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Abstract. Forest ecosystems are already responding to changing environmental conditions that are driven by increased atmo-

spheric CO2 concentrations. These developments affect how societies can utilise and benefit from the woodland areas in the

future, be it e.g. climate change mitigation as carbon sinks, lumber for wood industry or preserved for nature tourism and

recreational activities. We assess the effect and the relative magnitude of different uncertainty sources in ecosystem model sim-

ulations from the year 1980 to 2100 for two Finnish boreal forest sites. The models used in this study are the land ecosystem5

model JSBACH and the forest growth model PREBAS. The considered uncertainty sources for both models are model param-

eters and four prescribed climates with two RCP (Representative Concentration Pathway) scenarios. Usually, model parameter

uncertainty is not included in these types of uncertainty studies. PREBAS simulations also include two forest management

scenarios. We assess the effect of these sources of variation at four different points in time on several ecosystem indicators, e.g.

gross primary production (GPP), ecosystem respiration, soil moisture, recurrence of drought, length of the vegetation active10

period (VAP), length of the snow melting period and the stand volume. The uncertainty induced by the climate models remains

roughly the same throughout the simulations and is overtaken by the RCP scenario impact halfway through the experiment.

The management actions are the most dominant uncertainty factors for Hyytiälä and as important as RCP scenarios at the end

of the simulations, but contribute only half as much for Sodankylä. The parameter uncertainty is the least influential of the

examined uncertainty sources, but it is also the most elusive to estimate due to non-linear and adverse effects on the simulated15

ecosystem indicators. Our analysis underlines the importance to carefully consider the implementation of forest use when

simulating future ecosystem conditions, as human impact is evident and even increasing in boreal forested regions.

1 Introduction

The global atmospheric greenhouse gas concentrations are rising, which induces changes in land ecosystem carbon balances,

water cycles and their seasonality. However, there is uncertainty in the magnitude of these changes. The rate of the expected20

concentration rise depends on human actions and the corresponding emission pathways chosen. The pathways presented in
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IPCC AR5 report (IPCC, 2014) lead to a radiative forcing of 2.6 W/m2 to 8.5 W/m2 in the year 2100. In addition to climate

pathways connected to human actions, the variability in the IPCC climate projections is due to model differences and to internal

variability in the climate system. Climate sensitivity has proven to be extremely difficult to constrain (Knutti and Sedláček,

2012). The multi-model spread in e.g. temperature and precipitation has not been narrowing during the last few years despite25

substantial model development (Eyring et al., 2019). However, narrowing the uncertainties should not be the only aim and sign

of progress in climate modelling. Models improve as more processes are described in detail, which may also introduce new

unknown uncertainties. Thus it is important to study what are the contributions of different factors to the total uncertainty of

examined variables, and how does the uncertainty evolve in the future.

The climate models provide drivers for the land ecosystem models. The predictions by land ecosystem models are affected30

by the driver uncertainties and by uncertainties related to the land surface model itself. Usually, only variability between

different models is examined (see e.g. Friend et al., 2014; Nishina et al., 2015), and the uncertainty related to model parameters

is not taken into account (Reyer et al., 2016). The unaccounted model processes can lead to significant underestimation of

the overall uncertainty (Trugman et al., 2018). Furthermore, the spread in the uncertainty of the model outcome depends on

the variable and region investigated. High latitude ecosystems are predicted to experience significant changes due to climate35

warming (Schaphoff et al., 2015). The change in seasonality of the ecosystems is predicted to manifest itself via decrease

in snow cover duration, earlier soil thaw and later soil freeze and longer growing season (Dye and Tucker, 2003; McDonald

et al., 2004; Barichivich and Caesar, 2012). The longer growing season and warmer temperatures are predicted to increase both

ecosystem carbon uptake and respiration (Piao et al., 2008), while harmful extremes connected to heat, soil drought and soil

excess water are also predicted to become more severe (Ruosteenoja et al., 2017). The evolution of net ecosystem exchange40

(NEE), defined as the difference between net ecosystem primary production (NPP) and heterotrophic respiration (Rh), is rather

uncertain in future due to opposing drivers and may follow a trend towards net emissions or net uptake.

Forest management in Finland is a strong modifier of ecosystem carbon budgets and usually an unaccounted source of

uncertainty in future predictions. The harvesting intensity defines the impact of the management practices to the ecosystem

carbon exchange (Korkiakoski et al., 2018). According to Kalliokoski et al. (2018), the future forest productivity in Finland45

was predicted to increase towards the end of the century. The climate model ensemble predictions were the dominant source

of uncertainty for forest productivity, but closer to the end of century the role of emission pathways became more important.

Estimation of future development of ecosystem carbon budgets together with impact factors such as management, seasonality

and water conditions adds information to the whole ecosystem functioning. Assessment of uncertainties related to carbon

budgets and growing season length together with water and snow conditions is important in estimating the forests ability to50

provide ecosystem services related to e.g. carbon sequestration, wood harvesting, maintaining habitats and promoting nature

tourism (Snell et al., 2018; Holmberg et al., 2019).

Here we estimate how biomass, carbon, growing season, water and snow -related ecosystem indicators and their uncer-

tainties progress in the future. We engage two ecosystem models at southern and northern boreal forest sites – JSBACH is

developed to study land surface processes with closely coupled carbon balances and hydrology, while PREBAS is aimed to55

study carbon budgets with implementation of forest management. Both models have been previously calibrated for boreal
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ecosystems (Mäkelä et al., 2019; Minunno et al., 2019) – these calibrations were independent of one another and therefore the

calibrated parameter sets are different. This also gives rise to a different set of examined ecosystem indicators. We estimate

the contribution of model parameter uncertainty, climate model variability, RCP pathway and management actions to the total

uncertainty of these indicators. We apply canonical correlation analysis (CCA) to cross-correlate the uncertainty sources with60

the chosen ecosystem indicators. Finally, we aim to combine the model estimates to determine which are the dominant sources

of uncertainty in future ecosystem projections.

2 Materials and methods

In this paper we examine the impact of several uncertainty sources on model outputs in a full factorial design, depicted in Table

1. The models were run separately for both sites with all possible combinations of the uncertainty factors. The experiment65

design resembles that of the CMIP5 simulations (fifth phase of the Coupled Model Intercomparison Project; Meehl et al., 2009;

Taylor et al., 2012). Hence, in the same spirit (Swart et al., 2009) we present this work as uncertainty analysis, although parts of

the results and discussion will be more akin to sensitivity analysis. We will next give a brief overview of the experiment design,

followed by an introduction of the sites and their characteristics, RCP scenarios and climate models as well as the models used

to run the simulations in this study. Finally we will define our ecosystem indicators and the analysis methods.70

Table 1. Composition of JSBACH and PREBAS model simulations: number of parameter combinations (Par), climate models (Clim), RCP

scenarios (RCP), management actions (Manag) and sites as well as the total number of 120-year long simulations.

