harvests, or volatile organic compounds (Kirschbaum et al., 2019; Zscheischler et al., 237 

2017). Simulations from TRENDY models report both, NEE and net biome productivity (NBP) which is 238 

conceptually close but not identical to what atmospheric inversions provide. To assess whether conclusions are 239 

affected by the different NEE vs NBP definitions we a) provide NEE and NBP estimates from TRENDY 240 

models, b) we include comparisons where inversions were corrected for fire emissions (from CarbonTracker-241 

EU) to yield estimates closer to NEE, and c) discuss whether discrepancies with FLUXCOM can originate from 242 

the omission of secondary carbon loss pathways given in the literature. 243 
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3 Results and discussion 244 

3.1 Gross primary productivity 245 

3.1.1 Mean annual gross primary productivity 246 

Overall, our results suggest a high degree of cross-product (and, for FLUXCOM, also within-product) 247 

consistency of global mean GPP patterns (Fig. 2). In fact, global patterns of mean GPP are consistent across both 248 

FLUXCOM ensembles (R
2
=0.97) as well as for Ju11 and TRENDY ensemble mean (R

2
>0.94), despite sizeable 249 

regional differences. The slope of the pair-wise 1:1 regressions among the different mean GPP data sets varies 250 

within ~10%. FLUXCOM-RS shows about 10-20% lower GPP than FLUXCOM-RS+METEO in the highly 251 

productive tropics and some subtropical regions. Both FLUXCOM setups estimate larger GPP than Ju11 and 252 

TRENDY in some semi-arid regions and about 5-15% lower GPP in some extratropical areas. Despite a sizeable 253 

total range of mean GPP from all 48 FLUXCOM members, the majority of TRENDY models (at least 9 out of 254 

16) fall outside the FLUXCOM range for about 70% of the land surface (Fig. 3).  255 

 256 

The mean global GPP of FLUXCOM-RS (111 PgC yr
-1

) is about 10% lower than RS+METEO (120 PgC yr
-1

, 257 

Fig. 4), which is largely driven by differences in the tropics (Fig. 2). The cross-validation analysis indicated an 258 

underestimation of FLUXCOM-RS GPP in the tropics (Tramontana et al., 2016), which was confirmed by a grid 259 

cell-to-site data comparison for the FLUXNET 2015 data (which were not used for machine learning training 260 

here) (Joiner et al., 2018). The reasons for the on-average lower GPP of RS compared to RS+METEO require 261 

further investigation. It is unlikely that the smaller RS GPP values are because this setup is exclusively based on 262 

remote sensing, as global latent heat from RS was larger than Ju11 (Jung et al., 2019). It seems to be rather 263 

related to the specifically different predictor sets between RS and RS+METEO. This indicates that future 264 

FLUXCOM efforts should expand the ensemble with respect to predictor set diversity to better account for this 265 

source of uncertainty in upscaling. Focussing on FLUXCOM-RS+METEO, its ensemble spread (108-130 PgC 266 

yr
-1

) is much smaller than the TRENDY-based global GPPs (83-172 PgC yr
-1

), and is primarily due to 267 

differences among machine learning methods rather than meteorological forcing data (Fig.S2). 268 

 269 

Our results imply that the present FLUXNET upscaling approach does not agree with larger GPP values of 150-270 

175 PgC yr
-1

 derived from an isotope-based study (Welp et al., 2011). It is possible that the FLUXNET upscaling 271 

approach underestimates GPP of highly managed and fertilized crops (Guanter et al., 2014) but their effects on 272 

global GPP biases seem small (Joiner et al., 2018). At FLUXNET sites night-time CO2 advection and storage 273 

could cause underestimation of night-time CO2 fluxes (Aubinet et al., 2012; McHugh et al., 2017; van Gorsel et 274 

al., 2009) and thus underestimate GPP using the night-time NEE flux partitioning method. On the contrary, it has 275 

been suggested that FLUXNET GPP estimated from the night-time partitioning method (Reichstein et al., 2005) 276 

is overestimated as it ignores the effects of light inhibition of leaf respiration (Keenan et al., 2019; Wehr et al., 277 

2016) by on average 7% across FLUXNET sites (Keenan et al., 2019). But it should be noted that this value may 278 

not be globally representative due to sizeable variations between ecosystems and with leaf area. Further, we only 279 

find a small difference of mean global GPP of <2 PgC for day-time (Lasslop et al., 2010) and night-time 280 

(Reichstein et al., 2005) NEE partitioning. This suggests that neither CO2 advection nor the light inhibition of 281 

leaf respiration appear to generate sizeable biases of global GPP in FLUXCOM—a tendency likely encouraged 282 

by the relatively strict quality control on the EC fluxes data (Tramontana et al., 2016). Furthermore, a 283 
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comparison of EC-based GPP with biometric GPP estimates across 18 globally distributed sites showed good 284 

agreement and no significant bias (Campioli et al., 2016). A recent study using Carbonyl Sulfide (COS)-based 285 

partitioning for four contrasting European sites also showed good agreement with standard EC-based GPP where 286 

systematic differences for mean GPP were < 5% (Spielmann et al., 2019). Therefore, we currently have no 287 

strong indication that systematic biases of FLUXNET GPP propagate to global FLUXCOM GPP. Nevertheless, 288 

we need to acknowledge that global GPP is largely driven by the productivity in the tropics where flux towers 289 

are scarce and may be particularly uncertain due to challenging logistic and micrometeorological conditions (Fu 290 

et al., 2018). 291 

 292 

Various remote sensing-based light use efficiency approaches, calibrated with flux tower data, yielded global 293 

GPP estimates of 109 (Zhao et al., 2005), 111±21 (Yuan et al., 2010), 108-119 (Yu et al., 2018),122±25 (Jiang 294 

and Ryu, 2016), 132±22 (Chen et al., 2012), and 140 PgC yr
-1

 (Joiner et al., 2018). A simple calibration of only 295 

near-infrared reflectance (NIRv) to EC data suggested a global GPP of 131-163 PgC yr
-1

