Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38
Manuscript under review for journal Biogeosciences
Discussion started: 18 February 2019

© Author(s) 2019. CC BY 4.0 License.

Reviews and synthesis: Weathering of silicate minerals in
soils and watersheds: Parameterization of the weathering
kinetics module in the PROFILE and ForSAFE models

Harald Ulrik Sverdrup'”, Eric Oelkers™ Martin Erlandsson Lampa?,
Salim Belyazid®, Daniel Kurz*, Cecilia Akselsson®,

1-Industrial Engineering, University of Iceland, Reykjavik, Iceland, 2-Institute of Hydrology,
University of Uppsala, Uppsala, Sweden, 3-Physical Geography, Stockholm University, Stockholm,
Sweden, 4-EKG Geoscience, Bern, Switzerland, 5-Earth Sciences, University College London, Gower
Street, WCI1E 6BT, London, UK, 6-Earth Sciences, University of Lund, Lund, Sweden. *corresponding
author (hus@hi.is)

Abstract

The PROFILE model, now incorporated in the ForSAFE model can accurately reproduce
the chemical and mineralogical evolution of the soil unsaturated zone. However, in deeper
soil layers and in groundwater systems, it appears to overestimate weathering rates. This
overestimation has been corrected by improving the kinetic expression describing mineral
dissolution by adding or upgrading ‘breaking functions’. The base cation and aluminium
brakes have been strengthened, and an additional silicate brake has been developed,
improving the ability to describe mineral-water reactions in deeper soils. These brakes are
developed from a molecular-level model of the dissolution mechanisms. Equations,
parameters and constants describing mineral dissolution kinetics have now been obtained
for 102 different minerals from 12 major structural groups, comprising all types of minerals
encountered in most soils. The PROFILE and ForSAFE weathering sub-model was
extended to cover two-dimensional catchments, both in the vertical and the horizontal
direction, including the hydrology. Comparisons between this improved model and field
observations is available in Erlandsson Lampa et al. (2019, This special issue). The results
showed that the incorporation of a braking effect of silica concentrations was necessary
and helps obtain more accurate descriptions of soil evolution rates at greater depths and
within the saturated zone.

1. Introduction
Chemical weathering of silicate minerals, and notably the dissolution rates of these minerals are one of
the most important factors shaping soil chemistry over longer time periods. The quality of the kinetic
database in most cases determines the quality of the simulations. In the 1980’s, the need arose to mitigate
acid deposition, to set critical loads for acid deposition, and to set limits for sustainable forest growth
and nitrogen critical loads. The critical loads depend directly on the ability of the soil to neutralize the
incoming acid, thus the critical load depends on the weathering rate. It became apparent that the usual
approach to soil geochemical modelling of using the weathering rate as the adjustable parameter to make
the simulations fit the data, would be inadequate for estimating the critical loads. As a consequence, a
quest for creating a weathering rate models that would accurately reproduce field observations and based
on fundamental principles was started (Warfvinge and Sverdrup 1985, Sverdrup and Warfvinge 1987).
With funding from the Swedish Environmental Protection Agency, the Swedish Agricultural
Research Council and the Swedish Ministry of the Environment, a major research effort was begun.
This mission led to a re-evaluation of the weathering observations available in scientific publications
and books (Sverdrup 1990, Sverdrup and Warfvinge 1992, 1993, 1995, Drever et al., 1994, Drever and
Clow 1995, Ganor et al., 2005, Svoboda-Colberg and Drever 1993, Crundwell 2013). The mission and
the funding allowed creation of an alternate path that led to a model that accurately reproduced
weathering rates under field conditions. The first steps and the narrative of the development was reported
by Sverdrup and Warfvinge (1988a,b, 1992, 1993, 1995) and Sverdrup (1990). In 1990, we had a set of
models that described the rates 14 minerals (K-feldpar, albite, plagioclase, pyroxene, hornblende, garnet,
epidote, chlorite, biotite, muscovite, vermiculite, apatite, kaolinite, and calcite). Later more silicate
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minerals were added, minerals including illite-1, illite-2, illite-3, smectite, montmorillonite, sericite and
rich volcanic glass and poor volcanic glass, and eventually 45 additional silicate minerals where we had
full kinetic data. In addition, we had full kinetic data for 25 different carbonates' at the time.

At the start of this effort in the middle of the 1980’s, it became clear that we did not have a
standard procedure for building a weathering rate model based on molecular level mechanisms. There
are many reasons for this, the most important ones were the lack of a mechanistically oriented models
for guiding experimental studies at the time. The lack of an understanding of the mechanisms, resulted
in important factors being overlooked. Many essential variables were missing in the older experimental
studies, sample preparation was often inadequate or not done, and/or the material was inadequately
characterized (Sverdrup et al., 1981, 1984, Sverdrup, 1990). Often the experimental design had
significant flaws and many experiments ran for too short a time; see Sverdrup (1990) for a full
description. As such there needed to be a sorting of the data, to avoid the confusion brought by
misleading data. This effort lead to the creation of the original PROFILE mineral kinetic weathering
model (Sverdrup, 1990), to estimate the rate at which mineral dissolution provided essential cations to
soil waters. Although this model provides accurate estimates for shallow soils, it became less accurate
for deeper soils (e.g. > 1.5 meter soil depth).

This study outlines our efforts to update these early mineral weathering kinetics models for
watershed water chemistry and deeper groundwater. This effort is the result of preparations for,
discussions at, and subsequent efforts after a workshop held at Ystad Saltsjobad, Ystad, Sweden, April
11-14, 2016, in connection to the Swedish QWARTS research programme. Key literature to read to aid
in following this text are the weathering book by Sverdrup (1990) and the articles Sverdrup and
Warfvinge (1988a,b, 1992, 1995) and Warfvinge and Sverdrup (1993). There is an advisory chapter on
how to operationally estimate weathering rates in soils on a regional scale in Europe in the United
Nations Economic Commission for Europe, Long Range Transboundary Convention Mapping Manual
for Critical loads (Sverdrup, 1996). The weathering rate mapping methodology was tested and used
throughout 26 different European countries, and peer reviewed at annual workshops from 1988 to 2017.
Weathering rates in forest soils and open terrestrial ecosystem have been mapped during the period 1990
to the present (2019). The UN/ECE-LRTAP Critical loads and levels Mapping Manual was updated
biannually during the period.

The revision of the original weathering rate models was motivated by several observations:

1. The PROFILE model works satisfactorily in the unsaturated zone (0-1 meter), on thin soils, on
rock surfaces, in low concentration systems (Sverdrup and Warfvinge 1988a,b, 1991, 1992,
1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh et al., 1992, Alveteg et al.,
1996, 1998, 2000, Alveteg and Sverdrup 2000). Test show that the weathering kinetics as of
2015 works very well for these situations.

2. However, it appears as the chemical weathering rate for minerals is overestimated by this model
in deeper soils, at depths of more than 1.5 meter depth. The original PROFILE model was used
down to this depth (Sverdrup et al., 1988a,b, 1992, 1996, Sverdrup 1990, Janicki et al., 1993,
Holmgqvist et al., 2003) for critical loads for streams (Sverdrup et al., 1996) and groundwater
(Warfvinge et al., 1987), and may have possibly resulted in an overestimation of the critical
load.

3. The weathering rate is overestimated in the deeper soils and in ground water (Sverdrup 1990,
Warfvinge and Sverdrup 1987, 1992a,b,c, Sverdrup et al., 1996). The PROFILE model was
designed for groundwater composition calculations, and has proven to provide inaccurate
estimates in such systems.

4. Itisevident that the new experiments published in the literature after 1995 is of far better quality
and consistency, with better experimental designs, better characterized materials and more
complete data than previous studies. For example, the reader is encouraged to read two studies
published by Holmguvist et al., (2002, 2003) on the weathering rates of clay minerals under soil

ICalcite (The calcites are all slightly different; CaCOs with 0-3% MgCOs and 0.05%-0.5% apatite, from Sweden,
Norway, Denmark,and the United States. In addition, kinetics on aragonite (CaCOs), slavsonite (SrCOs3),
dolomite (CaMg(COs)2, magnesite (MgCOs), brucite (MgOH), siderite (FeCOs), witherite (BaCOs), and
rhodochroisite (MnCO3) is available.
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conditions and the concept of mineral alteration sequences (Holmqvist 2004, PhD thesis from
Chemical Engineering, Lund University). The minerals used in the weathering rate experiments
in those studies were minerals extracted and separated from in-situ soils at experimental field
sites near Uppsala, Sweden. The consideration of these data allow for a significant improvement
in the previously created databases.

2. Scope and objectives

The scope of this study is to describe the updated mineral kinetics database used in the PROFILE and
ForSAFE models, and describe how the model has been improved during the past several years. Notably
this update includes reaction product ‘brakes’ in the kinetic rate equations to better fit the observed data
down to the groundwater table and below. This was necessitated when the ForSAFE model (thus also
the PROFILE model) was reconfigured for a sloping catchment, expanding the model structure from a
1-dimensional model, with only the vertical soil profile and forest stand aspect, to a 2-dimensional model
accounting for vertical and horizontal solute transport in a catchment, including the ecosystem. In total
102 minerals are considered in the updated and expanded kinetics parameter databases. An exhaustive
description of the parameterization of the rate equations for all of the 102 minerals will require a text
far beyond what is possible in this manuscript, so that only a summary and several examples are
provided here. This study is focussed on updating the mineral weathering kinetics parameterizations and
their adaptation to soil profiles, watershed water chemistry and deeper groundwater to be able to enable
improved integrated forestry and environmental assessments.
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Figure 1. Weathering processes were mapped using systems analysis and by drawing causal loop
diagrams (CLD) for the process and the whole system of the weathering process. This is a standard
procedure in model building (Sverdrup and Stiernquist 2002, Sverdrup et al., 2018).

3. Methodology

The methods used in this study have their basis in terrestrial ecosystems system analysis and ecosystems
system dynamics as described by Sverdrup and Stiernquist (2002) and in general on system dynamics
theory in Sverdrup et al., (2018). The main tools employed are the standard methods of system analysis
and integrated system dynamics modelling (Forrester 1961, 1969, 1971, Meadows et al., 1972, 1974,
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1992, 2005, Roberts et al., 1982, Senge 1990, Bossel 1998, Haraldsson and Sverdrup 2005, Haraldsson
et al., 2006, Sverdrup and Stiernquist 20002, Sverdrup et al., 2018). The overall system is analysed using
stock-and-flow charts and causal loop diagrams (Sverdrup et al., 2002). The learning loop was used as
the adaptive learning procedure in past studies (Senge 1990, Kim 1992, Senge et al., 2008, Sverdrup et
al., 2018). The conceptual model must be clearly defined and constructed before any computational
work can be undertaken. It is fundamental to understand that the causal understanding is the model.
Systems analysis produces a causal loop diagram (CLD) linking causes, effects, and feedbacks among
the processes in terms of causalities and flows (Albin 1997, Sverdrup et al., 2018, Kim 1992). These
CLD need to be internally consistent. A summary of this approach is provided in Figure 1. A causal
loop diagram is thus a map of the underlying differential equations describing the evolution of the
system. Mass- or energy flow charts and the causal loop diagram uniquely define the system. The
ForSAFE model with its integrated weathering model used in this study is not calibrated on large
amounts of system output data (Sverdrup and Warfvinge 1992, Sverdrup et al., 2018). Instead, the
underlying system causal linkages and the mass balances, lead to characteristic equations that are
parameterized using independent system properties, initial states and boundary conditions (Sverdrup et
al., 2018).

