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Abstract. Forest ecosystems are already responding to changing environmental conditions that are driven by increased atmo-
spheric CO» concentrations. These developments affect how societies can utilise and benefit from the woodland areas in the
future, be it e.g. climate change mitigation as carbon sinks, lumber for wood industry or preserved for nature tourism and
recreational activities. We assess the effect and the relative magnitude of different uncertainty sources in ecosystem model sim-
ulations from the year 1980 to 2100 for two Finnish boreal forest sites. The models used in this study are the land ecosystem
model JSBACH and the forest growth model PREBAS. The considered uncertainty sources for both models are model param-
eters and four prescribed climates with two RCP (Representative Concentration Pathway) scenarios. Usually, model parameter
uncertainty is not included in these types of uncertainty studies. PREBAS simulations also include two forest management
scenarios. We assess the effect of these sources of variation at four different points in time on several ecosystem indicators, e.g.
gross primary production (GPP), ecosystem respiration, soil moisture, recurrence of drought, length of the vegetation active
period (VAP), length of the snow melting period and the stand volume. The uncertainty induced by the climate models remains
roughly the same throughout the simulations and is overtaken by the RCP scenario impact halfway through the experiment.
The management actions are the most dominant uncertainty factors for Hyytiild and as important as RCP scenarios at the end
of the simulations, but contribute only half as much for Sodankyld. The parameter uncertainty is the least influential of the
examined uncertainty sources, but it is also the most elusive to estimate due to non-linear and adverse effects on the simulated
ecosystem indicators. Our analysis underlines the importance to carefully consider the implementation of forest use when

simulating future ecosystem conditions, as human impact is evident and even increasing in boreal forested regions.

1 Introduction

The global atmospheric greenhouse gas concentrations are rising, which induces changes in land ecosystem carbon balances,
water cycles and their seasonality. However, there is uncertainty in the magnitude of these changes. The rate of the expected

concentration rise depends on human actions and the corresponding emission pathways chosen. The pathways presented in
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IPCC ARS report (IPCC, 2014) lead to a radiative forcing of 2.6 W/m? to 8.5 W/m? in the year 2100. In addition to climate
pathways connected to human actions, the variability in the IPCC climate projections is due to model differences and to internal
variability in the climate system. Climate sensitivity has proven to be extremely difficult to constrain (Knutti and Sedlacek,
2012). The multi-model spread in e.g. temperature and precipitation has not been narrowing during the last few years despite
substantial model development (Eyring et al., 2019). However, narrowing the uncertainties should not be the only aim and sign
of progress in climate modelling. Models improve as more processes are described in detail, which may also introduce new
unknown uncertainties. Thus it is important to study what are the contributions of different factors to the total uncertainty of
examined variables, and how does the uncertainty evolve in the future.

The climate models provide drivers for the land ecosystem models. The predictions by land ecosystem models are affected
by the driver uncertainties and by uncertainties related to the land surface model itself. Usually, only variability between
different models is examined (see e.g. Friend et al., 2014; Nishina et al., 2015), and the uncertainty related to model parameters
is not taken into account (Reyer et al., 2016). The unaccounted model processes can lead to significant underestimation of
the overall uncertainty (Trugman et al., 2018). Furthermore, the spread in the uncertainty of the model outcome depends on
the variable and region investigated. High latitude ecosystems are predicted to experience significant changes due to climate
warming (Schaphoff et al., 2015). The change in seasonality of the ecosystems is predicted to manifest itself via decrease
in snow cover duration, earlier soil thaw and later soil freeze and longer growing season (Dye and Tucker, 2003; McDonald
et al., 2004; Barichivich and Caesar, 2012). The longer growing season and warmer temperatures are predicted to increase both
ecosystem carbon uptake and respiration (Piao et al., 2008), while harmful extremes connected to heat, soil drought and soil
excess water are also predicted to become more severe (Ruosteenoja et al., 2017). The evolution of net ecosystem exchange
(NEE), defined as the difference between net ecosystem primary production (NPP) and heterotrophic respiration (Ry), is rather
uncertain in future due to opposing drivers and may follow a trend towards net emissions or net uptake.

Forest management in Finland is a strong modifier of ecosystem carbon budgets and usually an unaccounted source of
uncertainty in future predictions. The harvesting intensity defines the impact of the management practices to the ecosystem
carbon exchange (Korkiakoski et al., 2018). According to Kalliokoski et al. (2018), the future forest productivity in Finland
was predicted to increase towards the end of the century. The climate model ensemble predictions were the dominant source
of uncertainty for forest productivity, but closer to the end of century the role of emission pathways became more important.
Estimation of future development of ecosystem carbon budgets together with impact factors such as management, seasonality
and water conditions adds information to the whole ecosystem functioning. Assessment of uncertainties related to carbon
budgets and growing season length together with water and snow conditions is important in estimating the forests ability to
provide ecosystem services related to e.g. carbon sequestration, wood harvesting, maintaining habitats and promoting nature
tourism (Snell et al., 2018; Holmberg et al., 2019).

Here we estimate how biomass, carbon, growing season, water and snow -related ecosystem indicators and their uncer-
tainties progress in the future. We engage two ecosystem models at southern and northern boreal forest sites — JSBACH is
developed to study land surface processes with closely coupled carbon balances and hydrology, while PREBAS is aimed to

study carbon budgets with implementation of forest management. Both models have been previously calibrated for boreal
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ecosystems (Mékeld et al., 2019; Minunno et al., 2019) — these calibrations were independent of one another and therefore the
calibrated parameter sets are different. This also gives rise to a different set of examined ecosystem indicators. We estimate
the contribution of model parameter uncertainty, climate model variability, RCP pathway and management actions to the total
uncertainty of these indicators. We apply canonical correlation analysis (CCA) to cross-correlate the uncertainty sources with
the chosen ecosystem indicators. Finally, we aim to combine the model estimates to determine which are the dominant sources

of uncertainty in future ecosystem projections.

2 Materials and methods

In this paper we examine the impact of several uncertainty sources on model outputs in a full factorial design, depicted in Table
1. The models were run separately for both sites with all possible combinations of the uncertainty factors. The experiment
design resembles that of the CMIPS simulations (fifth phase of the Coupled Model Intercomparison Project; Meehl et al., 2009;
Taylor et al., 2012). Hence, in the same spirit (Swart et al., 2009) we present this work as uncertainty analysis, although parts of
the results and discussion will be more akin to sensitivity analysis. We will next give a brief overview of the experiment design,
followed by an introduction of the sites and their characteristics, RCP scenarios and climate models as well as the models used
to run the simulations in this study. Finally we will define our ecosystem indicators and the analysis methods.