 (Badgley et al., 2019). 296 

Studies that assimilated atmospheric CO2 concentration data into process model simulations yielded slightly 297 

higher values of 148 (Anav et al., 2015) and 146±19 PgC yr
-1

 (Koffi et al., 2012) with the latter study unable to 298 

distinguish their best estimate from a global GPP of 117 PgC yr
-1

 because the atmospheric CO2 alone cannot 299 

constrain magnitudes of gross fluxes well. Assimilating SIF into process-models yielded 137±6 (Norton et al., 300 

2019) and 166±10 PgC yr
-1

 (MacBean et al., 2018). More recent isotope studies derived global GPP as 120±30 301 

PgC yr
-1

 (Liang et al., 2017), and global NPP of ~60 PgC yr
-1

 (Hellevang and Aagaard, 2015) which implies 302 

global GPP of 109-150 PgC yr
-1

 considering a range of NPP:GPP ratios of 0.4-0.55. In conclusion, global 303 

FLUXCOM GPP estimates are within the currently most plausible 110-150 PgC yr
-1

 range. 304 

3.1.2 Seasonal cycles of gross primary productivity 305 

Cross-consistency analysis of mean monthly GPP seasonal cycles from FLUXCOM with SIF from GOME-2 306 

(Köhler et al., 2015) shows widespread and strong agreement for both FLUXCOM setups (Fig. 5), except for the 307 

inner tropics where seasonality is weak and SIF retrievals might be affected by the South Atlantic Magnetic 308 

Anomaly (Köhler et al., 2015). FLUXCOM-RS tends to show better agreement with SIF than FLUXCOM-309 

RS+METEO in agricultural regions of Southeast Asia, maybe because only the mean seasonal cycles of 310 

remotely sensed land surface properties were used in the latter. Conversely, FLUXCOM RS+METEO shows on 311 

average better consistency with SIF in some semi-arid regions, e.g., Australia. However, maps of the maximum 312 

R
2
 with SIF for RS and RS+METEO respectively have similar patterns with good agreement of both products in 313 

Australia, and even in the tropics (Fig.S4). This suggests that the inclusion of some machine learning methods 314 

somewhat negatively impacts the ensemble, especially for RS which shows larger spread (see Fig.S4 for mean 315 

R
2
 of the RS ensemble members). With SIF, both FLUXCOM setups show similar consistency as Ju11. The 316 

consistency of FLUXCOM with SIF is much better than with TRENDY models, in particular in tropical and 317 

subtropical regions. This implies that, despite sporadic spatial coverage of FLUXNET sites and previously 318 

identified incomplete capturing of water stress (Bodesheim et al., 2018; Tramontana et al., 2016), FLUXCOM 319 

still has a large potential to inform and constrain process-based model simulations of seasonal variations of 320 

photosynthesis in moisture-limited regions.  321 
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3.2 Net ecosystem exchange 322 

3.2.1 Mean annual net ecosystem exchange 323 

In most TRANSCOM regions, FLUXCOM shows a stronger mean annual net carbon uptake than indicated by 324 

atmospheric inversions with a particularly large systematic difference in the tropics (Fig. 6). This pattern of a 325 

large tropical carbon sink in FLUXCOM is qualitatively consistent among the different FLUXCOM setups and 326 

ensemble members, as well as with previous estimates from Ju11. To date, this is a systematic feature of the 327 

current data-driven approach of upscaling EC measurements with machine learning. 328 

 329 

Multiple independent approaches indeed imply a sizeable carbon sink in intact tropical forests (Arneth et al., 330 

2017; Gaubert et al., 2019; Pan et al., 2011), which appears to be largely or entirely offset by carbon loss 331 

pathways in the tropical region such as fire, land-use change emissions, and evasion from inland waters. These 332 

CO2 sources are not sampled by EC measurements from FLUXNET, and are, therefore, not represented in 333 

FLUXCOM. However, the missing fluxes only resolve up to roughly half of the gap (Zscheischler et al., 2017). 334 

The comparatively small differences between net carbon release estimates by inversions and those where fire 335 

emissions were corrected for, as well as the small differences between NEE and –NBP from TRENDY further 336 

suggest that these secondary carbon loss fluxes do not drive the large discrepancy between FLUXCOM and 337 

inversion-based mean net carbon exchange. Nevertheless, substantial uncertainty remains in the magnitude of 338 

these secondary carbon fluxes and their incomplete accounting in TRENDY models and inversions (Kirschbaum 339 

et al., 2019; Zscheischler et al., 2017). 340 

 341 

Issues with the current FLUXCOM approach certainly contribute, likely dominate, the discrepancy between 342 

atmospheric top-down and FLUXCOM mean NEE. Potential factors that could contribute to this are (1) a 343 

FLUXNET sampling bias (see also Sect. 4.1.2) towards ecosystems with a large carbon sink, particularly in the 344 

tropics (Saleska et al., 2003); combined with (2) missing predictor variables related to disturbance and site-345 

history (Amiro et al., 2010; Besnard et al., 2018, see also Sect. 4.2.1), or (3) biases of eddy covariance NEE 346 

measurements, e.g. due to night-time advection of CO2 (Hayek et al., 2018; van Gorsel et al., 2008), especially 347 

under tall tropical forest canopies (Hutyra et al., 2008, Fu et al., 2018). Fu et al. (2018) studied 63 site-years of 348 

EC data from 13 tropical forest sites and report a mean between-site NEE of -567 gC m
-2

 yr
-1

 showing that the 349 

large tropical sink in FLUXCOM is inherited from FLUXNET data. The authors pointed out that for about half 350 

of the sites where measurements of CO2 concentration along the vertical profile were available and the storage 351 

was considered in the NEE processing, the carbon sink was less than half (-340 gC m
-2

 yr
-1

) compared to those 352 

without storage correction (-832 gC m
-2

 yr
-1

). However, the small sample size together with the large between-353 

site standard deviation of mean NEE (459 gC m
-2

 yr
-1

) not only makes robust conclusions difficult, but also 354 

indicates potentially large diversity between tropical ecosystems. Clearly, more tropical EC sites are needed 355 

along with a better accounting of systematic errors in EC-based NEE measurements to resolve this issue. 356 

