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Abstract. Plant functional traits determine vegetation responses to environmental variation, but variation in trait values is 

large, even within a single site.  Likewise, uncertainty in how these traits map to Earth system feedbacks is large. We use a 

vegetation demographic model (VDM), the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to explore 35 

parameter sensitivity of model predictions, and comparison to observations, at a tropical forest site: Barro Colorado Island in 

Panama. We define a single 12-dimensional distribution of plant trait variation, derived primarily from observations in Panama, 
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and define plant functional types (PFTs) as random draws from this distribution. We compare several model ensembles, where 

individual ensemble members vary only in the plant traits that define PFTs, and separate ensembles differ from each other 

based on either model structural assumptions or non-trait, ecosystem-level parameters, which include: (a) the number of 40 

competing PFTs present in any simulation, and (b) parameters that govern disturbance and height-based light competition. 

While single-PFT simulations are roughly consistent with observations of productivity at Barro Colorado Island, increasing 

the number of competing PFTs strongly shifts model predictions towards higher productivity and biomass forests. Different 

ecosystem variables show greater sensitivity than others to the number of competing PFTs, with the predictions that are most 

dominated by large trees, such as biomass, being the most sensitive. Changing disturbance and height-sorting parameters, i.e. 45 

the rules of competitive trait filtering, shifts regimes of dominance or coexistence between early and late successional PFTs in 

the model. Increases to the extent or severity of disturbance, or to the degree of determinism in height-based light competition, 

all act to shift the community towards early-successional PFTs. In turn, these shifts in competitive outcomes alter predictions 

of ecosystem states and fluxes, with more early-successional dominated forests having lower biomass. It is thus crucial to 

differentiate between plant traits, which are under competitive pressure in VDMs, from those model parameters that are not, 50 

and to better understand the relationships between these two types of model parameters, to quantify sources of uncertainty in 

VDMs. 

1 Introduction 

Climate change-related feedbacks from the terrestrial biosphere are an important and highly uncertain component of global 

change (Friedlingstein et al., 2013; Gregory et al., 2009). Tropical forests may contribute substantially to these feedbacks, as 55 

vegetation dynamics within these ecosystems may lead to biome shifts and resulting changes to carbon stocks (Cox et al., 

2000; Huntingford et al., 2013; Malhi et al., 2009).  The majority of Earth system models (ESMs) represent vegetation through 

conceptual structures that are likely to inhibit realistic or accurate ecosystem responses to global change.  In particular, most 

ESMs use prescribed vegetation distributions, and/or do not represent the functional diversity that exists within tropical forests, 

and/or impose static vegetation turnover times.  Each of these assumptions may substantially bias model results. Prescribed 60 

biogeography does not allow models to project either the abrupt changes (Cox et al., 2000) or the long-term committed 

ecosystem changes (Jones et al., 2009) that may result from vegetation shifts. Conversely, assuming all tropical forests are 

comprised of a single set of plant traits may lead to overly abrupt changes in response to an imposed forcing, as compared to 

approaches that allow community-wide shifts in the trait composition of forests (Levine et al., 2016; Powell et al., 2018; 

Sakschewski et al., 2016). Lastly, assuming fixed turnover times for vegetation may bias the responses to both elevated CO2 65 

and climate change, as doing so does not permit changes to mortality rates that may result from changes to climate and resource 

competition (Friend et al., 2014; Koven et al., 2015; McDowell et al., 2018; Powell et al., 2013; Walker et al., 2015), as may 

be already underway in tropical forests (Brienen et al., 2015). 
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In addition to the above structural problems in existing ESM vegetation representations, there are enormous uncertainties due 70 

to the representation of parameters in such models (Booth et al., 2012). Typically, ESMs are run with a single set of parameters 

that are chosen through processes that range from formal (but limited-scope) optimization approaches to ad-hoc selection of 

values that give acceptable results.  These parameters may or may not be measurable, and if they are measurable, the values 

used in a given model may need to be scaled up and may or may not agree with observed ranges (Bonan et al., 2012; Rogers, 

2014). It is crucial to benchmark ecosystem models against a wide range of observations (Collier et al., 2018; Luo et al., 2012), 75 

and at the same time to understand how sensitive model predictions are to uncertainty in the model parameters (Dietze et al., 

2014; Raczka et al., 2018), so that we may better assess how much to trust a given model prediction. 

 

Land surface models (LSMs), by virtue of their enormous scope—which typically include aspects of boundary layer 

turbulence, radiative transfer, soil hydrology, soil biogeochemistry, plant physiology, land management, and community 80 

ecology—have many parameters, all of which are uncertain. In this paper, which focuses on vegetation processes, we broadly 

separate these model parameters as belonging to two sets: those parameters that comprise a plant functional type (PFT), which 

we refer to as plant traits, and those parameters that govern the environment in which PFTs exist, which we refer to as 

ecosystem-level parameters. The importance of this distinction is that, in a dynamic vegetation model with more than one 

competing PFT, while we can specify the values of the traits of each PFT, the overall trait distributions are controlled by both 85 

the trait values of the PFTs and the relative abundance of each PFT. Because the PFT abundances are themselves emergent 

outcomes that result from the trait values (Fisher et al., 2015), there exist complex feedbacks that amplify or attenuate the 

influence of any given trait value on model predictions, as well as tradeoffs or other interactions between traits.  These 

feedbacks greatly complicate the assessment of parameter sensitivity in the models.  It is thus important to distinguish between 

the parameter uncertainty associated with plant traits and that associated with ecosystem-level parameters to better understand 90 

how they relate to each other and contribute in different ways to model dynamics. 

 

This paper has three goals.  The first is to describe a vegetation demographic model (VDM; (Fisher et al., 2018)) for use in 

ESMs, which we call the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). A VDM is a size- and age-

structured representation of vegetation dynamics within an LSM, and which may also be coupled within an ESM.  The second 95 

is to describe FATES behavior at a testbed site at Barro Colorado Island (BCI), Panama. The third goal is to explore the 

sensitivity of mean-state model predictions by FATES to parameter uncertainty.  Because this parameter uncertainty can show 

up in a number of different ways in a VDM like FATES, we are interested in trying to separate three distinct types of parametric 

uncertainty: (1) the direct effects of traits on physiological predictions by the model, (2) the indirect effects of trait control on 

competitive outcomes, which further affect ecosystem-level processes, and (3) how non-trait parameters interact with each of 100 

these trait uncertainties to further affect model dynamics. 
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To do this, we first describe the model, and the data that comprise the testbed used to drive the model.  This testbed includes 

distributions of plant traits, most of which are based directly on observations across research sites in Panama. We then describe 

a series of numerical experiments aimed at exploring the structural and parametric uncertainty in the model. These include: 105 

(1) assessing direct control of trait uncertainty on model predictions using an ensemble of model runs with only 1 PFT per 

ensemble member; (2) separate ensembles where we embed FATES within two related but divergent land surface models, the 

Energy Exascale Earth System Model (E3SM) Land Model (ELM) and the Community Land Model (CLM); (3) ensembles 

where we add greater numbers of competing PFTs (from one to three to ten) into each ensemble member; and (4) a set of 

ensembles where we compete two PFTs against each other in each ensemble member, while also varying a set of ecosystem-110 

level parameters that govern competition and disturbance in the model. 

2 Methods 

2.1 Description of the FATES Model 

FATES is a size- and age-structured vegetation model, whose foundations are based on a representation of ecosystem 

biophysics from the CLM4.5 (Oleson et al., 2013), a discretization of individual plant and forest disturbance dynamics based 115 

on the Ecosystem Demography (ED) approach (Moorcroft et al., 2001), and an approach to scale from individual plants to a 

forest canopy based on the Perfect Plasticity Approximation (PPA) (Purves et al., 2008); all of which were first brought 

together in the CLM(ED) model (Fisher et al., 2015).  Following the development of CLM4.5, FATES was created by 

separating the demographic components of CLM(ED) model from CLM itself, to facilitate a more modular structure, to combat 

the ‘shantytown syndrome’ prevalent in land surface models (Clark et al., 2017) whereby new model features are added without 120 

a clear infrastructure for supporting the additional complexity that they bring, and to enable FATES to be used within multiple 

ESMs, initially both the CLM and ELM. 

 

The two key structural components that FATES adds to a traditional land surface model, the ED and PPA approaches, are 

described elsewhere in greater detail (e.g., (Fisher et al., 2018)) so we only briefly summarize them here. ED (Moorcroft et al., 125 

2001) describes an approach to represent a spatially heterogeneous forest canopy comprised of individual trees existing on a 

complex disturbance history by approximating the forest as a set of partial differential equations in a two-dimensional space 

comprised of plant size and the age of a given location since its last disturbance event.  These continuous equations are then 

solved numerically by discretizing the ecosystem along each of these two dimensions: plant growth and mortality is discretized 

by tracking cohorts of individual trees that have a similar size, and disturbance history is tracked as a set of patches with shared 130 

disturbance histories; such that each patch may have several cohorts growing on it. The number of patches and cohorts varies 

in time. New cohorts are generated by recruitment, existing cohort number densities are reduced by mortality, cohorts are 

merged if they grow to be sufficiently similar, and cohorts are split by any processes—such as light competition—that lead to 
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divergence in outcomes across plants at a similar stage. New patches are generated during disturbance events by reducing the 

area of existing patches, and patches may be merged if their disturbance history or composition are sufficiently similar.   135 

 

The PPA (Purves et al., 2008) describes an approach of organizing trees (or, equivalently, cohorts) into discrete canopy strata 

by rank-ordering the trees from tallest to shortest, and defining canopy trees as those whose cumulative crown area equals that 

of the ground (or when combined with ED, patch area) that they occupy. (Fisher et al., 2010) added a modified form of the 

PPA, whereby the cohorts, rather than being strictly rank ordered in their separation between canopy and understory, were 140 

probabilistically sorted into the canopy and understory based on a function of their height. 