Model Par Clim RCP Manag Sites Total

JSBACH 100 5 (4) 2 - 2 1800

PREBAS 100 5 3 2 2 6000

The JSBACH and PREBAS models were selected for this study because we had recently calibrated them for boreal ecosys-

tems (Mäkelä et al., 2019; Minunno et al., 2019). Thus, we were able to preserve the parameter interdependence by extracting

a set of 100 parameter combinations from the calibration chains – instead of merely sampling the parameter values from their

marginal distributions. The extraction methods, parameter definitions as well as sample mean and deviation are given in Ap-

pendix A. It should be noted that model calibration (partially) compensates for inaccurate or missing model processes and75

other model deficiencies, which is why we do not focus on this subject.

In addition to model parameterisations that reflect the parameter posterior distributions, we use a sub-set of climate models

and representative concentration pathways (RCPs) from the CMIP5 ensemble (smaller set for JSBACH is due to missing bias

corrected variables). We do not assign any particular probabilities (weights) to the different climate models and RCPs, so these

scenarios are considered to be equally likely. Additionally, two management actions were used in PREBAS simulations. They80

were chose as to represent the current management practises and a modification that aims for near term carbon sink increase.

These two practises are relatively alike, but more intrusive management actions were not included in this experiment as to

focus the study.
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2.1 Sites

The sites used in this study are called Hyytiälä (FI-Hyy; 61◦51′N, 24◦17′E, 180 m a.s.l.) and Sodankylä (FI-Sod; 67◦22′N,85

26◦38′E, 179 m a.s.l.); they are respectively located in southern and northern Finland and represent the southern and northern

boreal pine forests. These sites can be characterised as Boreal evergreen needleleaf forests, where the dominant species is the

Scots pine (Pinus sylvestris).

The Hyytiälä site (Kolari et al., 2009) was planted in 1962, after burning and mechanical soil preparation. The soil type

is Haplic Podzol on glacial till. The site has an understory of Norway spruce (Picea abies) and few deciduous trees. The90

maximum measured all-sided leaf area index (LAI) for the Scots pine is 6.5 m2/m2, the average measured annual precipitation

is 709 mm and temperature 2.9 ◦C.

The Sodankylä site (Thum et al., 2007) has been naturally regenerated after forest fires and hosts trees ranging from approx-

imately 50 to 100 years of age. The soil type is fluvial sandy Podzol. The ground vegetation consists of lichens, mosses and

ericaceous shrubs. The maximum measured LAI for the Scots pine is 3.6 m2/m2, as determined from forest inventories, the95

annual precipitation is 527 mm and temperature -0.4 ◦C.

2.2 RCP scenarios and climate models

We selected model runs from the CMIP5 project (Meehl et al., 2009; Taylor et al., 2012) following three representative con-

centration pathways (RCPs), that reach radiative forcing levels of 2.6, 4.5 and 8.5 W/m2 by the end of the century (Moss et al.,

2010; van Vuuren et al., 2011). Throughout the historical period that ends in 2005 the land cover data and the greenhouse gas100

concentrations corresponding different RCPs follow common trajectories (Meinshausen et al., 2011).

Climate data for years 1980-2100 was obtained from five global climate models (GCMs; CanESM2, CNRM-CM5, GFDL-

CM3, HadGEM2-ES and MIROC5). The climate variables were bias corrected and further down-scaled to a 0.2◦×0.1◦

longitude-latitude grid, similarly to Lehtonen et al. (2016); Holmberg et al. (2019). The bias correction methods are described in

Räisänen and Räty (2013); Räty et al. (2014). The FMI meteorological observation data, harmonised by Kriging with external105

drift (Aalto et al., 2013), was used as a reference climate for the period 1980-2010 (Lehtonen et al., 2016).

The sub-set of five climate models was selected because of their good performance in reproducing current climate in Northern

Europe and because they provided complete data sets for running impact models (Lehtonen et al., 2016). The future winter-

time precipitation changes in Finland for the five models in RCP4.5, covers the range of variability depicted by 24 out of

28 CMIP5 models investigated by Ruosteenoja et al. (2016). In summer the precipitation change range is generally narrower110

than in winter and the selected models cover the range of roughly half of the 28 CMIP5 models. Winter temperature change

shows intermediate values among the 28 models and the range captures the ranges of change shown by 11 models. In summer

the five model selection represents the range of change depicted by the upper half of the 28 models analysed by Ruosteenoja

et al. (2016). CO2 concentrations from the RCPs 2.6, 4.5 and 8.5 increased monotonously through the calendar years reaching

respective global means of 421, 538 and 936 ppm by the end of the century. PREBAS was run with results from all five115

climate models and three RCP scenarios, whereas JSBACH simulations included only RCP4.5 and RCP8.5 due to missing bias
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corrected climate variables. Moreover and for the same reason, JSBACH was not run with the HadGEM2-ES climate model

for RCP8.5.

2.3 The JSBACH model

The JSBACH ecosystem model (Raddatz et al., 2007; Reick et al., 2013) is the land-surface component of the Earth system120

model of the Max Planck Institute for Meteorology (MPI-ESM). We modified the underlying JSBACH model version (specified

in “Code and data availability” section) as in Mäkelä et al. (2019), where the model is calibrated and validated with site level

measurements from 10 different evergreen needleleaf forests throughout the boreal zone (including Hyytiälä and Sodankylä).

The calibration was done simultaneously on multiple sites to reduce parameter dependency to any single site – the aim of the

calibration was to produce a parameter set suitable for the whole boreal zone. We run JSBACH uncoupled from the atmosphere,125

apply five layers within a multilayer soil hydrological scheme (Hagemann and Stacke, 2015) and utilise the BETHY model for

canopy/stomatal conductance control (Knorr, 2000). Additionally, we set the model to effectively use only one plant functional

type (PFT), coniferous evergreen trees, which is the dominant vegetation type on the study sites.