3.2.2 Seasonal cycles of net ecosystem exchange 357 

We find a good consistency between FLUXCOM and inversions with respect to amplitude and shape of the 358 

seasonal cycles of NEE in many TRANSCOM regions, especially over the North American Boreal, North 359 

American Temperate, and Europe regions with R
2
 values > 0.92 (Fig. 7). As with mean annual NEE, the 360 
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seasonal cycle mismatch relative to inversions may be linked to carbon loss fluxes not accounted for in 361 

FLUXCOM, such as fire emissions that are seasonally relevant in tropical and subtropical regions. However, 362 

adjusting inversion-based NBP towards NEE by correcting for fire emissions does not improve the 363 

correspondence with FLUXCOM in tropical and subtropical regions (Fig.S5). In tropical regions, the weak 364 

seasonality paired with comparatively large spread among inversions does not allow for robust conclusions. 365 

Overall, the seasonal variations of FLUXCOM NEE show potential to constrain the large uncertainty in 366 

TRENDY models, and potentially even atmospheric inversions at the regional scale, especially considering that 367 

their uncertainty range across only three products is still significant. 368 

3.2.3 Interannual variability of net ecosystem exchange 369 

Spatial patterns of the magnitude of the interannual variability (IAV) of land carbon sink for the period 2001-370 

2010 share some common features among atmospheric inversions, FLUXCOM-RS, FLUXCOM-RS+METEO 371 

and TRENDY. For example, all products identify the hotspots in southeast Asia, southern North America, and 372 

also in the Siberian tundra (Fig. 8). Overall, there are still differences in the spatial patterns of IAV magnitude 373 

among and within different data-streams.  374 

 375 

All EC data-driven methods, in particular FLUXCOM-RS+METEO, underestimate magnitude of IAV compared 376 

to inversions (Fig. 8). The reasons for the underestimation of IAV magnitude by FLUXCOM are not fully clear. 377 

Within FLUXCOM, the smaller IAV magnitude of RS+METEO NEE compared to that of RS is linked to the 378 

use of only mean seasonal cycles of RS-based land surface properties in RS+METEO setup. The IAV of carbon 379 

loss fluxes that are not captured by FLUXCOM, such as through fire, are currently thought to be comparatively 380 

small at the global scale and appear minor here (see Fig.S6). Machine learning methods already underestimate 381 

the IAV at the site level (Marcolla et al., 2017; Tramontana et al., 2016). The low bias in FLUXCOM IAV is a 382 

direct consequence of the comparatively small explained variance for NEE anomalies. Thus, improving the 383 

predictability of NEE IAV at site level has potential to also correct the magnitude of globally integrated IAV 384 

variance. 385 

 386 

Despite the tendency of FLUXCOM products to underestimate IAV magnitude, FLUXCOM-RS+METEO 387 

reproduces year-to-year variations of globally integrated annual land carbon exchange anomalies derived from 388 

atmospheric inversions for 2001-2010 (R
2
=0.87). It shows better consistency than TRENDY with one of the 389 

long-term inversions (Fig.S7). Further examination of this ensemble reveals that the choice of machine learning 390 

method, rather than meteorological forcing data, has a larger influence on IAV of global NEE (Fig.S8). Here, the 391 

Random Forests method performed less well compared to the other two methods. Interestingly, training Random 392 

Forests with an almost identical predictor set but at half-hourly temporal scale rather than at daily scale 393 

(Bodesheim et al., 2018) substantially improved the R
2
 (from 0.31 to 0.60, S8). This indicates that machine 394 

learning methods can benefit from higher temporal variability provided by millions of high-frequency NEE 395 

measurements, especially for signals such as IAV that are small and difficult to extract. In addition, underlying 396 

functional relationships can be better extracted from high-frequency data as the predictor space is better covered, 397 

allowing for improved discrimination of drivers that have stronger covariation on longer time-scales. 398 

 399 
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To better understand the qualitatively different global NEE IAV patterns between RS and RS+METEO setups, 400 

we infer which NEE IAV signals are consistent or lacking among FLUXCOM setups and TRENDY models by 401 

assessing correlation patterns (Fig. 9). We find the strongest consistencies of NEE IAV between FLUXCOM-RS 402 

and FLUXCOM-RS+METEO in many semi-arid regions, and almost no consistency otherwise. This suggests 403 

that the main discrepancies of globally integrated NEE IAV between FLUXCOM-RS and FLUXCOM-404 

RS+METEO are likely not due to differences in their capabilities of reflecting water stress effects. It has been 405 

shown that despite the local dominance, water-related NEE anomalies largely cancel spatially in RS+METEO 406 

and TRENDY resulting in the dominance of temperature-related NEE anomalies in globally integrated land sink 407 

IAV (Jung et al., 2017, but see Humphrey et al., 2018 for a different perspective). Studies on effects of water 408 

availability on spatial GPP anomalies using the RS data yielded highly plausible patterns that were consistent 409 

with independent data (Flach et al., 2018; Orth et al., 2019; Walther et al., 2019). Also the comparison of 410 

FLUXCOM-RS GPP monthly anomalies with the independent FLUXNET2015 data set showed unexpected 411 

large consistency when anomalies were scaled by the site-specific observational range (Joiner et al., 2018). 412 

When delineating the regions with larger agreement between RS+METEO and TRENDY than that between RS 413 

and TRENDY, we can infer that FLUXCOM-RS seems to miss important NEE anomaly features in the tropics. 414 

This is likely due to (1) a combination of sparse satellite data availability, cloud contamination, and geometrical 415 

illumination effects in the tropics or (2) that the processes governing NEE IAV in the tropics cannot be captured 416 

by satellite-based predictors alone in RS (even under ideal observational conditions) but require additional 417 

meteorological variables such as temperature that is included in the RS+METEO setup. Some support for the 418 

latter point comes from Byrne et al., 2019 who found strong correlations of anomalies from GOSAT inversions 419 

with NEE from RS+METEO and soil temperatures in the tropics but not with SIF and a drought indicator, 420 

suggesting that temperature impacts respiration more than photosynthesis in the tropics. 421 