 

Since the original version of CLM(ED) described in (Fisher et al., 2015), there have been numerous developments in the 

FATES model, which we briefly summarize here.  These relate to five main areas: (1) The overall structure of the model and 

its modularization from the CLM; (2) changes to canopy biophysics; (3) changes to allocation and allometry; (4) changes to 145 

the representation of disturbance; and (5) changes to the canopy sorting approach. For a complete reference of the FATES 

model, see https://fates-docs.readthedocs.io/en/latest/index.html, and for a schematic of key processes and their linkages in 

FATES, see figure 1. 

 

A key distinction between CLM(ED) and FATES is the modularization of the code into a separate repository, with clearly 150 

identified boundary conditions between the demography code and the rest of the LSM into which FATES is embedded. 

Information is passed between FATES and the LSM at two different frequencies: a biophysics frequency, with a default time 

step of 30 minutes, and a vegetation dynamics frequency, with a default time step of one day. Within each biophysics timestep, 

the LSM provides FATES with information about the current state of the soil moisture, atmospheric radiation inputs, 

atmospheric thermodynamic state, and some time-averaged functions of the environment. FATES solves the photosynthesis 155 

equations for sunlit and shaded leaves, separately for each PFT, along vertical gradients both within each cohort’s canopy and 

between cohorts residing in different canopy layers, to calculate water and carbon fluxes at the level of individual leaves.  

FATES then provides the LSM with transpiration, integrated canopy conductance and albedo terms, which the LSM then uses 

to calculate the energy fluxes at the whole-canopy level.  FATES also calculates autotrophic respiration at the biophysics 

timesteps, and integrates the resulting net primary productivity over the day to end up with an increment of carbon per cohort 160 

at the end of each day. Heterotrophic respiration is handled outside of FATES, by the LSM it is embedded within. 

 

At the daily timestep, FATES sequentially allocates the daily carbon increment per cohort.  If this carbon increment is negative, 

the amount is subtracted from the cohort’s storage pool. If the increment is positive, then the cohort allocates it, first to replenish 

storage, then to compensate for tissue turnover. If the remaining carbon increment is still positive, the cohort will then allocate 165 

to any organ pools that are below their allometric targets, which are intrinsic functions for a given PFT that are defined relative 



6 
 

to the cohort’s stem diameter. If, after this, carbon still remains to be allocated, the cohort will grow its stem diameter, allocating 

to each pool proportionally to that pool’s derivative with respect to stem diameter.  

 

A key development since (Fisher et al., 2015) has been to modularize all allometry functions so that PFTs of different allometric 170 

functional forms and parameters can exist and compete against each other. FATES requires four distinct types of allometric 

models to be defined for each PFT: height, crown area, sapwood cross-sectional area, and target biomass pools.  All of these 

are prescribed as functions of a cohort’s stem diameter, which thus serves as the basic index for all allometry.  FATES currently 

has six separate allometric target biomass pools: leaf, stem, coarse root, fine root, seed, and storage.  Of these, FATES also 

assumes that the target values of fine root and storage pools are both linearly proportional to the target leaf biomass pool, and 175 

that the target coarse root pool is linearly proportional to the target stem biomass pool, thus only three index target pools exist: 

leaf, stem, and seed. As a further simplification, FATES currently assumes that sapwood cross-sectional area at breast height 

is a constant fraction of a cohort’s target leaf area, and thus the sapwood allometry follows the leaf area allometry. 

 

FATES currently allows several allometric models for determining tree height.  These include: a generic power law 180 

relationship, as well as the models described in (O’Brien et al., 1995), (Poorter et al., 2006), (Chave et al., 2014), and (Martínez 

Cano et al., 2019).  For the simulations described here, we use the (Martínez Cano et al., 2019) allometry for all cases, which 

uses a Michaelis-Menten form to calculate height (H) from stem diameter (D): 

          (1) 

 185 

We use a single mean set of height allometry parameters for all PFTs in this model, with the mean based on the results from 

(Martínez Cano et al., 2019): a=57.6, b=0.74, k=21.6. 

 

Crown allometry (C) in FATES is set as a 2-parameter power law of diameter, subject to a maximum stem diameter for crown 

allometry: 190 

 

        (2) 

 

We treat the crown area allometry coefficient (f) and exponent (g) in the above equation as plant traits that we vary based on 

species-level values, as described below, and we use a single maximum size for crown allometry (Dmax) for all model runs, of 195 

200 cm.  Plants can continue to grow past Dmax, but they do so at a progressively slower rate because the GPP per individual 

becomes capped by the crown allometry, while the carbon cost of growth continues to increase with increasing stem size. 
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For the target stem biomass allometric model, FATES includes several options, including a power law of diameter, as well as 

the functional forms of (Saldarriaga et al., 1988), and (Chave et al., 2014), which both relate target aboveground biomass to 200 

both the stem diameter and height. For all of the experiments described below, we use the (Chave et al., 2014) aboveground 

biomass allometry, expressed in units of kg C per individual tree: 

 

        (3) 

 205 

Where the parameters j and p, have values of 0.0673 and 0.976, respectively, 𝜌w is the plant trait wood density, and c is the 

carbon to biomass ratio in wood, which we set as 0.5 for all cases.  We have not yet fully explored the sensitivity of model 

dynamics to the alternate aboveground biomass allometries; this remains future work. 

 

For target leaf biomass, we use a power law allometric model: 210 

 

          (4) 

 

Where the leaf allometric coefficient m is a plant trait that we allow to vary, as described below, and the target leaf allometric 

exponent g has the same value as the crown area allometric exponent above.  As with the crown area, we set a maximum stem 215 

diameter above which target leaf biomass remains constant, and use the same maximum diameter for both allometries.  Setting 

the exponent on leaf biomass to be the same as that of crown area, is equivalent to asserting that a tree’s (target) crown depth 

and leaf area index within the footprint of its crown does not vary over the course of its growth trajectory.  This holds true—

within a given canopy strata—even though FATES does allow SLA to vary vertically through the canopy.  However, the 

canopy trimming logic described in (Fisher et al., 2015), as well as the relative ability of a plant to actually achieve its target 220 

leaf biomass, can lead to large differences in crown depth between the canopy and understory strata, and thus differences in 

crown depth can occur along growth trajectories. 

 

For seed production, FATES uses as its target a constant fraction of NPP, once tissue turnover and storage demands have been 

met.  This represents a biomass flux from the individual cohorts to the site-level seed pool, which then serves as a basis for 225 

recruitment flux from the seed pool to new cohorts.  This fraction is a plant trait that varies among PFTs. This approach 

represents an extremely simplified view of reproduction, which we plan to develop further, but does at least allow us to test 

baseline sensitivity of the current configuration. 

 

In early versions of FATES, the presence of understory trees that persist for long periods of time but only grow very slowly—230 

as is observed in real forests—was difficult to achieve, because of the lack of any stabilizing term on an individual cohort’s 

carbon dynamics.  If a given cohort’s NPP was even slightly negative for sufficiently long, then its storage pool would 



8 
 

eventually be reduced below zero, at which point the entire cohort would die.  In order to prevent this and allow the model to 

produce multiple canopy strata, we have added a stabilizing term to the carbon budgets of trees, whereby when their storage 

pools become depleted, we simultaneously increase the rate of carbon starvation mortality and decrease the rate of maintenance 235 

respiration.  This reduction of maintenance respiration during carbon starvation is consistent with observations of trees under 

acute carbon stress (Sevanto et al., 2014).  Because the physiologic basis and form of this process is poorly constrained, we 

use heuristic functions here to define these processes.  First, we define a target carbon storage pool (St): 

 

          (5) 240 

 

Where n is a parameter that linearly relates the target storage pool to the target leaf biomass L. If a given plant is unable to 

achieve its target carbon storage because of having a negative NPP at any given time, then its actual storage pool S will drop 

below the target storage pool St, then we set both the carbon starvation mortality rate (Mcs) and the fractional rate of 

maintenance respiration (R) on the ratio of S to L: 245 

 

      (6) 

 

      (7) 

 250 

Where Mcs,max is a trait that defines the maximum rate of carbon starvation mortality, and o is a parameter that governs the 

curvature of the respiration reduction function.  Thus we implicitly assume that there is a critical storage pool Sc=L that sets 

the total-plant storage level where mortality begins; the implied parameter Sc/L=1 could be made explicit, but we have left this 

an implicit parameter here, due to the generally weak data constraints on this at present. For the experiments described here, 

we use a single value, 0.01, of the q parameter, and allow the maximum rate of carbon starvation mortality Mcs,max to be a PFT 255 

trait. Because both the increase in mortality and the decrease in respiration begin when S drops below L, the parameter (n -1) 

thus sets the size of the carbon storage buffer that determines how much cumulative negative NPP a plant can experience 

before it begins to suffer carbon starvation. 