The JSBACH and PREBAS models were selected for this study because we had recently calibrated them for boreal ecosys-
tems (Mikeli et al., 2019; Minunno et al., 2019). Thus, we were able to preserve the parameter interdependence by extracting
a set of 100 parameter combinations from the calibration chains — instead of merely sampling the parameter values from their
marginal distributions. The extraction methods, parameter definitions as well as sample mean and deviation are given in Ap-
pendix A. It should be noted that model calibration (partially) compensates for inaccurate or missing model processes and
other model deficiencies, which is why we do not focus on this subject.

In addition to model parameterisations that reflect the parameter posterior distributions, we use a sub-set of climate models
and representative concentration pathways (RCPs) from the CMIP5 ensemble (smaller set for JSBACH is due to missing bias
corrected variables). We do not assign any particular probabilities (weights) to the different climate models and RCPs, so these
scenarios are considered to be equally likely. Additionally, two management actions were used in PREBAS simulations. They
were chose as to represent the current management practises and a modification that aims for near term carbon sink increase.
These two practises are relatively alike, but more intrusive management actions were not included in this experiment as to

focus the study.
2.1 Sites

The sites used in this study are called Hyytidld (FI-Hyy; 61°51’N, 24°17’E, 180 m a.s.l.) and Sodankyli (FI-Sod; 67°22'N,
26°38'E, 179 m a.s.L.); they are respectively located in southern and northern Finland and represent the southern and northern
boreal pine forests. These sites can be characterised as Boreal evergreen needleleaf forests, where the dominant species is the

Scots pine (Pinus sylvestris).
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The Hyytiéla site (Kolari et al., 2009) was planted in 1962, after burning and mechanical soil preparation. The soil type
is Haplic Podzol on glacial till. The site has an understory of Norway spruce (Picea abies) and few deciduous trees. The
maximum measured all-sided leaf area index (LAI) for the Scots pine is 6.5 m?/m?, the average measured annual precipitation
is 709 mm and temperature 2.9 °C.

The Sodankylé site (Thum et al., 2007) has been naturally regenerated after forest fires and hosts trees ranging from approx-
imately 50 to 100 years of age. The soil type is fluvial sandy Podzol. The ground vegetation consists of lichens, mosses and
ericaceous shrubs. The maximum measured LAI for the Scots pine is 3.6 m2/m?, as determined from forest inventories, the

annual precipitation is 527 mm and temperature -0.4 °C.
2.2 RCP scenarios and climate models

We selected model runs from the CMIP5 project (Meehl et al., 2009; Taylor et al., 2012) following three representative con-
centration pathways (RCPs), that reach radiative forcing levels of 2.6, 4.5 and 8.5 W/m? by the end of the century (Moss et al.,
2010; van Vuuren et al., 2011). Throughout the historical period that ends in 2005 the land cover data and the greenhouse gas
concentrations corresponding different RCPs follow common trajectories (Meinshausen et al., 2011).

Climate data for years 1980-2100 was obtained from five global climate models (GCMs; CanESM2, CNRM-CMS, GFDL-
CM3, HadGEM2-ES and MIROCS). The climate variables were bias corrected and further down-scaled to a 0.2°x0.1°
longitude-latitude grid, similarly to Lehtonen et al. (2016); Holmberg et al. (2019). The bias correction methods are described in
Réisdanen and Rity (2013); Rity et al. (2014). The FMI meteorological observation data, harmonised by Kriging with external
drift (Aalto et al., 2013), was used as a reference climate for the period 1980-2010 (Lehtonen et al., 2016).

The sub-set of five climate models was selected because of their good performance in reproducing current climate in Northern
Europe and because they provided complete data sets for running impact models (Lehtonen et al., 2016). The future winter-
time precipitation changes in Finland for the five models in RCP4.5, covers the range of variability depicted by 24 out of
28 CMIP5 models investigated by Ruosteenoja et al. (2016). In summer the precipitation change range is generally narrower
than in winter and the selected models cover the range of roughly half of the 28 CMIP5 models. Winter temperature change
shows intermediate values among the 28 models and the range captures the ranges of change shown by 11 models. In summer
the five model selection represents the range of change depicted by the upper half of the 28 models analysed by Ruosteenoja
et al. (2016). CO; concentrations from the RCPs 2.6, 4.5 and 8.5 increased monotonously through the calendar years reaching
respective global means of 421, 538 and 936 ppm by the end of the century. PREBAS was run with results from all five
climate models and three RCP scenarios, whereas JSBACH simulations included only RCP4.5 and RCP8.5 due to missing bias
corrected climate variables. Moreover and for the same reason, JSBACH was not run with the HadGEM?2-ES climate model
for RCP8.5.

2.3 The JSBACH model

The JSBACH ecosystem model (Raddatz et al., 2007; Reick et al., 2013) is the land-surface component of the Earth system
model of the Max Planck Institute for Meteorology (MPI-ESM). We modified the underlying JSBACH model version (specified
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in “Code and data availability” section) as in Mikel4 et al. (2019), where the model is calibrated and validated with site level
measurements from 10 different evergreen needleleaf forests throughout the boreal zone (including Hyytidld and Sodankyld).
The calibration was done simultaneously on multiple sites to reduce parameter dependency to any single site — the aim of the
calibration was to produce a parameter set suitable for the whole boreal zone. We run JSBACH uncoupled from the atmosphere,
apply five layers within a multilayer soil hydrological scheme (Hagemann and Stacke, 2015) and utilise the BETHY model for
canopy/stomatal conductance control (Knorr, 2000). Additionally, we set the model to effectively use only one plant functional
type (PFT), coniferous evergreen trees, which is the dominant vegetation type on the study sites.