4. Earlier development work and background

4.1. Critical to developing a database describing mineral dissolution rates is that it is coupled together
into a comprehensive model that can account for the large number of processes that affect rates in the
field. From the beginning, the weathering kinetics sub-model was developed and incorporated into the
PROFILE model. This sub-model was parameterized using laboratory kinetics and applied to field
conditions on a plot scale and on a regional scale for Sweden (Sverdrup 1990, Sverdrup and Wafvinge
1988a,b, 1992, 1995, Warfvinge and Sverdrup 1992, 1993). This sub-model was subsequently coupled
into a biogeochemical ecosystem model, linking solute transport, soil chemistry, weathering, ion
exchange, hydrology and biological interactions with microbiology and forest plants, called the SAFE
model (Sverdrup et al, 1995). The steady-state model PROFILE and the dynamic variant SAFE, was
further developed into ForSAFE and ForSAFE-VEG with full ecosystems subroutines, and full base
cation nutrients, phosphorus, nitrogen and carbon cycles (Sverdrup and Warfvinge 1996, Sverdrup et
al., 2005, 2007, 2008, 2012, 2014, Belyazid et al., 2005, 2007, 2008, 2010, 201 1a,b, 2014, McDonnel
et al., 2014, 2015, Bonten et al., 2014, Probst et al., 2014, Rizzetto et al., 2017). A description of the
original weathering kinetics sub-model was published by Sverdrup (1990). However, much additional
experimental data has been obtained since.

3.2. Weathering under field conditions

The dissolution of primary minerals at ambient temperature and pressure is irreversible with the
exceptions of a few simple chloride and sulphate salts and a few carbonates (Sverdrup 1990). Such
irreversible reactions do not attain equilibrium in near to ambient temperate systems. A formulation
based on transition state theory for the formation of activated surface complexes that decay irreversibly
was developed by (Sverdrup 1985, Sverdrup and Warfvinge 1987, 1988a,b, 1992, Sverdrup 1990) and
has been the basis for the further developments. Removal of ions takes place through precipitation of
amorphous secondary phases, solute transport and uptake to trees and ground vegetation. The modelling
of weathering under field conditions can only be performed with an integrated ecosystems model where
mineral reaction rates are coupled to solute transport, ion exchange, plant nutrient uptake, organic matter
decomposition and nitrogen transformations have been included (Sverdrup and Warfvinge 1988a,b,
Sverdrup 1990, Akselsson et al., 2006, 2005, 2004, Sverdrup et al., 1990, 1995, 2017). A comparison
of calculated and observed weathering rates shown in Figure 2, demonstrates this approach can
reproduce within +5% of the observed rates across 4 orders of magnitude for the upper unsaturated parts
of a soil (Sverdrup and Warfvinge 1992, Barkman et al., 1999, Jonsson et al., 1995, Belyazid 2005, Kurz
et al., 1998a,b). Further comparisons of computed and calculated rates made with these models for field
tests at Gardsjon, Sweden and at various sites were published by Sverdrup et al. (1988a,b, 1993, 1995,
1996, 1998, 2010), Sverdrup (1990, 2009), Sverdrup and Alveteg (1998), Rietz (1995) and Warfvinge
et al., (1996), and Holmgqvist et al., (2003, 2002). In addition, several other authors tested this approach
independently (In the United States; Kolka et al 1996, Phelan et al., 2014, in Scotland; Langan et al.
2006, in Germany; Becker 2002, in New Zealand: Zabowski et al., 2007. tests on controlled experiments
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with granite slabs in the Swedish nuclear waste storage assessment research programme at Goteborg by
Claesson-Nystrom and Andersson 1996, in Swedish soil profiles; Lang 1998). Gunnar Jacks in KTH,
Stockholm put these models to several blind test of the alteration of blank granite surfaces used for
ancient rock carvings and controlled mini-catchments (Jacks, unpublished 1990). In each case a close
correspondence was observed in calculated as compared to the field weathering rates.
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Figure 2. Comparison of weathering rates calculated using the original PROFILE model with
corresponding rates obtained from field observations of the upper undersaturated parts of soils. Rates
shown were reported or compiled by Sverdrup and Warfvinge (1988a,b, 1991, 1992, 1993, 1995, 1998),
Sverdrup (1990), Sverdrup et al. (1990, 1998), Hettelingh et al. (1992), Barkmann et al. (1999),
Holmgvist et al. (2003).

In 1988, these various models were used to map the weathering rates of the upper 0.5 meter of
forest soils of Sweden, based on a regional grid sampling. The first weathering rate map was based on
28 sites where complete data were collected and extrapolated over the whole country using geological
maps (Sverdrup and Warfvinge 1988a,b). This map was later enlarged to 1,306 sites and aligned in
distinct geological provinces (Warfvinge and Sverdrup 1993, 1995). The database was subsequently
extended to 1,884 forested sites, and finally this was expanded through a five-year sampling and analysis
program within the Swedish Forest Inventory soil sampling program to approximately first 17,600 forest
soil samples and finally to 27,500 forest soil sites across Sweden (Sverdrup and Warfvinge 1988a,b,
1992, Warfvinge et al., 1992, Warfvinge and Sverdrup 1995, Alveteg et al., 1996, 1998, 2000, Akselsson
et al., 2004, 2005, 2006, 2007a,b,c, 2018, 2016, Lang 1995). These results were later complemented
with about 3,000 additional sites across the agricultural soils. Later the weathering rates of other
countries were mapped for the forest soils of Switzerland (Kurz et al., 1998a,b, 2001), France (Probst et
al., 2015, Rizzetto et al., 2016a,b, Gaudio et al., 2015), China (Duan et al., 2002), Finland (Sverdrup et
al., 1992) and Denmark (Sverdrup et al., 1992), Maryland (Sverdrup et al., 1996), North-western Russia
and Far East Siberia (Semenov et al., 2000), Pennsylvania (Phelan et al., 2014, 2016), New York, Maine,
Vermont (Sverdrup et al., 2014, Belyazid et al., 2015), New Hampshire (Sverdrup et al., 2012, Belyazid
et al., 2015), Madrid Country (Ballesta et al., 1996), Scotland (Langan et al., 1996), Slovakia (Zavodski
etal., 1995), and Poland (Malek et al., 2005). Further reports on regional use are available in the UN/EC
CCE Annual Reports on mapping critical loads for the years 1995-2018. Further contributions to the
developments of these models were made from scientists located at the Institute of Ecology and Lund
University, in Bern, Switzerland, at the department of Soil Sciences, Swedish Agricultural University,
and at the Physical Geography department of Stockholm University. The weathering rate map of the
upper 0.5 meter of forest soils of Sweden is displayed in Figure 3. The grid size is 8.2 km’ or
approximately a 3x3km grid in the forested area (Akselsson et al., 2006, 2005, 2004, 2016, Sverdrup et
al., 2017). Tests in many other parts of the world, suggests that the model is applicable to the unsaturated
zone of any freely draining soil.
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Figure 3. Map of base cation release rates from chemical weathering of soil minerals in the upper 0.5
m of the soil in Sweden using the PROFILE model. The model accurately reproduces weathering rates
in the upper soil layers, and provides useful estimates for soils of up to 1 meter in thickness. The map
was created by Dr. Cecilia Akselsson at Lund University for Swedish forest sustainability assessments
and critical loads for acid depositions (Akselsson et al., 2006, 2005, 2004, 2016, Sverdrup et al., 2017).
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Figure 4. The diagram shows the weathering rate distributed among minerals, the diagram to the right
shows the total rate, plotted as the sum of base cations released to the aqueous phase as a function of
depth down a soil profile. The diagram to the left shows how selected minerals contribute to this overall
rate. The site is catchment F1 at the Gardsjon Research site, Sweden (Adapted from Sverdrup and
Warfvinge 1992, 1995).

Figure 4 shows an example from earlier results for the Gérdsjon research site in Sweden
(Sverdrup et al., 1992, 1993, 1998). The diagram shows the weathering rate distributed among minerals,
and the total rate as a function of depth down a soil profile. The example shows the weathering rate at
catchment F1 at the Gardsjon Research site, Sweden (Sverdrup et al., 1992, 1993, 1996). The research
site at Gardsjon, near Géteborg, Sweden has played a key role in the development of our biogeochemical
ecosystem models. The research site is one of Sweden’s most important field research sites for soils,
soil chemistry, material fluxes, geology, mineralogy, ecology, forestry and environmental pollution
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research, with nearly all aspects excellently documented and recorded for the last 40 years (Hultberg et
al., 2007). Here the models were tested, adapted and used for assessments. Differences in calculated and
observed results became evident when calculating weathering rates for deeper layers. Notably the model
overestimate the weathering rate at depths below 1-1.5 meters.

Figure 5 shows an example of a soil weathering simulation of the weathering rate at Niwot
Ridge, Rocky Mountain National Park, Colorado for four different environmental pollution scenarios
with background acid deposition, current policy, no pollution control and elevated temperature from
climate change. The weathering rate is reduced under the climate change scenario. The weathering rate
is somewhat increased by the increase in temperature, but more reduced by reduced rainfall leading to
drier soils at the site. The ForSAFE model was used with a daily time step, estimating a weathering rate
every day. The time-step is numerically determined by the stiffness of the differential equations in the
system. The timestep is set automatically by the model numeric routine and thus is variable and is
optimized during integration. Under conditions where short-term changes happen, the timestep may be
on the scale of hours.

=

s 06 T

%— |t} | 1
2 055 1]

g |

S 05

N

2 045 {

g

2 04 gt VY RLY

@

=

c 0,35 =
® I e ‘H !

s 0,3 |-.|——Background

> — Current policy |

s 0,25 |.{—No controls

< —Elevated

©

@ 0,2 I i

= 1900 2000 2100 2200 2300 2400 2500

Year
Figure 5. Example of a soil weathering rate calculation for Niwot Ridge, Rock Mountain National Park,
Colorado for four different environmental pollution scenarios and their effect on the ecosystems (trees
and biodiversity): 1) background acid deposition from sulphur and nitrogen, 2) current policy, 3) no
pollution control and 4) elevated temperature. The weathering rate was extracted from the simulations
to assess the site for pollution control. In this case the ForSAFE model was used with a daily time step
to estimate daily weathering rates (Sverdrup et al., 2014, McDonnel et al., 2017, Belyazid et al., 2019).