 

In FATES, we separate as distinct traits the top-of-canopy values of maximum carboxylation at reference temperature 260 

(Vc,max,25,top), leaf carbon to nitrogen ratios (C:N), and leaf mass per area (LMA).  Though these traits are highly coordinated 

in plants (Wright et al., 2004), we allow this coordination to occur in FATES at the point of defining a PFT that has a specific 

set of trait values, rather than by imposing the trait coordination within the model itself.  Exceptions to this rule include that 
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we do define the maximum rate of electron transport at reference temperature (Jmax,25) as a direct function of Vc,max,25.  Also, 

FATES scales leaf traits vertically through the canopy so that Vc,max,25., leaf N per unit area, and LMA decrease exponentially 265 

with overlying leaf area, following (Lloyd et al., 2010) and (Kovenock, 2019). This allows shaded leaves, which are deeper in 

the canopy, to be thinner and have lower maximum photosynthetic rates (Vc,max,25., Jmax) than sun-exposed, top-of-canopy 

leaves and maintains a fixed leaf C:N throughout the canopy, following observations (Lloyd et al., 2010). 

 

We have generalized some aspects of canopy sorting and disturbance in FATES, as compared to their CLM(ED) 270 

representations, where some strong assumptions were implicit in the model structure. For example, gap-phase disturbance in 

FATES occurs when canopy trees die. When a given canopy tree dies, or more precisely, when the rate of mortality in a canopy 

cohort, mc (as measured by the total crown area of trees that died, in m2/ha/year), is greater than zero, the patch that previously 

contained the canopy trees may or may not split off newly disturbed patch area.  A pair of ecosystem-level parameters, the 

fraction of newly dead crown area that becomes a new patch (a new parameter, fd,, a unitless ratio) and the fractional understory 275 

mortality during a transition to a new patch due to disturbance, mu,d, control the outcomes of disturbance, as described below 

and in figure 2a. The rate of new patch area formation, rd (m2/ha/year), equals: 

 

          (8) 

 280 

When new patch area is created from an existing (‘donor’) patch, the new patch is initialized with a fraction of the understory 

plants and litter from the donor patch.  The pools from the donor patch are thus split in proportion to the fraction of the old 

patch area transferred to the new patch. Thus when new patch area is created, all understory cohorts in the existing patch are 

split, with resulting number densities in the corresponding cohorts in the new and old patches proportional to the fraction of 

patch area disturbed. Formerly understory trees in this newly disturbed patch may, however, be killed in the disturbance event 285 

itself, thus the mu,d term is applied during the disturbance event. 

 

The fd  parameter thus allows FATES to scale continuously between two endmembers in how the simulated ecosystem responds 

to gap-phase disturbance dynamics (fig. 2a).  If fd equals 1, then the existing patch area shrinks in tandem with the reduction 

in tree crown area within the patch’s canopy. What this means is that it is effectively not possible for trees in the understory to 290 

be ‘promoted’ to the canopy while remaining in a patch—their only route to the canopy is to survive that disturbance event, 

whereupon they are promoted into the canopy of the new patch. We refer here to this endmember as a “pure ED” representation 

of disturbance (on account of it's similarity to the original Ecosystem Demography approach). At the other extreme, if fd equals 

0, then no new patch area is created and there is no horizontal heterogeneity in the system (i.e. there is only ever one patch).  

In this case, when canopy trees die, the entire void in the canopy created by the loss of their crown area is filled through 295 

promotion of trees from the understory within the patch. We refer to this endmember as the “pure PPA” endmember of 

disturbance. Intermediate cases exist between these endmembers, where a fraction of understory trees may be promoted from 
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within a patch while a fraction of new patch area is generated. A special intermediate case considered here, is a “bare-ground 

intermediate”, where mu,d equals 1—i.e all cohorts in the understory that are transferred to a new patch are killed during the 

disturbance event, and thus the new patch area starts from bare ground.  This bare-ground intermediate, with mu,d=1 and fd=0.5, 300 

is equivalent to the equations and PPA-type model described in (Farrior et al., 2016). We will consider each of these three 

special cases—the two endmembers and the bare ground intermediate—below. 

 

A last set of modifications since (Fisher et al., 2015) are in regards to the canopy sorting via the PPA.  As described above, the 

original PPA (Purves et al., 2008) used a deterministic ranking of trees based on their heights, and separated them in each 305 

timestep based on whether their height was above or below the height, z*, equal to the tree whose cumulative crown area 

equaled the area of the ground that trees occupied.  (Fisher et al., 2010) modified this to create a probabilistic PPA whereby 

the relative probability of trees in a cohort (or, equivalently, the fractional number density of trees of a given cohort) being 

assigned to the canopy was proportional to their size raised to a parameter called the competitive exclusion parameter cexcl.  In 

FATES, we have generalized the height sorting so that it can use either the deterministic or probabilistic sorting approach to 310 

the PPA, and discuss both versions below.  

2.2 Site Description and Driving Data 

All model experiments here are conducted at Barro Colorado Island (BCI), Panama (9.151°N, 79.855°W). The environment 

at BCI has a mean precipitation of 2600 +- 480 mm/yr, with a 4-month dry season during which precipitation drops below 100 

mm/yr.  The ecosystem at BCI is a primary forest, with a disturbance regime characterized by primarily small-scale disturbance 315 

and subject to elevated mortality rates during period ENSO-driven droughts.  The site includes a 50 ha census plot, in which 

every stem ≥1cm diameter has been measured every 5 years since 1982, with 321 species identified (Condit et al., 2017), as 

well as eddy covariance and other observations. 

 

We force the model with drivers measured at the BCI meteorological station for the period 1986-2017; these data are available 320 

at https://biogeodb.stri.si.edu/physical_monitoring/research/barrocolorado. All site-level data were scanned for quality 

assurance and quality control (QA/QC) as described by (Faybishenko et al., 2018). The QA/QC procedure of time-series data 

was performed using the R (https://www.r-project.org/) software, with the application of libraries “zoo” (Zeileis et al., 2019), 

“xts” (Ryan et al., 2018), “tsoutliers” (López-de-Lacalle, 2019) and “Rssa” (Korobeynikov et al., 2017).  The procedure 

includes the following major steps—the identification of problems in the datasets (QA), and then data cleaning, flagging, and 325 

gap filling of missing data (QC).  Step 1 (QA) includes an initial visual inspection and cataloging data, determining the 

temporal frequency of sampling to assess data availability, and preliminary assessing data quality. Step 2 (QC) includes: 

processing and cleaning raw datasets; formatting timestamps; detecting and removing duplicates, bad data and outliers; gap 

filling of missing data; and flagging QC-ed data.  For each simulation, we re-cycled meteorology over the 1986-2017 period. 
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2.3 Plant Trait Data and Application to FATES PFT Definition 330 

A key conceptual point in this study is that we define a PFT only as a vector of plant traits; we do not make any further a priori 

assumptions about what ecological role a given PFT plays. In some of these experiments, we do diagnose properties of a PFT 

that allow us to—in certain cases—make post-hoc distinctions such as “early successional” or “late successional” PFTs, and 

in this manuscript all PFTs may be thought of as belonging to tropical forest tree communities, but we essentially take a 

probabilistic view of PFTs here as being random draws from some continuous trait covariance matrix.  To define this matrix, 335 

we assemble several datasets and cross-reference them based on mean values per plant species, with latin binomials used as 

the reference index. 

 

We start with two datasets describing plant traits at BCI, and at two other sites across a precipitation gradient in Panama, 

Parque Nacional Metropolitano (PNM) and Fort San Lorenzo (SLZ), which are originally described in (Osnas et al., 2018; 340 

Wright et al., 2010). Data from these sets used here include leaf lifespan, leaf mass per unit area (LMA), wood density, 

mortality of 10 cm and larger trees, and leaf N content. For these datasets, we only use values for trees in the canopy stratum. 

Where a given species occurs in more than one site, we use mean values across the sites.   Because these are the only datasets 

that include leaf lifespan estimates, where other datasets also include an estimate of LMA for a given species, we only use the 

estimates in these datasets as they will correspond to the specific individuals with which leaf lifespan is also measured. 345 

 

We add two further datasets on leaf traits, both based on canopy crane measurements at PNM and SLZ sites: (Gu et al., 2016) 

and (Rogers et al., 2017; Wu et al., 2019). Each of these contain estimates of Vc,max, LMA, wood density, and leaf N content. 

We use FATES temperature scaling functions to calculate Vc,max at the reference temperature (25C) based on the temperature 

at which specific Vc,max observations were made.  Together these sets of traits describe plant variation along the leaf and wood 350 

economic spectra, two critical axes of functional diversity (Baraloto et al., 2010; Wright et al., 2004). 

 

Lastly, we add a dataset on crown area allometry from trees at BCI (Martínez Cano et al., 2019).  The crown area allometry in 

FATES is defined with crown area, C, set as a power law relationship with diameter, D, as described above, so for each species 

we use the crown area coefficient g and exponent d as reported in (Martínez Cano et al., 2019).  These crown area traits control 355 

the overall light interception ability of plants, and how it changes over plant size, and thus are important determinants of both 

baseline growth rates (for coefficient g) as well as the derivative of growth rates with respect to plant size (for exponent d). 