The JSBACH model initial state was derived from the end state of several thousand year long regional simulations that
equilibrate the soil carbon storages. In addition, the simulations included a simulation specific spin-up period of 20 years
to ensure adequate site level LAI and soil water storages. The spin-up was achieved by running the model through the first
20 years of simulation data, saving the state of the model variables and using them as the initial state for the 120-year long
simulations. This type of spin-up introduces a discontinuity between the initial state and the driving climate but differences in

the examined climate indicators should be negligible.
2.4 The PREBAS model and management actions

PREBAS (Valentine and Mikeld, 2005; Peltoniemi et al., 2015; Minunno et al., 2019) is a simplified forest carbon and water
balance model, which also considers forest growth and management. It calculates photosynthesis (GPP) using a light-use-
efficiency (LUE) approach and ambient COs concentration (Peltoniemi et al., 2015; Minunno et al., 2016). Daily GPP is
influenced by soil moisture, radiation, temperature, vapour pressure deficit and precipitation. The model also calculates evap-
otranspiration (ET) and updates the water balance daily. Mean tree growth is calculated from GPP and respiration at an annual
time step, and growth is allocated to different tree organs under assumptions on tree structure (Valentine and Mikeld, 2005).
The model includes tree mortality due to crowding. The growth module annually updates the canopy leaf area index (LAI) for
the GPP and ET estimation. In order to estimate soil carbon, the annual litter fall is calculated by the growth allocation module,
and fed to Yasso07 soil carbon model (Liski et al., 2005; Tuomi et al., 2009). NEE is calculated annually.

In addition to weather data, PREBAS requires information about the initial state of the simulated forest, defined as soil
fertility class, stand basal area, mean height and mean diameter, at an appropriate spatial resolution. This information was
extracted from the multisource forest inventory data maps (Tomppo et al., 2014; Mékisara et al., 2016). The forest resource
maps have a 16 m resolution and report the forest data for the year 2015. The model was initialised with forest data extracted
for an area of 8 x 8 km square centered at the eddy covariance towers of Hyytidld and Sodankyla.

Two management actions were used in PREBAS simulations. The business as usual (BAU) scenario follows present forest
management recommendations in Finland (Rantala et al., 2011), where trees have to be at least 24-30 cm diameter at breast
height (dbh; 130 cm) and of age from 60-100 years before harvesting. The delayed ecosystem logging (DEL) scenario aims

for the near term carbon sink increase by increasing the minimum harvesting diameter to 36 cm dbh.
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2.5 Ecosystem indicators and result analysis

We study the uncertainty sources related to key biophysical and biogeochemical indicators and their future development. All
simulations, depicted in Table 1, produced daily variables that were used to calculate ecosystem indicators that are presented
in Table 2. We have included details on how we calculated the derived variables (number of dry days, start and end days of
growing season and snow melting period) in Appendix B.

We analyse the results by producing means, standard deviations and correlations of the model variables. This analysis is
based on the annual values or averages over certain months (e.g. summer soil water) — one value per year. We utilise the
Mann-Kendall test (Mann, 1945; Kendall, 1975) to verify the existence of trend lines and kernel density estimation (KDE) to
visualise the distribution of values (this approach can be viewed as a smoothed histogram).

We also carried out canonical correlation analysis (CCA) to quantify the impact of the different factors on the ecosystem
indicators. The factors in this analysis are parametric uncertainty (par), climate models (clim) and RCP scenarios (rcp) for
JSBACH and additionally management scenarios (man) for PREBAS. The indicators were averaged and divided into four
consecutive 30-year long periods for both models: 1980-2009 (p1, reference), 2010-2039 (p2, interim), 2040-2069 (p3, mid-
century) and 2070-2099 (p4, future). This produced single indicator values for each period and simulation (single instance of
each factor) that were calculated for both sites separately.

CCA is a multivariate extension of correlation analysis that allows identifying linear relationships between two sets of
variables (Hotelling and Pabst, 1936). We summarise the CCA results with the use of the redundancy index (Rd) that expresses
the amount of variance in a set of variables (ecosystem indicators) by CCA uncertainty factors) (Stewart and Love, 1968;
Weiss, 1972; van den Wollenberg, 1977). In essence, the redundancy index takes into account both correlation and variance
between uncertainty factors and ecosystem indicators. The value R, € [0,1], where a higher value indicates that the factor
explains more of the uncertainty related to a given indicator (group). There are no general guidelines for the interpretation of
the R4 values. Therefore, we examine the resulting indices in relation to one another to reveal relative uncertainties. The details

of the CCA and the redundancy index are given in Appendix C.

3 Results

Forest management was the most dominant factor of uncertainty for Hyytiéld (Fig. 1) throughout the simulation. There was a
clear difference for Sodankyld, where management gains only half as much influence. Disregarding management, the climate
models and RCP scenarios represent major sources of both JSBACH and PREBAS predictive uncertainty. The impact of climate
models was dominant during the reference and interim periods and remained roughly constant over time. The importance of
RCP scenarios increased towards the end of the simulations, catching up to management impact at Hyytiéld in mid-century
and representing the most important factor during the last period. The parametric uncertainty was the least influential factor for

both JSBACH and PREBAS, at both sites. We will next examine the grouped indicator results.
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3.1 Biomass distribution

The site-level differences in biomass stock uncertainties largely arise from the management actions (Fig. 2 and 3) and the
management and RCP scenario impacts reflect the redundancy indices calculated with all ecosystem indicators (Fig. 1) for
PREBAS. The RCP scenario influence increases for both sites towards the end of the simulations and the climate model and
parameter uncertainty is negligible for both sites and all periods. There is an anomaly for Sodankyla reference period, where
management has a very large impact. This situation arises due to minimal (0.1 m®/ha), but systematic difference in harvested
volume — the difference is so small it is not visually evident (Fig. 3). The rest of the Sodankyli reference period variables are
nearly identical, so the small change in harvesting results in high correlation, which is captured by the CCA.

The differences in site-specific variables due to the management actions, can already be seen from the reference period
indicators (Fig. 3). The delayed ecosystem logging (DEL) scenario has approximately 10 % larger stand volume than business
as usual (BAU) for Hyytidld, but there is practically no difference for Sodankyld. The management actions start to have a
noticeable impact for Sodankyld simulated variables at mid-century, but this impact is much smaller than that of the RCP

scenarios. The management effect is much more pronounced at Hyytidld, where both actions follow separate pathways.
3.2 Ecosystem carbon exchange

The divergence in the annual GPP and respiration in JSBACH illustrates the separation of the RCP scenarios at about the
midpoint (2040) in the simulations (Fig. 4). These two variables that comprise the net ecosystem exchange (NEE), have strong
temporal linear correlations for both RCP scenarios (72 ~ 0.95). The respective linear regression lines for GPP [g(C)/m?2d]
yield an increase of 1.3 and 2.4 (RCP4.5 and 8.5) in 100 years for Hyytidld and similarly 0.6 and 0.8 for Sodankyla. Likewise,
the increases in respiration are 1.6 and 2.6 for Hyytiild in 100 years and 0.8 and 1.2 for Sodankyld. GPP uncertainty was larger
at the beginning of the simulations, but levelled with respiration at the end of the period. Relatively, the increased radiative
forcing yields a stronger increase in GPP for Hyytiéld and respiration for Sodankyld. Some of the flux variables, such as
Sodankyld GPP (Fig. 4), suggest a bi-modal value distribution in the the last 30 years of the simulations. This is caused by
the different climate models yielding separate modes to the otherwise nearly identical value distributions. Most of the GPP
and respiration value distribution (Fig. 4) reflect the variation in model parameterisations. This variation is not the parameter
uncertainty, which is reflected in how the value distribution changes over time (after removing the effects of the climate models
and RCP scenarios).

