Reply to the referees (see also the respective on-line Discussion for more detail)

Referee #1

1. The referee briefly remarks that the findings have little novelty. This may be the case with the conclusions, which emphasize the potential importance of acetate oxidation coupled either syntrophically to hydrogenotrophic methanogenesis or to the reduction of organic substances. Such conclusions have indeed been made before. However, to our knowledge they have so far not been supported by showing that the methyl group of acetate is indeed oxidized to CO₂ rather than reduced to CH₄. Here, we addressed this point by determining the fate of radioactively labeled acetate-methyl, and indeed found that in some of the lake sediments a large percentage of the acetate methyl was oxidized to CO₂. In our opinion, this is a crucial and novel experimental result.

2. The referee criticizes the presentation of the methods, in particular the determination of parameters. We have now presented the relevant methods in more detail including the equations used for calculation. We also better explain the determination of f_{H2} as done in our previous publication (Ji et al. 2016) versus the present one, which used ¹³C versus ¹⁴C methods, respectively. We have now also added more explicit statements which incubation was used for which determination. This concerns in particular the determination of f_{H2} and rates of CH₄ production on the one hand, and of RI and acetate turnover on the other hand. Finally, we have added to the Discussion by arguing about the use of different incubations and different incubation times for the individual parameters.

Minor issues:

General: We made several changes in the references as suggested by the referee.

Methods: The CH4 production rates without addition of radiotracers (Fig. 1A) are basically those from our previous study (Ji et al., 2016), analogously to the values of f_{H2} shown in Fig. 1B. This has now been explained in the Methods. It is also stated in the figure legend.

The addition of ¹⁴C was almost carrier free, i.e., the specific radioactivitities of $[2-^{14}C]$ acetate and ¹⁴Cbicarbonate were on a range of about 50 Ci/mol. Thus, the addition of 1 µCi acetate-methyl was equivalent to an amount of about 20 nmol acetate. Hence, the addition of radioactive acetate was small (<5%) compared to the in-situ concentration of acetate. The same is true for bicarbonate. This information has been added to the Methods.

Fig. 2: The specific radioactivity is the relevant number for determining fH2. Therefore, we preferred showing these values instead of showing only Bq of CO_2 and CH_4 without reference to total CH_4 and CO_2 .

L.32: ok

L.86: ok

L.106: There was a significant amount of radioactivity in the sediment carbonates, which has to be considered for the correct determination of the RI. In some of the sediments the released radioactive CO_2 more than doubled upon acidification. Actually, we also calculated RI values using the final radioactivity in CO_2 before acidification. These RI values were (of course) generally smaller than those after acidification, ranging between RI = 0.05-0.30 compared to RI = 0.06-0.48. The use of the non-acidified values of RI for calculation of acetate dependent CH₄ production would result in even higher rates than those given in our paper. Hence, the rates of acetate-dependent CH₄ production given in our paper were conservative. A brief statement has been added to the Discussion.

L.124: Averages were calculated since the values of f_{H2} were not constant (Fig. 2C) and we wanted to compare the values with those determined earlier using ¹³C (comparison in Fig. 1B). No changes were made.

Referee #2

1. The referee criticizes that the comparison between different methods is confusing. The comment is similar to one of referee #1. See there for action taken.

2. The referee questions whether sulfate, which was initially present in the sediments, could have contributed to acetate oxidation. To avoid sulfate reduction, we preincubated the sediments. This information is given in the Methods. We have now also briefly mentioned it in the Results and have emphasized that CH₄ production started without lag phase indicating that suppressive concentrations of sulfate (or Fe(III)) were not available.

3. Acetate oxidation and hydrogenotrophic methanogenesis are indeed two independent processes, that are coupled syntrophically via H₂ (or perhaps other electron carriers). The turnover rate of radioactive acetate comprises also such syntrophic acetate oxidation. However, syntrophic acetate oxidation results in stoichiometric amounts of hydrogenotrophically formed CH₄. If turnover of radioactive acetate is larger than CH₄ production (as was the case for several sediments), the surplus cannot be due to syntrophically produced CH₄. Hence this amount of acetate oxidation must be caused by other oxidants, i.e., organic compounds if inorganic ones are not available. The conclusion is summarized in Fig. 5, to which we will make better reference in the revision. The oxidation of acetate can either be directly coupled to reduction orgC (reaction 4 in Fig.5) or acetate is oxidized to CO₂ plus H₂ followed by the oxidation of H2 with orgC (reactions 2 plus 3 in Fig. 5). However, acetate oxidation coupled to hydrogenotrophic methanogenesis (reactions 2 plus 3 in Fig. 5) cannot be larger than CH₄ production. We have added a few sentences to the Discussion for clarity. We have also amended the references to Fig. 5 with the respective reactions shown in the scheme of pathways.