 

In total, we thus use eight traits from the observational datasets: Vc,max25,top (µmol CO2 m-2 s-1), wood density (g/cm3), LMA 

(m2 g-1), Leaf N/area (g m2), leaf lifespan (y), background tree mortality (y-1), crown area coefficient (m2 cm-1), and crown area 360 

intercept (unitless).  We assume lognormal distributions for Vc,max,25,top, LMA, Leaf N/area, leaf lifespan, and background tree 

mortality, and normal distributions for wood density, crown area coefficient, and crown area intercept, with correlations 
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between these traits as determined from the data. The full matrix of observed traits is shown in figure 3, where each dot 

represents a pair of mean trait values for a given species, and the histograms across the diagonal show the full distribution of 

species-mean values for each trait.   365 

 

In addition to the observed traits that allow us to generate prior distributions on values based on data, we also want to include 

parameter variation in a small set of traits that are poorly observed but that we expect to be important in model dynamics.  We 

thus add four more unobserved trait values: the leaf biomass to stem diameter allometric coefficient (kg cm-1), the allometric 

ratio of fine root biomass to leaf biomass (unitless), the fractional allocation to reproduction (unitless), and the maximum rate 370 

of carbon starvation mortality (y-1). For each of these, we assume no correlations with other observed traits, and we assume 

the first three of these are normally distributed and that the last (maximum rate of carbon starvation mortality) is lognormally 

distributed as we do for the background mortality trait. The choice of these additional traits are to extend the possible range of 

dynamics to include crown thickness, plant carbon use efficiency, understory mortality rates and thus shade tolerance, and 

reproductive fecundity as possible determinants in the competitiveness of a given PFT.  Table 1 lists each of the parameters 375 

varied, and the most closely associated process box in figure 1. 

 

We thus define a single 12x12 trait covariance matrix as the basis of all experiments described below, representing the data-

constrained hypervolume from which we sample plant functional types.  In all experiments, the vector of trait values that 

defines a PFT is sampled as a single random draw from this 12x12 trait covariance matrix.  An example of resampled trait 380 

matrix from a single model ensemble is shown in figure 4. The traits considered in this study are not meant to be 

comprehensive, but are meant to cover a range of processes in the model, including (a) physiology and the leaf economic 

spectrum, (b) allocation of biomass within a whole plant to leaves, roots, and reproduction, (c) patterns of acquisition of the 

primary resource, light, through crown area allometry, and (d) mortality rates in both the canopy and understory.  

2.4 Model Testing Data 385 

We make use of the long term forest dynamics plot census data at BCI (Hubbell et al., 1999).  We use a total of five censuses 

here, beginning with the 1985 census.  We use the census data in three ways in this paper.  (1) To more rapidly equilibrate the 

model we initialize the forest with observed size distributions (from the 2005 census); in simulations with more than one PFT 

present, we use the same initial size distribution for each PFT.  In order to remove the initial imprint of these initial size 

distributions on the model output, we integrate FATES for 200 or 300 years (depending on the experiment); after this spin-up 390 

time the model dynamics have diverged from the initialization (e.g., fig. 5b).  (2) We compare model predictions of size 

distributions to the census data of the forest as a whole.  (3) We compare model predictions of aboveground biomass against 

observations, which are also derived from the BCI census data, that are reported in (Meakem et al., 2018), which are 

approximately 13.6 kg C / m2; we assign +/- 10% uncertainty to these biomass observations to account for allometric 

uncertainty (Chave et al., 2003). 395 
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We compare fluxes of gross primary productivity (GPP) as well as the sensible and latent heat fluxes to observations made 

with an eddy covariance system.  The tower used for these measurements is 41m above ground, on a plateau on BCI. The eddy 

covariance system includes a sonic anemometer (CSAT3, Campbell Scientific, Logan, UT) and an open-path infrared 

CO2/H2O gas analyzer (LI7500, LiCOR. Lincoln, NE). Hi-frequency (10Hz) measurements were acquired by a datalogger 400 

(CR1000, Campbell Scientific) and stored on a local PC. Data were processed with a custom program using a standard routine 

described in (Detto et al., 2010). GPP was derived from daytime values of NEE by adding the corresponding mean daily 

ecosystem respiration obtained as the intercept of the light response curve (Lasslop et al., 2010). The light curve was fitted on 

a 15-days moving window using a rectangular hyperbolic function (runs with friction velocity less than 0.4 m/s were excluded). 

Lastly, we compare LAI as predicted by FATES to observations of LAI reported in (Detto et al., 2018). 405 

2.5 Model Experiment Descriptions 

We define a series of model experiments here to explore parametric and structural uncertainty in the model, and how trait 

uncertainty can combine with vegetation dynamics to feed back on model predictions (Table 2).  We first begin with single 

PFT experiments, randomly drawing a set of PFTs and running each of them as a separate FATES simulation.  We refer to the 

set of such simulations, which differ only in their PFT specification, as an ensemble of simulations, and each separate FATES 410 

run as an ensemble member.  The size of each of the ensembles here is 576 members, chosen as a somewhat arbitrary number 

but one which balances computational costs against statistical sampling depth, while allowing one simulation per CPU on the 

36-core computing nodes used for most simulations. We compare outputs from these ensembles against a set of observations 

(of biomass, LAI, and eddy covariance) at BCI to assess patterns of variability in the model and comparisons to observations. 

We perform these single-PFT ensembles, with an identical set of ensemble members each for two different model 415 

configurations: CLM-FATES and ELM-FATES, in order to further test the structural uncertainty of embedding FATES within 

two closely-related, yet divergent, land models.  

 

We assess parameter sensitivity via direct trait control of model predictions in the 1-PFT simulations by fitting splines of each 

of the model predictions that we analyze as a function of each of the traits that we vary across the ensemble. We calculate the 420 

maximum potential variance explained as the fraction of variance in the predictions across the ensemble that is predicted by 

the fitted spline. Because some of the traits are correlated, we also assess the minimum variance explained, which we calculate 

by first subtracting the variance explained by all other traits, and then assessing how much of the remaining variance is 

explained by the trait of interest (Xu, 2013; Xu and Gertner, 2008). 

 425 

As a next experiment, we add increasing numbers of competing PFTs to the model.  The premise of this is that a model can 

represent plant trait diversity either through multiple realizations of the model where plants with each set of traits only interact 

with plants of the same type, or alternately through allowing plants with different traits to interact with each other through 



14 
 

competition for resources.  In a PFT-based model such as FATES, these options exist on a continuum: as we add further PFTs 

to a given simulation, we increase the diversity that is resolved within each simulation, and thus, in principle, should reduce 430 

the variability across simulations. The goal here is to ask how increasing the diversity that is resolved within any specific 

simulation changes the distribution of model predictions, as compared to an ensemble approach where we only account for 

diversity by non-interacting PFTs.  Again, we construct each experiment  as a perturbed-parameter ensemble—where we use 

the random draws of parameter values to construct new parameter vectors for each model run—but instead of including a 

single PFT in each ensemble member, we do 576 model runs with 3 PFTs and 576 runs with 10 PFTs, in each case drawing 435 

all PFTs at random from the multivariate trait distributions. We refer to these as the 3-PFT ensemble and the 10-PFT ensemble, 

respectively.   

 

We conduct the last (10-PFT) experiment twice. In the first instance, we force the model to maintain functional diversity by 

evenly recruiting from a mixed-PFT seed pool into each PFT, thus preventing competitive exclusion and inter-generational 440 

trait filtering.  This approach still allows trait filtering to occur within the lifespan of an individual plant, but prevents any PFT 

from completely excluding the others, and thus acts as a discrete-PFT analog to the continuous generation of trait diversity 

approach used in the model of (Sakschewski et al., 2016). In the second instance, we allow the normal inter-generational trait 

filtering to occur, i.e. each PFT reproduces only recruits of its own PFT, with no supplement so that PFTs may go extinct.  

 445 

Lastly we perform a series of 2-PFT ensembles aimed at asking whether we can identify regimes where tradeoffs in general, 

and in particular early-late successional tradeoffs, lead to a degree of coexistence, after 300 years, in the model.  To do this, 

we again conduct 576-member ensembles where each ensemble member is comprised of PFTs that are randomly drawn from 

the same trait covariance matrix. In this case, we also explore different values of the ecosystem structural parameters that 

govern light competition and gap-phase disturbance dynamics, as described in figure 2 and above. The control for this set of 450 

ensembles uses the “deterministic PPA” mode for height sorting and a “bare ground intermediate” representation of 

disturbance, (which we also use in all preceding experiments). Two additional ensembles vary light competition parameters to 

use probabilistic PPA height sorting with cexcl=3 and probabilistic PPA height sorting with cexcl=1. In three further ensembles, 

we vary the disturbance parameters fd and mu,d to explore the two extreme representations of disturbance to the “pure ED” and 

“pure PPA” endmembers, and in the “pure ED” case, explore the sensitivity of the model to mu,d, or how many understory 455 

plants are killed during a disturbance event.  This parameter mu,d has no effect in the “pure PPA” case, since there is no 

disturbance when fd=0. 
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3 Results and Discussion 

3.1 Single PFT Simulations and Comparison to Observations 

A first question is how the distributions of ecosystem-level properties—such as biomass, size distributions, leaf area index 460 

(LAI), and carbon, water, and energy fluxes—from a set of single-PFT simulations compares with observations at the site.  To 

answer this, we conduct an ensemble of single-PFT simulations to generate a set of possible forests, each of which is comprised 

of trees sharing a single set of traits. Results from this single-PFT ensemble are shown in figures 5-7. There is a broad range 

of model predictions, ranging from some ensemble members that fail to establish to others which grow to highly productive 

forests.  465 

 

The joint distribution of GPP and LAI (fig. 5a) shows that the overall ensemble spread is roughly centered around the observed 

values (shown as ellipse in fig. 5a), though with wide spread and a tail that extends to low-productivity, low-LAI simulations. 