As the diverging GPP and respiration fluxes signal, the RCP scenarios were important sources of uncertainty for the ecosys-
tem carbon exchange variables at both sites, with importance growing over time (Fig. 2). However, it is noteworthy that man-
agement induced uncertainty for ecosystem carbon exchange was the most influential factor for Hyytizld when it is accounted
for in the model. The Sodankylid flux variation seems to be only dependent on the RCP scenario for both models, while the

climate models were the most important factors at Hyytidld during the first two periods for JSBACH.
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3.3 [Ecosystem seasonality

The seasonal indicators depict the length of the vegetation active period and the snow melting period as well as the amount of
soil water (and the recurrence of summer drought). The CCA analysis (Fig. 2) indicates that growing season indicators respond
to changes in both climate models and RCP scenarios for both models, but the indicators are not sensitive to management ac-
tions. The snow melting period uncertainty for JSBACH is dominated by the climate models for the first half of the simulations
for Hyytiéld, after which the RCP scenario is more influential. The situation is a bit different for Sodankyld snow melt, where
the climate model uncertainty reduces radically after the reference period and then remains the same — the RCP scenarios gain
effectiveness as simulations progress and reach the climate model influence at mid-century. The uncertainty related to the water
balance for JSBACH is not captured by CCA and the uncertainties for PREBAS are also low.

The vegetation active period is lengthening at both sites (Fig. 5). The displacement of the trendline start of (vegetation
active) season (SOS) for JSBACH is approximately -8.1 days in 100 years for Hyytiédld (-11.3 for RCP8.5) and -7.6 days for
Sodankyld (-10.9). Likewise, the end of season (EOS) displacement is 3.3 days for Hyytiild (5.1 for RCP8.5) and 3.5 days for
Sodankyli (5.2). The SOS and EOS temporal correlations are typically strong (r? ~ 0.8). The increase to the length of VAP is
very similar for both sites, regardless of the different annual GPP.

The Mann-Kendall tests report a decreasing trend (earlier occurrence) for start of the snow melting period, first snow-free
date and the length of the snow melting period (Fig. 6) in all simulations, except for Sodankyld RCP8.5 where the Mann-
Kendall signifies the absence of trend for the melting period length. The simulations indicate that at the end of the century,
the annual amount of snow in Hyytidld will be radically diminished, and that Sodankyld winters will be similar to present
day Hyytiédla winters (especially in the RCP8.5 scenario). Relatively, the first snow free date is catching up to the start of the
snow melting period (Fig. 6). The snow starts to melt approximately 20.7 days earlier in 100 years time for Hyytidld RCP4.5
and 24.9 days earlier in RCP8.5, whereas the snow free dates appear 29.8 days (RCP4.5) and 41.7 days (RCP8.5) earlier.
The corresponding values for Sodankyli are 12.2 (RCP4.5) and 25.1 (RCP8.5) for the start of snow melting period and 20.0
(RCP4.5) and 28.2 (RCPS8.5) for the snow free dates. The correlations vary widely: r? = 0.7 for snow free dates, r> ~ 0.5 for
the start of the melting period and 72 ~ 0.2 for their difference.

The initial distributions of the summertime soil moisture values (Fig. 7) are unimodal for Hyytiéld and bimodal for Sodankyla
for all climate models. This structure is still evident for the RCP4.5 scenario (of the last 30 years) but breaks down for the
RCP8.5. Moreover, Hyytidlda RCP8.5 demonstrates some bimodality for two of the climate models whereas the RCP8.5 for
Sodankyld seems to be losing the bimodality and is becoming (in appearance) more similar to the Hyytidld reference period.
The soil moisture value distributions are nearly identical for all climate models at both sites during the reference period, but
there are clear differences (distribution modes and shapes) for the last 30 years.

The averaged drought events (Fig. 8) seem to be repeating at a roughly constant rate although the different model param-
eterisations result in wide soil moisture distributions (Fig. 7) at the end of the simulations. The average cumulative values
correspond reasonably well with the drought indicator threshold in Appendix B1 (5 % of 92 summertime days, accumulated

for 120 years would result in 552 days). The temporal correlations for the individual climate model and RCP specific simula-
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tions is poor — Mann-Kendall test for individual simulations indicated some positive, few negative but mostly no trends (Table
3). The cumulative drought day distributions at the end of the simulations (Fig. 8) are strongly skewed with wide "tails" and
high-value outliers (outside the figures) of approximately 2600 drought days for Hyytiédld and 3700 for Sodankyld. Interest-
ingly, one of the climate models (CNRM-CMS5) markedly reduces the amount drought days for the RCP8.5 at both sites when
compared to RCP4.5. Neither the accumulated drought day variations or those of the soil moisture values (Fig. 7) are reflected

in the CCA analysis of the Water group (Fig. 2). This is largely result of low correlation among the simulations.
3.4 Ecosystem indicator value comparison

The comparison results (Fig. 9) for soil moisture and ET indicate very small changes in the average values for both models but
the JSBACH simulations manifest substantially larger variation. The JSBACH model yields more elevated levels of relative
GPP, NPP, NEE and ecosystem respiration for Hyytidld, but the situation is (mostly) reversed for Sodankyla. These differences
likely reflect the effect of the management actions and distinct site characteristics. The managements result in clearly different
pathways for these variables at Hyytidld, but only yield small differences at the end of the simulation for Sodankyla.