3.3. Weathering Model overview

A number of computational weathering models based on this approach have been developed over the
years. The PROFILE model was developed for critical load assessments, forestry sustainability
assessments, and estimation of field weathering rates. The SAFE and later ForSAFE models are dynamic
models for making dynamic terrestrial ecosystem assessments. The PROFILE model is the steady-state
version of the SAFE model. Both models were first completed in 1987 (Sverdrup et al., 1987a,b,
Sverdrup and Warfvinge 1988a,b). To clarify these models and their interconnections the following list
is provided, which also lists the key scientists involved in their research and development:

1. Steady-state weathering rate models

a. 1987-1995; Warfvinge P. and Sverdrup, H.; The single site version of the PROFILE model
for the calculation and mapping of critical loads and rates of field chemical weathering was
developed. It is a widely used soil model, validated and used operationally in more than 50
countries worldwide. It uses laboratory generated kinetic models and coefficients to predict
field weathering rates. The interface software for PROFILE became outdated, thus, this
version is no longer available.

b. 1992-present; Sverdrup, H., Warfvinge, P., Alveteg, M., Walse, C., Kurz, P., Posch, M.,
Belyazid, S.; The code RegionalPROFILE was developed. This code is a regionalized
version of the PROFILE model, used for creating weathering rate maps for soils and
catchments across regions and countries, as well as to estimate critical loads for forest soils.
Updated versions of the code are available upon request from Sverdrup, Akselsson or
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Belyazid.

c. 2000; Sverdrup, H. and Alveteg, M., The CLAY-PROFILE code was developed. This
model was made for volcanic and clayey agricultural soils. This code is no longer operable.
Archived, the code is available upon written request from Sverdrup or Belyazid.

2. Dynamic weathering models

a. 1987-2008; Warfvinge P., Sverdrup, H., Alveteg, M., Walse, C., Martinsson, L.: The SAFE
model and its helper routine MakeDep were created. SAFE is a generally applicable
dynamic soil chemistry and acidification model. This tool is used worldwide for
acidification research, forest sustainability assessments and for mapping critical loads.

b. 1995-1996; Rietz, F., Sverdrup, H., Warfvinge, P.; The SkogsSAFE model was developed.
This long-term perspective dynamic model simulates soil genesis, mineralogy dynamics,
soil chemistry and base cation release from chemical weathering in soils over time since the
most recent glaciation (14,000 years ago to present) (Rietz 1995, Warfvinge et al., 1996).
This code is written in FORTRAN. This code and its databases are available upon written
request from Sverdrup.

c. 1996-2004; Sverdrup, H., Wallman P., Belyazid, S., Alveteg, M., Walse, C., Martinsson,
L.: These scientists developed ForSAFE, an integrated biogechemical forest ecosystem
model for growth, nitrogen and carbon cycling. This code is written in FORTRAN code,
and the code is available upon written request from Sverdrup or Belyazid.

3. Regional mineralogy estimation

a. 1990; Sverdrup, H., Melkerud, P. A., Kurz, D.: The UPPSALA model was developed for
the reconstruction of soil mineralogy from soil total analysis data. This model is run in a
spreadsheet. It is available upon written request from Sverdrup.

b. 1998; Sverdrup, H. and Erdogan, B. The Turkey mineral depletion model (TMD) was
developed. This model estimates soil mineralogy from bedrock geology and estimates of
soil age. This code is written in STELLA®. It is archived and available upon written request
from Sverdrup.

c. 2005-2010; Posch, M., Kurz, D., Alveteg, M., Akselsson, C., Eggenberger, U., Holmqvist,
J; 2007 A2M, a model to quantify mineralogy from geochemical analyses was developed.
This code is available on-line from  doi:10.1016/j.cageo.2006.08.007,
https://dl.acm.org/citation.cfm?id=12317150r from Kurz or Akselsson (Posch et al., 2006,
2007).

These models are not commercial products. They do not have ready-made handbooks (only the early
single site PROFILE models had a good users interface and a user’s manual). The models are available,
but the best option to learn how to run these get training from the contact scientists in how to operate
the models and how to set up the input data for a site or a region. The core code is written in FORTRAN.

4. Theory

The model described here originates from the kinetic weathering model first proposed by Sverdrup and
Warfvinge (1987a,b, 1988a,b, 1992a, 1995) and Sverdrup (1990), but numerous features have been
added since. Some of the updates have been described in later studies (Akselsson et al., 2005, 2005,
2006, 2007, Alveteg et al., 2000, Kurz et al., 1998a,b, Sverdrup et al., 1997, 2002, 2008), and the latest
updates have been done specifically for this study. New weathering rate data published over the past 25
years have been regressed and new temperature dependencies and modifications of some rate
coefficients has resulted (Sverdrup 2010, Sverdrup et al., 1998, Rizzetto et al., 2016, Holmqvist et al.,
2002, 2003). The weathering sub-model in ForSAFE requires no calibration. It originates from the
regression of laboratory based experiments. The mineralogy and surface area inputs are based on site
measurements, and in general are not adjustable parameters.. Some of parameters can be challenging to
measure, such as some primary minerals with low soil content (apatite, epidote, pyroxene, amphiboles,
garnets accurate to 0.1%), or the determination of surface area estimates. However, getting accurate
field estimates of the weathering rates is also challenging, as it requires making many assumptions, and
has limitations on the accuracy of the obtained estimate. Thus, we are comparing uncertain model
estimates with equally or more uncertain field estimates at the best (Sverdrup et al., 1998).
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Figure 6. Overview of the PROFILE model. The original PROFILE model operates with a number of
layers, and a vertical percolation of water. A set of processes take place in every layer. (b) A look inside
PROFILE, showing how weathering is connected with other ecosystem processes (Sverdrup and
Warfvinge 1995).
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Figure 7. Different soil processes communicate with the weathering processes via the soil solution.
(Sverdrup et al., 2002).

The main ForSAFE model is calibrated on two variables, 1) the initial base cation saturation in the fluid
phase is adjusted to its an initial value at the starting simulation time to insure the cation concentrations
are consistent with the observed base cation saturation, and 2) the initial stock of nitrogen in the soil is
adjusted to match that currently observed in the system. Once this main model calibration is complete,
the ForSAFE model can calculate weathering rates from its kinetics database (Sverdrup et al., 1996,
1998, 2007) and the soil inputs. The ForSAFE model must be provided site specific characteristics like
mineralogy of the soil, soil layering, soil density, soil mineral surface areas, hydrological characteristics,
site temperature, ecosystem characteristics (trees, plants), typical inputs of rain, chemistry of that rain
and the amount of the major deposited pollutants.

4.1. Defining chemical weathering

We have had a utilitarian view of the chemical weathering process. Weathering is a provider of
neutralization for acids (neutralizing all or part of acid rain) and as a provider of nutrients for vegetation
(Ca*", Mg*, K, POy) (Sverdrup 1990, Sverdrup and Warfvinge 1995, Sverdrup et al., 2002). Thus
weathering rates are defined as “base cation release rates from the chemical weathering of minerals”,
“plant nutrient base cation release from the chemical weathering of minerals” or “the rate of acid
neutralization by chemical weathering of soil minerals”. Only secondarily were we interested in loss of
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minerals and soil profile development (Rietz 1995, Warfvinge et al., 1996, Sverdrup et al., 1996, 2002).
Thus, the weathering rates have been expressed as the sum of the release rates of base cations (Ca*",
Mg*", K, Na”) from the process. This is linked to the destruction of the mineral, though results are
generally expressed in these terms.

4.2. Mineral weathering rates

The weathering rate of a mineral, r, defined here as its dissolution rate, is assumed to stem from the sum
of 5 simultaneous chemical reactions, one involving the mineral surface and either aqueous H', H,O,
OH’, organic acid ligands, or CO,. Assuming that the reactions occur at distinct active mineral surface
sites, they can be summed linearly in accord with (Sverdrup 1990, Sverdrup and Warfvinge 1995):

Dissolution

Minerals reactions
RW = Z A] * Z Iy (13)
j=1 i=1

where Rw stands for the soil weathering rate in a single soil layer. A; refers to the soil mineral surface
available for dissolution for each mineral j considered, r; designates the rate of the individual chemical
reactions i. If some reactions occupy the same active mineral surface sites, the expression given above
would change to a quadratic sum. Note that the results of the two equations are quite similar, so that
the importance of knowing if several reactions operate of the same surface site is relatively small. For

the whole soil profile, we get:
Layers

Rsoil = Z Rws )
s=1

where Rsoii denotes the weathering rate in the whole soil profile, and s represents the layer number.
Evidence that the H", H,O and OH" reactions take place at distinct surface sites has been reviewed by
Sverdrup (1990) and again by Holmgqvist et al., (2003). The H»O, the organic reaction and the CO,
reactions may occur at the same sites, but considering the available data, we have assumed that they
occur at distinct sites and thus favour a linear sum of rates. More on these assumptions have been
reported by Sverdrup (1990), Sverdrup and Warfvinge (1995), and Holmgqyvist et al. (2002, 2003).

4.3. Field weathering rates
To estimate field weathering rates using laboratory determined kinetic coefficients, an ecosystem model
is required to scale the process to field conditions. This ecosystem model includes effects of climate,
soil morphology, plants, trees, microbiology in the soil and fungi (Lin et al., 2017, Smits and Wallander
2016, Smits et al., 2014). An ecosystem model is incorporated within PROFILE and ForSAFE (Sverdrup
and Warfvinge 1988a,b, 1991, 1992, 1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh
et al., 1992, Barkmann et al., 1999, Holmgqvist et al., 2003, Barkman et al., 1999). Figure 6 shows how
the steady-state model PROFILE was configured (Sverdrup and Warfvinge 1988a,b, 1992, 1993,
Sverdrup and Alveteg 1998). In the dynamic integrated terrestrial ecosystem assessment model
ForSAFE-VEQG, the system evolution over time takes account of interactions with a living biosphere,
organic matter turnover and ion exchange. Further details of these models can be found in the literature
(Sverdrup et al., 1987, 1995, 1996a,b, 1998, 2007, 2017, 2014, 2014, 2016, 2017, 2019, Wallman et
al., 2002, 2003, Zancchi et al., 2014, 2016a,b, Belyazid et al., 2017, 2018).

To estimate field weathering rates, each reaction i for every mineral j is corrected for the field
site temperature and for the partial wetting of the soil (Sverdrup 1990, Sverdrup and Warfvinge 1995,
Sverdrup and Alveteg 1998) in accord with:

Dissolution
Minerals reactions

Ry =h(8) * Z Aj * Z (ri * 8ij (T)) 3

=1 i=1

10
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where 0 stands for the fraction of the soil mineral surfaces wetted, A; designates the surface area of the
mineral j, h(0) refers to a wetting function for the mineral material and T signifies the soil temperature
in centigrade. g;(T) corresponds to the temperature adjustment function for reaction i of mineral j. r;
denotes the reaction rate of dissolution reaction i. This adjustment is based on the Arrhenius equation
and takes account of the difference in rates between the temperature of the field site and that of the
parameter database, which was set at 8°C (Sverdrup 1990). Figure 9 shows the reaction causal loop
diagram for silicate minerals in the soil (Sverdrup 1990, Sverdrup and Warfvinge 1995). This diagram
shows how the mineral weathering process communicates with other biogeochemical processes in a
terrestrial ecosystem. The causal loop diagram is a graphical display of the differential balances in the
system. Together with the flow charts, they define the system. The process has several intermediate
equilibrium steps, but pass an irreversible dissolution threshold (Figure 10) The irreversible step makes
the whole process irreversible. The reaction products exert a negative effect on the amount of activated
complex that can decay, thus they retard the dissolution reaction. But once the activated complex has
formed, it has a constant decay rate, set by quantum mechanics (Sverdrup 1990, Sverdrup and Warfvinge
1995). The full derivation of the rate equations, starting from the elementary chemical reactions and the
decay of the surface complexes in transitional state has been reviewed by (Sverdrup 1990, Sverdrup and
Warfvinge 1995).