The JSBACH model initial state was derived from the end state of several thousand year long regional simulations that

equilibrate the soil carbon storages. In addition, the simulations included a simulation specific spin-up period of 20 years130

to ensure adequate site level LAI and soil water storages. The spin-up was achieved by running the model through the first

20 years of simulation data, saving the state of the model variables and using them as the initial state for the 120-year long

simulations. This type of spin-up introduces a discontinuity between the initial state and the driving climate but differences in

the examined climate indicators should be negligible.

2.4 The PREBAS model and management actions135

PREBAS (Valentine and Mäkelä, 2005; Peltoniemi et al., 2015; Minunno et al., 2019) is a simplified forest carbon and water

balance model, which also considers forest growth and management. It calculates photosynthesis (GPP) using a light-use-

efficiency (LUE) approach and ambient CO2 concentration (Peltoniemi et al., 2015; Minunno et al., 2016). Daily GPP is

influenced by soil moisture, radiation, temperature, vapour pressure deficit and precipitation. The model also calculates evap-

otranspiration (ET) and updates the water balance daily. Mean tree growth is calculated from GPP and respiration at an annual140

time step, and growth is allocated to different tree organs under assumptions on tree structure (Valentine and Mäkelä, 2005).

The model includes tree mortality due to crowding. The growth module annually updates the canopy leaf area index (LAI) for

the GPP and ET estimation. In order to estimate soil carbon, the annual litter fall is calculated by the growth allocation module,

and fed to Yasso07 soil carbon model (Liski et al., 2005; Tuomi et al., 2009). NEE is calculated annually.

In addition to weather data, PREBAS requires information about the initial state of the simulated forest, defined as soil145

fertility class, stand basal area, mean height and mean diameter, at an appropriate spatial resolution. This information was

extracted from the multisource forest inventory data maps (Tomppo et al., 2014; Mäkisara et al., 2016). The forest resource

maps have a 16 m resolution and report the forest data for the year 2015. The model was initialised with forest data extracted

for an area of 8× 8 km square centered at the eddy covariance towers of Hyytiälä and Sodankylä.
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Two management actions were used in PREBAS simulations. The business as usual (BAU) scenario follows present forest150

management recommendations in Finland (Rantala et al., 2011), where trees have to be at least 24–30 cm diameter at breast

height (dbh; 130 cm) and of age from 60–100 years before harvesting. The delayed ecosystem logging (DEL) scenario aims

for the near term carbon sink increase by increasing the minimum harvesting diameter to 36 cm dbh.

Table 2. Ecosystem indicators derived from the recorded values of the JSBACH and PREBAS simulations, separated into groups for the

canonical correlation analysis. The group names relate to biomass distribution, ecosystem carbon exchange, length of the growing season,

water cycle and snow melting period.

Indicator Abb. Units JSB PRE Group

basal area BA m2 / ha x Biomass

stand volume V m3 / ha x Biomass

harvested volume Vharv m3 / ha x Biomass

volume of dead trees Vmort m3 / ha x Biomass

tree biomass Biom kg(C) x Biomass

tree litterfall Lit kg(C) x Biomass

leaf area index LAI m2 / m2 x Biomass

gross growth Growth m3 / ha x Biomass

gross primary production GPP g(C) / m2 day x x Carbon

net primary production NPP g(C) / m2 day x x Carbon

net ecosystem exchange NEE g(C) / m2 day x x Carbon

respiration (autotrophic) Rat g(C) / m2 day x Carbon

respiration (ecosystem) Reco g(C) / m2 day x Carbon

soil carbon Csoil kg(C) x Carbon

start of growing season SOS DOY x x Growth

end of growing season EOS DOY x x Growth

length of growing season VAP days x x Growth

evapotranspiration ET mm / day x x Water

annual soil water aSW mm x Water

summer soil water sSW mm x x Water

number of dry days Ddry days x Water

albedo alb x Snow

snow amount snow m x Snow

start of snow melt melt DOY x Snow

snow clear date clear DOY x Snow

length of snow melt SM days x Snow
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2.5 Ecosystem indicators and result analysis

We study the uncertainty sources related to key biophysical and biogeochemical indicators and their future development. All155

simulations, depicted in Table 1, produced daily variables that were used to calculate ecosystem indicators that are presented

in Table 2. We have included details on how we calculated the derived variables (number of dry days, start and end days of

growing season and snow melting period) in Appendix B.

We analyse the results by producing means, standard deviations and correlations of the model variables. This analysis is

based on the annual values or averages over certain months (e.g. summer soil water) – one value per year. We utilise the160

Mann-Kendall test (Mann, 1945; Kendall, 1975) to verify the existence of trend lines and kernel density estimation (KDE) to

visualise the distribution of values (this approach can be viewed as a smoothed histogram).

We also carried out canonical correlation analysis (CCA) to quantify the impact of the different factors on the ecosystem

indicators. The factors in this analysis are parametric uncertainty (par), climate models (clim) and RCP scenarios (rcp) for

JSBACH and additionally management scenarios (man) for PREBAS. The indicators were averaged and divided into four165

consecutive 30-year long periods for both models: 1980-2009 (p1, reference), 2010-2039 (p2, interim), 2040-2069 (p3, mid-

century) and 2070-2099 (p4, future). This produced single indicator values for each period and simulation (single instance of

each factor) that were calculated for both sites separately.

CCA is a multivariate extension of correlation analysis that allows identifying linear relationships between two sets of

variables (Hotelling and Pabst, 1936). We summarise the CCA results with the use of the redundancy index (Rd) that expresses170

the amount of variance in a set of variables (ecosystem indicators) by CCA uncertainty factors) (Stewart and Love, 1968;

Weiss, 1972; van den Wollenberg, 1977). In essence, the redundancy index takes into account both correlation and variance

between uncertainty factors and ecosystem indicators. The value Rd ∈ [0,1], where a higher value indicates that the factor

explains more of the uncertainty related to a given indicator (group). There are no general guidelines for the interpretation of

theRd values. Therefore, we examine the resulting indices in relation to one another to reveal relative uncertainties. The details175

of the CCA and the redundancy index are given in Appendix C.

3 Results

Forest management was the most dominant factor of uncertainty for Hyytiälä (Fig. 1) throughout the simulation. There was a

clear difference for Sodankylä, where management gains only half as much influence. Disregarding management, the climate

models and RCP scenarios represent major sources of both JSBACH and PREBAS predictive uncertainty. The impact of climate180

models was dominant during the reference and interim periods and remained roughly constant over time. The importance of

RCP scenarios increased towards the end of the simulations, catching up to management impact at Hyytiälä in mid-century

and representing the most important factor during the last period. The parametric uncertainty was the least influential factor for

both JSBACH and PREBAS, at both sites. We will next examine the grouped indicator results.
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Figure 1. Redundancy indices for the different uncertainty factors, calculated using all ecosystem indicators using values from 1980–2009

(p1), 2010–2039 (p2), 2040–2069, (p3) 2070-2099 (p4). Exact values in a supplementary table.