The SOS is roughly identical for both models, whereas both PREBAS versions have a larger effect on the EOS — initially the
EOS for PREBAS occurs much earlier (roughly 15 days) than for JSBACH, which is diminished to a few days at the end of the
simulations. The PREBAS extends the VAP more evenly from both "ends", whereas JSBACH focuses more on the SOS. These
differences are reflected in the length of the VAP, which is merely the difference between EOS and SOS. Additionally, we note
that the largest value spreads (deviations as represented by the length of the "whiskers") appear during the values representing
the last 30 years of the RCP8.5 simulations — this merely reflects that the simulation uncertainties are increasing towards the
end of the simulation (as expected). Overall, the model responses to the different inputs is very alike, which results in linear

dependencies between the variables (Fig. 9).

4 Discussion

In this paper we present an assessment on the importance of the different uncertainty sources, simulated on boreal forests for
the 21st century. The JSBACH and PREBAS models yield similar uncertainty estimates (Fig. 1) and have a similar response to
many of the examined ecosystem indicators (Fig. 9), when we take into account that PREBAS simulations included forest man-
agement. Further differences in modelled variables can be explained by the different model structures (e.g. soil moisture and
evapotranspiration). Forest management plays an important role in the estimates of ecosystem variables and their uncertainties.

This importance is underscored by the lack of management in many land-surface components of climate models.
4.1 Ecosystem indicator sensitivity

According to Gronholm et al. (2018), the long-term eddy-covariance measurements (1997-2017) at a boreal coniferous forest in
Hyytidld indicate a significant increase of gross-primary productivity (+10.5 [g(C)/m? year]), which is only partly compensated

by an increased ecosystem respiration (+4.3g [g(C)/m? year]). As a result, the annual CO, sink has increased by about 6.2
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[g(C)/m? year]. The GPP increase is dominated by an increase in LAI (from 4.1 to 4.6), while rise in the atmospheric CO2
concentration (from 360 ppm to 410 ppm) contributes only about 10 % to the rising GPP trend (Gronholm et al., 2018; Wenzel
et al., 2016). It has to be noted that Hyytidld forest was thinned in 2002, temporarily reducing LAI to 3.4. However, in few
years the forest recovered to similar steadily increasing LAI trend than before thinning. The observed rise in the GPP is better
replicated by the RCP8.5 scenario (Fig. 4) that yields an increase of +8.8 [g(C)/m? year] for Hyytiédld; whereas the increase in
ecosystem respiration is more closely reproduced by the RCP4.5 scenario (+5.8).

The RCP scenarios have a strong impact for growing stock and wood harvesting (Fig. 3), but the effect pales in comparison
to the examined management actions. This underlines the importance of proper forest management for provisioning services
(Snell et al., 2018; Holmberg et al., 2019). This is illustrated by the relative NEE pathways (Fig. 9) that are roughly concave
for BAU and convex for DEL management actions. The simulations also indicate linearly lengthening VAP (Fig. 5), with high
variation towards the end of the simulations (Fig. 9). This can be interpreted as beneficial for nature tourism and recreational
activities, but on the other hand are the adverse effects of shortened snow melting period (Fig. 6) and potentially increased
droughts (Fig. 8), also investigated by Ruosteenoja et al. (2017). These effects are also detrimental for winter harvesting and
wood quality, as suggested by Holmberg et al. (2019).

Manninen et al. (2019) reported lengthened snow melting periods for some regions in Finland for 1982-2016. We analysed
the reference period (1980-2009) snow melt in more detail and found that roughly 30 % of parameter specific simulations for
Hyytidld, and 20 % for Sodankyl4, resulted in increased length for the snow melting period. We note that our simulations are
restricted to site level, whereas regional experiments include lakes, rivers etc. that can significantly affect the outcome — this

type of an uncertainty source is not considered in our simulations.
4.2 Simulation uncertainty sources

The overall uncertainty associated with the management actions differs for Hyytidld and Sodankylad (Fig. 1). This is due to
the more abundant harvesting effect at Hyytidld (Fig. 3), whereas most of the biomass in Sodankyli is left to grow. Sodankyld
stand volume increases as simulations progress whereas Hyytidld stand volume remains the same or even decreases for the
BAU scenario. This underlines the importance of proper forest management, as the impact of these relatively similar actions is
strong — especially when taken into context of e.g. clear cuts.

As expected, the uncertainty related to the RCP scenarios increases systematically (Ruosteenoja et al., 2016) for all ecosys-
tem indicators and grouped variables (except for the Water group) as the simulations advance further in time. This is similar to
results by Kalliokoski et al. (2018). The RCP scenarios are the most dominant factor in explaining the JSBACH and PREBAS
uncertainties for both sites at the end of the simulations. The RCP uncertainty also dominates the Carbon, Growth and Snow
variables at both sites and Biomass variables for Sodankylid. The RCP scenarios tend to gain effect at mid-century (e.g. Fig. 3),
although there are some earlier affects, e.g. snow variables for Sodankyli (Fig. 6).

The effect of the climate models to the redundancy indices is the most varied among the examined uncertainty sources. The
climate models tend to have more impact in the two earlier periods, although the overall climate model uncertainty remains

roughly the same throughout the simulations. This can be seen to reflect the internal variability of the climate system (Knutti
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and Sedlacek, 2012) and the consequent variation in the climatic drivers. The combined variation of climate models and model
parameters may not be fully captured due to non-linearity within the simulated variables. This is noted to emphasise the
importance of the parameter uncertainty, as stated by Reyer et al. (2016). The parameter uncertainty is expected to be small
when compared to the selected RCP scenarios that have a significant impact on the ecosystem (see Holmberg et al., 2019, Fig.
2). Most of the indicator value distributions, induced by the parameterisations, are highly alike for all climate models (Fig. 4),
especially during the reference period (Fig. 7). The combined climate model and parameter uncertainty is on par with the RCP

scenario uncertainty towards the end of the simulations (Fig. 1).
4.3 Validity of estimates

The JSBACH model calibration (Mékela et al., 2019) was originally used in comparison of various submodel components
(stomatal conductance functions) and the PREBAS calibration (Minunno et al., 2019) utilised permanent growth and yield
experiments. Both of these examinations rely on hindcasting with relatively recent meteorological measurements or datasets,
and the resulting parameter distributions emulate the current climate conditions well. The JSBACH model was calibrated with
data throughout the boreal zone and the parameterisations can be viewed as to be representing all evergreen coniferous forests
where as the PREBAS model was extensively calibrated for the whole of Finland. The sites in this study are representative
of southern and northern boreal pine forests and the ecosystem indicators were chosen to reflect the calibrated parameters
and processes. We note that model calibration and the parameter distributions also compensate and reflect for missing and
imperfectly modelled processes.