Likewise, trajectories of biomass in these simulations (fig. 5b), where each simulation is initialized with observed size 

distributions and is then integrated for 200 years to come into a quasi steady state that is determined by the ensemble 470 

parameters, converge towards a distribution in biomass that spans the observed estimates (black line in fig. 5b).  While the 

ensemble distributions in LAI and GPP are roughly symmetric, albeit with a tail extending to the low-GPP, low-LAI zone in 

fig. 5a, the distribution of biomass shows a tail in the other direction towards extremely high biomass forests, with some 

ensemble members converging towards values that are several times of the observed. 

 475 

Seasonal cycles of ecosystem fluxes, as compared to observations from the eddy covariance tower at BCI (fig. 6), show both 

the wide spread of ensemble members, as discussed above, as well as two systematic model-data mismatches. The first of 

these is in the shape and amplitude of the seasonal cycles: FATES simulations systematically predict a decrease in GPP during 

the dry season (Feb-Apr), as compared to the eddy covariance data that do not show a systematic decrease in productivity 

during the dry season.  The second bias is that the FATES simulations here systematically predict a lower latent heat flux and 480 

a higher sensible heat flux than the observations. Similar biases are also documented in (Huang et al., 2019). In this paper, we 

do not try to correct these biases, which likely arise from a combination of: (a) not including a broader set of plant traits that 

govern ecohydrological processes, such as those traits that govern stomatal conductance, canopy turbulence, or rooting depth 

distributions; (b) not using a full plant hydraulics model (Christoffersen et al., 2016; Xu et al., 2016), and (c) not including 

processes known to increase GPP during the dry seasons of tropical forests such as replacement of old leaves with leaves with 485 

greater photosynthetic capacity  (Wu et al., 2017), and/or (c) biases in the soil hydrologic modules in which hillslope hydrologic 

processes are largely ignored (Fan et al., 2019).  A fuller analysis of plant hydrologic traits, as well as the structural changes 

to represent plant hydrodynamics and photosynthetic seasonality, are underway in FATES but beyond the scope of this paper. 
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Observed tree size distributions are an emergent outcome resulting from the growth rates, death rates, and light competition 490 

parameters in a forest. In principle, the accurate prediction of diameter distributions, which follow a Weibull (approximately 

power function at small diameters, dropping off at larger sizes), is possible in a vegetation demographic model using the 

combined hypotheses of ED and PPA (Farrior et al., 2016), or through the combined ED and plant hydrodynamic hypotheses 

(Powell et al., 2018). The ensemble of FATES simulations shown here roughly capture the shape of the curve (fig. 7), though 

again, with considerable spread and some systematic biases.  The wide spread in simulations show that some trait combinations 495 

lead to outcomes with either too many or two few trees at the larger end of the tree size distribution.  The more systematic bias 

is that most of the ensemble members show too many very large, and too few small trees, as compared to observations, 

suggesting an overall bias in the rates of establishment, growth, and death.  The degree of this ensemble-level bias—close to 

an order of magnitude—shows some sensitivity to ecosystem-level parameters, as discussed further below, which suggests 

modest  control by representation of gap-phase disturbance dynamics and light competition parameters.  500 

 

Parametric control by plant traits on several ecosystem-level model predictions is shown via variance decomposition in figure 

8. While the analysis here is not meant to be as comprehensive as that of (Massoud et al., 2019), fig. 8 nonetheless shows that 

each of these model predictions shows sensitivity to a different set of traits, thus highlighting the complex mapping of trait 

variation onto model predictions.  Further, many of these model predictions show a high degree of sensitivity across several 505 

variables.  To some degree, this arises because of the correlations between trait values, such as through the leaf economics 

spectrum, which can be seen by the large spread between the maximum potential variance explained by a given trait (closed 

circles) and the minimum variance explained by that trait (open circles).  However, in other instances, such as for tree growth 

rates in the canopy, sets of relatively uncorrelated parameters, such as wood density and the set of leaf economic spectrum 

traits, jointly control the rates.  And in other cases, individual traits directly affect the rates predicted; an example of this is the 510 

canopy mortality rates, which in this mean-state configuration are effectively showing only the background mortality rates.  

Understory mortality rates are slightly more complex, with joint control of both the background mortality rates and the 

maximum rate of carbon starvation, as well as small contributions from the leaf and stem physiological traits. Trait control 

over LAI shows that, because of the combined effects of within-cohort leaf optimization, and the potential for multiple canopy 

strata to exist, there is a relatively weak direct control on ecosystem-level LAI by the direct leaf to stem allometric coefficient 515 

trait; and LAI is equally constrained by the leaf economic spectrum traits that control the marginal costs and benefits of 

additional leaves at the bottom of the canopy, as well as a small contribution from the reproductive allocation trait, which sets 

how the recruitment rate and thus many small are contributing to the understory LAI. 

3.2 Sensitivity of Results to Land Surface Model 

FATES is designed to work as a modular representation of plant biophysical and community assembly processes within a host 520 

land surface model, rather than being a land surface model on its own.  It has been developed out of the CLM(ED) framework 

described by (Fisher et al., 2015), and currently works within two related but distinct LSMs: CLM5 (Lawrence et al., in review); 
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(Wieder et al., 2019), and ELMv1 (Golaz et al., 2019).  This modularity of FATES and its ability to work within alternate 

LSMs represents an important capability.  As LSMs have grown ever more complex, the infrastructure for managing model 

complexity and attributing model behavioral differences to structural and parametric assumptions has not grown equivalently; 525 

a potential strategy for addressing this complexity problem is to separate the representation of processes in such a way that 

they can be explored as conditional on alternate boundary conditions, following the ‘modular complexity’ approach described 

in Fisher and Koven, (in review).  Such an approach can allow, e.g., one to ask how the representation of soil physics of 

biogeochemistry feeds back onto an identical representation of plant physiology in order to better separate the contributions 

of each to total model prediction uncertainty.  Here we begin to test this approach, by testing the exact same representation of 530 

FATES within the alternate LSMs it can be run in. 

 

We repeated the ensemble described above using FATES embedded within ELMv1, and compare the ensemble predictions 

between the two models in figure 9. The ensembles used identical plant traits, forcing data, and other FATES parameters; 

however, many aspects of the LSMs differ, particularly including soil depth and the number of soil layers.  Thus the two 535 

ensembles can be considered an experiment to the sensitivity of the structural representation of the physical soil environment 

that the vegetation is growing in. Distributions between mean GPP (fig. 9a), LAI (fig. 9b), and biomass (fig. 9c) are all similar, 

as are the final size distributions of the plant community (fig. 9d).  This demonstrates that the diversity of plant traits used 

here, at least in this generally well-watered site, have a stronger control on model predictions than whatever structural 

divergences have accumulated in the representation of the soil environment between these models. 540 

3.3 Sensitivity of Results to the Number of Competing PFTs 

The above experiments each contained a single PFT in each ensemble member, and so the ensemble spread of the predictions 

demonstrates the global trait sensitivity of monocultural forests, in the absence of competition effects.  In real tropical forest 

ecosystems, the enormous trait diversity exists as a mosaic of plants of different species, each competing for resources and 

contributing to ecosystem-level dynamics.  A key goal of models such as FATES is to explore how this heterogeneity in traits 545 

at the scale of individual cohorts of plants interacts with atmospheric and soil processes to govern ecosystem fluxes and 

structure.  Thus we want to move away from the monocultural representation to ask how trait diversity affects model 

predictions in the presence of competitive interactions. To do this, we conduct experiments to add greater amounts of trait 

diversity into each ensemble by increasing the number of PFTs in each run. We first hold disturbance and light competition 

parameters constant; in section 3.4 below, we vary these parameters to explore their role in governing competitive outcomes. 550 

 

We calculate further ensembles, drawing plant traits from the same distribution as before, but with either three or ten PFTs per 

ensemble member. To separate competition during the recruitment process from competition by larger-statured plants, we first 

‘force’ some degree of coexistence between functional types by recruiting equally into the smallest-size cohorts of all PFTs, 

as described above. Figure 10a-d shows a key set of model predictions for each of these simulations.  For all outputs (GPP, 555 
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LAI, above-ground biomass, size distributions), adding additional PFTs to each ensemble member both narrows the ensemble 

distribution and induces a shift towards values indicative of a higher productivity forest comprised of larger trees. 

 

This narrowing and shifting of the ensemble distributions are separate but related outcomes of resolving trait diversity and 

competitive interactions. In the single-PFT case, functional diversity is only resolved across ensemble members, which are 560 

each comprised of monoculture forests. As we add PFTs, each ensemble member better samples the observed functional 

diversity, so we expect that the differences between ensemble members should decrease as a result.  But at the same time, 

competitive dynamics mean that some traits will be more competitive and therefore more strongly represented in each ensemble 

member.  Thus the single-PFT ensemble will most evenly sample throughout the possible trait distribution, while ensembles 

comprised of greater numbers of interacting PFTs will unevenly sample those parts of the distribution that are more 565 

competitive. 

 

We can quantify these competitive effects on ensemble spread by looking at how the standard deviation of the ensemble shrinks 

as we add more PFTs (fig. 10e). We can formulate a null model: if competition didn’t matter for a given trait, then we would 

expect that the narrowing of the distribution upon adding further PFTs would follow a statistical sampling relationship for 570 

independent variables, and therefore decrease as proportional to n-½, where n is the number of PFTs.  This null model thus 

represents the “selection effect” of (Tilman et al., 1997). In practice, what is observed here is a rate of narrowing with additional 

PFTs that is much smaller than this null model - i.e. the null model narrows much faster than the realised model outcomes. 