4.4 The chemical reaction Kinetics
As stated above five reactions are assumed to contribute to the total chemical weathering rate of a silicate
mineral in soils (Sverdrup 1990, 2009, Sverdrup and Warfvinge 1995):

The reaction between the mineral surface and the aqueous hydrogen ion
The reaction between the mineral surface and the water molecule

The reaction between the mineral surface and aqueous carbon dioxide

The reaction between the mineral surface and aqueous organic acid ligands
The reaction between the mineral surface and the aqueous hydroxy ion

Nk L=

Reactions 1-4 in the list above were included in earlier versions of the PROFILE and ForSAFE mineral
dissolution rate models (Sverdrup 1990, Sverdrup and Warfvinge 1995). This original model has been
enlarged to include reaction 5.

The reaction of the mineral surface with the aqueous H' ion, reaction 1, is considered part of
the reaction with the H' reaction regardless of the source of H" (Figures 8 and 10). Both CO, and organic
acid can change the fluid pH, and this is accounted for in the H' reaction. Figure 8 shows the reaction
pathway through the H' reaction, adapted after Sverdrup (1990). The solid residuals rearrange to
secondary minerals. Amorphous phases may also precipitate from solution. These can slowly
recrystallize to secondary minerals. This has been generalized in Figure 9.

Reaction number 4 with organic acid ligands and the mineral surface contains at least two
distinct contributions one from fast and one from slower reacting organic acid ligands (Sverdrup 1990).
We have simplified this to one generic rate equation that could be parameterized for some minerals
(feldspar, olivine, pyroxenes, hornblende, apatite; Sverdrup et al., 1990, later literature has extended the
list somewhat). The importance of organic acids for weathering has been frequently over estimated in
the literature, and several claims of strong effects of organic acids (For a review see Smits and Wallander
2016, Smits et al., 2014, Sverdrup 1990, 2009 but also Keegan and Laskow-Lehey 2014 on why these
claims have been so persistent). The highest concentration of organic acids occur in the upper soil layers,
where the mineral content is lower. As the mineral contents increase with depth, the concentrations of
organic acids reach low levels with only marginal effect on the overall weathering rate (Sverdrup 2009).

Organic acids in soils are mostly sourced from soil organic matter decomposition. Trees, soil
fungi and mycorrhiza do not have the ability to increase the weathering rate significantly (See Sverdrup
1990, 2009, Sverdrup and Warfvinge 1992, Warfvinge and Sverdrup 1993 for details, kinetic
expressions and data underpinning this, see Smits and Wallander 2016 and Smits et al., 2014 on the
subject concerning apatite). Trees and vegetation can indirectly affect the weathering rates when they
take up Ca, Mg, K as nutrients, and thereby removing weathering rate products that can slow mineral
dissolution. Decomposition of plant debris and soil organic matter produce organic acids that may react
with the minerals. This effect is passive, and does not occur not by design of the plants (See Smits and
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Wallander 2016 and Smits et al., 2014 for measurements, Keegan and Laskow-Lehey 2014 for some
social aspects and Sverdrup 2009 for a further analysis from a systemic perspective).

Fluorides form soluble complexes in water with aluminium and silicates. The reaction of the
mineral surface with fluoride anions forms a strong reactions, but this occurs very rarely as the fluoride
concentrations are very low. The fluoride reaction has been ignored for most soils in natural terrestrial
ecosystems, as this would cause an unnecessary complication of the aluminium and silicate chemistry.

i secondary secondary
mineral mineral mineral
. reversible irreversible
reversivle + Ht +Mg/Ca + cations
-K/Na - water
H-mineral - silica
. Secondary Secondary
reversible + Ht/reactant residual solid
A A
surface complex ;
/ . .
. + water , irreversible
reversible , reorganization
/ wetting-drying
activated surface complex 7 soil cycles
irreversible 4 + cations
/
decay ; - water
, - silica
solid residuals /
* reversible
dissolved fragments amorphous
aluminium, cations, 4 precipitates

hydrogen ions, silica

Figure 8. The reaction pathway through the H' reaction passes over several reversible steps that change
the surface sites and create an unstable surface complex; the Transition State Surface Complex that will
decay irreversibly. Note that the process is irreversible, and thus cannot go backwards. The mineral
may dissolve completely, be altered to an alteration mineral or form precipitates that slowly recrystalize
to secondary solid phases.
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Figure 9. Reaction pathway for silicate minerals in soils according to Transition State Theory as
implemented by the authors (See Sverdrup 1990, Sverdrup and Warfvinge 1995 for a full explanation).
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Figure 10. The partial causal loop diagram for the weathering process in a soil. See Sverdrup et al.,
2018 for a full explanation of causal loop diagrams and their use in modelling.

The dissolution rate per surface area of a mineral is thus consistent with (Sverdrup and Warfvinge 1988,
1992):

I'Total = I'y+ + T'm,0 tTco, + IR 4)
The mineral dissolution kinetic equation for the 4 individual reactions applied in the original

PROFILE model was the simplified version of the full kinetic expression based on the Transition State
Theory applied to silicate chemical weathering (see Sverdrup 1990, Sverdrup and Warfvinge 1995):

[H*]"H Ky,0 nco 1 [R]™® 1
k P.- 2 k —_—— % —
fy * fu,0 + Keo, * Feo * fco, TR 1+ Korg * [R]™® ’ fr )

r= ky*
where the different n designate reaction orders. The different ky, ki20, kcoz, kr stand for rate coefficients.
The different fus, fioo, fco2, fr, fon signify retarding functions defined by (Sverdrup 1990, Sverdrup and
Warfvinge 1992, Warfvinge and Sverdrup 1993, Sverdrup and Warfvinge 1995):

[BC] \™ [AB]\'®
fgr =1+ * |14 (6)
CecH Calu
[BC] XH,0 [Al3+] YH0
o= (10 (LY (1 Y
CgcH,0 Caln,0
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[BC] Xco, [Al3+] Yyco,
feo, = 1+ o1+ (8)
Cgc.co, Caico,
[BCI\™ [AP*]\"™
fr=(1+ (14 9)

Cpcr Calr
[BC] X0H [Al3+] You
BC,0OH CALOH

Take note that the retardation functions represent molecular mechanisms that slow the reaction by
forming less active surface complexes (Sverdrup 1990, Sverdrup and Warfvinge 1995), and that it is not
a solution saturation term. Saturation with the liquid phase requires the assumption of reversibility and
the dissolution of these silicate minerals is not reversible under normal soil conditions. Such an
assumption is reasonable under high pressure and high temperature, but not valid under soil conditions,
or at normal room temperature and pressure in a chemical laboratory. The process is irreversible, thus

any equilibrium assumption is invalid (Denbigh 1971).

4.5. The updated Kinetics equation

These original equations have been enlarged with all terms fully expressed, including the OH -reaction
and the brakes from silicate on all reactions in the present study. The complete equation adopted in this

study for mineral dissolution rates per unit surface area is consistent with

I'Total = g+ + Th,0 +T'co, + TR+ + Ton- 1)

The full kinetic equation for all 5 reactions is (Sverdrup 1990, Sverdrup and Warfvinge 1995):

Nco,

H*|"H k P 1
r:kH*[ ] + 120 + kcoz*#ncoz *f—
1+ KCOZ * PCOZ CO,

fy fu,0

+kR + kOH*

"1+ Korg * [R]™R *§ fon

[R]™® 1 [OH~]"oH

For most minerals, the effect of reaction products is the strongest for aluminium at pH < 7, followed by
silica and base cations. At pH > 8, the retarding effect is strongest from silica and base cations, and less
pronounced for aluminium (Sverdrup 1990). Before applying Equation (12) a number of new adaptions

have been carried out as described below.

4.6. Retardation of mineral dissolution rates by organic ligands

The original formula for the effect of organic ligands on mineral dissolution rates was (Sverdrup 1990,

Sverdrup and Warfvinge 1995):

[R]™" 1
Torg = kR*T[R]nR *g 13)
this has been reformulated to:
k [R] i 14
= * _— * —
rOTg R 14+ [R] fR ( )
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The difference in these equations is that the latter contains one additional parameter [R]iimic in fr that
has the effect to set a lower concentration, below which the organic acids have no effect. This equation
has been parameterized and used in the final expression provided below. This limit was incorporated
into the organic acid ligand retardation function frx (Smits and Wallander 2016, Smits et al., 2014,
Sverdrup 1990, 2009).

4.7. Retardation of mineral dissolution rates by aqueous CO;

The main effect of the presence of CO; is to change the pH of the solution. This effect is accounted for
in the model by the chemical solution equilibria, and dealt with in the H" reaction. This term takes into
account the effect of a reaction between the CO; and the surface. The effect of the presence of aqueous
organic species decreases at higher concentrations of organic acids as the surface sites have become
saturated with organic acid ligands. We hypothesize that CO, exhibits the same behaviour. Some data
show that CO, also reacts with mineral surface sites as some type of carbonate ligand (a bicarbonate
coordinated towards a cation in the lattice) adsorbed to the surface, setting up a transitional surface
complex may decay. The mechanism by which CO; effects silicate dissolution rates appears to follow
the sequence (Sverdrup 1990, Sverdrup and Warfvinge 1995, Brady and Carrol 1994, Golubev et al.,
2005, Navarre-Sitchler and Thyne 2007, Berg and Banwart 2000):

1. The CO; molecule attaches to the mineral surface
The CO;molecule forms a bicarbonate-water-metal complex with the mineral surface on singly
coordinated metal cations. Indications are that it may be the COs* ligand that is forming a
surface complex.