 422 

Overall there are large discrepancies among FLUXCOM and TRENDY as well as amongst TRENDY models 423 

with respect to local NEE IAV. This reflects our limited understanding and capabilities to model year-to-year 424 

variations of local ecosystem carbon exchange. Both data-driven and process-based approaches also showed 425 

poor performance with respect to NEE IAV in FLUXNET sites (Tramontana et al., 2016, Morales et al., 2005). 426 

However, both approaches yield good correspondence of globally integrated NEE with atmospherically-derived 427 

interannual land sink variations. This correspondence is due to two reasons: first, the spatial compensation of 428 

locally important processes that are not well captured by the models; and second, models capture better the 429 

temperature-related signals that gain relevance at larger spatial scales (Jung et al., 2017). Whether the large 430 

uncertainty of modelling NEE IAV at ecosystem level is due to misspecified parameterizations, missing 431 

predictors, inaccurate forcing data and/or absent processes remains a research priority. Our understanding and 432 

ability to model NEE IAV bottom-up would greatly benefit from atmospheric inversions that could localize NEE 433 

robustly. Exploiting the massive space-based column CO2 data in the future will hopefully facilitate the 434 

improvements on this aspect. Despite large uncertainties and apparent knowledge gaps in NEE IAV from both an 435 

observational and modelling perspective, there are promising indications of improved capability to track IAV 436 

patterns with FLUXCOM such as the good correspondence of RS+METEO with inversions at global scale, and 437 

independent verifications of GPP IAV of RS at least outside the wet tropics (Flach et al., 2018; Joiner et al., 438 

2018; Orth et al., 2019; Walther et al., 2019). 439 
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4 Methodological limitations and potential ways forward 440 

Machine learning methods can learn arbitrarily complex functions and provide a nearly perfect model of a 441 

phenomenon if they are fed with the right data and trained thoroughly. Thus the quality, quantity, and 442 

completeness of the input data determine the quality of the output. In the following, we discuss the relevance of 443 

limitations associated with data from the FLUXNET network, and of the limited capabilities of representing all 444 

relevant factors by observable predictor variables. We also outline potential strategies for improvements, both 445 

overall and with respect to machine learning approaches specifically. The continued and rapid development of 446 

machine learning notwithstanding, we believe that the FLUXCOM approach is at present more limited by 447 

available “information” rather than by available machine learning methods. 448 

4.1 FLUXNET observations 449 

4.1.1 Potential observation errors 450 

The comparatively large random errors of high-frequency EC measurements diminish quickly when aggregated 451 

to daily or 8-daily averages used here. Furthermore, training on half-hourly EC data (Bodesheim et al., 2018) 452 

helps machine learning methods extract patterns from noisy data. In general, poor signal-to-noise ratios can be 453 

counteracted by larger sample size. More problematic than random errors are potential systematic errors of EC 454 

measurements since those would propagate to the derived global carbon flux products. Even though there have 455 

been large efforts by the community to characterize and to correct for systematic errors, such as those due to low 456 

turbulence and CO2 advection (e.g. Aubinet et al., 2005; Aubinet et al., 2012; Papale et al., 2006), uncertainties 457 

remain on the relevance and magnitude of those errors in the processed FLUXNET data. Differences due to 458 

instrumentation and maintenance pose another potential source of uncertainty. Additionally, the energy balance 459 

closure gap at FLUXNET sites is still not resolved (Stoy et al., 2013), while it remains unclear to what extent 460 

this is relevant for CO2 fluxes (Leuning et al., 2012). Systematic errors in GPP and TER derived from the flux 461 

partitioning method of NEE based on night-time data (Reichstein et al., 2005) may arise due to the neglected 462 

effect of inhibited photorespiration during daytime (Keenan et al., 2019; Wehr et al., 2016). Nevertheless, all 463 

these issues together seem to be relatively small compared to the predominant patterns of variability in EC data, 464 

e.g., seasonal variations, that are very consistent across FLUXCOM and independent observation-based data 465 

streams shown here. The relatively strict quality controls on the flux training data (Tramontana et al., 2016) may 466 

have been instrumental here. The trade-off between data quality and training data volume was not explicitly 467 

studied in FLUXCOM, and related experimental setups would be desirable to gauge the robustness of the global 468 

products shown here. Even small systematic errors in EC data could degrade important signals such as 469 

interannual variability, trends, annual sums of NEE, or subtle differences between sites related to functional 470 

properties (e.g., radiation use efficiency). Systematic errors that would be prevalent across the network would 471 

result in systematic biases of derived global fluxes. For global GPP and energy fluxes (Jung et al., 2019), the 472 

values obtained from FLUXCOM are generally consistent with current knowledge but our ability to 473 

independently quantify such fluxes is also limited. 474 

4.1.2 Potential representation issues 475 

Ideally, a measurement network samples all relevant gradients of the driving factors and magnitudes of the 476 

predicted quantities. There are several potential issues with the current sampling by FLUXNET sites. With 477 
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respect to relevance for net carbon exchange, there are carbon loss pathways that FLUXNET does not capture 478 

such as fire emissions, CO2 evasion from inland waters, and lateral exports due to harvest or erosion that are 479 

respired elsewhere (Kirschbaum et al., 2019). The effects of strongly enhanced respiration in the years after large 480 

disturbances (Amiro et al., 2010) are challenging to capture due to stochastic and destructive nature of 481 

disturbances. 482 

 483 

To meet the assumptions of EC method, FLUXNET stations are confined to reasonably flat terrain. Topographic 484 

effects on ecosystem fluxes are primarily due to their influence on environmental drivers, i.e., the predictor 485 

variables. Thus, the extrapolation to hillslopes should be reasonable if the topographic effects are accounted for 486 

in the gridded predictor variables. This might be challenging especially for remote sensing products due to 487 

necessary but complicated corrections of illumination conditions. The uncertainties of these topographic factors 488 

might become particularly relevant and should be studied for prediction of fluxes at a higher spatial resolution. 489 

For the current FLUXCOM products with rather coarse spatial resolution, we expect that topographic effects are 490 

reflected in the predictor variables and the remaining subpixel heterogeneity largely cancel out. 491 