3.1 Biomass distribution185

The site-level differences in biomass stock uncertainties largely arise from the management actions (Fig. 2 and 3) and the

management and RCP scenario impacts reflect the redundancy indices calculated with all ecosystem indicators (Fig. 1) for

PREBAS. The RCP scenario influence increases for both sites towards the end of the simulations and the climate model and

parameter uncertainty is negligible for both sites and all periods. There is an anomaly for Sodankylä reference period, where

management has a very large impact. This situation arises due to minimal (0.1 m3/ha), but systematic difference in harvested190

volume – the difference is so small it is not visually evident (Fig. 3). The rest of the Sodankylä reference period variables are

nearly identical, so the small change in harvesting results in high correlation, which is captured by the CCA.
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Figure 2. Redundancy indices for the different uncertainty factors, calculated separately for the different indicator groups using values from

1980–2009 (p1), 2010–2039 (p2), 2040–2069, (p3) 2070-2099 (p4). Exact values in a supplementary table.
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The differences in site-specific variables due to the management actions, can already be seen from the reference period

indicators (Fig. 3). The delayed ecosystem logging (DEL) scenario has approximately 10 % larger stand volume than business

as usual (BAU) for Hyytiälä, but there is practically no difference for Sodankylä. The management actions start to have a195

noticeable impact for Sodankylä simulated variables at mid-century, but this impact is much smaller than that of the RCP

scenarios. The management effect is much more pronounced at Hyytiälä, where both actions follow separate pathways.

Figure 3. Selected ecosystem indicators from the PREBAS biomass factors, averaged for the 30-year long periods. The y-axis “whiskers”

at each point represent the point specific uncertainty: one standard deviation amongst the corresponding simulations. We use lighter shading

for the earlier periods, a different colour for the RCP scenarios and a different marker to separate the management actions.

3.2 Ecosystem carbon exchange

The divergence in the annual GPP and respiration in JSBACH illustrates the separation of the RCP scenarios at about the

midpoint (2040) in the simulations (Fig. 4). These two variables that comprise the net ecosystem exchange (NEE), have strong200

temporal linear correlations for both RCP scenarios (r2 ≈ 0.95). The respective linear regression lines for GPP [g(C)/m2d]
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yield an increase of 1.3 and 2.4 (RCP4.5 and 8.5) in 100 years for Hyytiälä and similarly 0.6 and 0.8 for Sodankylä. Likewise,

the increases in respiration are 1.6 and 2.6 for Hyytiälä in 100 years and 0.8 and 1.2 for Sodankylä. GPP uncertainty was larger

at the beginning of the simulations, but levelled with respiration at the end of the period. Relatively, the increased radiative

forcing yields a stronger increase in GPP for Hyytiälä and respiration for Sodankylä. Some of the flux variables, such as205

Sodankylä GPP (Fig. 4), suggest a bi-modal value distribution in the the last 30 years of the simulations. This is caused by

the different climate models yielding separate modes to the otherwise nearly identical value distributions. Most of the GPP

and respiration value distribution (Fig. 4) reflect the variation in model parameterisations. This variation is not the parameter

uncertainty, which is reflected in how the value distribution changes over time (after removing the effects of the climate models

and RCP scenarios).210

Figure 4. JSBACH predicted annual values of GPP and ecosystem respiration for RCP4.5 (purple) and RCP8.5 (orange) scenarios. The

shaded area represents all RCP-specific simulations, the dashed line is the annual mean and the solid line is the trend line. The KDE

estimates on the left side of each image represents the distribution of the reference period values of both RCP scenarios (blue), whereas the

KDE on the right side consists of RCP specific values from the last 30 years of simulations.

As the diverging GPP and respiration fluxes signal, the RCP scenarios were important sources of uncertainty for the ecosys-

tem carbon exchange variables at both sites, with importance growing over time (Fig. 2). However, it is noteworthy that man-

agement induced uncertainty for ecosystem carbon exchange was the most influential factor for Hyytiälä when it is accounted

for in the model. The Sodankylä flux variation seems to be only dependent on the RCP scenario for both models, while the

climate models were the most important factors at Hyytiälä during the first two periods for JSBACH.215
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3.3 Ecosystem seasonality

The seasonal indicators depict the length of the vegetation active period and the snow melting period as well as the amount of

soil water (and the recurrence of summer drought). The CCA analysis (Fig. 2) indicates that growing season indicators respond

to changes in both climate models and RCP scenarios for both models, but the indicators are not sensitive to management ac-

tions. The snow melting period uncertainty for JSBACH is dominated by the climate models for the first half of the simulations220

for Hyytiälä, after which the RCP scenario is more influential. The situation is a bit different for Sodankylä snow melt, where

the climate model uncertainty reduces radically after the reference period and then remains the same – the RCP scenarios gain

effectiveness as simulations progress and reach the climate model influence at mid-century. The uncertainty related to the water

balance for JSBACH is not captured by CCA and the uncertainties for PREBAS are also low.

Figure 5. Average vegetation active period for JSBACH RCP4.5; yellow dots are the SOS values, red dots are the EOS values and the grey

dots are the minimum and maximum SOS/EOS from all simulations. Also presented are the trend lines and the daily GPP as the green

amplitude.

The vegetation active period is lengthening at both sites (Fig. 5). The displacement of the trendline start of (vegetation225

active) season (SOS) for JSBACH is approximately -8.1 days in 100 years for Hyytiälä (-11.3 for RCP8.5) and -7.6 days for

Sodankylä (-10.9). Likewise, the end of season (EOS) displacement is 3.3 days for Hyytiälä (5.1 for RCP8.5) and 3.5 days for

Sodankylä (5.2). The SOS and EOS temporal correlations are typically strong (r2 ≈ 0.8). The increase to the length of VAP is

very similar for both sites, regardless of the different annual GPP.

The Mann-Kendall tests report a decreasing trend (earlier occurrence) for start of the snow melting period, first snow-free230

date and the length of the snow melting period (Fig. 6) in all simulations, except for Sodankylä RCP8.5 where the Mann-

Kendall signifies the absence of trend for the melting period length. The simulations indicate that at the end of the century,

the annual amount of snow in Hyytiälä will be radically diminished, and that Sodankylä winters will be similar to present

day Hyytiälä winters (especially in the RCP8.5 scenario). Relatively, the first snow free date is catching up to the start of the
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snow melting period (Fig. 6). The snow starts to melt approximately 20.7 days earlier in 100 years time for Hyytiälä RCP4.5235

and 24.9 days earlier in RCP8.5, whereas the snow free dates appear 29.8 days (RCP4.5) and 41.7 days (RCP8.5) earlier.