Specific comments:

Line 4: we have used only the term aceticlastic.

Line 107-108: We have added the equations describing how the parameters were calculated.

Line 135: Thank you, we have corrected the figure numbers.

Acetate turnover and methanogenic pathways in Amazonian lake sediments
Ralf Conrad ^a , Melanie Klose ^a , Alex Enrich-Prast ^{b,c}
^a Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
^b Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden
^c Departamento de Botânica, Instituto de Biologia, University Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
<u>Corresponding author</u> : Ralf Conrad, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10,
35043 Marburg, Germany Tel. +49-6421-178801; Fax: +49-6421-178809; email: <u>Conrad@mpi-marburg.mpg.de</u>

19 Abstract

- 20 Lake sediments in Amazonia are a significant source of CH₄, a potential greenhouse gas.
- 21 Previous studies of sediments using ¹³C analysis found that the contribution of
- 22 hydrogenotrophic versus aceticlastic methanogenesis to CH₄ production was relatively high.
- 23 Here, we determined the methanogenic pathway in the same sediments (n = 6) by applying
- 24 [¹⁴C]bicarbonate or [2-¹⁴C]acetate, and confirmed the high relative contribution (50-80%) of
- 25 hydrogenotrophic methanogenesis. The respiratory index (RI) of [2-14C]acetate, which is
- $^{14}CO_2$ relative to $^{14}CH_4 + ^{14}CO_2$, divided the sediments into two categories, i.e., those with an
- 27 RI < 0.2 being consistent with the operation of aceticlastic methanogenesis, and those with an
- 28 RI > 0.4 showing that a large percentage of the acetate-methyl was oxidized to CO₂ rather
- 29 than reduced to CH₄. Hence, part of the acetate was probably converted to CO₂ plus H₂ via
- 30 syntrophic oxidation, thus enhancing hydrogenotrophic methanogenesis. This happened
- 31 despite the presence of potentially aceticlastic *Methanosaetaceae* in all the sediments.
- 32 Alternatively, acetate may have been oxidized with a constituent of the sediment organic
- 33 matter (humic acid) serving as oxidant. Indeed, apparent acetate turnover rates were larger
- than CH_4 production rates except in those sediments with a R < 0.2. Our study demonstrates
- that CH₄ production in Amazonian lake sediments was not simply caused by a combination of
- 36 hydrogenotrophic and aceticlastic methanogenesis, but probably involved additional acetate
- 37 turnover.38

39 1. Introduction

40	Acetate is an important intermediate in the anoxic degradation of organic matter and is		
41	produced by fermentation processes and chemolithotrophic homoacetogenesis The		
42	contribution of these two processes to acetate production is difficult to determine, but seems		
43	to be quite different for different environments (Fu et al., 2018; Hädrich et al., 2012; Heuer et	Formatted: Font co	olor: Red
44	al., 2010; Lokshina et al., 2019; Ye et al., 2014). The degradation of acetate requires a suitable		
45	oxidant such as oxygen, nitrate, ferric iron or sulfate. If such oxidants are not or no longer		
46	available, such as in many freshwater environments (e.g., paddy fields, lake sediments, peat),		
47	acetate sometimes accumulates until suitable electron acceptors become again available.		
48	Temporal accumulation and subsequent oxidative consumption has for example been		
49	observed in peatlands during increase and decrease, respectively, of the water table		
50	(Duddleston et al., 2002). Normally, hHowever, it is generally assumed that acetate		
51	degradation in the absence of inorganic electron acceptors is accomplished by aceticlastic		
52	methanogenesis (Zinder, 1993). If aceticlastic methanogenesis is operative, the methyl group	Formatted: Font co	olor: Red
53	of the acetate is converted to CH ₄ .		
54	If methanogenesis is the exclusive final step in the anaerobic degradation of organic		
55	matter, polysaccharides (one of the most important compounds from primary production) will		
56	be dismutated to equal amounts of CH4 and CO2. Furthermore, acetate usually accounts for		
57	more than two third of total methane production, especially if polysaccharides are the	(
58	predominant degradable organic matter (Conrad, 1999). However, CO ₂ has often been found	Formatted: Font co	olor: Red
59	to be the main product in many anoxic environments despite the absence of inorganic electron		
60	acceptors (O2, nitrate, ferric iron, sulfate) (Keller et al., 2009; Yavitt and Seidmann-Zager,		
61	2006). Such results have been explained by the assumption that organic substances (e.g.		
62	humic acids) may also serve as electron acceptors (Gao et al., 2019; Keller et al., 2009;		
63	Klüpfel et al., 2014). Organic electron acceptors also allow the oxidation of acetate (Coates et		
64	al., 1998; Lovley et al., 1996). The role of organic electron acceptors during anaerobic		
65	degradation of organic matter is potentially important, but still not well known (Corbett et al.,		
66	2013)		