The CCA analysis and model comparison focuses on the relative differences in the ecosystem indicators, and thus less
importance is given to the absolute indicator values. The CCA analysis only accounts for linear dependencies (Hotelling and
Pabst, 1936) between the input and output uncertainties, and even though the redundancy index (Stewart and Love, 1968)
considers the (correlated) variance between the variables, the nonlinear effects may be underestimated. We reduce the annual
variation and linearise the variables by averaging and separating them into four consecutive 30-year long periods. Additionally,
we also examined the PREBAS redundancy indices without the RCP2.6 — these results differ only marginally from those with
the RCP2.6 included, which increases the validity of the JSBACH results.

This linearisation may not be enough to capture all variation, as is the case with the JSBACH Water group uncertainties (Fig.
2) and the wide spread of soil moisture values (Fig. 7) and cumulative drought days (Fig. 8). The different parameterisations
and climate models have a prominent variation, but due to adverse effects the correlations remain small. For example, the
RCP8.5 radically increases precipitation (see Ruosteenoja et al., 2016, Fig. 2) and therefore increases the soil moisture (Fig.
7) and reduces the amount of drought days (Fig. 8). The strength of this effect varies among the climate models, but the
model parameterisations still enable even radical increases to the number of drought days. This major source of uncertainty,
investigated by e.g. Trugman et al. (2018), is not captured by CCA. However, when the indicators are reasonably correlated (as
is the case for most of the presented indicators), the CCA method is applicable.

The CCA analysis was performed for indicator groups to ensure robustness of the approach — this was not successful in

every case, as a minimal but systematic difference in Sodankyli reference period harvested volume led to a large management

11



350

355

360

365

370

375

380

scenario impact (Fig. 2). The situation arises as all of the other indicator values were nearly identical and thus a small systematic

change that was relatively large, had high correlation and impact in CCA. This event was not replicated with the other groups.

5 Conclusions

Although this study is limited to only two sites, our simulations indicate that the management actions have the greatest influence
to simulated ecosystem indicators in Finland. When taken into account that the considered management actions are very alike,
more emphasis should be given to forest management when simulating future ecosystem conditions. Towards the end of
century, the RCP scenarios achieve a similar impact as the management actions. The combined climate model and parameter
uncertainty is also an important factor for the whole duration of the simulations due to internal variability of the climate system,
but these effects can be easily underestimated due to non-linear or adverse effects. The examined uncertainties are comparable
for both models.

Long-term measurements and simulations indicate considerable increases to GPP and ecosystem respiration, with a slightly
larger emphasis respectively for the southern and northern boreal forests. While the effect of management to these variables
is linear, the impact on NEE is more complex and would be of interest in further studies. The snow melt is occurring several
weeks earlier in all simulations and the length of the snow melting period appears to be decreasing, although the results for
Sodankyli are not conclusive. Similarly, the length of the vegetation active period is expected to increase linearly for both sites
by a few weeks. Sodankyld soil moisture is expected to increase, while the effects for Hyytiéla are varied. The scenarios do not
constrain the recurrence of drought as the parameterisations enable varied outcomes.

We have successfully estimated the roles of different uncertainty sources on overall ecosystem indicator sensitivity at rep-
resentative boreal forest sites. The study provides material to steer further analysis to relevant uncertainty sources as well as
justification to further examine the effect of forest management. The analysis of results is based on CCA that is able to capture
the uncertainties when the outputs are correlated. The linearity assumptions in CCA limit its applicability, so other methods
e.g. random forest as in Augustynczik et al. (2017) should also be consider in cases with highly non-linear variables. The uncer-
tainty analysis would also benefit from a larger model ensemble with different model process implementations. In such a case,
instead of different model parameterisations, the factorial design could be extended to include different model components
or parameterisations representing different functionalities or local management practices. This would still keep the number of

simulations reasonable while allowing a robust uncertainty estimation.

Code and data availability. The underlying JSBACH model version (branch: cosmos-landveg-tk-topmodel-peat, revision: 7384) can be ob-
tained from the Max Planck Institute for Meteorology (MPI-M), where it is available for scientific community under the MPI-M Software
License Agreement (http://www.mpimet.mpg.de/en/science/models/license/). The model modifications have been uploaded to Github, and
they can be accessed by contacting the authors at jarmo.makela@fmi.fi. The R package (Rprebas), containing the PREBAS model, is avail-
able on GitHub (https://github.com/checcomi/Rprebas). The periodically averaged indicator values as well as the redundancy index values

in Fig. 1 and 2 are available as supplements.
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Appendix A: Model parameters

Pre-existing JSBACH and PREBAS model calibrations (Mékeli et al., 2019; Minunno et al., 2019) were deemed suitable to
represent parameter uncertainties in the simulations described in this paper. A set of parameter values was extracted from the
model calibrations to preserve parameter interdependence. The PREBAS parameter values were drawn at fixed intervals from
the MCMC chains in Minunno et al. (2019). This is a standard approach that results in an approximation of the parameter
posterior distributions. The JSBACH calibration was done with adaptive population importance sampling (APIS), which pro-
duces a posterior estimate at each iteration. The estimate at 20-iterations (40 parameter combinations) was complemented with
15 additional combinations at each of 40, 60, 80 and 100 iterations. All parameter descriptions, as well as sample means and

deviations are given in Tables Al and A2.

Appendix B: Calculation of ecosystem indicators
Most of the ecosystem indicators in this paper are directly produced by the models, but few are derived from other variables.
B1 Drought days

The drought days are calculated as the amount of days when average soil moisture (of the combined 2nd and 3rd soil moisture
levels in a 5-layer JSBACH scheme) is below a certain threshold. Only summertime (June, July, August) values are used and
the threshold for Hyytiédld was set as the 5th percentile of all soil moisture values during the reference period. This value is
approximately 33 % of the soil field capacity in Hyytidld, which compares well with the parameters 6y, and 8., for the
Hyytidld drought period optimisation in (Mékeld et al., 2019). Thus, the number of dry days is a reasonable measure for
Hyytidla. We used the same percentile to set a similar value for Sodankyli although the site characteristics differ (different soil

compositions and field capacity etc.).
B2 Vegetation active period

The dates for the start of season (SOS) and end of season (EOS) for the vegetative active period are calculated from simulated
daily GPP. First we extracted the value corresponding to the 90th percentile of the daily GPP, from all of the simulations during
the reference period, and then multiplied this value by 0.15. The SOS date is considered to be the first day of the year (DOY),
when the daily GPP is consistently above this threshold. The consistency here means that, when we consider the daily GPP
values, starting from the 30th DOY, to twice as far as the date of the SOS event, the GPP must be above the threshold for at
least half of the days. The date for EOS is calculated similarly, when GPP is below the threshold and starting from 230th DOY.