The corresponding values for Sodankylä are 12.2 (RCP4.5) and 25.1 (RCP8.5) for the start of snow melting period and 20.0

(RCP4.5) and 28.2 (RCP8.5) for the snow free dates. The correlations vary widely: r2 ≈ 0.7 for snow free dates, r2 ≈ 0.5 for

the start of the melting period and r2 ≈ 0.2 for their difference.

Figure 6. The average snow melting period for the JSBACH model; presented are the average annual values for the start of the snow melting

period (blue), the first snow free day of the year (green) and their difference (black) as well as trend lines (calculated from the shown values)

for these variables (when applicable).

The initial distributions of the summertime soil moisture values (Fig. 7) are unimodal for Hyytiälä and bimodal for Sodankylä240

for all climate models. This structure is still evident for the RCP4.5 scenario (of the last 30 years) but breaks down for the

RCP8.5. Moreover, Hyytiälä RCP8.5 demonstrates some bimodality for two of the climate models whereas the RCP8.5 for

Sodankylä seems to be losing the bimodality and is becoming (in appearance) more similar to the Hyytiälä reference period.

The soil moisture value distributions are nearly identical for all climate models at both sites during the reference period, but

there are clear differences (distribution modes and shapes) for the last 30 years.245

13



Figure 7. KDE estimates of the JSBACH soil moisture values (relative to soil field capacity) for the reference period and the last 30 years of

simulations. Each colour represents the average summertime (June-August) soil moisture, produced with one of the climate models using all

parameterisations.

The averaged drought events (Fig. 8) seem to be repeating at a roughly constant rate although the different model param-

eterisations result in wide soil moisture distributions (Fig. 7) at the end of the simulations. The average cumulative values

correspond reasonably well with the drought indicator threshold in Appendix B1 (5 % of 92 summertime days, accumulated

for 120 years would result in 552 days). The temporal correlations for the individual climate model and RCP specific simula-

tions is poor – Mann-Kendall test for individual simulations indicated some positive, few negative but mostly no trends (Table250

3). The cumulative drought day distributions at the end of the simulations (Fig. 8) are strongly skewed with wide "tails" and

high-value outliers (outside the figures) of approximately 2600 drought days for Hyytiälä and 3700 for Sodankylä. Interest-

ingly, one of the climate models (CNRM-CM5) markedly reduces the amount drought days for the RCP8.5 at both sites when

compared to RCP4.5. Neither the accumulated drought day variations or those of the soil moisture values (Fig. 7) are reflected

in the CCA analysis of the Water group (Fig. 2). This is largely result of low correlation among the simulations.255
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Figure 8. Accumulated summer drought days scatter plotted for each climate model, averaged over model parameterisations with minimum

and maximum increment visualised as y-axis whiskers. The gray line is the average of the simulations. The KDE estimates on the right side

depict the distribution of the accumulated drought days with the different parameterisations at the end of the simulation. The KDE figures

have been cut at 1250 accumulated days.

Table 3. Classification of trends according to Mann-Kendall test in annual drought days for all simulations.

Hyytiälä Sodankylä

positive 35.7 % 6.1 %

negative 0.7 % 3.2 %

no trend 63.6 % 90.7 %

3.4 Ecosystem indicator value comparison

The comparison results (Fig. 9) for soil moisture and ET indicate very small changes in the average values for both models but

the JSBACH simulations manifest substantially larger variation. The JSBACH model yields more elevated levels of relative

GPP, NPP, NEE and ecosystem respiration for Hyytiälä, but the situation is (mostly) reversed for Sodankylä. These differences

likely reflect the effect of the management actions and distinct site characteristics. The managements result in clearly different260

pathways for these variables at Hyytiälä, but only yield small differences at the end of the simulation for Sodankylä.

The SOS is roughly identical for both models, whereas both PREBAS versions have a larger effect on the EOS – initially the

EOS for PREBAS occurs much earlier (roughly 15 days) than for JSBACH, which is diminished to a few days at the end of the

simulations. The PREBAS extends the VAP more evenly from both "ends", whereas JSBACH focuses more on the SOS. These
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differences are reflected in the length of the VAP, which is merely the difference between EOS and SOS. Additionally, we note265

that the largest value spreads (deviations as represented by the length of the "whiskers") appear during the values representing

the last 30 years of the RCP8.5 simulations – this merely reflects that the simulation uncertainties are increasing towards the

end of the simulation (as expected). Overall, the model responses to the different inputs is very alike, which results in linear

dependencies between the variables (Fig. 9).
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Figure 9. Average simulated values for shared ecosystem indicators between JSBACH and PREBAS, plotted for each 30-year period and

both RCP4.5 and RCP8.5 scenarios. The values for JSBACH are divided by the average of the reference period values, and the values for

PREBAS by the average of the BAU scenario reference period values. The “whiskers” at each point represent the point specific uncertainty:

one standard deviation amongst the corresponding simulations. We use lighter shading for the earlier periods.
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4 Discussion270

In this paper we present an assessment on the importance of the different uncertainty sources, simulated on boreal forests for

the 21st century. The JSBACH and PREBAS models yield similar uncertainty estimates (Fig. 1) and have a similar response to

many of the examined ecosystem indicators (Fig. 9), when we take into account that PREBAS simulations included forest man-

agement. Further differences in modelled variables can be explained by the different model structures (e.g. soil moisture and

evapotranspiration). Forest management plays an important role in the estimates of ecosystem variables and their uncertainties.275

This importance is underscored by the lack of management in many land-surface components of climate models.

4.1 Ecosystem indicator sensitivity

According to Grönholm et al. (2018), the long-term eddy-covariance measurements (1997–2017) at a boreal coniferous forest in

Hyytiälä indicate a significant increase of gross-primary productivity (+10.5 [g(C)/m2 year]), which is only partly compensated

by an increased ecosystem respiration (+4.3g [g(C)/m2 year]). As a result, the annual CO2 sink has increased by about 6.2280

[g(C)/m2 year]. The GPP increase is dominated by an increase in LAI (from 4.1 to 4.6), while rise in the atmospheric CO2

concentration (from 360 ppm to 410 ppm) contributes only about 10 % to the rising GPP trend (Grönholm et al., 2018; Wenzel

et al., 2016). It has to be noted that Hyytiälä forest was thinned in 2002, temporarily reducing LAI to 3.4. However, in few

years the forest recovered to similar steadily increasing LAI trend than before thinning. The observed rise in the GPP is better

replicated by the RCP8.5 scenario (Fig. 4) that yields an increase of +8.8 [g(C)/m2 year] for Hyytiälä; whereas the increase in285

ecosystem respiration is more closely reproduced by the RCP4.5 scenario (+5.8).