67	There are also many reports that methane production in lake sediments is dominated by	
68	hydrogenotrophic rather than aceticlastic methanogenesis (Conrad, 1999; Conrad et al., 2011;	
69	Ji et al., 2016). Such observations were explained (1) by incomplete degradation of organic	
70	matter producing predominantly H_2 and CO_2 without concomitant acetate production (Conrad	
71	et al., 2010; Hodgkins et al., 2014; Liu et al., 2017), (2) by acetate oxidation coupled to the	
72	reduction of organic substances (see above), or (3) by syntrophic acetate oxidation coupled	
73	with hydrogenotrophic methanogenesis (Lee and Zinder, 1988; Vavilin et al., 2017). If	
74	syntrophic acetate oxidation is operative, the methyl group of the acetate is converted to CO_{27}	
75	similarly as found during acetate oxidation with external inorganic or organic electron	
76	acceptors. However, if syntrophic acetate oxidation is syntrophic, it does not require a	
77	chemical compound (other than H ⁺) as electron acceptors, since it is the hydrogenotrophic	
78	methanogenesis that eventually accepts the electrons released during acetate oxidation.	
79	Syntrophic acetate oxidation can replace aceticlastic methanogenesis and thus, has been	
80	found when aceticlastic methanogenic archaea were not present in the microbial community	
81	of lake sediment (Nüsslein et al., 2001). This may also happen in other anoxic environments	
82	when conditions are not suitable for aceticlastic methanogens, e.g., at elevated temperatures	
83	(Conrad et al., 2009; Liu and Conrad, 2010; Liu et al., 2018), in the presence of high	
84	concentrations of ammonium (Müller et al., 2016; Schnürer et al., 1999; Zhang et al., 2014),	
85	or phosphate (Conrad et al., 2000). However, syntrophic acetate oxidation has also been found	
86	in lake sediments that contained populations of putatively aceticlastic methanogens (Vavilin	
87	et al., 2017). It is presently unkown under which conditions syntrophic acetate oxidizers can	
88	successfully compete with aceticlastic methanogens and co-occur with acetate oxidation that	
89	is coupled to the reduction of organic substances.	
90	As a further step in understanding the ecology of syntrophie-acetate oxidizers (syntrophic	
91	or non-syntrophic ones) versus aceticlastic methanogens, we attempted to document their	
92	coexistence by studying lake sediments, which had been reported containing 16S rRNA genes	
93	of putatively aceticlastic Methanosaetaceae (Methanotrichaceae (Oren, 2014)) (Ji et al.,	