This shows that competition is an important component of the higher PFT cases, both in maintaining variability within an 

ensemble and in increasing the ensemble mean productivity by weighting the overall ecosystem function towards the part of 575 

the trait distribution that is more productive.   

 

Different variables are more strongly affected by competitive dynamics than others: of the three we show here, and comparing 

the 1 PFT and 10 PFT cases, the competitive effects on LAI are smaller than those for GPP, which are in turn smaller than for 

biomass, where increasing PFT number has very little effect on the ensemble spread. An explanation for why the competitive 580 

effects have stronger effects on some variables than others may be the relative control of a given prediction by very 

competitive—and thus very large—trees.  Leaf area is provided by trees of both canopy strata, and so is represented most 

evenly across the spectrum of the competitiveness. The relative contribution by a given PFT to GPP at the ecosystem level is 

roughly proportional to the fraction of the canopy that the given  PFT crown occupies.  Because crown area scales with diameter 

to the power of ~1.3 (fig 3 and (Martínez Cano et al., 2019)), and the relative proportion of trees in the canopy to the understory 585 

will further be dominated by larger trees, GPP will be more dominated by larger trees than their relative contribution to LAI.  

Biomass is even further dominated by large trees: combining allometry equations 1 and 3 above implies a given plant’s 

contribution will scale with its diameter to the power of roughy 2.1, which would imply that trees that are extremely large 

should more seriously impact biomass than either GPP or LAI. 
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 590 

The convergence of the model with increasing numbers of PFTs towards higher productivity forests than are observed 

demonstrates that, even with the strong assertion of neutral filtering between generations that we use in these ensembles, either 

the competitive filtering within each generation is still too strong or else other biases in the model which are compensated for 

in single-PFT simulations become evident in the more diverse simulations. This is most apparent in the tree size distributions 

(fig. 10d), where the 10-PFT ensembles generate many more large-statured trees than either the lower-PFT-number simulations 595 

or the sizes that are observed.  Possible causes for this bias include: (a) that the marginal competitiveness associated with a 

given trait advantage in the model is too strong, as compared to more neutral dynamics that may occur in real forests (Hubbell, 

2011); (b) that additional, unmeasured tradeoffs associated with the set of possible strategies—which might constrain the set 

of possible trait combinations to remove super-species or loser species—are insufficiently represented (Thomas Clark et al., 

2018); (c) that processes which govern tree vital rates at the large end of the size distribution are poorly represented, such as 600 

senescence strategies that are observed in forest demography (Johnson et al., 2018), (Needham et al, in review); or (d) that 

other density-dependent effects such as herbivory or pathogen load act to reduce the competitive success of any given species 

in real forests (Connell, 1971; Janzen, 1970), though such effects should be weaker for functional types than species. 

 

We further investigate the degree of competitive filtering within and between generations by re-running the 10-PFT ensemble, 605 

but in this instance, we allow species to go extinct by re-coupling the rate of recruitment of a given PFT to the seed production 

by that PFT.  Comparisons of the resulting predictions (fig. 11a-d) show only subtle differences in the ecosystem-level rates 

investigated here: biomass and GPP are barely shifted, while the distribution of LAI is slightly expanded towards higher values, 

and the number of small trees is slightly decreased when we allow intergenerational competition to play out. Thus the effects 

of trait filtering during recruitment are much more muted in the model than the trait filtering that happens after recruitment has 610 

occurred.  This can further be illustrated if we compare ranked abundance curves for the two ensembles of trees greater than 

1cm vs trees greater than 10cm (fig. 11e-f): at 1 cm, the presence or absence of recruitment filtering leads to a marked change 

in the slope of ranked abundance curves, whereas at 10cm the slopes of the two cases are roughly similar. Even when we force 

the model to allow neutral filtering during recruitment, by the time trees grow to 10cm, the resolved filtering is strongly evident. 

3.4 Regimes of coexistence and their sensitivity to disturbance and light competition parameters 615 

In order to represent shifts in plant trait distributions at a given location under global change pressures, a model like FATES 

must be capable of maintaining some degree of trait heterogeneity in the first instance.  The maintenance of functional diversity 

in ecosystems is a complex topic (Chave, 2004; Chesson, 2000), and it’s analysis in the context of Earth system type models 

such as FATES is in its infancy (Fisher et al., 2018).  Here we seek to first understand which combinations of traits within 

FATES allow stable coexistence of PFTs in the mean state, and whether there is other ecosystem-level parametric control on 620 

these regimes of coexistence.  In particular, we expect that a model that resolves heterogeneity in the light environment can 

accommodate at least two niches, for fast-growing early successional plants, and shade-tolerant, slow-growing plants 
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(Moorcroft et al., 2001).  We can represent such a tradeoff as a line connecting two points that represent two sets of PFT vital 

rates in a growth-mortality space (fig. 12); while we expect that only the combinations that define a tradeoff—i.e. a positive 

slope— between growth and mortality can stably coexist, we do not know what the range of possible stable lines might be. To 625 

investigate these questions, we conducted a series of 6 sets of paired-PFT ensembles (last six rows of table 2), each using the 

same 576 2-PFT pairs, but with different values of ecosystem level parameters that govern light competition and disturbance. 

 

There are many different ways that a plant can grow quickly or slowly (fig. 8). This creates a problem in trying to map sets of 

plant traits directly onto the potential for a given pair of trait combinations to coexist with each other.  To overcome this, we 630 

first want to reduce the problem from the high-dimensional set of plant traits that we use to define a PFT, to a lower-

dimensional set of PFT vital rates that may act to determine the coexistence dynamics.  The simplest set of rates to propose 

are growth and mortality rates of canopy trees. For each set of traits that comprise a PFT, we evaluate the mean growth and 

mortality rates for a tree of that PFT, conditional on the tree being approximately 20cm size and located within the canopy 

strata of the forest.  This permits a mapping between the 12 dimensional trait space and a 2-dimensional growth vs. mortality 635 

space (fig. 8). Within this reduced space, we can evaluate the slope of lines connecting pairs of competing PFTs, as in fig. 12, 

to identify the range of slopes that permit coexistence between PFT pairs.  An example of this is shown in fig. 13.   

 

In fig. 13a we show the lines connecting paired PFTs for a subset of ensemble members in the reference (deterministic sorting, 

intermediate bare ground) case.  We first identify the canopy growth and mortality rates (of 20 cm diameter trees), and examine 640 

only combinations with a positive slope in a growth-mortality space, i.e. ones where we can classify an early and late 

successional PFT where the early successional PFT has both higher growth and higher mortality rates than the late successional 

PFT. We color the lines based on whether, after 300 years, there is a degree of coexistence (which we define as having less 

than 95% of the biomass in either of the PFTs), and if not, which PFT is dominant.  The slope of the lines shows evident 

control on the competitive outcome, with high slope lines dominated by early successionals, moderate slopes having some 645 

coexistence, and low slopes dominated by late successionals. 

 

To begin to quantitatively compare the effects of the ecosystem level parameters on these competitive outcomes, we can first 

plot the fraction of biomass in each ensemble member existing in an early successional PFT against the log of the slope of the 

line connecting the two PFTs in this growth-mortality tradeoff space (fig. 13b).  The points follow a roughly sigmoidal shape, 650 

again showing that low slopes (i.e. small difference in growth, large difference in mortality) lead to a competitive exclusion 

by the late successional PFT, large slopes (large difference in growth, small difference in mortality) leads to competitive 

exclusion by the early successional PFT, and intermediate slopes can either lead to coexistence or exclusion by either of the 

PFTs.  Following this pattern, we then fit a logistic function to the ensemble of growth-mortality tradeoff slopes and 

coexistence states.  655 
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We can then compare the effects of the different ecosystem structural parameters by comparing the resulting fitted logistic 

curves for each ensemble (fig. 13c).  The differences between these curves indicate the tendency for a given set of ecosystem 

parameters to favor PFTs with traits and the resulting set of vital rates that make them either early or late successional: curves 

with a midpoint that is shifted to the left in fig. 13c favor early successional PFTs, and those with a midpoint shifted to the 660 

right favor late-successional PFTs.  For height sorting parameters, the more probabilistic the height sorting, the more it favors 

late successional PFTs.  This makes sense: at the margin, if growing tall more quickly than its neighbors is less likely to make 

a tree end up in the canopy, then that means that outliving its neighbors becomes relatively more important. The converse is 

also true, in that the rapid growth of early successional trees becomes more important if even a tiny difference in growth pays 

off with a position in the canopy.   665 

 

For disturbance parameters, the story is slightly more complicated: in the case of no gap-generating disturbance (the “pure 

PPA” disturbance case), early successional strategies are highly unlikely to pay off as there is no environmental niche for those 

PFTs to occupy. The converse is also true for the high-disturbance “pure ED” case, which is the most conducive to early 

successional PFTs as long as the disturbance generates bare ground (i.e, mu,d=1) for new recruits to exploit.  But if we reduce 670 

the intensity of disturbance by allowing a fraction of trees in the understory to survive disturbance events (by setting mu,d to 

0.5), doing so effectively counteracts the increased niche area for the fast-growing, fast-dying trees by giving slow-growing 

understory trees a chance to end up in newly-created patches and dominate them.  Thus the “bare-ground intermediate” (fd=0.5, 

mu,d=1) and “pure ED” with fractional understory mortality (fd=1, mu,d=0.5) disturbance cases are relatively similar in their 

relative tendency to promote success between early and late successionals.   675 

 

These ecosystem-level parametric differences in the balance between competitive outcomes are large: over an order of 

magnitude in growth-mortality tradeoff slopes separates the midpoint of the logistic regressions between the various cases in 

fig. 13c.  Because parameters such as fd and mu,d are poorly constrained at present, they represent a significant source of 

uncertainty in model predictions; constraining these parameters with census data thus represents an opportunity for reducing 680 

this uncertainty.  Furthermore, looking at the sensitivity of the relative success of species with different growth and mortality 

rates across gradients of disturbance intensity or frequency may provide further benchmarks of models of this type. 