 492 

Perhaps the most fundamental and frequent critique of the FLUXNET upscaling approach is related to the 493 

spatially clumped geographic distribution of EC sites in North America, Europe, Japan, and now Australia with 494 

only sparsely distributed towers elsewhere (Schimel et al., 2015). However, what matters eventually for machine 495 

learning methods is how well the predictor space, rather than geographic space, is sampled. To assess this, we 496 

developed an extrapolation index (EI) that estimates the expected additional relative error of a flux prediction 497 

due to a large distance to the nearest training data in the predictor space (S2). We applied this method for GPP 498 

and FLUXCOM-RS training data as an example, and found that the conditions that are least well represented by 499 

FLUXNET are associated to primarily extremely cold and dry regions (Figure 10). Surprisingly, the humid 500 

tropics are well represented in the predictor space suggesting that the environmental conditions represented by 501 

the predictor set are well sampled by the data from FLUXNET sites. The extremely cold and dry conditions that 502 

seem to constitute the biggest extrapolation issues are typically associated with small GPP fluxes and thus also 503 

small prediction errors. To account for that, we spatialized the expected GPP error of the RS ensemble (Figure 504 

10, see S2 for details), which largely scales with GPP magnitude but also shows patterns of larger expected 505 

errors in semi-arid regions than that expected from flux magnitude alone. The multiplication of the expected 506 

GPP error with the extrapolation index provides the extrapolation severity index (ESI) that shows where poor 507 

FLUXNET sampling likely increases the absolute prediction error strongly. According to these results, sub-508 

tropical semi-arid regions, in particular India, appear as most affected, suggesting that GPP upscaling from 509 

FLUXNET would benefit most strongly from improved data availability for towers representing these 510 

conditions. Despite these limitations of data, we found excellent consistency of FLUXCOM GPP seasonal cycles 511 

with SIF over these regions, which was in fact much better than the consistency between TRENDY models and 512 

SIF. This suggests that while more towers in semi-arid regions will help reduce uncertainty in future upscaling 513 

efforts, FLUXCOM can already provide useful information for constraining the models in these regions. It also 514 

shows that the bias in geographic representation of FLUXNET sites is not as critical as anticipated due to the 515 

flexibility and adaptiveness of machine learning methods. The sampled environmental conditions (predictor 516 

space) should cover the conditions of the global application domain rather than being representative of it. The 517 
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larger issue of the FLUXNET representation bias is associated with drawing conclusions from the site-level 518 

cross-validation because the evaluation metrics are easily biased towards certain regions and ecosystems. 519 

 520 

The methodology used here to assess the extrapolation problem quantitatively has several limitations. For 521 

example, potential differences in EC data quality were not accounted for. Perhaps, the largest but unavoidable 522 

limitation is the reliance on the predictor set and the assumption that it captures all relevant gradients. In a sense, 523 

the methodology can only uncover “known unknowns”. If an important predictor is missing, the method would, 524 

of course, not see any extrapolation penalty with respect to the missing factor. Somewhat ironically, we may 525 

need more towers in the first place to identify further relevant predictors in an objective way to, say, better 526 

capture the diversity in the tropics (Fu et al., 2018) or in agricultural systems (Guanter et al., 2014) where we 527 

anticipate that the current sampling is limiting the FLUXCOM approach. 528 

4.2 Driving factors and predictors 529 

Assuming infinite sample size, perfect quality and coverage, the success of machine learning methods depends 530 

entirely on the completeness of the predictor set for the target variable, given an adequate training. The predictor 531 

set for FLUXNET upscaling is practically constrained by 1) the availability of consistent observations at site 532 

level across all sites, and for most of their temporal coverage at a spatial resolution sufficiently close to the flux 533 

tower footprint; and 2) the availability of corresponding global grids at an adequate spatial and temporal 534 

resolution and temporal coverage. This explains the predictor space of remotely sensed land products from 535 

MODIS along with tower-measured meteorology chosen in FLUXCOM. While the general success of the 536 

FLUXCOM approach suggests that the predictor sets contain sufficient information for predicting the variability 537 

of carbon fluxes, it is also obvious that some factors are not well accounted for. 538 

4.2.1 Site-history  539 

It has been argued previously (Besnard et al., 2018; Jung et al., 2011; Tramontana et al., 2016) that the current 540 

limitations of unrealistic mean NEE patterns from FLUXNET upscaling is also due to missing predictor 541 

variables that describe site history effects such as forest age or time since disturbance. These factors have been 542 

shown to influence IAV (Musavi et al., 2017; Tamrakar et al., 2018) and to drive mean NEE patterns in synthesis 543 

studies (e.g. Amiro et al., 2010). Including forest age in a simple empirical model helped predicting between site 544 

variations of mean NEE across FLUXNET sites (Besnard et al., 2018). Counterintuitively, including forest age 545 

in training a machine learning method on monthly NEE did not improve the predictability of mean site NEE 546 

(Besnard et al., 2019), albeit possibly due to data or methodological limitations. We find the largest 547 

discrepancies of mean FLUXCOM NEE with atmospheric inversions in the tropics, where site history plays a 548 

substantial role in NEE magnitude (Pugh et al., 2019), but the concept of forest age is hardly applicable due to 549 

the generally uneven aged nature of stands, and reliable estimates of gridded age, e.g., from forest inventories are 550 

not available. Efforts to incorporate the information from long-term LANDSAT time series to capture site 551 

history effects did not reveal an improvement in the predictions of mean NEE, but it remains unclear if this was 552 

due to limited information content in these time series or due to methodological issues (Besnard et al., 2019). 553 

Thus, this issue remains a significant scientific challenge. Potentially, the availability and application of high-554 

resolution biomass and vegetation optical depth estimates from radar remote sensing along with a carefully 555 
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collected ancillary data on biomass, basal area, tree diameter and tree age distributions at ICOS and NEON sites 556 

may help in the future. 557 

4.2.2 Management  558 

We are presumably lacking important information on anthropogenic management effects, in particular for crops 559 

(Guanter et al., 2014) but also for forests. This is primarily due to a lack of information on, e.g., crop type, 560 

fertilizer application, irrigation, harvest or thinning at FLUXNET sites, but also due to the still-limited number of 561 

crop sites to provide sufficient information on relevant predictors therein. Accounting for the management 562 

effects in the FLUXCOM approach either by explicit management information or implicitly by adequate remote 563 

sensing data may also help improve the predictions of IAV of local-scale carbon fluxes, in particular with cross-564 

validation since most FLUXNET sites are subject to some degree of management. 565 