94 2016). We used these sediments and measured the fractions of hydrogenotrophic

Formatted: Font color: Red

96	to CH4, and compared the turnover of acetate to the production rate of CH4.
97	
98	2. Materials and Methods
99	The sediment samples were obtained from floodplain lakes in the Amazon region and have
100	already been used for a study on structure and function of methanogenic microbial
101	communities (Ji et al., 2016). In particular, these sediment have been assayed for the
102	percentage of hydrogenotrophic methanogenesis using values of δ^{13} C of CH ₄ , CO ₂ and
103	acetate-methyl, and for the percentage contribution of putatively aceticlastic methanogens to
104	the total archaeal community (Ji et al., 2016). Here, we used six of these sediments for
105	incubation experiments with radioactive tracers. These are the same sediments samples as are
106	identical to those listed in our previous publication (Ji et al., 2016). The identity of the lake
107	sediments and the percentage content of putatively aceticlastic methanogens is summarized in
108	Table 1.
109	The experiments were carried out at the same time as those in our previous publication (Ji
110	et al., 2016) and were basically using the same incubation techniques. However, the
111	experimental approach to determine the fractions of hydrogenotrophic methanogenesis (f_{H2})
112	were different. In our previous experiment, values of f_{H2} were determined from the $\delta^{13}C$ of
113	<u>CH₄ in the presence ($\delta^{13}C_{CH4-mc}$) and absence ($\delta^{13}C_{CH4}$) of methyl fluoride, an inhibitor of</u>
114	aceticlastic methanogenesis, and from the δ^{13} C of the methyl group of acetate (δ^{13} C c. methyl):
115	$\underline{f_{H2} = (\delta^{13}C_{CH4} - \delta^{13}C_{ac-methyl})/(\delta^{13}C_{CH4-mc} - \delta^{13}C_{ac-methyl})} $ (1),
116	The CH_4 production rates and f_{H2} values from this experiment are shown in Fig. 1 for
117	comparison.
118	In the present experiment, however, values of f_{H2} were determined by addition of
119	NaH ¹⁴ CO ₃ and measurement of the specific radioactivities in CH ₄ and CO ₂ . Briefly, for
120	determination of CH ₄ production rates and the fractions of hydrogenotrophic methanogenesis
121	(f_{H2}) about 10-15 ml of each replicate (n =3) were filled into 27-ml sterile tubes, flushed with
122	N2, closed with butyl rubber stoppers, and incubated at 25°C. After preincubation for 12 days
123	(in order to deplete eventually present inorganic oxidants), 0.5 ml of a solution of carrier-free
	5

methanogenesis and of the methyl group of acetate being oxidized to CO2 rather than reduced

Formatted: Subscript	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States)	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Subscript	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States)	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States)	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Superscript	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States)	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Subscript	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States)	
Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Subscript	
Formatted	()
Formatted)
Formatted	
Formatted	
Formatted	
Formatted: Indent: First line: 0 cm	
Formatted: Subscript	\neg
<	

124	$NaH^{14}CO_3$ (about 1 μCi ; 50 Ci mol ⁻¹) was added, the tubes flushed again with N ₂ , and	
125	incubation was continued at 25°C for about 100 days. Partial pressures of CH4 and CO2 as	
126	well as their contents of ¹⁴ C were measured at different time points after mixing the slurries	
127	by heavy manual shaking. The gas partial pressures were measured by gas chromatography	
128	with a flame ionization detector (Ji et al., 2016), the radioactivities were analyzed with a	
129	radiodetector (RAGA) (Conrad et al., 1989). The data were used to calculate the fractions of	
130	hydrogenotrophic methanogenesis (f_{H2}) from the specific radioactivites of gaseous CH ₄	Formatted: Subscript
131	(SR _{CH4}) and CO ₂ (SR _{CO2}):	Formatted: Subscript
132	$\underline{f_{H2} = SR_{CH4}/SR_{CO2}}$ (2).	Formatted: Subscript
133	For determination of acetate turnover, the same conditions were used, except that	
134	preincubation was for 25 days, 0.5 ml of a solution of carrier-free Na[2-14C]acetate (about 2	
135	μCi; <u>50 Ci mol⁻¹</u>), equivalent to about 20 nmol acetate, was added, and incubation was	
136	continued for about 8 h. During this time gas samples were repeatedly taken and the	
137	radioactivities in CH ₄ and CO ₂ were analyzed in a gas chromatograph with a radiodetector	
138	(RAGA) (Conrad et al., 1989). In the end, the sediment samples were acidified with 1 ml of	
139	1M H ₂ SO ₄ to liberate CO ₂ from carbonates, and the radioactivities in CH ₄ and CO ₂ were	
140	analyzed again. The data were used to calculate the fractions of hydrogenotrophic	
141	methanogenesis (f_{H2}), the acetate turnover rate constants (k_{ac}) and the respiratory index (RI)	
142	values from the radioactivities of gaseous CH_4 and CO_2 as described by Schütz et al. (1989).	Formatted: Subscript
143	The RI is defined as:	Formatted: Subscript
144	$RI = {}^{14}CO_2/({}^{14}CO_2 + {}^{14}CH_4) $ (3).	
145	Both $^{14}CH_4$ and $^{14}CO_2$ were measured at the end of the incubation after acidification. These	
146	data were asloThe acetate turnover rate constants waswere determined from the change of	
147	14 CH ₄ and 14 CO ₂ with incubation time (t) and the maximal values of 14 CH ₄ and 14 CO ₂ at the	
148	end of the incubation before acidification:	
149	$\underline{k_{ac}} = [\ln(1 - (^{14}CH_4 + ^{14}CO_2))/(^{14}CH_{4-max} + ^{14}CO_{2-max})]/t $ (4).	 Formatted: Indent: First line: 0,5 cm
		 Formatted: Subscript
150	The acetate turnover rates (v_{ac}) were calculated by as the product of k_{ac} time the acetate	Formatted: Indent: First line: 0 cm
151	concentration (ac), which was analyzed in the sediments at the end of the incubation using	Formatted: Subscript
152	high pressure liquid chromatography:	