 

Canopy growth and mortality rates are only one possible set of plant vital rates that may determine coexistence.  If, instead of 

using canopy growth and mortality rates as the dependent variables to explain competitive outcomes produced by FATES, we 685 

substitute canopy growth rates and understory mortality rates, as may be expected given the importance of shade tolerance in 

defining successional strategies, we do not see a clear sigmoidal pattern as in fig. 13.  Thus, within the FATES predictions 

explored here, canopy mortality rates are more determinative of success than understory mortality rates.  
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Overall distributions of ecosystem-level model predictions (fig. 14) are relatively similar to the earlier experiments, though 690 

some differences can be seen.  GPP distributions are similar between the cases.  LAI distributions are slightly shifted towards 

higher values in the probabilistic height sorting relative to the deterministic height sorting cases, and are lower in the “pure 

PPA” disturbance case, likely because of overall suppression of the understory in the absence of disturbance. Biomass 

distributions are shifted towards lower values in the probabilistic height sorting cases, as well as in the “pure ED” case with 

mu,d=1, and to higher values in the “pure-PPA” disturbance case. The height sorting appears to have little effect on size 695 

distributions, while the disturbance parameters have a strong effect: the “pure-PPA” disturbance case has a greater deficit of 

small trees, while the “pure-ED” disturbance case has greater number of trees in the smaller size classes (but still not as many 

as observed).  These effects on size distributions make sense from the perspective of small trees in each of these cases.  In the 

“pure-PPA” disturbance case, no new patches are created, and so there are no gaps in which small trees can grow.  In the 

“pure-ED” disturbance case, when the mu,d—the parameter that controls the fraction of small understory trees that both survive 700 

the death of a canopy tree above them and find themselves in a newly-opened patch—is 0.5 (thus representing a medium 

intensity to disturbance), it provides an additional pathway for plants that are recruited into older patches to make it to the 

canopy. In the higher-intensity bare-ground (mu,d=1) and “pure-PPA” disturbance cases, the only such pathway for plants 

recruited into older patches is for them to persist in the understory and grow through to the canopy, which fewer of them are 

able to do. 705 

 

The difference in forest structure that results from these ecosystem-level parameters can be further seen in fig. 15, which shows 

in a quantitative way the ecosystem structure as sketched out in fig. 2 for a single ensemble member of each of the cases in 

figure 13, which maintained some degree of early-late PFT coexistence in each of the different cases.  In each of fig. 14a-f, 

the FATES patches and cohorts are drawn out, rank ordered by height with the tallest to the right within each patch, with 710 

cohort width proportional to the crown area occupied by each cohort, and with patches similarly arrayed with oldest to the 

right and the patch width proportional to the patch area.  Thus the width of all canopy cohorts in a closed-canopy patch equals 

the width of the patch that they occupy.  Cohorts are colored by PFT (color) and canopy position (shading), with yellow-green 

representing an early successional PFT and blue-green representing a late-successional PFT, and darker shading of each for 

the understory cohorts. Shown are the final year of a 600-year set of simulations, started from bare ground initial conditions. 715 

Differences between the cases in evident in the resulting structure of the forests. The fractional coverage of PFTs roughly 

follows the pattern in fig. 13. The relative heterogeneity of patch area follows the fd parameter, with most heterogeneous 

patches when fd=1 and no heterogeneity when fd=0. Reducing the disturbance intensity parameter mu,d from 1 to 0.5 causes a 

small number of large trees, which had been in the understory prior to disturbance, to remain even in newly-disturbed patches, 

thus making the character of patches more similar across ages. Shifting the height sorting to a more probabilistic treatment 720 

shifts the relative size distributions of canopy and understory trees within any patch. Animations of annual snapshots of one 

of these ensemble members is in supplementary videos (SV1), which shows the emergence of heterogeneity in structure and 
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composition over time.  Figures 13-15 demonstrate the wide range of outcomes, both in terms of PFT composition and in the 

size and age structure of the forest, that result from these ecosystem-level height sorting and disturbance parameters. 

4 Conclusions 725 

Land surface and ecosystem carbon models are highly dependent on parameters that are both imperfectly known and that may 

have highly diverse values within any given ecosystem.  We attempt to separate some of these different controls on model 

dynamics by distinguishing plant trait variation from other ecosystem parameters, to explore how representing diversity in 

plant traits affects predictions made by a VDM, and how ecosystem level parameters govern competitive outcomes and other 

predictions by the model. 730 

 

In a single-PFT configuration, where competitive pressures on trait values are not present, the model exhibits both some 

agreement and some biases as compared to a set of observations that span from physiological processes to ecosystem structure.  

The degree of agreement with observations is not sensitive to the choice of two related land models in which we run FATES, 

which both behave similarly. 735 

 

As we add the effects of competitive pressures on parameter uncertainty, by increasing the number of PFTs competing within 

any given simulation, these shift the distributions of model predictions in a systematic way.  Productivity and biomass increase 

as we add further PFTs to a simulation, in ways that push the model, which agrees roughly with observations of biomass and 

productivity in a single-PFT configuration, further from the observations as we add more diversity, even though such increased 740 

diversity in the model should better represent processes that exist in species-rich tropical forests.  This emphasizes the need to 

better represent tradeoffs that equalize competitive performance among species, so as to limit the competitive ability of any 

given functional type to outcompete other types.  These effects of competition are only partially dependent on filtering that 

may occur from one generation to the next, as they are also strongly present even when we prevent advantages in population 

numbers to be passed on from one generation to the next. 745 

 

We further explore the effects of non-trait parameter variability on competitive outcomes in a set of paired-PFT experiments 

to show how the competitively successful strategy between early and late successional traits shifts as a result of ecosystem-

level parameters.  In particular, the parameters that govern both disturbance and competitiveness for light have strong effects 

on the balance between early and late successional PFTs: increases to either the extent or severity of disturbance, or to the 750 

efficiency of height-based light competition, all act to shift the community towards early-successional PFTs.  These differences 

in the PFT composition of the modeled forests feeds back onto ecosystem-level predictions of states and fluxes by the model. 
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In order to understand how global change pressures will affect ecosystems, and in turn how ecosystem response will further 

feed back on global change, we must consider the role of shifts in community structure.  VDMs are a promising tool to resolve 755 

these processes, however VDMs bring a high degree of complexity that add greater uncertainty to model predictions than more 

simple model frameworks that may be more easily tuned to match observations.  The results shown here underscore the need 

to better understand the roles that uncertainty in model parameters play -- both the direct role, as well as the indirect roles that 

govern how parameter uncertainty changes competitive pressures on trait distributions at the ecosystem level.  It is thus crucial 

to understand and integrate these types of uncertainty into projections of the Earth system. 760 
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Figures 

 

 
Fig. 1. Overall process schematic of FATES.  Boxes represent major processes, and arrows represent linkages in the form of material 
flows or other dependencies. Fast timestep processes are resolved every 30 minutes and slow timestep processes are resolved daily. 795 
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(a)      (b) 

Fig.2.  Schematic of how disturbance and height sorting are represented in the FATES model. (a) Representation of disturbance.  800 
When canopy trees die, some fraction of the crown area of the dead trees is transferred to a newly-disturbed patch, while the 
remainder remains in the old patch.  Trees can be promoted from the understory to the canopy either in the old patch, or if they are 
transferred to the new patch area as survivors of the disturbance event. Endmembers of this case are the “pure ED” case, in which 
all crown area becomes new patch area, and the “pure PPA” case in which no newly disturbed patch area is created.  We also 
consider an intermediate case, in which half of the dead tree canopy becomes disturbed, but with no survivorship of trees in the 805 
newly disturbed patch. (b) Representation of height sorting.  When canopy tree crown area exceeds the patch area that the trees are 
on due to crown growth, canopy trees are “demoted” to the understory. In the deterministic case, trees are rank-ordered by height 
and the shortest cohort is split at the point where total tree crown area equals patch area, and the remaining cohort is demoted.  In 
the probabilistic case, all canopy trees are demoted, with the fraction of each cohort demoted based on the cohorts’ relative heights. 
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 810 
Fig. 3 Matrix of plant trait data used to inform FATES ensembles.  Measured traits are: Leaf Vc,max,25,top(µmol CO2 m-2 s-1), Wood 
Density (g/cm3), Leaf Mass per unit Area (m2 g-1), Leaf N per unit Area (g m2), Leaf Lifespan (y), Plant mortality rate (y-1), Crown 
Area to Stem Diameter coefficient (m2 cm-1), and Crown Area to Stem Diameter exponent (unitless). Each dot represents one pair 
of species-level trait values where both traits are measured for a given species; histograms show the distributions of all species-level 
values for a given trait. 815 
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Fig. 4  Resampled trait matrix, including 8 observed and 4 unobserved traits, as used to define PFTs in FATES simulations.  8 820 
observed traits are as in figure 3 (with background mortality set to be the observed plant mortality). 4 Additional unobserved traits 
are: Allometric leaf biomass to stem diameter coefficient (kg cm-1), allometric fine root biomass to leaf biomass ratio (unitless), 
fractional NPP allocated to reproduction (unitless), and maximum rate of carbon starvation mortality (yr-1).  
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 825 
(a) 