4.2.3 CO2 fertilisation 566 

FLUXCOM lacks any explicit treatment of the effects of CO2 fertilization causing carbon flux trends to be 567 

unrealistic (Fig.S11). This is a challenging problem due to a comparatively small size of [CO2] effect. This, in 568 

turn, makes it particularly vulnerable to distortions through measurement uncertainties, and, on an annual scale, 569 

largely indistinguishable from any other factor that varies with time. Potentially, in the future, the availability of 570 

longer time series along with high-quality near surface atmospheric CO2 data at high spatial and temporal 571 

resolution at the tower scale could allow for extracting a CO2 fertilization effect by exploiting diurnal, seasonal, 572 

and spatial CO2 gradients in addition to the long-term trend. 573 

4.2.4 Water stress 574 

Site-level cross-validation analysis (Bodesheim et al., 2018; Tramontana et al., 2016) indicated that soil moisture 575 

effects on carbon fluxes are not always well captured. In RS+METEO, moisture effects are explicitly addressed 576 

by a simple meteorology driven water availability index. The RS setup relies entirely on indirect information 577 

encoded in remotely sensed surface properties such as vegetation indices and land surface temperatures. The 578 

comparison of FLUXCOM GPP seasonal cycles with SIF yielded excellent agreement, also in water limited 579 

systems, and studies on drought effects using the GPP RS product (Flach et al., 2018; Orth et al., 2019; Walther 580 

et al., 2019) found plausible patterns that were consistent with independent data on large scales. Nevertheless, 581 

we should strive further to improve water stress effects in the upscaling approach given its significance. Better or 582 

explicit predictor variables on soil moisture may help. Unfortunately, current soil moisture products from remote 583 

sensing are only representative of the top few centimeters and are at comparatively coarse spatial resolution 584 

limiting their applicability in reflecting spatial heterogeneities of soil moisture. Perhaps, the larger issue is 585 

diverse ecosystem specific responses to soil moisture variations due to different ecosystem compositions, rooting 586 

patterns, plant hydraulics, stomata and other physiological traits. Thus, exploring remotely sensed products that 587 

reflect additional or complementary information on water stress effects, such as diurnal cycles of land surface 588 

temperature from geostationary satellites, is a potential way forward. 589 

4.2.4 Product properties 590 

The success of incorporating novel informative data of site properties in the FLUXCOM approach is always 591 

contingent on the quality of the corresponding global gridded products. Systematic differences between a 592 
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predictor variable used for training at the site-level and global forcing data, as well as any potential artefacts due 593 

to retrieval issues or merging different data records spatially or temporally propagate to global flux products. 594 

Future improvements of the FLUXCOM approach will thus require progress in other research fields with 595 

emphasis on the processing, correction, and harmonization of Earth observation products. Especially for 596 

remotely sensed data, strategies to bridge scales of satellite pixels, overpass times, and repeat cycles to 597 

continuous measurements of flux footprints are needed. In addition, making use of novel data in the FLUXCOM 598 

framework requires the concurrent development of new methodological strategies to cope with the small 599 

temporal overlap of the FLUXNET data history. More generally, the quality and quantity of Earth observation 600 

data has been increasing rapidly, bringing challenges and opportunities for upscaling. 601 

4.3 Machine learning 602 

4.3.1 Exploiting temporal data structures 603 

The machine learning methods employed in FLUXCOM are classic ones, while novel approaches could bring 604 

further improvements. One conceptual limitation of all machine learning methods used in FLUXCOM is that 605 

they assume independent and identically distributed (i.i.d.) variables, and thus do not respect or exploit temporal 606 

structures in the training data. This problem can be remedied by using other machine learning methods based on 607 

convolutions. For example, recurrent neural networks (RNNs) were designed for time-series and can account for 608 

dynamics such as ecosystem lag and memory effects on carbon flux variability. Conceptually, lag and memory 609 

effects emerge due to the effect of unobserved ecosystem state variables. RNNs can potentially counteract the 610 

lack of a relevant state variable in the predictor set if the state variable’s instantaneous effect is encoded in the 611 

temporal history of other predictor variables (e.g., current soil moisture as a function of previous weather). While 612 

exploiting the temporal information of predictors using an RNN improved predictions of monthly carbon fluxes 613 

in terms of the seasonal cycle and thereby also across-site variability, predictions of interannual variability were 614 

not improved as compared to exploiting only time-instantaneous effects based on site-level cross-validation 615 

(Besnard et al., 2019). Further exploration of the machine learning methods that exploit the temporal structure of 616 

predictors has a potential to improve FLUXCOM upscaling. 617 

4.3.2 Promising strategies 618 

Deep learning techniques, in general, and convolutional neural networks (CNNs), in particular, have proven to 619 

be very powerful especially for image processing and recognition tasks (LeCun et al., 2015). Their conceptual 620 

strength lies in the automated extraction of features, in particular those related to spatial structures that render the 621 

design and implementation of hand-crafted predictor variables unnecessary. Whether simply employing CNNs 622 

for upscaling brings similar improvements over traditional machine learning techniques as in other domains is 623 

questionable. This is because the number and spatial distribution of FLUXNET towers seems insufficient to 624 

exploit the power of CNNs to extract relevant features of spatial structure. However, combining CNNs with 625 

transfer learning approaches seems very promising from a conceptual perspective. The principle of transfer 626 

learning is to learn relevant features from a more densely observed proxy variable of the actual target and use the 627 

feature representation for learning the target (Pan and Yang, 2010). The learning of the proxy variable can be 628 

done either prior to or simultaneously with the actual target such that information from much larger sample of 629 

the proxy can be transferred to the sparsely observed target variable. This approach could be applicable to the 630 

upscaling of FLUXNET GPP by using remotely sensed SIF as a proxy and thereby alleviate issues related to 631 
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small sample size (e.g., extrapolation) but also aid the extraction of small but relevant signals (e.g., IAV). Spatial 632 

structures in high-resolution SIF data may further encode effects of management or topographically controlled 633 

soil moisture variations that could be exploited with CNNs and improve predictions. 634 