3. A cation is lifted into the complex (K, Na, Mg, Ca, Fe, etc..)

4. A small fraction of the surface complexes detaches from the surface and the mineral unit
dissolves (Decay of the transitional surface complex)

Thus, potentially, there should be an upper concentration limit where additional aqueous CO; will have
no further effect on mineral dissolution rates. This seems to occur between 10 and 50 atmospheres of
CO; partial pressure for mica and chlorites (Drever et al., 1996, Mast and Drever 1987, Hausrath et al.,
2009). Some other minerals have indications of a similar behaviour, but this limit remains elusive in
terms of parameterization due to lack of data. In addition the dissolution rates of some minerals exhibit
no detectable effect of the presence of aqueous CO», and some are only slightly inhibited by this species.
Lagache (1965, 1976), Busenberg and Clemency (1976), Berg and Banwart (2000) and Golubev et al.,
(2005) reported experiments performed at different CO, partial pressures between 0 and 26.3 CO,
atmospheres and temperatures between 0 °C and 200 °C. The original equation used by Sverdrup (1990)
and Sverdrup and Warfvinge (1995) to describe these data was

Pncoz
Co,
rco, = Kcg, ¥ —————————— * (15)
: 214 Kco, * Pcngjz fco,
In this study we use a variation of this equation of the form:
Peo fcoz 4

=k _z 16

rCOZ CO, * <1 + KCOZ % PCOZ ) * fC()Z ( )

Evidence suggests that the value of Primit coz is in the range of 5 to 10 atmospheres and Kco,=0.05 and
ncoz2 =0.6 for albite (Sverdrup 1990). Navarre-Sitchler and Thyne (2007) suggests nco»=0.45, which is
for practical purposes the same. Berg and Banwart (2000) suggested nco.=0.25 at low pressures of CO,.
As mentioned above, a similar behaviour was observed for mica, biotite and chlorites. Indications are
that something similar takes place on the surface of montmorillonite, diaspore, gibbsite, goethite and
lepicrocite. There almost no experimental data available that allow the retrievial of the parameters in
Equation (14) for other minerals. The effect of increasing aqueous CO: has been overlooked in most
experimental studies.
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Figure 11. The calculated effect of aqueous carbon dioxide on mineral dissolution reactions as
calculated using Equation 15 in (a) and Equation 16 in (b). See Table 2 for values for different minerals.
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Table 1. Selection table for parameterization of the parameter z in the silica brakes to the different
weathering reactions.
# Silica brake response group z-values suggested by the mineral reactions
H* H0 CO2 Organic acids OH
1 K-Feldspar and sericite 6 2 2 2 1
Muscovite group and illites 7 3 3 3 2
2 Albite 8 4 4 4 3
Na-rich Plagioclase 7 4 4 4 3
Ca-rich Plagioclase 10 6 6 6 4
3 Biotite group
Chlorite group
Serpe_ntmlte - 16 6 6 6 4
Aluminum-nesosilicates
Aluminium pyroxenes
Tourmaline group
4 | Amphibole group 20
Pyroxene group 32
Epidote group 32 16 16 16 8
Nesosilicate 32
5 All other silicates 32 16 16 16
6 Carbonates n.a n.a n.a n.a n.a
g 1.0
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Figure 12. Calculated effect of dissolved Si on silicate dissolution rates generated using Equation (17)
together with Ksi=100, and the saturation concentration, Cs;=900 mmol per m* and the coefficients in
listed in Table 1.
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Values calculated of the effect of aqueous CO; on silicate dissolution rates are illustrated in Figure 11.
These calculations suggests that there is a significant saturation of the surface with CO; at approximately
5 to 10 atmospheres partial pressure of CO,. Data regression suggests that Kco» has a value in the range
of 2-20. See Table 1 for the values suggested for different minerals. Note that the values of this parameter
are based on minimal supporting experimental data - the available experimental data are few and
somewhat incomplete (See Golubev et al., 2005 for a limited but useful assessment). Overall, the effect
of CO, at normal soil conditions is limited. Nevertheless, these results provide a range for model
parameter adjustment. The effect of dissolved CO, on rates may become significant for deep aquifers,
subsurface CO; storage and in industrial high-pressure situations (Sverdrup 1990).

4.8 The silica retarding function

An illustrative plot of the effect of aqueous silica on silicate mineral dissolution rates is provided in
Figure 12. The equation proposed by the 2016 Ystad Workshop for the retardation effect of dissolved
Si on rates was:

1 1
= s a7

F - Si Zsi

The values Ksi; =100 was chosen to be used, which causes a gradual reduction in the dissolution rate of
minerals down to a minimum of approximately 0.9% of the rate unaffected by silica at very high silica
concentrations (see Table 1). Figure 13 shows values of the silica brake function as calculated using
Equation 17, using the surface constant value, Ks;=100, and the saturation concentration Cs;=900 mmol
per m® in Equation 17 together with the coefficients in Table 3. Exponents from zs; = 0.5 to 32 in
Equation (17) of the silica rate brake are shown in Figure 12.

All silica Silica in

) lution
Primary produced sol o B
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Figure 13. a) Plot visualizing the fate of silica during the dissolution process. b) Diagram showing how
the aluminium and silica concentrations are estimated in the model. The H™ concentration is used with
the equation called the “Gibbsite” equation (Eq. 19) to estimate the AP* concentration in the soil
solution. The H™ concentration and the AP" concentration is used in Equation 21 to estimate the silica
concentration that is used in the silica brake on the mineral weathering reactions.

Figure 13a shows a plot visualizing the fate of silica in the dissolution process. Only a small part of the
aqueous aluminium and aqueous silica produced by the dissolution of minerals remain in solution. Most
precipitates out as secondary phases. Figure 13b shows how the aluminium and silica concentrations are
estimated in the model. We assume that aluminium precipitates out from the solution, controlled by
something that appears to be gibbsite-like; it is likely something amorphous of unknown composition,
see Alveteg et al. (1995). The “Gibbsite” reaction is:

A + 3 OH" = Al(OH); (18)

Leading to the “Gibbsite” expression:

[Al*7]=Ke* [HT' (19)
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where the exponent Y has a value 0f 2.4-3. Kg is the Gibbsite coefficient and defined in the critical loads
mapping manual (Sverdrup et al., 1990). An expression analogous to the Gibbsite approximation is used
to calculate the Si concentration (Equation 22b, below). We assume that the Si will be present as
Hs4Si(OH)4 in the fluid phase, not upsetting any charge balance constraints. We assume that silica
precipitates out, controlled by what that appears to be kaolinite. As such, there is a similar expression
for approximating the silica concentration:

2 A"+ 2Si0, + 6 OH = AlSi,0s(OH)s + H;O (20)
which gives the apparent equilibrium expressions:

[AP'T * [OHT® * [SiO2] = Kaolnite (21a)
And this can be re-arranged to:

H* 6
[Si0;] = Kk * % (22a)

which leads to the “kaolinite” expression:

[H*]?

[Si02] = Kgaolinite * m

(22b)

Where Kkaolinite is the equilibrium coefficient being used. Note that the “equilibrium” equations assumed
above, are not true equilibrium, and that kaolinite and gibbsite minerals are very slowly dissolving
minerals under normal conditions. Both the “gibbsite” and “kaolinite” mentioned above are crude
simplifications, possibly representing an amorphous precipitate combined with precipitation kinetics
and ion exchange in the SkogSAFE model (The long term variant with variable mineralogy and surface
areas, and that runs for 15,000 years in one simulation, see Alveteg et al., 1995, Rietz 1995, Warfvinge
et al., 1996 for more information). These equations have been applied in the revised ForSAFE-2D
model.

4.9. The full kinetic expression
The equations and approximations summarized above leads to the full revised mineral dissolution rate
equations:

[H*]"H + Ky,0

Nco 1
r= kg * + Kco, * Pcozz*_

fy fu,0 fco,
e 1 [OH~]"oH
+kp*[R]"®*— + Kop*—— (23)
fr fon
where the retarding functions are given by:
[BCT\™ [AP*+]\™ [si] \™
fugr =1+ * 1+ * | (14 Kgpp (24)
Ceen CaLn Csin+
[BC] XH,0 [Al3+] YHz0 [Sl] ZH,0
fHZO =(1+ * |1+ * (1 + KSi,Hzo * (25)
Cgc,H,0 Caln,0 CsiHy0
nco Xco;
P 2 BC AP+ ) e02
fc02=<1+KCOZ*$> *<1+ [ ]> *<1+[ ]>
Peosimic Cgeco, Catco,
[Si] \*°z
* {1 +Ks;ico, * Coico (26)
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XR
[R] ) ( [BC]> ( [A3*]
fr= (1+ —=——) =[(1+ «[1+
R < [R]Limit Cgcr Calr
: <1+ L ) <1+
- = *
on Cgcon Cal,on
where:

[Si]

Cac,i is the lower limiting base cation concentration in reaction i,
Caui is the lower limiting aluminium concentration in reaction i,
Csi,i is the lower limiting silica concentration in reaction i,

Pcoziimic 18 the lower limiting carbon dioxide partial pressure in reaction i,

R Si
) * ((1 + Ksir * (C
SiR
[A13+] YoH . ZOH
) * ((1 + Ksion * (CS' OH_) )
1,

[Si]

)) @

(28)

[R]iimit is the lower limiting organic acid concentration in reaction i as concentration of DOC,
X; is the base cation brake reaction order for i,
yi is the aluminium brake reaction order for i

z; is the silica brake reaction order of i.

Kcos is the CO; brake coefficient and set to 20.
Ksii is the silica brake constant for reaction i, set to 100.

Table 2. Alteration series from muscovite, biotite and feldspars to clays, corresponding to Figure
14.
# | Mineral | Interlayer | Octahedral ‘ Tetrahedral
Muscovite pathway
1 | Muscovite K Al Al10Si3.0010(OH)2
2 | qllite 1 Ko.5sMgo.01Cao.01Alo.os Ali.6Fe025Mgo.1 Tio.04 Alo.6Si3 4010(OH)2
3 | Illite 2 Ko.44Mgo.01Cao.01Alo.07 Ali.6Feo2sMgo.1 Tio.0a Alo.6Si3.4010(OH)2
4 | Illite 3 Ko.30Mgo.013Ca0.013Al0.06 | AlisFeo32Mgo.1Tioos Alo.6Siz 4010(OH)2
5 | Illitic vermiculite Ko.35Mgo.03Cao.03Alo.os Al1.gFeo32Mgo.osTioo7 | AloSiz4010(OH)2
6 | Kaolinite Al.0Si205(OH)4
Chlorite pathway
1 | Chlorite CaosMgis AlioFeos Mgis Al10Si3.0010(OH)2
2 | Vermiculite 1 Ko.32Mgo.07Ca0.00Alo.0s Ali.s2Feo.3sMgo.1 Alo.6Siz 4010(OH)2
3 | Vermiculite 2 Ko.30Mgo.05sCao.0sAlo.os Al ssFeo32Mgo.osTioos | Alo.sSiz4010(OH)2
4 | Vermiculite 3 Ko.2sMgo.04Cao.04Alo.os Al .ssFeo.32Mgo.osTioos | Alo.6Siz4O10(OH)>
5 | AI/OH interlayered Ko.11Mgo.04Cao.0aAlo.1 Ali1.52Feo.4aMgo.osTioos | Alo.sSizsO10(OH)2
vermiculite
6 | Kaolinite Al20Si205(OH)4
Biotite pathway
1 | Biotite Ki.oMg.o AlosFeosMgi.o Al1.0Si30010(OH)2
2 | Vermiculite 1 Ko.32Mgo.07Ca0.090Al0.05 Alis2FeossMgo.1 Alo.6Si3.4010(OH)2
3 | Vermiculite 2 Ko.30Mgo.0sCao.0sAlo.os Al ssFeo.32Mgo.osTioos | Alo.6Siz4O10(OH)2
4 | Vermiculite 3 Ko.2sMgo.04Cao.04Alo.0s Al ssFeo32Mgo.osTioos | Alo.6Siz4010(OH)2
5 | A/OH interlayered Ko.1Mgo.04Cao.04Alo.1 Alr.s2Feo.4aMgo.osTioos | AlosSizsO10(OH)2
vermiculite
6 | Kaolinite Al.0Si205(OH)4
Feldspar pathway
1 | Feldspar K, Na, Ca AlLiSiz0s
2 | Sericite Nao.1Ko.75 Al1.oMgo.1 Alo.84Si3.16010(OH)2
3 | Sericitic vermiculite 1 Ko.3 Mgo.02Cao.05 Alo.2 Al10Si3010(0OH)2
4 | Sericitic vermiculite 2 Ko.1 Mgo.osCao.o2 Alo.os Al10Si3010(OH).
5 | A/OH interlayered Ko.1Mgo.04Cao.04Alo.1 Al s2Feo.aMgo.osTioos | AlosSizsO10(OH)2
vermiculite
6 | Kaolinite Al.0Si205(OH)4
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4.9. Secondary phases in the soil