153	$\underline{\mathbf{v}_{ac}} = \underline{\mathbf{k}_{ac}} \cdot \underline{\mathbf{ac}} \tag{5}.$	/	Formatted: Not Superscript/ Subscript
154	The acetate concentration (ac) was analyzed in the sediments at the end of the incubation	(Formatted: Indent: First line: 0 cm
155	using high pressure liquid chromatography. The acetate concentrations are summarized in		
156	Table 1. The rates of acetate-dependent CH ₄ production (P _{ac}) were calculated from the acetate		Formatted: Subscript
157	turnover rates and the RI:	(Formatted: Subscript
158	$P_{ac} = v_{ac} \cdot (1 - RI) $ (6).	/	Formatted: Not Superscript/ Subscript
159			
160	3. Results		
161	Six different lake sediments from Amazonia were incubated in the absence and the		
162	presence of H ¹⁴ CO ₃ . Methane production started without lag phase indicating that the		
163	inorganic electron acceptors, which were present in the original sediment (Ji et al., 2016) had		
164	been depleted during the anaerobic preincubation and did not suppress methanogenesis. The	ſ	
165	CH ₄ production rates were compared to those obtained in our previous experiments without		Formatted: Subscript
166	addition of $H^{14}CO_3$ (Ji et al., 2016). Although the rates of CH ₄ production were different in		
167	the two different incubations, the orders of magnitude were similar for the different lake		
168	sediments (Fig. 1A). The incubations in the presence of $\rm H^{14}CO_3$ were used to follow the		
169	specific radioactivities of CH_4 (Fig. 2A) and CO_2 (Fig. 2B) over the incubation time. The		
170	specific radioactivities of CH4 changed only little but were slightly different for the different		
171	lake sediments. The specific radioactivities of CO_2 decreased with time as expected due to the		
172	production of non-radioactive CO2. Both specific radioactivities were used to calculate the		
173	fractions of hydrogenotrophic methanogenesis ($f_{\rm H2}$), which increased with incubation time		
174	and eventually reached a plateau. The values of $f_{\rm H2}$ averaged between 30 and 60 d of		
175	incubation are summarized in Fig. 1B. Only the incubations of sediment "Grande" did not		
176	reach a plateau but still increased after 260 d of incubation due to the continuously decreasing		
177	specific radioactivities of CO_2 (data not shown). Averaging these values over the 4 data points		
178	between 160 and 260 d resulted in $f_{\rm H2}$ of about 60% (Fig. 1B). The thus determined values of		
179	f_{H2} were comparable to those determined in the absence of $H^{14}CO_3$ using values of $\delta^{13}C$,		
180	which have already been published (Ji et al. 2016) (Fig.1B).		

181	The same sediments were used to determine the turnover of [2-14C]acetate by measuring
182	the increase of radioactive CH ₄ (Fig. 3A) and CO ₂ (Fig. 3B). These data were used to
183	determine the rate constants of acetate turnover (Fig. 3C), which ranged between 0.02 and 1.7
184	h^{-1} . The respiratory indices (RI) were generally larger than 0.2 except those of the sediments
185	Tapari and Verde, which were smaller than 0.2 (Fig. $4\underline{B}A$). The RI values and the acetate
186	turnover rate constants were used to calculate the rates of CH ₄ production from acetate in
187	comparison to the rates of total CH_4 production (Fig. 4AB). Interestingly, acetate-dependent
188	CH4 production was always larger than total CH4 production, except in those sediments
189	exhibiting a RI <0.2.