B3 Snow melting period

The snow depth in model simulation varies on a year-to-year basis. We also encounter some years without any snow cover for

Hyytidld. Hence we first aggregate the snow depth over the model parameterisations and climate model simulations to produce
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average site and RCP scenario specific time series. This approach yields robust estimates of the snow cover, where the actual
time series is smooth enough to allow calculation of the beginning of snow melting period and the first snow free date. We
take a similar approach as in Manninen et al. (2019) and fit a sigmoidal function to identify the starting date of snow melt. The
snow is considered to have melted, when the snow cover has consistently vanished. This means that there is no snow cover for

at least half of the days during +10 days of the snow clear date.

Appendix C: Canonical correlation analysis

We carried out canonical correlation analysis (CCA) to quantify the impact of the different factors on the ecosystem indicators.
These factors are parametric uncertainty (pars), management scenarios (man), climate models (clim) and rcp scenarios (rcp).
CCA is a multivariate extension of correlation analysis that allows identifying linear relationships between two sets of vari-
ables (Hotelling and Pabst, 1936). It’s use is similar to multiple regression but it is more appropriate when there are multiple
intercorrelated variables such as model outputs. A more detailed description of CCA is provided in (Stewart and Love, 1968).

We consider two sets of variables, X € R"/** (the different factors) and Y € R™=** (ecosystem indicators), where n,n;
are the number of factors and ecosystem indicators and s is the number of simulations, presented in Table 1. Each factor
fi,i€{l,...,nys}, or indicator e;,j € {1,...,n.}, can be interpreted as a row-vector of X or Y, respectively. In CCA we
construct linear composites of the input factors (U; = a’ X,a € R™f) and output variables (V; = bTY,b € R™¢). We choose

a,b as to maximise the (canonical) correlation (Rc;) between the composites Uy and Vi:
Rey = corr(Uy, Vr). (CD)

This forms the first pair of canonical variates U; and V;. The second pair is formed similarly but it is required to be
uncorrelated with the first pair (and so forth for the following pairs). The first pair accounts for the highest amount of variance
between the two sets of variables and has the highest canonical correlation (Rcy, k € {1,...nj }) — the variance and correlations
diminish for each consecutive pair. In our analysis, we use three pairs for JSBACH (n;=3) and four pairs for PREBAS (n; = 4).

The simple linear correlations between an independent variable (f; or e;) and a respective canonical variate (V, or Uy) are
called canonical loadings (C'L;j,C'L ;). Similarly, the correlations between an independent variable and its opposite canonical
variate (f; and Uy, or e; and V},) are called canonical cross-loadings (C'cL;y,, C'cLjy,). To summarise the CCA results via the use
of a redundancy index (Rd), we need the canonical loadings of the ecosystem indicators (C'L ;) and canonical cross loadings
of the uncertainty factors (C'cL;y).

Rdg, = ;;(CLfk)Rci. (C2)

The redundancy index (Rd;) expresses the amount of variance in a set of variables (ecosystem indicators) explained by
another set of variables (uncertainty factors) (Stewart and Love, 1968; Weiss, 1972; van den Wollenberg, 1977). The square of
the canonical loadings (C'L ;1) expresses the proportion of variance accounted for each variable — computing the average for

each variate provides an indication of the overall variability explained by the variate. The squared Rcy, represents the variance
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shared by the canonical variates of the two sets of variables. In our analysis, we wanted to quantify the importance that each
factor have on the ecosystem indicator uncertainty (RdF'). We quantified the redundancy index of the indicators for each

canonical variate and then multiplied it by the squared canonical cross-loadings between factors and variates.
RdF;, = Rdy,CcL?, (C3)

CcL;i represents the proportion of variance shared between the factors (f;) and the canonical variates of the ecosystem in-
dicators (V). The overall redundancy and the full weight of uncertainty for each factor f; are derived by summing over the

canonical variates. This produces an overall measure of the bi-multivariate covariation of the two sets of variables.
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Figure 1. Redundancy indices for the different uncertainty factors, calculated using all ecosystem indicators using values from 1980-2009

(p1), 2010-2039 (p2), 2040-2069, (p3) 2070-2099 (p4). Exact values in a supplementary table.
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Figure 2. Redundancy indices for the different uncertainty factors, calculated separately for the different indicator groups using values from

1980-2009 (p1), 2010-2039 (p2), 2040-2069, (p3) 2070-2099 (p4). Exact values in a supplementary table.
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Figure 3. Selected ecosystem indicators from the PREBAS biomass factors, averaged for the 30-year long periods. The y-axis “whiskers”
at each point represent the point specific uncertainty: one standard deviation amongst the corresponding simulations. We use lighter shading

for the earlier periods, a different colour for the RCP scenarios and a different marker to separate the management actions.
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Figure 4. JSBACH predicted annual values of GPP and ecosystem respiration for RCP4.5 (purple) and RCP8.5 (orange) scenarios. The
shaded area represents all RCP-specific simulations, the dashed line is the annual mean and the solid line is the trend line. The KDE
estimates on the left side of each image represents the distribution of the reference period values of both RCP scenarios (blue), whereas the

KDE on the right side consists of RCP specific values from the last 30 years of simulations.

23



RCP45 vegetation active period for JSBACH
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Figure 5. Average vegetation active period for JSBACH RCP4.5; yellow dots are the SOS values, red dots are the EOS values and the grey
dots are the minimum and maximum SOS/EOS from all simulations. Also presented are the trend lines and the daily GPP as the green

amplitude.