A significant fraction of the primary minerals dissolve incongruently to alteration minerals. Attention
was also paid to the secondary minerals and clays. Both terms are inconsistently used in the literature,
and thus we define them as follows: We have defined clay minerals by their composition (Kaolinite,
gibbsite, quartz) and as listed in Table 3. This approach is thus not based on their particle size, but on
the molecular crystalline structure. Secondary minerals formed in either two ways; a mineral that has
been altered significantly in situ as is described in Table 2, for example when muscovite is altered
through a series of illite and vermiculite phases and finally to kaolinite as the end product. Vermiculite,
illite, montmorillonite are minerals of variable composition that are often called clays when they are not
in crystalline form. However on the microscopic level, they have a crystalline structure. Thus, clay can
be defined by particle size alone, or as a specific mineral. We have used the specific mineral name,
independent of particle size. In the soil, amorphous phases are composed of aluminium, silicate and soil
organic substances. These amorphous phases slowly change composition as the organic matter
decomposes and a more solid structure emerges. The alteration series from muscovite, biotite and
feldspars to clays, are illustrated schematically in Figure 14 and listed in Table 2. The concept behind
Table 2 is that as these minerals go through incongruent dissolution (alteration), they become depleted
in certain ions (like Ca, Mg, K or Na, and depending on pH, in aluminium (at low pH) or silica (at high
pH), but the crystal structure remains constant. Thus the crystal lattice destruction rate remains, but the
base cation content of this structure becomes poorer, yielding less cations and less acidity neutralization.
We have simplified this process down to 4 pathways, the muscovite pathway, the chlorite pathway, the
biotite pathway and the feldspar pathway. Muscovite changes through a series of alteration reactions to
illite and finally to kaolinite. Chlorite alters to vermiculites and finally to kaolinite. Biotite goes through
a series of alterations to vermiculite and kaolinite. Feldspars go through alterations, K-Feldspars through
sericites and plagioclases to vermiculites (Holmqvist 2004, Holmqvist 2002, 2003). This sequence has
been discussed in the SUFOR project and again in the QWARTS workshops and will be later
implemented into ForSAFE-2D.

Muscovite = = = = = — — — » llite
v

-~
K-Feldspar

N Y
— Dissolves Kaolinite

Taken to

Chlorite _
- secondary

-~

Dissolves

e
Hornblen/de ——————— Dissolves

Released
Epidote total
/ \ Precipitated as
Pyroxenes Dissolves secondary
Olivines Soil
solution

Figure 14. The alteration sequence developed for primary mineral towards alteration minerals, of which
some are clay minerals. All minerals that dissolve contribute to the precipitation of secondary minerals.

4.10. The parameterization of the kinetic rate equations

The parameterization database for the PROFILE model (and ForSAFE) was updated to be consistent
with previous databases (Sverdrup 1990, 1996, 2009, Sverdrup and Warfvinge 1988a,b, 1991, 1992a,b,
1993, 1995, Holmgqvist 2002, 2003). The original PROFILE database had kinetic data for 59 different
minerals, and about 25 different carbonates and some artificial silicates. In addition new data from our
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own experiments (Sverdrup 1998, 1996, Sverdrup and Alveteg 1998, Holmgqvist et al., 2002, 2003;
Sverdrup and Holmqvist 2004) and from the literature’ have been considered. Care of these new data
sources we have about 90 different silicate or aluminium minerals and 6 generic carbonates listed. Of
these minerals, the regression of ~20 have yet to be published. In due time, these will get their own
proper publications, it is not the scope of this study to do them in detail. Such a documentation would
be 1-2 years into the future from the present time. Rather some selected examples will be presented
below. The estimation of rate parameters was performed using the complete rate equation 1 and
Equations 21-26. As such for every rate from an experiment, the rate must be known, along with the
concentrations of all reactants at the conditions that rate was observed including [H'], pCO., [R], [OH
], as well as the reaction products in solution potentially contributing to retarding the dissolution
reaction; [Ca?'], [Mg”'], [K'], [Na'], [A’"], [Al(OH)s], [H4SiO4] (Sverdrup 1990, Sverdrup and
Warfvinge 1995). The experiments must have been performed over sufficient reaction conditions for
the parameters in Equation 29 to be estimated. In some cases, the data from different experimental
studies were combined, to determine rate parameters or a reaction orders. During the regression process,
experimental studies with insufficient data or documentation were omitted, unless the gap could be
bridged with reasonable assumptions. Data regression was performed by rearranging equation (22) to:

2Examples are the following list of articles and studies we have used, but not limited to: Ajemba and Onokwuli 2012, Alekseyev
2007, Alexeyev et al., 1997, Amram and Ganor 2005, Amrhein and Suare 1992, Anbeek 1992a,b, Anbeek et al., 1994, Aradottir
et al., 2013, Bandstra et al., 1998, Beig and Liittge 2006, Bengtsson and Sjoberg 2009, Berg and Banwart 1994, 2000, Bibi et
al., 2010, Bickmore et al., 2006, Blake and Walther 1996, Blum and Stillings 1995, Blum and Lasaga 1988, 1991, Blum 1994,
Brady and Walther 1992, Bray et al., 2015, Brandt et al., 2005, Brantley 2003, 2008a,b, Brantley and Stillings 1994, 1996,
Brantley and Chen 1995, Brantley and Conrad 2008, Brady and Walther 1992, Braun et al., 2016, Bray 2015, Cama et al.,
2000, Carrol and Knauss 2005, Carrol and Walther 1990, Carrol and Smith 2013, Casetou-Gustafsson et al., 2018, Casey et
al., 1991, Casey and Sposito 1992, Casey and Westrich 1992, Chairat et al., 2007, Chen and Brantley 1997, 1998, 2000, Chin
and Mills 1991, Critelli et al., 2015, 2014, Cotton 2008, Crundwell 2013, 2014a,b,c,d, 2015a,b, 2017, Daval et al., 2010a,b,
2013, Devidal et al., 1997, Diedrich et al., 2014, Dixit and Carrol 2007, Dove and Crerar 1990, Dorozhkin 2012, Dresel 1989,
Drever et al., 1994, 1996, Drewer and Clow 1995, Drewer and Zobrist 1992, Drever and Stillings 1997, Dorozin 2012,
Duckworth and Martins 2003a,b, Fernandez-Bastero et al., 2008, Fischer and Liebscher 2014, Finlay et al., 2010, Fouda et al.,
1996a,b, Frogner and Schweda 1998, Fumuto et al., 2001, Gahrke et al., 2005, Ganor et al., 2005, Gautier et al., 1994, Gislasson
and Hans, 1987, Gislasson and Oelkers 2003, Gislasson et al., 1996, Godderis et al., 2006, Glover et al., 2003, Godderis et al.,
2006, Golubev et al., 2004, 2005, Guidry and Mackenzie 2003, Goyne et al., 2006, Gudbrandsson et al., 2011, 2014, Gustafsson
and Puigdomenech 2003, Hamilton et al., 2000, 2001, Hangx and Spiers 2009, Harouiya et al., 2007, Harouiya and Oelkers
2004, Haug et al., 2010, Hausrath et al., 2009, Hayashi and Yamada 1990, Helgeson et al., 1984, Hellmann 2007, 2006, 2010,
Hilley et al., 2010, Holmqvist and Sverdrup 2001, Holmgqyvist et al., 1999, 2002, 2003, 2004, Hodson 2006a,b, Hodson and
Langan 1999, Hodson et al., 1996, 1997, Hinchen et al., 2006, Huertas et al., 1999, 2001, Jin et al., 2011, Johnsson et al., 1992,
Johnson et al., 2014, Jonckbloedt 1998, Jonsson et al., 1995, Kalinowski 1997, Kalinowsli and Schweda 1995, Kalinowski et
al., 1998, Knauss et al., 1993, Kehler et al., 2003, 2005, Kuwahara 206a,b, 2008, Labat and Viville 2006, Lagache 1965,
Langan et al., 1996, Lartigue 1994, Lasaga 1995, 1998, Lowson et al., 2005, 2007, Lazaro et al., 2015, Lu et al., 2013, 2015,
Ludwig et al., 2013, Maher 2010, Malmstrom and Banwart 1997, Malmstrém et al., 1996, Maurice et al., 2002, Mazer and
Walther 1994, McCourt and Hendershot 1992, Metz et al., 2005, Meyer 2014, Mongeon et al., 2007, Murakami et al., 1998,
Murphy and Helgesson 1987, Murphy et al., 1992, 1996, Nagy 1995, Nagy and Lasaga 1992, Nagy et al., 1991, Navarre-
Sitchler and Thyne 2007, Nesbitt et al., 1991, Nystrém-Claesson and Andersson 1996, Numan and Weaver 1969, Oelkers
2001a,b,, Oelkers and Schott 1995a,b, 1998, 2001, Oelkers et al., 1994, 2008, Oelkers and Gislasson 2001, Olsen 2007, 2008,
Olsson 2007, Opolot and Finke 2015, Oxburgh 1991, Oxburgh et al., 1994, Paces 1983, Palandri and Kharka 2004, Pokrowsky
and Schott 2000a,b, 2002, Pokorowsky et al., 2004, Poulson et al., 1997, Prajapati et al., 2014, Price et al., 2005, Pigiobbe et
al., 2009, Ragnarsdottir 1993, Ragnarsdottir and Graham 1996, Raschmann and Fedorockova 2008, Rietz 1995, Rimstidt et al.,
2012, Ross 1969, Rosso and Rimstidt 1999, Rozalen et al., 2014, Running and Gower 1991, Saldi et al., 2007, Sanemasa and
Katura 1973, Schnoor 1990, Schofield et al., 2015, Schott et al., 2009, 2012, Smith et al., 2013, Smits and Wallander 2016,
Smits et al., 2014, Soler et al., 2008, Stephens and Hering 2003, Stillings and Brantley 1995, Stillings et al., 1996, Stockmann
et al., 2008, Stumm and Wollast 1990, Stumm and Wieland 1990, Sverdrup 1990, 1996a,b, 1998, 2009, Sverdrup and Bjerle
1982, Sverdrup and Alveteg 1998, Sverdrup and Holmqvist 2016, Sverdrup and Warfvinge 1992a,b, 1995, Sverdrup et al.,
1986, 1987, 1995,a,b, 1998, 2002, 2006, 2008, 2010, Traven et al., 2005, Swoboda-Collberg and Drever 1993, Taylor et al.,
1999, 2000, Taylor and Blum 1995, Taylor et al., 2017, Techer et al., 2007, Teir et al., 2007, Terry 1983a,b,c, Terry and
Monhemius 1983, Thom et al., 2013, Valsami-Jones et al., 1998, Turpault and Trotignon 1994, Valsami-Jones et al., 1998,
Voltini et al., 2012, Wang and Giammar 2012, Wang et al., 2017, Warfvinge and Sverdrup 1992,a,b,c,d, 1993, 1995, Warfvinge
etal., 1987, 1992, 1993, 1996, 2000, Weissbart and Rimstidt 2000, Welch and Ullman 1993, 1996, 2000, Westrich et al., 1993,
White and Brantley 1995, 2003, White and Blum 1995, White et al., 1999, Whitfield et al., 2009, 2010, Wogelius and Walther
1991, 1992, Wolff-Boenisch et al., 2004a,b, 2011, Wood et al., 1999, Xie and Walter 1994, Yadaw and Chakrapani 2006,
Yadaw et al., 2000, Yang and Steefel 2008, Yoo et al., 2009, Yu et al., 2016, 2017, Zabowski et al., 2007, Zhang and Bloom
1999a,b, Zhang et al., 1996, 2015, Zhang et al., 2013, Zhang and Liittge 2017, 2009a,b, Zhu et al., 2010, Zassi 2009, Zavodsky
et al., 1995, Zysset and Schindler 1996).
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In the neutral pH range, such as pH 7 and lower, this equation can be simplified in most instances by
removing the OH-reaction to get (Sverdrup 1990):