191 **4.** Discussion

192 The RI value quantifies the fraction of the methyl group of acetate that is oxidized to CO₂ 193 rather than reduced to CH₄. Since some oxidation of acetate methyl is also happening in pure 194 cultures of aceticlastic methanogens (Weimer and Zeikus, 1978), and since a RI of around 0.2 195 has often been found in environments where acetate turnover was dominated by aceticlastic 196 methanogenesis (Phelps and Zeikus, 1984; Rothfuss and Conrad, 1993; Winfrey and Zeikus, 197 1979), an RI value of 0.2 may in practice be used as the threshold for the change of methanogenic to oxidative acetate turnover. Based on this criterion, i.e. RI < 0.2, the lake 198 199 sediments of Tapari and Verde behaved as when acetate turnover was exclusively caused by 200 aceticlastic methanogenesis. The percentage of acetate-dependent CH₄ production was fairly 201 consistent with the fraction of hydrogenotrophic methanogenesis, which made up the 202 remainder of total CH₄ production. In conclusion, the acetate turnover and CH₄ production in these lake sediments behaved as expected as when aceticlastic methanogenesis was the sole 203 204 process of acetate consumption (reaction 1 in Fig. 5). 205 However, the sediments of Jua and in particular those of Jupinda, Cataldo, and Grande 206 exhibited RI values >0.2, showing that a substantial fraction of the acetate-methyl was oxidized to CO2. Hence, acetate was not exclusively consumed by aceticlastic 207

- 208 methanogenesis, but it was oxidized, for example by syntrophic acetate oxidation producing
- 209 H₂ and CO₂. The H₂ and CO₂ may subsequently have been used as methanogenic substrates,

210	thus supporting CH ₄ production (reactions 2 and 3 in Fig. 5). Such support would be		
211	consistent with the relatively high fractions (f_{H2}) of hydrogenotrophic methanogenesis		
212	observed in these sediments. However, it would not explain why acetate turnover rates were		
213	higher than necessary for supporting the observed rates of total CH4 production. A possible		
214	conclusion is that acetate was converted to CO2 without concomitant production of H2.		
215	Possibly, electrons from acetate were transferred to organic electron acceptors (reaction 4 in		
216	Fig. 5), such as suggested in the literature (Coates et al., 1998; Lovley et al., 1996).		
217	Alternatively, acetate may have first been converted to H ₂ plus CO ₂ followed by the oxidation		Formatted: Subscript
218	of H_2 with organic electron acceptors (reactions 2 and 5 in Fig. 5) rather than syntrophic		Formatted: Subscript Formatted: Subscript
			Formatted: Subscript
219	formation of CH ₄ from H ₂ plus CO ₂ (reactions 2 and 3 in Fig. 5). In conclusion, these lake	\leftarrow	Formatted: Subscript
220	sediments behaved as when acetate consumption was accomplished not only by aceticlastic		Formatted: Subscript
221	acetate-dependent methanogenesis, but also by oxidative consumption.		
222	Our conclusions are mainly based on radiotracer measurements, which may be biased. For		
223	example, acetate turnover rate constants are calculated from acetate concentrations and		
224	turnover rate constants. Acetate concentrations were only measured at the end of incubation		
225	and thus, may not have been representative for much of the entire incubation time.		
226	Furthermore, acetate in the sediment may occur in several pools with different turnover		
227	(Christensen and Blackburn, 1982). Therefore, acetate turnover rates and acetate-dependent		
228	CH ₄ production rates may be overestimated, if the actual acetate turnover depends on a pool		
229	size that is smaller than that analyzed. Overestimation may also result from too low RI values,		
230	such as when carbonate-bound radioactivity is neglected. However, such bias was avoided by		
231	acidification prior to determination of the RI. Such overestimation in sediments of Jua,		
232	Jupinda, Cataldo and Grande cannot be completely excluded, although rates in sediments of		
233	Tapari and Verde were in a realistic range. Finally, a potential bias may arise from the fact		
234	that the rates of CH ₄ production and the acetate turnover rates were measured in two different		Formatted: Subscript
235	sets of incubation, with different incubation times. While CH ₄ production (and f _{H2}) was		Formatted: Subscript Formatted: Subscript
236	measured over tens of days (Fig. 2), acetate turnover was determined within 8 h (Fig. 3).		
237	Nevertheless, the data in the lake sediments of Tapari and Verde resulted in CH ₄ production	/	Formatted: Subscript
238	and acetate turnover consistent with the operation of aceticlastic methanogenesis, which is the		