 635 

Hybrid approaches, i.e. the integration of machine learning method with process understanding and physical 636 

constraints, are another promising avenue. This allows for different strategies and levels of complexity are 637 

possible (Reichstein et al., 2019), and could also greatly help in regularizing machine learning predictions to be 638 

sensible under extrapolation conditions. In the context of FLUXCOM, for, say, constraining the anticipated weak 639 

signal of CO2 fertilization in observations within theoretically derived bounds, would allow this relevant yet 640 

observationally poorly constrained dynamic to be incorporated. If the hybrid approach features the 641 

conceptualization of fluxes and pools as in process models, it would also allow for constraints by multiple 642 

complementary data streams simultaneously. 643 

 644 

An important aspect to improve in the future is also the quantification of uncertainty in the predictions, including 645 

the propagation of observational uncertainties. Gaussian processes are now computationally tractable for big data 646 

problems while providing probabilistic confidence intervals and allowing for uncertainty propagation (Camps-647 

Valls et al., 2016; Wang et al., 2019). Combining Gaussian Processes with deep neural nets (You et al., 2017) or 648 

designing deep Gaussian process models (Damianou and Lawrence, 2013) are powerful new machine learning 649 

tools with the potential to improve FLUXCOM. 650 

Conclusions 651 

The FLUXCOM initiative generated a large ensemble of global carbon flux products for two defined setups that 652 

differ in the set of predictor variables and spatial-temporal resolution. The ensemble is comprised of 120 653 

products using up to 9 machine learning algorithms, two flux-partitioning variants for GPP and TER, and 5 654 

meteorological forcing data sets. The large and systematically generated ensemble allows for assessing and 655 

studying uncertainties of the fluxes as well as the approaches used in FLUXCOM. We assessed FLUXCOM 656 

GPP and NEE patterns against remotely sensed sun-induced fluorescence (SIF), atmospheric inversions and 657 

process model simulations from the TRENDY initiative.  658 

 659 

We found strong consistency of FLUXCOM with SIF and atmospheric inversions with respect to seasonal 660 

variations, highlighting FLUXCOM’s suitability to evaluate and constrain seasonal cycles for processed-based 661 

and top-down approaches. The global GPP from RS+METEO was 120±7 PgC yr
-1

 (mean±1 s.d.), while the 662 

global GPP from RS (111±3 PgC yr
-1

) is lower likely due to underestimation in the tropics. FLUXCOM shows a 663 

consistently large carbon sink in the tropics that can, at present, not be reconciled with our knowledge derived 664 

from atmospheric CO2 constraints; possibly implying an underestimation of carbon loss and/or missing carbon 665 

loss pathways by FLUXNET observations. Patterns of year-to-year variations of the global land carbon sink 666 

from FLUXCOM-RS+METEO show good consistency with atmospheric inversions, while magnitudes of 667 

interannual variability are underestimated in the data-driven approaches. As FLUXCOM lacks the effect of CO2 668 

fertilization, trends are not realistic and should only be used for assessing the exclusive effects of climate 669 

changes on carbon fluxes. 670 
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 671 

Moving forward, increasing the size of the FLUXNET network, improving its quality, standardization and 672 

coverage will both improve quality and reduce uncertainties in the upscaling approach. This holds especially 673 

with respect to signals that are important but relatively small and difficult to extract such as interannual 674 

variability or trends. Increasing the number of tropical sites alone would also help constrain global flux 675 

magnitudes, and, in particular, would help resolve the large tropical carbon sink shown by FLUXCOM but 676 

missing in atmospheric inversions. Based on the number of registered FLUXNET sites alone, an approximate 677 

five-fold increase in the number of sites with available data seems feasible in theory; if all respective researchers 678 

would contribute their flux data to the global community effort. This indicates that any efforts to improve eddy 679 

covariance data, sharing, harmonization and processing are crucial.  680 

 681 

Beyond extending the data frame, the current FLUXCOM intercomparison suggests that the next phase of 682 

methodological developments should be to move away from predetermined setups and instead towards a set of 683 

dedicated experiments that explore novel strategies of data integration with machine learning method (e.g., deep, 684 

transfer, and hybrid approaches) and, more importantly, the diversity in the potential predictor space from Earth 685 

Observation data. Within FLUXCOM, we find the largest differences between RS and RS+METEO setups 686 

which primarily differ in the set of input predictor variables. Thus, the current approach of upscaling FLUXNET 687 

measurements seems more information rather than algorithm limited.  688 

 689 

Overall, the success of FLUXCOM approach depends on the interplay of many different factors. Monitoring our 690 

progress will be essential but challenging, and must combine site-level cross-validation, cross-consistency 691 

checks with global independent data-streams, novel and dedicated experiments as well as tailored validations of 692 

methods with artificial data similar to Observation System Simulation Experiments. Despite the many 693 

challenges, integrating eddy covariance ecosystem scale fluxes, Earth Observation data and machine learning 694 

method has already proven valuable in many respects despite being a comparatively new field. An exciting and 695 

challenging future lays ahead; that the contribution of experts in different fields combined with open and real 696 

time data sharing could lead to a unique semi-operational carbon monitoring system. This in turn provides a 697 

promising perspective to unify and synergistically exploit data-driven biospheric bottom-up and atmospheric 698 

top-down approaches. 699 

Data availability 700 

Monthly carbon flux data of all ensemble members as well as the ensemble estimates from the FLUXCOM 701 

initiative (http://www.fluxcom.org) are freely available (CC4.0 BY licence) from the data portal of Max Planck 702 

Institute for Biogeochemistry (https://www.bgc-jena.mpg.de/geodb/projects/Home.php) after registration. 703 

Choose ‘FluxCom’ in the dropdown menu of the database and select FileID 260. The users will be provided with 704 

an access to an ftp server. The ftp directory is structured in a consistent way and stores files with consistent 705 

naming convention in netcdf-4 format (see S3 for details).. Products with daily or 8-daily temporal resolution or 706 

customized ensemble estimates are available on request to Martin Jung (mjung@bgc-jena.mpg.de). TRENDY 707 

model output is available on request to Stephen Sitch (S.A.Sitch@exeter.ac.uk). 708 

about:blank
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Figures and Tables 1026 