Nco
[H*]™ Ky,0 Peo,” 1

kH * f = Tobserved — (f + kCOZ * T . phcos * f_

H H,0 1+ Kco, * PCO2 Co,
[R]"® 1
R R

and the in the acid pH range, this may be reduced to:
[HF]™

ky * fiy = Tobserved (31)

By entering the concentrations of H, base cations, aluminium and silica into these equations, we can
determine the rate coefficient, kn, and fu+. When the experiment was performed in the absence of
organic acids, as is often the case, Equation (29) reduces to:

Nnco,
[H*]™H K,0 Peo
kg * f = Tobserved — (f =+ Kco, * . Tico, © 3 ) (32)
H H,0 1+ Kco, * Peg Co,
2

Some experiments were conducted at very low or with no dissolved CO; present and with organic
ligands absent. In such cases, Equation (29) reduces to (Sverdrup 1990, Chin et al., 1991):

[H¥]™ ky,0
ry = ky* f = Tobserved T 2 (33)
H H,0

In this latter case, two reactions influence mineral dissolution rates: 1) the H" reaction, and 2) the water
reaction. The variation of rates as a function of pH at such conditions consists of a ‘flat part’ where rates
are controlled by the water reaction (Figure 17). At these conditions, by entering the concentrations of
retarding base cations, aluminium and silica, the rate coefficients can be determined. In the semi-neutral
region (pH 6-8), the expression may be a flat line and the rate expression is reduced to:

Kk Poy” 1 [RI™* 1
H,0 o,
) _ Koo *——0 e Ly 3y
Observed fHZO €O, 14 Keo, * P;g:z fC02 RO+ Kpg * [R]"® fR) (

When neither organic ligands nor COs is present, and in the pH range of 6-8, this is reduced to:

Ky,0

(35)

Iobserved = f
H,0

With only organic acid ligands but no CO; present, and in the pH range of 6-8, the rate expression
becomes:

Ky,0 [R]™r 1
K o x — 36
R TR AR iy (36)

I'observed = f
H,0
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In the far alkaline region (pH 10-14), where we may assume that the OH- reaction will be dominant, the
rate expression reduces to:

[OH~]mon

Koy * T = I'observed (33)
OH

By entering the concentrations of base cations, aluminium and silica, fon can be determined and the rate
coefficient, kon, and reaction order, non be determined. The reaction order ny and the coupled non for
the H" and the OH' reaction is derived from plots of the rate versus the solution pH

Figure 15 shows diagrams used to quantify the retarding effect of aluminium on the dissolution
rate of albite feldspar. The figures were adapted from Sverdrup (1990) and the work prepared for
Sverdrup and Warfvinge (1995) and Sverdrup et al., (2009). Similar results for aluminium was found
by Oelkers (2001), Oelkers and Gislasson (2001), Oelkers and Schott (2001, 1995a,b), Oclkers et al.,
(1999) for several minerals. The aluminium brake is very prominent in the range of log [Al] from -7 to
-4.5. For further information, see Sverdrup (1990) and Sverdrup and Warfvinge (1995).
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Figure 15. Regression plots showing the retarding effect of aluminium on the dissolution rate of albite.
The figures were adapted from Sverdrup (1990). The decrease of rates as a function of aqueous
aluminium concentration (the aluminium brake) is very prominent in the range of log [Al] from -7 to -
4.5. Aluminium concentrations are in kmol m>. The figures were adapted from (a) Sverdrup et al. (1990)
and from (b) Carrol and Knauss (2001). For further information, see Sverdrup (1990) and Sverdrup
and Warfvinge (1995).
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Figure 16. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate
of albite. (Sverdrup 1990). The circles represent the data from experiments, the solid lines the model
simulations.
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Figure 17. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate
of albite. The solid line is the reaction rate without CO: or organic acid ligands.
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Figure 18. The weathering rate model was used to plot different combinations of conditions, to
investigate the different shapes the weathering rate dependency can change (See Figure 10 and 12 for
how the principle works). The experimental data were overlaid in such diagrams, to help retreive kinetic
parameters (e.g. rate coefficients and reaction orders). The last diagram, lower right, shows the
combination of different combinations of organic acid ligand concentrations and CO, pressures in
atmospheres.
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The reaction order for the organic acid reaction is derived from experiments where only the
concentration of organic ligand, [R], has been varied. This was found to be ng=0.5 on most experiments
and this exponent value was universally adopted, suggesting a divalent ligand being the reactive agent
(Sverdrup 1990, Sverdrup and Warfvinge 1995, Oelkers and Schott 1998).

The reaction order nco» for the reaction with CO; has been very difficult to constrain, as very
few experiments that allow it to be determined are available (Daval et al., 2013, Berg and Banwart 2000,
Golubeyv et al., 2005, Fernandez-Bastero et al., 2008, Hangx and Spiers 2009, Lagache 1965, Wogelius
and Walther 1991, Wolff-Boenisch et al., 2011, Stephens and Hering 2004, Sverdrup 1990). The few
experiments available to do not completely agree on the issue. Many experiments dealing with the effect
of COs on weathering do not have the required resolution to allow data regression,. For the minerals
where the CO; has little or no effect, this is fine, but for some it is. It was found to be nco,=0.6 and was
universally adopted. Sometimes these parameterizations can be determined by making single factor
plots, but more often, the whole model must be used to recreated the experiments, taking many factors
into account simultaneously. Figure 16 shows the effect on the base cation (a) and the aluminium
concentration (b) on the dissolution rate of albite. Various plots were used to help data interpretation.
Figure 17-18 illustrates how the model was used to plot up different combinations of conditions, to
investigate how distinct factors affect the weathering rates. The experimental data were overlaid in such
diagrams (Figures 16-20) to help interpretation towards kinetic parameters (rate coefficients and
reaction orders), for example the combination of different organic acid ligand concentrations and
aluminium concentrations. The last diagram, on the lower right of Figure 18, shows the combination of
different combinations of organic acid ligand concentrations and CO; pressures in atmospheres. Figure
19 shows the effect on rates of the base cation (a) and the aluminium concentration (b) on the dissolution
rate for albite. The circles represent the data from experiments.

A further example of parameterization efforts is shown in Figure 19 for the case of hornblende
dissolution rate data reported by from Holmqvist and Sverdrup (2004) and Holmgqyvist et al. (2002,
2003). Figure 19a and 19b shows these data as a function of pH. The figures were adapted from
Holmgpvist et al., 2003). Figure 19¢ shows the retarding effect of aluminium on the dissolution rate of
hornblende, adapted from Holmqvist et al., (2003). Figure 19d shows a three-dimensional plot for the
dissolution rate of hornblende, as a function of solution pH and aluminium concentration (Sverdrup,
1990).

In total, the dissolution rate of hornblende is defined by a response surface in at least 8 and
perhaps 9 different chemical factors: pH, Ca+Mg, K, Na, Al, DOC, CO, Si and sometimes Fe, and in
addition to mineral surface area, soil wetting degree and temperature. For example changes in the
aluminium concentration, can change the weathering rate by several orders of magnitude. Additional
examples are presented in Figs. 20-24.

Figure 20 shows a typical example of data generated for different minerals during the 1996-
2002 field seasons using a continuous, flow through, fluidized bed, with constant concentration feed
solutions. This is for epidote after Holmqvist et al, (2003). Figure 21 shows the experimentally measured
dissolution rates of epidote as a function of pH according to a number of weathering experiments. The
release of all relevant ions were monitored by frequent during the experiments. Figure 22a shows the
activation energy for the dissolution of epidote. The dependence of the dissolution rate of epidote on the
calcium concentration at pH 2 and pH 4 is shown in Figure 22b. Figure 23 and 24 shows data from
Holmgqvist and Sverdrup (2004) and Holmgqvist et al., (2002, 2003) confirming that an arithmetic
addition of the various rate contributions gives the best fit of the data, consistent with the principle
shown in Figure 10. Figure 24 shows results from hornblende, the bottom diagrams (A, B) shows
results from a natural illite mineral extracted from an agricultural soil sample taken at the agricultural
research site at Lanna, Swedish Agricultural University, Uppsala, Sweden. Model lines were fitted to
the data points to set the rate coefficients and reaction orders. Note that a complete set of kinetic
parameters could not be directly generated for all minerals due to incomplete experimental data sets.
Estimates for some of the rate coefficients in Table 3 were estimated based on mineral crystal structure
analogies (Sverdrup 1990, Holmqvist 2003, Sverdrup and Stiernquist 2002, Crundwell 2014a,b, 2016),
crystal bond energies (Sverdrup 1990, Velbel 1999, Crundwell 2014b, 2016) and comparison with
analogue minerals. For many of the minerals, the dissolution kinetics patterns are very consistent. The
dissolution rate curve shapes of feldspars, garnets, olivines, zoisites allow for this, but also muscovite
to illite alteration series, K-feldspar to sericite alteration series.
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For example, for the feldspars, we have the data to parameterize the H' reaction for 5 different
plagioclases, the mixed composition plagioclases from albite to anorthite. A plagioclase with a different
composition will be interpolated between these as shown in Figure 24. We have the same situation for
K-feldpars with increasing contents of Na and Ca, giving a systematic shift in parameter values. The
pattern is very consistent as can be seen from the diagrams shown in Sverdrup (1990). However, for the
OH’ reaction we have less information. The OH rate equation is theoretically linked to the H' reaction,
but more sensitive to the concentration of the same base cation as in the mineral (Na, K, Ca). With the
available data and the theoretical link, we can estimate the missing parameters for some of the feldspars.
There is a similar situation for the H>O reaction. We have the experiments that allow it to be constrained
for most of the feldspars, and the shifts between the feldspars are systematic and consistent.