1				
239	canonical acetate consumption pathway for methanogenic sediments. Therefore, we are			
240	confident that our results obtained from Such overestimation in the sediments of Jua, Jupinda,			
241	Cataldo and Grande eannot be completely excluded, although rates in sediments of Tapari and			
242	<u>Verde-were also in a realistic range.</u>			
243	The determination of fractions of hydrogenotrophic methanogenesis (f_{H2}) depends on the			
244	specific radioactivity of the dissolved CO2 pool that is involved in CH4 production. However,			
245	it is the pool of gaseous CO ₂ that is analyzed in the assay, assuming that its specific			
246	radioactivity is identical to that of the active dissolved pool. Since non-radioactive CO2 is			
247	permanently produced from oxidation of organic matter, there may be disequilibrium.			
248	Nevertheless, determinations of f_{H2} using radioactive bicarbonate exhibited the same			
249	tendencies as those based on δ^{13} C values, and thus are probably quite reliable. Furthermore,	_		
250	the f _{H2} values were fairly consistent with the fractions of acetate-dependent methanogenesis	Fo		
251	determined from the turnover of radioactive acetate.			
252	Despite these reservations, our results collectively demonstrated that acetate turnover in			
253	tropical lake sediments did not necessarily follow a canonical pattern with aceticlastic			
254	methanogenesis as sole or predominant process of acetate turnover, despite the fact that all			
255	these sediments contained populations of putative aceticlastic methanogenic archaea. Acetate			
256	consumption in Methanosaeta species is known to have a relatively high affinity and a low			
257	threshold for acetate (Jetten et al., 1992). Therefore, the question arises why oxidative			
258	processes, including syntrophic acetate oxidation, could successfully compete with			
259	aceticlastic methanogenesis.			
260				
261	5. Author contribution			
262	RC designed the experiments, evaluated the data and wrote the manuscript; MK did the			
263	experiments; AEP provided the samples and contributed to the discussion of the data.			
264				
265	6. Competing interests			
266	The authors declare that they have no conflict of interest.			
267				

rmatted: Subscript

Formatted: Indent: First line: 0 cm, Keep with next

268 7. Acknowledgements

- 269 AEP acknowledges funding from the Swedish Research Council Vinnova and Linköping
- 270 University and for funding from the Brazilian Research Council FAPERJ.

271

272 8. References

- Christensen, D. and Blackburn, T. H.: Turnover of ¹⁴C-labelled acetate in marine
 sediments, Mar. Biol., 71, 113-119, 1982.
- Coates, J. D., Ellis, D. J., Blunt-Harris, E. L., Gaw, C. V., Roden, E. E., Lovley,
 D. R.: Recovery of humic-reducing bacteria from a diversity of environments,
 Appl. Environ. Microbiol., 64, 1504-1509, 1998.
- 278 Conrad, R.: Contribution of hydrogen to methane production and control of
 279 hydrogen concentrations in methanogenic soils and sediments [review], FEMS
 280 Microbiol. Ecol., 28, 193-202, 1999.
- Conrad, R., Claus, P., Casper, P.: Stable isotope fractionation during the
 methanogenic degradation of organic matter in the sediment of an acidic bog
 lake, Lake Grosse Fuchskuhle, Limnol. Oceanogr., 55, 1932-1942, 2010.
- Conrad, R., Klose, M., Claus, P.: Phosphate inhibits acetotrophic methanogenesis
 on rice roots, Appl. Environ. Microbiol., 66, 828-831, 2000.
- Conrad, R., Klose, M., Noll, M.: Functional and structural response of the
 methanogenic microbial community in rice field soil to temperature change,
 Environ. Microbiol., 11, 1844-1853, 2009.
- Conrad, R., Mayer, H. P., Wüst, M.: Temporal change of gas metabolism by
 hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil,
 FEMS Microbiol. Ecol., 62, 265-274, 1989.
- Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W. R., Enrich-Prast, A.: Stable
 carbon isotope discrimination and microbiology of methane formation in
 tropical anoxic lake sediments, Biogeosciences, 8, 795-814, 2011.
- Corbett, J., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H., Chanton,
 J. P.: Partitioning pathways of CO2 production in peatlands with stable carbon
 isotopes, Biogeochem., 114, 327-340, 2013.
- Duddleston, K. N., Kinney, M. A., Kiene, R. P., Hines, M. E.: Anaerobic
 microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic
 end product, Global Biogeochem. Cycles, 16, 1063doi:10.1029/2001GB001402, 2002.
- Fu, B., Conrad, R., Blaser, M.: Potential contribution of acetogenesis to anaerobic
 degradation in methanogenic rice field soils, Soil Biol. Biochem., 119, 1-10,
 2018.