 1027 

 1028 

 1029 

Figure 1: Schematic overview of the methodology and data products from the FLUXCOM initiative. The flow 1030 
diagram shows the methodological steps for the remote sensing -based (RS, left) and the remote sensing and 1031 
meteorological data -based (RS+METEO, right) FLUXCOM products. Final monthly ensemble products for NEE, 1032 
GPP, and TER from RS are available at 0.0833° and at 0.5° spatial resolution. Ensemble products from RS+METEO 1033 
are available per climate forcing (GC) data set as well as a pooled ensemble at 0.5° spatial resolution. All ensemble 1034 
products encompass ensemble members of different machine learning methods (ML, 9 for RS, 3 for RS+METEO) and 1035 
flux partitioning methods (FP, 2 for GPP and TER). 1036 
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 1038 

Figure 2: Comparisons of mean annual GPP at 1° spatial resolution for the period 2008-2010 of FLUXCOM ensemble 1039 
products with Ju11 and the mean of 16 TRENDY models. Diagonal: Maps of mean annual GPP. Above diagonal: 1040 
Maps of GPP differences (product along column – product along row). Below diagonal: 1:1 regression where the 1041 
shading shows point density. The red line and equations show the best fit line from total least square regression. 1042 
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 1044 

Figure 3: Map of the fraction of TRENDY models (n=16) with mean GPP outside the range of FLUXCOM estimates. 1045 
The FLUXCOM range is calculated as the maximum minus minimum of all 48 FLUXCOM members from the union 1046 
of the RS and RS+METEO members. Mean GPP was calculated for the period 2008-2010. 1047 
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 1048 

Figure 4: Global GPP for FLUXCOM and TRENDY ensembles for the period 2008-2010. The box plots show the 1049 
median (red line), interquartile range (box) and total range (whiskers) of non-outliers (within median ± 1.5 1050 
interquartile range) of individual ensemble members (open black stars). The filled red star presents the value of the 1051 
ensemble product (not available for TRENDY). The estimate of Ju11 is plotted as horizontal broken line.  1052 
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 1054 

 1055 

Figure 5: Consistency of seasonal GPP variations from FLUXCOM and TRENDY with SIF from GOME-2. Maps in 1056 
the top row show the mean R2 between mean seasonal cycles for the period 2008-2010, averaged across all respective 1057 
ensemble members. Difference maps in the bottom row emphasize where FLUXCOM shows better (positive value) 1058 
and worse (negative value) consistency with SIF than TRENDY and are based on the maps in the top row. The 1059 
spatially averaged R2 values for the different ensembles are summarized in the bottom right panel. The box plots 1060 
show the distribution of individual ensemble members (open black stars). The filled red star presents the value of the 1061 
ensemble product (not available for TRENDY). The estimate of Ju11 is plotted as horizontal broken line.  1062 

 1063 

 1064 

Figure 6: Mean annual net carbon release for the years 2008-2010 over TRANSCOM regions. Crosses refer to 1065 
individual ensemble members where a black colour refers to negative net biome productivity (NBP, not available for 1066 
FLUXCOM), and blue color refers to net ecosystem exchange (NEE). For inversions, NEE was approximated by 1067 
correcting NBP with fire emissions (see section 2.4.3). The filled red stars refer to estimates by the ensemble product 1068 
of FLUXCOM setups. The horizontal broken line indicates the estimate of Ju11. 1069 

 1070 



30 

 

 1071 

Figure 7: Mean seasonal variations of net land carbon release for the period 2008-2010 over TRANSCOM regions. 1072 
For inversions and TRENDY, -NBP was plotted, and for FLUXCOM, NEE was plotted. Please note that the region 1073 
specific mean was removed for each data set. Shading indicates the range of estimates (maximum – minimum). The 1074 
FLUXCOM range is based on the union of RS and RS+METEO ensemble members. R2 values were calculated with 1075 
the mean of the inversions. The FLUXCOM RS and RS+METEO refer to the ensemble products (median), while that 1076 
for TRENDY refer to the model mean. 1077 
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 1079 

Figure 8: Interannual variability patterns of FLUXCOM NEE, TRENDY NBP, and NBP from three atmospheric 1080 
inversions for the period 2001-2010. Maps show the fraction of respective ensemble members with above average 1081 
interannual variability (standard deviation of annual values multiplied with land area). Time series plots show 1082 
detrended globally integrated annual NEE or NBP anomalies normalized by their standard deviation. The black line 1083 
is the mean of three inversions and the gray shading indicates their range. The blue solid lines are the means of the 1084 
considered ensembles; the blue dashed lines are the FLUXCOM ensemble products. R2 values refer to the comparison 1085 
with the mean of inversions (black solid line). The bar chart in the bottom right panel shows the standard deviation of 1086 
detrended annual NEE or NBP for different data sets, averaged over the ensemble members and the error bar 1087 
indicates the standard deviation of the ensemble members. Black stars for FLUXCOM refer to the value for the 1088 
ensemble products.  1089 
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 1091 

Figure 9: Consistency between interannual variabilities (IAV) of local NEE from FLUXCOM setups and TRENDY 1092 
for the period 2001-2015.  1093 
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 1096 

Figure 10: Mean annual (2001-2015) and seasonal range (8-daily time step) of the Extrapolation Index (EI), the 1097 
expected mean absolute error of machine learning predictions, and the Extrapolation Severity Index (ESI, product of 1098 
the previous two) (see S2 for details) for GPP from FLUXCOM-RS.  1099 
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 1101 

Meteorological forcing data set Spatial Resolution Temporal Coverage  

CRU-JRA 0.5° x 0.5° 1950-2017 

GSWP3 0.5° x 0.5° 1950-2010 

WFDEI 0.5° x 0.5° 1979-2013 

ERA-5 0.5° x 0.5° 1979-2018 

CERES-GPCP 1.0° x 1.0° resampled to 0.5° x 0.5° 2001-2013 

Table 1: Global meteorological forcing data sets used in FLUXCOM-RS+METEO. 1102 
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