24



Snow melting period for JSBACH
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Figure 6. The average snow melting period for the JSBACH model; presented are the average annual values for the start of the snow melting
period (blue), the first snow free day of the year (green) and their difference (black) as well as trend lines (calculated from the shown values)

for these variables (when applicable).
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simulations. Each colour represents the average summertime (June-August) soil moisture, produced with one of the climate models using all

parameterisations.
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Cumulative summer drought days for JSBACH from the beginning of year 1980
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Figure 8. Accumulated summer drought days scatter plotted for each climate model, averaged over model parameterisations with minimum
and maximum increment visualised as y-axis whiskers. The gray line is the average of the simulations. The KDE estimates on the right side
depict the distribution of the accumulated drought days with the different parameterisations at the end of the simulation. The KDE figures

have been cut at 1250 accumulated days.
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Figure 9. Average simulated values for shared ecosystem indicators between JSBACH and PREBAS, plotted for each 30-year period and
both RCP4.5 and RCP8.5 scenarios. The values for JSBACH are divided by the average of the reference period values, and the values for
PREBAS by the average of the BAU scenario reference period values. The “whiskers” at each point represent the point specific uncertainty:

one standard deviation amongst the corresponding simulations. We use lighter shading for the earlier periods.
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Table 1. Composition of JSBACH and PREBAS model simulations: number of parameter combinations (Par), climate models (Clim), RCP

scenarios (RCP), management actions (Manag) and sites as well as the total number of 120-year long simulations.

Model Par Clim RCP Manag Sites | Total
JSBACH 100 54 2 - 2 1800
PREBAS 100 5 3 2 2 6000
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Table 2. Ecosystem indicators derived from the recorded values of the JSBACH and PREBAS simulations, separated into groups for the
canonical correlation analysis. The group names relate to biomass distribution, ecosystem carbon exchange, length of the growing season,

water cycle and snow melting period.

Indicator Abb. Units JSB PRE  Group

basal area BA m? / ha X Biomass
stand volume \Y m? / ha X Biomass
harvested volume Vharv  m®/ha X Biomass
volume of dead trees Vmort m®/ha X Biomass
tree biomass Biom kg(C) X Biomass
tree litterfall Lit kg(C) X Biomass
leaf area index LAI m? /m? X Biomass
gross growth Growth m?®/ha X Biomass

gross primary production ~ GPP g(C)/m*day  x X Carbon
net primary production NPP g(C)/m*day  x X Carbon
net ecosystem exchange ~ NEE g(C)/m*day  x X Carbon

respiration (autotrophic)  Ras g(C)/ m?* day X Carbon
respiration (ecosystem) Reco g(C)/m*day  x Carbon
soil carbon Csoil kg(C) X Carbon
start of growing season SOS DOY X X Growth
end of growing season EOS DOY X X Growth
length of growing season VAP days X X Growth
evapotranspiration ET mm / day X X Water
annual soil water aSW mm X Water
summer soil water sSW mm X X Water
number of dry days Ddry days X Water
albedo alb X Snow
snow amount Snow m X Snow
start of snow melt melt DOY X Snow
snow clear date clear DOY X Snow
length of snow melt SM days X Snow
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Table 3. Classification of trends according to Mann-Kendall test in annual drought days for all simulations.

Hyytidld  Sodankyld
positive  35.7 % 6.1 %
negative 0.7 % 32 %
notrend 63.6 % 90.7 %
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Table A1. JISBACH model parameter descriptions as in Mikeld et al. (Table 2; 2019) with distribution mean and standard deviation.

Parameter description (units) nw oo
Farquhar model maximum carboxylation rate at 25 °C (umol (CO2) m~2s71) Vo, max 428 194
Farquhar model efficiency for photon capture at 25 °C. o 0.30 0.013
Multiplier in momentum and heat stability functions. Cb 49 0.7
Ratio of unstressed C3-plant internal/external CO2 concentration. fcs 0.81 0.025
Exponential scaling of water stress in reducing photosynthesis. q 0.65 0.19
Volumetric soil water content above which fast drainage occurs. Oar 0.79 0.09
Fraction depicting relative surface humidity based on soil dryness. Ohum 0.23 0.02
Volumetric soil moisture content at permanent wilting point. Opwp 0.19 0.03
Volumetric soil moisture content, above which transpiration is unaffected. Otsp 043 0.1
Fraction of precipitation intercepted by the canopy. Pint 029 0.04
Depth for correction of surface temperature for snow melt (m). Ssm 0.05 0.025
Maximum water content of the skin reservoir of bare soil (m). Wskin 27x107%  73%x107°
LoGro-P: memory loss parameter for chill days (days). Cldecay 157 53
LoGro-P: minimum value of critical heat sum (°C d). Shmin 180 64
LoGro-P: maximal range of critical heat sum (°C d). Srange 189.0 499
LoGro-P: cutoff in alternating temperature (°C). Tt 60 1.8
LoGro-P: memory loss parameter for pseudo soil temperature (°C). Tos 158 53
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Table A2. PREBAS model parameter descriptions as in Minunno et al. (Table 1; 2019) with distribution mean and standard deviation.

pine spruce birch
Parameter description (units) [T n oo n oo
Maintenance respiration rate of foliage (kg(C) kg_l(C) yr_l). MF ref 0.2 0.003 0.2 0.005 0.3 0.061
Maintenance respiration rate of fine roots (as above). MR, ref 0.23  0.023 0.24 0.036 0.33  0.064
Maintenance respiration rate of sapwood (as above). MS ref 0.03 14x107* 0.03 3.0x107* 003 14x1073
Growth respiration rate (as above). c 0.29  0.005 025 0.023 024  0.027
Leaf longevity (yr). VF ref 4.0 0.02 9.7 027 1.1 0.09
Fine root longevity (yr). VR 0.9 0.03 1.7 0.07 1.2 0.19
Homogeneous extinction coefficient. ku 025 5.4x107* 025 8.8x107* 031 9.7x1073
Specific leaf area (m? kg’l(C)), SLA 20.0 0.036 20.1 0.072 41.0 294
Parameter relating to reduction of photosynthesis with crown s 0011 6.1x10™* 0.006 9.7x107* 0.031 0.011
length.
Wood density (kg (C) m™3). PW 197 2.82 183 2.48 226 209
Ratio of fine roots to foliage. QRs 180 0.18 201 0.55 105 4.44
Foliage allometry parameter. z 1.8 0.020 1.7 0.001 1.9 0.012
Ratio of total sapwood to above-ground sapwood biomass. Bo 1.28 0.014 1.27 0.018 1.48 0.056
Ratio of mean branch pipe length to crown length. OB 04 45x1074 0.5 8.7x107* 0.4 0.048
Ratio of mean pipe length in stem above crown base to crown (s 0.39  0.006 046  0.007 046 0.024
length.
Light level at crown base that prompts full crown rise. Cr 0.22  0.008 0.16 0.004 0.17 0.013
Reineke parameter. No 856 3.0 1040 7.4 998 68.6
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