The RCP scenarios have a strong impact for growing stock and wood harvesting (Fig. 3), but the effect pales in comparison

to the examined management actions. This underlines the importance of proper forest management for provisioning services

(Snell et al., 2018; Holmberg et al., 2019). This is illustrated by the relative NEE pathways (Fig. 9) that are roughly concave

for BAU and convex for DEL management actions. The simulations also indicate linearly lengthening VAP (Fig. 5), with high290

variation towards the end of the simulations (Fig. 9). This can be interpreted as beneficial for nature tourism and recreational

activities, but on the other hand are the adverse effects of shortened snow melting period (Fig. 6) and potentially increased

droughts (Fig. 8), also investigated by Ruosteenoja et al. (2017). These effects are also detrimental for winter harvesting and

wood quality, as suggested by Holmberg et al. (2019).

Manninen et al. (2019) reported lengthened snow melting periods for some regions in Finland for 1982–2016. We analysed295

the reference period (1980–2009) snow melt in more detail and found that roughly 30 % of parameter specific simulations for

Hyytiälä, and 20 % for Sodankylä, resulted in increased length for the snow melting period. We note that our simulations are

restricted to site level, whereas regional experiments include lakes, rivers etc. that can significantly affect the outcome – this

type of an uncertainty source is not considered in our simulations.
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4.2 Simulation uncertainty sources300

The overall uncertainty associated with the management actions differs for Hyytiälä and Sodankylä (Fig. 1). This is due to

the more abundant harvesting effect at Hyytiälä (Fig. 3), whereas most of the biomass in Sodankylä is left to grow. Sodankylä

stand volume increases as simulations progress whereas Hyytiälä stand volume remains the same or even decreases for the

BAU scenario. This underlines the importance of proper forest management, as the impact of these relatively similar actions is

strong – especially when taken into context of e.g. clear cuts.305

As expected, the uncertainty related to the RCP scenarios increases systematically (Ruosteenoja et al., 2016) for all ecosys-

tem indicators and grouped variables (except for the Water group) as the simulations advance further in time. This is similar to

results by Kalliokoski et al. (2018). The RCP scenarios are the most dominant factor in explaining the JSBACH and PREBAS

uncertainties for both sites at the end of the simulations. The RCP uncertainty also dominates the Carbon, Growth and Snow

variables at both sites and Biomass variables for Sodankylä. The RCP scenarios tend to gain effect at mid-century (e.g. Fig. 3),310

although there are some earlier affects, e.g. snow variables for Sodankylä (Fig. 6).

The effect of the climate models to the redundancy indices is the most varied among the examined uncertainty sources. The

climate models tend to have more impact in the two earlier periods, although the overall climate model uncertainty remains

roughly the same throughout the simulations. This can be seen to reflect the internal variability of the climate system (Knutti

and Sedláček, 2012) and the consequent variation in the climatic drivers. The combined variation of climate models and model315

parameters may not be fully captured due to non-linearity within the simulated variables. This is noted to emphasise the

importance of the parameter uncertainty, as stated by Reyer et al. (2016). The parameter uncertainty is expected to be small

when compared to the selected RCP scenarios that have a significant impact on the ecosystem (see Holmberg et al., 2019, Fig.

2). Most of the indicator value distributions, induced by the parameterisations, are highly alike for all climate models (Fig. 4),

especially during the reference period (Fig. 7). The combined climate model and parameter uncertainty is on par with the RCP320

scenario uncertainty towards the end of the simulations (Fig. 1).

4.3 Validity of estimates

The JSBACH model calibration (Mäkelä et al., 2019) was originally used in comparison of various submodel components

(stomatal conductance functions) and the PREBAS calibration (Minunno et al., 2019) utilised permanent growth and yield

experiments. Both of these examinations rely on hindcasting with relatively recent meteorological measurements or datasets,325

and the resulting parameter distributions emulate the current climate conditions well. The JSBACH model was calibrated with

data throughout the boreal zone and the parameterisations can be viewed as to be representing all evergreen coniferous forests

where as the PREBAS model was extensively calibrated for the whole of Finland. The sites in this study are representative

of southern and northern boreal pine forests and the ecosystem indicators were chosen to reflect the calibrated parameters

and processes. We note that model calibration and the parameter distributions also compensate and reflect for missing and330

imperfectly modelled processes.
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The CCA analysis and model comparison focuses on the relative differences in the ecosystem indicators, and thus less

importance is given to the absolute indicator values. The CCA analysis only accounts for linear dependencies (Hotelling and

Pabst, 1936) between the input and output uncertainties, and even though the redundancy index (Stewart and Love, 1968)

considers the (correlated) variance between the variables, the nonlinear effects may be underestimated. We reduce the annual335

variation and linearise the variables by averaging and separating them into four consecutive 30-year long periods. Additionally,

we also examined the PREBAS redundancy indices without the RCP2.6 – these results differ only marginally from those with

the RCP2.6 included, which increases the validity of the JSBACH results.

This linearisation may not be enough to capture all variation, as is the case with the JSBACH Water group uncertainties (Fig.

2) and the wide spread of soil moisture values (Fig. 7) and cumulative drought days (Fig. 8). The different parameterisations340

and climate models have a prominent variation, but due to adverse effects the correlations remain small. For example, the

RCP8.5 radically increases precipitation (see Ruosteenoja et al., 2016, Fig. 2) and therefore increases the soil moisture (Fig.

7) and reduces the amount of drought days (Fig. 8). The strength of this effect varies among the climate models, but the

model parameterisations still enable even radical increases to the number of drought days. This major source of uncertainty,

investigated by e.g. Trugman et al. (2018), is not captured by CCA. However, when the indicators are reasonably correlated (as345

is the case for most of the presented indicators), the CCA method is applicable.