For the reaction with organic acid ligands, the situation is more complex. Many of the
dissolution experiments run with organic acids were present were poorly documented, and getting any
accurate parameterization out of them is not possible. For some minerals like feldspars and olivine, some
experimental results are available (Stillings et al., 1996 is one example for feldspar) that allow for kinetic
parameter estimation. They found ng=0.75 in the range pH 3-7. For other minerals, we have only single
experiments, scattered among some few minerals. Few experiments are available, and for only a few
types of minerals. These have delivered suggestions for expert judgement on what the parameter values
probably would be. The situation is similar for the reaction between the mineral surface and CO,. The
reaction seems to be weak, and only play a role at elevated pressures. For example, Wang (2013), based
on the experimental results of Hénchen et al., (2006) concluded there was no effect of the CO, reaction
on olivine dissolution rates beyond the effect caused by CO, on pH.

Retrieved kinetic parameters are provided in Table 3. Parameters that are derived directly from
of one or more experiments are given in bold font. The kinetic parameters that were estimated are shown
in roman font. The minerals in this table are divided into 11 groups of basic crystalline structures. Some
of the minerals inside each group have large commonalities with respect to how they dissolve, and this
was of great help in parameter estimation table.

For feldspars, nesosilicates and phyllosilicates, the amount of experimental data available make
the retrieved parameters robust. If three different compositions of basically the same type of mineral, A,
B and C, are known to have relative rates A>B>C, and we have the kinetic parameters for A and C, then
we can be fairly certain that the values for the kinetic parameters for B are constrained between A and
C (see Figure 25). If they are close, then we would be able to set B fairly accurately, even with sparse
experimental data for B. This has been the case for many minerals (In particular feldspars, nesosilicates,
phyllosilicates), and is a way to get more parameterization out of a limited experimental data sets. For
the pyroxenes and amphiboles, the experiments indicate that the minerals tend to behave with some
variety depending on their composition, making the estimates less accurate. But, many pyroxenes are
mixtures of definable end members and this was utilized to interpolate and estimate missing parameters.
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Figure 25. Some mineral groups have very similar dissolution rate behaviours. Such similarities can be
used to interpolate between them (b) when we have intermediate minerals with only a few data points
available (a).

Nevertheless all parameters in Table 3 together with their kinetic expressions should be further validated
as additional experimental data become available. The ultimate test of the kinetics equations and
parameters how well they describe both laboratory experiments and field data where independent
estimates of the weathering rate is available. Such tests have been generally successful (see the
publications referred to earlier, and Erlandsson Lampa et al., 2016, 2019), suggesting that the combined
methodology (experiments, analogues, interpolations, estimates based on theoretical rescaling,
predictions made based on crystal bond energies) have captured the kinetics sufficiently well. More on
this will be forthcoming as the publishing of further comparisons are made.

5. Results

5.1. Kinetics and parameterization

The tabulated kinetics coefficients are the major result of this report and they are provided in the Tables
1-4. In total the dissolution kinetics parameterization for 93 minerals are provided. The fundamental
rate equation, as described above was adapted after Sverdrup and Warfvinge (1988, 1992, 1995) and
Sverdrup (1990, 1998) and parameters are for a temperature of 8°C and standard atmospheric pressure.
The numbers in bold in Table 3 represent direct measurement, normal font parameters were estimated
by interpolation from analogues. The following default approximations were adopted due to the lack of
data; Cy for the H*-reaction is taken to be equal to 3 of the Cy; for the OH -reaction. Cpc for the H'-
reaction is taken to be '3 of the Cpc for the OH -reaction. The retarding reaction orders for base cations
(x), aluminium (y) and silicate (z) have been extracted from separate datasets and experiments where it
was possible to separate out the effect of silicate alone, having subtracted the effect of base cations and
aluminium first. Default values were computed and scaled with Madelung crystal lattice site energy (See
Sverdrup 1990 and Velbel 1999 for how a-priori weathering rate coefficient estimates are made from
crystal properties). Irreversible dissolution implies that the mineral cannot be formed from solution
under soil conditions, and that there is no saturation concentration or any back reaction. Pokrovsky and
Schott (2000) and Rosso and Rimstidt (2000) reports a reaction order of ny+=0.5 for forsterite, but others
report ny+=1.0 (Grandstaft 1986, Blum and Lasaga 1988, Siegel and Pfannkuch 1984, Sverdrup 1990).
ny+=1.0 seems to be a property of the nesosilicate group, but there is a possibility that presence of
impurities such as pyroxenes or feldspars in the nesosilicate may give it a different crystal structure and
thus a different nu+. Others, Berg and Banwart (2000), report nu+ in the range 0.5 to 1, depending on
pH.

Table 4 shows the temperature dependencies of the dissolution rates. All variations of rates on
temperature are computed using a modified Arrhenius equation (Sverdrup 1990, 1998, Sverdrup and
Warfvinge 1988, 1992, 1995). Parameters for this equation generated from experimentally measured
rates are shown in bold. Where experimental data were not available estimates were computed and
scaled with Madelung crystal lattice site energy from garnet (Sverdrup 1990, Velbel 1999). Values in
normal font were estimated from the lattice energies and the properties of the mineral surface. Table 5
shows the stoichiometry of the minerals considered in this study.

29



Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38
Manuscript under review for journal Biogeosciences
Discussion started: 18 February 2019

© Author(s) 2019. CC BY 4.0 License.

Sverige
Sweden

ge
vay

0Oslo
©

Biga L
|

nmarkKobeghavn Lietuva
nmark - Lithuania

Figure 26. Location of the research site in Northern Sweden. The colours delineate the different
subcatchments of the Svartberget research area. The map on the left shows the catchment co nsidered
in this comparison.

5.2. Testing the model

The most recent comparison between model results and field observations follows in the article by
Erlandsson-Lampa et al. (This issue). The research catchment where many of the model applications are
focused is located in Northern Sweden (Figure 26). A few examples are shown in Figure 27 and 28.
Figure 27 shows a comparison between calculated and observed base cation concentrations at the
Svartberget research site. The model takes into account all the soil processes such as ion exchange,
vegetation interactions, decomposition of organic matter, transport in the soil of the catchment in
horizontal and vertical directions and weathering. The model results reproduces the observed
concentration pattern (Zanchi et al., 2016). Figure 27a shows the modelled Bc® and Figure 27b shows
the Si concentrations, plotted against logio of water transit time (smooth lines). Overlaid are the observed
base cation (Bc) and Si-concentrations from the soil profile, plotted against logio of soil depth (solid
lines with markers). The weathering model considers all soil processes including ion exchange,
vegetation interactions, decomposition of organic matter, water transport in the catchment in both the
horizontal and vertical directions (Belyazid et al., 2004, 2011a,b, 2010a,b, 2015, 2019, Erlandsson-
Lampa et al., 2019, Sverdrup et al., 1995, 2002). The model reproduces the observed field observations
as a function of depth (Zanchi et al., 2016). The close correspondence between the calculated dissolved
metal concentrations and the field observation are notable considering that we employed a simple
silicate dissolution rate model to determine the composition of the aqueous phase in the soil.

6.3. Discussion

The detailed comparisons between laboratory measured and field determined weathering rates generated
using the kinetic models coupled to soil processes performed using PROFILE and ForSAFE stand out
in stark contrast to the traditional geochemical models, which give results that are several orders of
magnitude off (Erlandsson-Lampa et al., 2019). It was discovered that past efforts to describe field
weathering rates using laboratory measured dissolution rates without consideration of its coupling to the
major soil processes yielded inaccurate results (Model types represented by codes such as PHRQKIN
and similar codes) — see Erlandsson Lampa et al. (2016) and Nystrom-Claesson and Andersson, (1996).
Such observations demonstrate a need for a new approach that takes into account the complete set of
processes occurring in the soil.

3Be is the base cations that the plants take up; Ca+Mg+K, BC is Na+K~+Ca+Mg.
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Figure 28. Modelled base cation (a) and Si (b) concentrations from plotted against log o of water transit
time (smooth lines) at the Svartberget field site (See Erlandsson-Lampa et al., 2016, 2019 for a full
description of the field test of the model). Overlain are the observed base cation and Si-concentrations
from the soil profile, plotted against log o of soil depth (straight lines with symbols).

Note that the weathering brakes used in this approach act differently on the weathering rates that the
equilibrium expressions used in earlier models (Aagaard and Helgeson 1982, Murphy et al., 1987,
Alekseyev et al., 1997, 2004, 2007, Oelkers 2001, Oelkers et al., 1994, 2001, 2008). The preference for
using the brakes rather than the traditional saturation expression based on an assumption of equilibrium
between the surface and the liquid, is that the weathering process is irreversible. Thus, an equilibrium
assumption is not permitted. The earlier models, lacked the representation of an ecosystem the soils.
This is likely the major reason why the earlier approaches failed to estimate field weathering rates.

7. Conclusions

The complex nature of weathering in the field is nearly impossible to interpret without a comprehensive
model for the whole process. A first step to such interpretations can be the quantitative description of
the dissolution rates of then major rock forming minerals. Even the dissolution rates of an individual
mineral can involve several simultaneous reactions. Thus, experimentally measured rates results can
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only be accurately interpreted when a full system model is used . Under field conditions, the mineral
dissolution is coupled to other soil processes, and thus a full ecosystem system model is needed for their
interpretation. The apparent difference between field and laboratory dissolution rates arise from the
coupling of these processes, and disappear once a full model is employed. Use of a fully coupled model
shows these differences to be negligible (Keegan and Laskow-Lehey 2014).

Taking account the vast literature reporting experimentally measured mineral dissolution rates,
it was possible to create a fully parameterized kinetic database for about 92 minerals. About 40% of the
kinetic parameters were determined directly from experiment interpretations, and the rest was with inter-
mineral interpolations and using of analogues.

The adjustment of aluminium ‘brake functions’ and the introduction of a silica “brake function”
as described in this work were necessary to improve the description of weathering rates in the lower part
of the soil, below 1 meter depth. The test at the Svartberget catchment suggests that this revised mineral
dissolution model works adequately as can be seen from Figures 28-29.
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