 

 
(b) 

Fig. 5 Joint distribution of modelled GPP and LAI (a) and modelled timeseries of biomass trajectories (b), for a 576-member 830 
ensemble of site-scale FATES simulations, where each ensemble member, represented here as an individual dot, has a single PFT 
defined as a random draw from the 12 trait covariance matrix shown in figure 3. Site-level observations of LAI and GPP (mean +/- 
1 std dev) are shown in (a) as a grey ellipse, and observed mean biomass is shown in (b) as black line.  
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 835 

 

 

 
 840 

 
 

Fig. 6 Comparison between FATES simulations of mean annual cycles in Gross Primary Productivity, Latent Heat (LH), and 
Sensible Heat (SH), with eddy-covariance observations from Barro Colorado Island flux tower. Green lines correspond to the mean 
annual cycle from each FATES ensemble member. Blue lines show individual years of eddy covariance data.  845 
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Fig. 7 Stem size distributions (in # trees per hectare per cm width of size class bin), of single-PFT ensemble members, as compared 
to census data from the BCI forest dynamics plot.  
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 850 

 
 
Fig. 8 Variance decomposition of trait control on ecosystem states and vital rates. Shown are the fractions of variance explained by 
each of the 12 traits for 7 ecosystem variables.  Filled circles and associated lines show the maximum potential fraction of variance 
explained by each trait, without considering trait-trait correlations. Open circles show the minimum fraction of variance explained 855 
by each trait, after first subtracting out the variance explained by all other traits. 
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(a)      (b) 

 860 

 
(c)      (d) 

 
Fig. 9 Comparison of FATES simulations as embedded within two land surface models: ELM-FATES and CLM-FATES. (a) GPP, 
(b) LAI, (c) aboveground biomass. Observational range shown as grey band in (a-c).  865 
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   (a)      (b) 

 
   (c)      (d) 

 870 
   (e) 
Fig. 10 Variation between ensemble members as a function of the number of competing PFTs in each ensemble member.  (a-c) 
Histograms of mean GPP (a), LAI (b), and aboveground biomass (c). Observational range shown as grey band in (a-c). (d) Size 
distributions of ensembles. (e) Standard deviation across ensemble members as a function of the number of competing PFTs, as 
compared to a null model, which considers the distribution changes purely as a sampling problem, for expected reduction in 875 
variation between ensemble members in the absence of competition effects. 
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   (a)      (b) 

 880 
   (c)      (d) 

 
   (e)      (f) 
Fig. 11 Predictions from 10-PFT ensembles with and without recruitment filtering. (a-c) Histograms of mean GPP (a), LAI (b), and 
aboveground biomass (c). Observational range shown as grey band in (a-c). (d) Size distributions of ensembles. (e-f) Rank abundance 885 
curves for PFTs. (e) PFT abundances for all trees greater than 1 cm diameter. (f) PFT abundances for all trees greater than 10cm 
diameter.  For all cases in (e-f), solid line is the median ensemble member, and shaded range are the 5th-95th percentiles across 576 
ensembles. 
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 890 
   (a)       (b) 
Fig. 12. Growth-mortality tradeoff and possible regimes of coexistence in a model like FATES along a successional axis.  In a growth-
mortality space, if a line connecting two PFTs comprising the system is negative as in (a), one PFT should be competitively dominant 
and exclude the other.  If the slope of the line is positive as in (b) coexistence may be possible, however the range of slopes that may 
permit coexistence in tropical forests is not known a priori. 895 
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(a)      (b) 

 900 
(c) 

 
Fig. 13 Competitive outcomes between 2 PFTs, as a function of PFT growth and mortality rates along an early-late successional 
continuum. Only ensemble members where a successional tradeoff, i.e. one of the PFTs both grows and dies faster than the other 
PFT, are shown. (a) The lines connecting paired PFTs in a growth-mortality tradeoff space, for a random subset of ensemble 905 
members in the reference case, are colored by the competitive outcome in each member to show the importance of the slope of the 
tradeoff line in determining the outcome. (b-c) The relative fraction of total ecosystem biomass in the faster, early successional PFT 
is plotted against the log of the ratios of the slope of the growth-mortality tradeoff in each PFT pairing.  Curves in (b-c) show a 
continuous logistic regression as applied to the PFT biomass fractions in each experiment.  (b) shows the individual ensemble 
members as well as the logistic regression for the reference case. (c) shows only the logistic regression fit for each of the cases, 910 
demonstrating that the parameter uncertainty related to disturbance and height sorting that differentiates each ensemble leads to 
divergent outcomes in the relative success between early and late successional PFTs. See figure 1 for qualitative schematics of the 
different structural cases. 
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 915 

 
   (a)      (b) 

 
   (c)      (d) 
Fig. 14. Ecosystem-level model results of paired PFT competition experiments. Ensemble distributions of (a) GPP, (b) LAI, (c) 920 
biomass, and (d) size distributions. For each of the paired-PFT cases. 
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Fig. 15.  Forest structure and composition, at year 600 of one ensemble member for each structural sensitivity experiment. 925 
Experiments are as in figures 13-14, and ordered from most promoting of early successional to late successional PFTs: (a) 
Deterministic sorting, “Pure ED”, bare ground (fd =1, mu,d=1) disturbance; (b) Deterministic sorting, intermediate bare-ground 
disturbance; (c) Deterministic sorting, “Pure ED” medium intensity (fd =1, mu,d=0.5) disturbance; (d) Probabilistic sorting (cexcl=3), 
intermediate bare-ground disturbance; (e) Probabilistic sorting (cexcl=1), intermediate bare-ground disturbance; and (f) 
Deterministic sorting, “Pure PPA” (fd =0) disturbance. The same ensemble member was used for each panel, so that plant traits are 930 
identical across experiments. Each panel depicts individual cohorts, arranged from tallest to shortest within a patch from right to 
left.  The horizontal axis of each panel shows area: both cohort crown area and patch area.  Older patches are to the right, with thin 
vertical lines separating patches. Cohort widths in the figure are proportional to the crown area of each cohort. Within the canopy, 
different PFTs are given different colors, with an early successional PFT in light green and a late successional PFT in blue-green. 
Understory cohorts are shaded darker than canopy cohorts.  935 
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Tables 

 

 

Trait Units Associated Process(es) 

Vcmax,25 top leaf layer (µmol CO2 m-2 s-1) Photosynthesis 

Wood density (g/cm3) Stem growth 

Leaf Mass per unit area (m2 g-1) Leaf Growth & Turnover 

Leaf N per unit area (g m2) Plant Respiration 

Leaf lifespan (y) Leaf Growth & Turnover 

Background plant mortality rate (y-1) Mortality 

Crown Area to Stem Diameter 

coefficient  

(m2 cm-1) Crown Area Allometry 

Crown Area to Stem Diameter 

exponent 

(unitless) Crown Area Allometry 

Allometric leaf biomass to stem 

diameter coefficient 

(kg cm-1) Allometry & Allocation; Leaf Growth & Turnover 

Allometric fine root biomass to 

leaf biomass ratio 

(unitless) Allometry & Allocation; Root Growth & Turnover 

Fractional NPP allocated to 

reproduction 

(unitless) Allometry & Allocation; Seed Production 

maximum rate of carbon 

starvation mortality 

(yr-1) Mortality 

 940 
Table 1. Traits varied within each ensemble in order to define plant functional types, their units, and the process or processes (as 
diagrammed in figure 1) most closely associated with each trait.  
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Number of 
PFTs competing 
per ensemble 
member Height Sorting 

Recruit

ment disturbance LSM Purpose 

1 Deterministic normal 

bare-ground 

intermediate: fd =0.5, 

mu,d=1 CLM Control 

1 Deterministic normal 

bare-ground 

intermediate ELM Understand sensitivity to driving model 

3 Deterministic mixing 

bare-ground 

intermediate CLM Understand sensitivity to number of PFTs 

10 Deterministic mixing 

bare-ground 

intermediate CLM Understand sensitivity to number of PFTs 

10 Deterministic normal 

bare-ground 

intermediate CLM 

Understand sensitivity to inter-generational 

trait filtering 

2 Deterministic normal 

bare-ground 

intermediate CLM 

Reference case for looking at regimes of 

coexistence 

2 

Probabilistic, 

cexcl=3 normal 

bare-ground 

intermediate CLM 

Understand sensitivity of coexistence to 

representation of height sorting 

2 

Probabilistic, 

cexcl=1 normal 

bare-ground 

intermediate CLM 

Understand sensitivity of coexistence to 

representation of height sorting 

2 Deterministic normal 

pure ED: fd =1, 

mu,d=0.5 CLM 

Understand sensitivity of coexistence to 

representation of disturbance 

2 Deterministic normal 

pure ED: fd =1, 

mu,d=1.0 CLM 

Understand sensitivity of coexistence to 

representation of disturbance 

 

2 Deterministic normal pure PPA: fd =0 CLM 

Understand sensitivity of coexistence to 

representation of disturbance 

 
Table 2. Experimental matrix used in this study. Each ensemble above consists of 576 ensemble members with one or more PFTs 945 
per ensemble member chosen as a random draw from the 12x12 trait covariance matrix. 
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Supplementary Video 

SV1 Animated version of Fig. 15d, showing 600 years of forest development from bare ground for one ensemble member. 

Video available at: https://doi.org/10.5446/43627  

 950 
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