The CCA analysis was performed for indicator groups to ensure robustness of the approach – this was not successful in

every case, as a minimal but systematic difference in Sodankylä reference period harvested volume led to a large management

scenario impact (Fig. 2). The situation arises as all of the other indicator values were nearly identical and thus a small systematic

change that was relatively large, had high correlation and impact in CCA. This event was not replicated with the other groups.350

5 Conclusions

Although this study is limited to only two sites, our simulations indicate that the management actions have the greatest influence

to simulated ecosystem indicators in Finland. When taken into account that the considered management actions are very alike,

more emphasis should be given to forest management when simulating future ecosystem conditions. Towards the end of

century, the RCP scenarios achieve a similar impact as the management actions. The combined climate model and parameter355

uncertainty is also an important factor for the whole duration of the simulations due to internal variability of the climate system,

but these effects can be easily underestimated due to non-linear or adverse effects. The examined uncertainties are comparable

for both models.

Long-term measurements and simulations indicate considerable increases to GPP and ecosystem respiration, with a slightly

larger emphasis respectively for the southern and northern boreal forests. While the effect of management to these variables360

is linear, the impact on NEE is more complex and would be of interest in further studies. The snow melt is occurring several

weeks earlier in all simulations and the length of the snow melting period appears to be decreasing, although the results for

Sodankylä are not conclusive. Similarly, the length of the vegetation active period is expected to increase linearly for both sites

20



by a few weeks. Sodankylä soil moisture is expected to increase, while the effects for Hyytiälä are varied. The scenarios do not

constrain the recurrence of drought as the parameterisations enable varied outcomes.365

We have successfully estimated the roles of different uncertainty sources on overall ecosystem indicator sensitivity at rep-

resentative boreal forest sites. The study provides material to steer further analysis to relevant uncertainty sources as well as

justification to further examine the effect of forest management. The analysis of results is based on CCA that is able to capture

the uncertainties when the outputs are correlated. The linearity assumptions in CCA limit its applicability, so other methods

e.g. random forest as in Augustynczik et al. (2017) should also be consider in cases with highly non-linear variables. The uncer-370

tainty analysis would also benefit from a larger model ensemble with different model process implementations. In such a case,

instead of different model parameterisations, the factorial design could be extended to include different model components

or parameterisations representing different functionalities or local management practices. This would still keep the number of

simulations reasonable while allowing a robust uncertainty estimation.

Code and data availability. The underlying JSBACH model version (branch: cosmos-landveg-tk-topmodel-peat, revision: 7384) can be ob-375

tained from the Max Planck Institute for Meteorology (MPI-M), where it is available for scientific community under the MPI-M Software

License Agreement (http://www.mpimet.mpg.de/en/science/models/license/). The model modifications have been uploaded to Github, and

they can be accessed by contacting the authors at jarmo.makela@fmi.fi. The R package (Rprebas), containing the PREBAS model, is avail-

able on GitHub (https://github.com/checcomi/Rprebas). The periodically averaged indicator values as well as the redundancy index values

in Fig. 1 and 2 are available as supplements.380
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Appendix A: Model parameters

Pre-existing JSBACH and PREBAS model calibrations (Mäkelä et al., 2019; Minunno et al., 2019) were deemed suitable to

represent parameter uncertainties in the simulations described in this paper. A set of parameter values was extracted from the

model calibrations to preserve parameter interdependence. The PREBAS parameter values were drawn at fixed intervals from

the MCMC chains in Minunno et al. (2019). This is a standard approach that results in an approximation of the parameter385

posterior distributions. The JSBACH calibration was done with adaptive population importance sampling (APIS), which pro-

duces a posterior estimate at each iteration. The estimate at 20-iterations (40 parameter combinations) was complemented with

15 additional combinations at each of 40, 60, 80 and 100 iterations. All parameter descriptions, as well as sample means and

deviations are given in Tables A1 and A2.

Table A1. JSBACH model parameter descriptions as in Mäkelä et al. (Table 2; 2019) with distribution mean and standard deviation.

Parameter description (units) µ σ

Farquhar model maximum carboxylation rate at 25 ◦C (µmol (CO2) m−2 s−1) VC,max 42.8 1.94

Farquhar model efficiency for photon capture at 25 ◦C. α 0.30 0.013

Multiplier in momentum and heat stability functions. cb 4.9 0.7

Ratio of unstressed C3-plant internal/external CO2 concentration. fC3 0.81 0.025

Exponential scaling of water stress in reducing photosynthesis. q 0.65 0.19

Volumetric soil water content above which fast drainage occurs. θdr 0.79 0.09

Fraction depicting relative surface humidity based on soil dryness. θhum 0.23 0.02

Volumetric soil moisture content at permanent wilting point. θpwp 0.19 0.03

Volumetric soil moisture content, above which transpiration is unaffected. θtsp 0.43 0.1

Fraction of precipitation intercepted by the canopy. pint 0.29 0.04

Depth for correction of surface temperature for snow melt (m). ssm 0.05 0.025

Maximum water content of the skin reservoir of bare soil (m). wskin 2.7×10−4 7.3×10−5

LoGro-P: memory loss parameter for chill days (days). Cdecay 15.7 5.3

LoGro-P: minimum value of critical heat sum (◦C d). Smin 18.0 6.4

LoGro-P: maximal range of critical heat sum (◦C d). Srange 189.0 49.9

LoGro-P: cutoff in alternating temperature (◦C). Talt 6.0 1.8

LoGro-P: memory loss parameter for pseudo soil temperature (◦C). Tps 15.8 5.3
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Table A2. PREBAS model parameter descriptions as in Minunno et al. (Table 1; 2019) with distribution mean and standard deviation.

pine spruce birch

Parameter description (units) µ σ µ σ µ σ

Maintenance respiration rate of foliage (kg(C) kg−1(C) yr−1). mF,ref 0.2 0.003 0.2 0.005 0.3 0.061

Maintenance respiration rate of fine roots (as above). mR,ref 0.23 0.023 0.24 0.036 0.33 0.064

Maintenance respiration rate of sapwood (as above). mS,ref 0.03 1.4×10−4 0.03 3.0×10−4 0.03 1.4×10−3

Growth respiration rate (as above). c 0.29 0.005 0.25 0.023 0.24 0.027

Leaf longevity (yr). νF,ref 4.0 0.02 9.7 0.27 1.1 0.09

Fine root longevity (yr). νR 0.9 0.03 1.7 0.07 1.2 0.19

Homogeneous extinction coefficient. kH 0.25 5.4×10−4 0.25 8.8×10−4 0.31 9.7×10−3

Specific leaf area (m2 kg−1(C)). sLA 20.0 0.036 20.1 0.072 41.0 2.94

Parameter relating to reduction of photosynthesis with crown

length.

s1 0.011 6.1×10−4 0.006 9.7×10−4 0.031 0.011

Wood density (kg (C) m−3). ρW 197 2.82 183 2.48 226 20.9

Ratio of fine roots to foliage. αRs 180 0.18 201 0.55 105 4.44

Foliage allometry parameter. z 1.8 0.020 1.7 0.001 1.9 0.012

Ratio of total sapwood to above-ground sapwood biomass. β0 1.28 0.014 1.27 0.018 1.48 0.056

Ratio of mean branch pipe length to crown length. βB 0.4 4.5×10−4 0.5 8.7×10−4 0.4 0.048

Ratio of mean pipe length in stem above crown base to crown

length.

βS 0.39 0.006 0.46 0.007 0.46 0.024

Light level at crown base that prompts full crown rise. CR 0.22 0.008 0.16 0.004 0.17 0.013

Reineke parameter. N0 856 3.0 1040 7.4 998 68.6

Appendix B: Calculation of ecosystem indicators390

Most of the ecosystem indicators in this paper are directly produced by the models, but few are derived from other variables.

B1 Drought days

The drought days are calculated as the amount of days when average soil moisture (of the combined 2nd and 3rd soil moisture

levels in a 5-layer JSBACH scheme) is below a certain threshold. Only summertime (June, July, August) values are used and

the threshold for Hyytiälä was set as the 5th percentile of all soil moisture values during the reference period. This value is395
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approximately 33 % of the soil field capacity in Hyytiälä, which compares well with the parameters θtsp and θpwp for the

Hyytiälä drought period optimisation in (Mäkelä et al., 2019). Thus, the number of dry days is a reasonable measure for

Hyytiälä. We used the same percentile to set a similar value for Sodankylä although the site characteristics differ (different soil

compositions and field capacity etc.).

B2 Vegetation active period400

The dates for the start of season (SOS) and end of season (EOS) for the vegetative active period are calculated from simulated

daily GPP. First we extracted the value corresponding to the 90th percentile of the daily GPP, from all of the simulations during

the reference period, and then multiplied this value by 0.15. The SOS date is considered to be the first day of the year (DOY),

when the daily GPP is consistently above this threshold. The consistency here means that, when we consider the daily GPP

values, starting from the 30th DOY, to twice as far as the date of the SOS event, the GPP must be above the threshold for at405

least half of the days. The date for EOS is calculated similarly, when GPP is below the threshold and starting from 230th DOY.

B3 Snow melting period

The snow depth in model simulation varies on a year-to-year basis. We also encounter some years without any snow cover for

Hyytiälä. Hence we first aggregate the snow depth over the model parameterisations and climate model simulations to produce

average site and RCP scenario specific time series. This approach yields robust estimates of the snow cover, where the actual410

time series is smooth enough to allow calculation of the beginning of snow melting period and the first snow free date. We

take a similar approach as in Manninen et al. (2019) and fit a sigmoidal function to identify the starting date of snow melt. The

snow is considered to have melted, when the snow cover has consistently vanished. This means that there is no snow cover for

at least half of the days during ±10 days of the snow clear date.

Appendix C: Canonical correlation analysis415

We carried out canonical correlation analysis (CCA) to quantify the impact of the different factors on the ecosystem indicators.

These factors are parametric uncertainty (pars), management scenarios (man), climate models (clim) and rcp scenarios (rcp).

CCA is a multivariate extension of correlation analysis that allows identifying linear relationships between two sets of vari-

ables (Hotelling and Pabst, 1936). It’s use is similar to multiple regression but it is more appropriate when there are multiple

intercorrelated variables such as model outputs. A more detailed description of CCA is provided in (Stewart and Love, 1968).420

We consider two sets of variables, X ∈ Rnf×s (the different factors) and Y ∈ Rne×s (ecosystem indicators), where ne,nf

are the number of factors and ecosystem indicators and s is the number of simulations, presented in Table 1. Each factor

fi, i ∈ {1, ...,nf}, or indicator ej , j ∈ {1, ...,ne}, can be interpreted as a row-vector of X or Y , respectively. In CCA we

construct linear composites of the input factors (U1 = aTX,a ∈ Rnf ) and output variables (V1 = bTY,b ∈ Rne ). We choose

a,b as to maximise the (canonical) correlation (Rc1) between the composites U1 and V1:425

Rc1 = corr(U1,V1). (C1)
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This forms the first pair of canonical variates U1 and V1. The second pair is formed similarly but it is required to be

uncorrelated with the first pair (and so forth for the following pairs). The first pair accounts for the highest amount of variance

between the two sets of variables and has the highest canonical correlation (Rck,k ∈ {1, ...nk}) – the variance and correlations

diminish for each consecutive pair. In our analysis, we use three pairs for JSBACH (nk=3) and four pairs for PREBAS (nk = 4).430

The simple linear correlations between an independent variable (fi or ej) and a respective canonical variate (Vk or Uk) are

called canonical loadings (CLik,CLjk). Similarly, the correlations between an independent variable and its opposite canonical

variate (fi and Uk or ej and Vk) are called canonical cross-loadings (CcLik,CcLjk). To summarise the CCA results via the use

of a redundancy index (Rd), we need the canonical loadings of the ecosystem indicators (CLjk) and canonical cross loadings

of the uncertainty factors (CcLik).435

Rdik =
1

ne

ne∑
j=1

(CL2
jk)Rc

2
k. (C2)

The redundancy index (Rdik) expresses the amount of variance in a set of variables (ecosystem indicators) explained by

another set of variables (uncertainty factors) (Stewart and Love, 1968; Weiss, 1972; van den Wollenberg, 1977). The square of

the canonical loadings (CLjk) expresses the proportion of variance accounted for each variable – computing the average for

each variate provides an indication of the overall variability explained by the variate. The squared Rck represents the variance440

shared by the canonical variates of the two sets of variables. In our analysis, we wanted to quantify the importance that each

factor have on the ecosystem indicator uncertainty (RdF ). We quantified the redundancy index of the indicators for each

canonical variate and then multiplied it by the squared canonical cross-loadings between factors and variates.

RdFik =RdikCcL
2
ik (C3)

CcLik represents the proportion of variance shared between the factors (fi) and the canonical variates of the ecosystem in-445

dicators (Vk). The overall redundancy and the full weight of uncertainty for each factor fi are derived by summing over the

canonical variates. This produces an overall measure of the bi-multivariate covariation of the two sets of variables.
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