- Gao, C., Sander, M., Agethen, S., Knorr, K. H.: Electron accepting capacity of
 dissolved and particulate organic matter control CO2 and CH4 formation in
 peat soils, Geochim. Cosmochim. Acta, 245, 266-277, 2019.
- Hädrich, A., Heuer, V. B., Herrmann, M., Hinrichs, K. U., Küsel, K.: Origin and
 fate of acetate in an acidic fen, FEMS Microbiol. Ecol., 81, 339-354, 2012.
- Heuer, V. B., Krüger, M., Elvert, M., Hinrichs, K. U.: Experimental studies on the
 stable carbon isotope biogeochemistry of acetate in lake sediments, Org.
 Geochem., 41, 22-30, 2010.
- Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M.,
 Saleska, S. R., Rich, V. I., Chanton, J. P.: Changes in peat chemistry associated
- with permafrost thaw increase greenhouse gas production, Proc. Natl. Acad.
 Sci. USA, 111, 5819-5824, 2014.
- Jetten, M. S. M., Stams, A. J. M., Zehnder, A. J. B.: Methanogenesis from acetate
 A comparison of the acetate metabolism in *Methanothrix soehngenii* and *Methanosarcina* spp., FEMS Microbiol. Rev., 88, 181-197, 1992.
- Ji, Y., Angel, R., Klose, M., Claus, P., Marotta, H., Pinho, L., Enrich-Prast, A.,
 Conrad, R.: Structure and function of methanogenic microbial communities in
 sediments of Amazonian lakes with different water types, Environ. Microbiol.,
 18, 5082-5100, 2016.
- Keller, J. K., Weisenhorn, P. B., Megonigal, J. P.: Humic acids as electron
 acceptors in wetland decomposition, Soil Biol. Biochem., 41, 1518-1522, 2009.
- Klüpfel, L., Piepenbrock, A., Kappler, A., Sander, M.: Humic substances as fully
 regenerable electron acceptors in recurrently anoxic environments, Nature
 Geoscience, 7, 195-200, 2014.
- Lee, M. J. and Zinder, S. H.: Isolation and characterization of a thermophilic
 bacterium which oxidizes acetate in syntrophic association with a methanogen
 and which grows acetogenically on H₂-CO₂, Appl. Environ. Microbiol., 54,
 124-129, 1988.
- Liu, F. H. and Conrad, R.: *Thermoanaerobacteriaceae* oxidize acetate in
 methanogenic rice field soil at 50°C, Environ. Microbiol., 12, 2341-2354,
 2010.
- Liu, P. F., Klose, M., Conrad, R.: Temperature effects on structure and function of
 the methanogenic microbial communities in two paddy soils and one desert
 soil, Soil Biol. Biochem., 124, 236-244, 2018.
- Liu, Y., Conrad, R., Yao, T., Gleixner, G., Claus, P.: Change of methane
 production pathway with sediment depth in a lake on the Tibetan plateau,
 Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 279-286, 2017.
- Lokshina, L., Vavilin, V., Litti, Y., Glagolev, M., Sabrekov, A., Kotsyurbenko,
 O., Kozlova, M.: Methane production in a West Siberian eutrophic fen is much
 higher than carbon dioxide production: incubation of peat samples,

- 345 stoichiometry, stable isotope dynamics, modeling, Water Resources, 46, S110-346 S125, 2019.
- 347 Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., Woodward, J. 348 C.: Humic substances as electron acceptors for microbial respiration, Nature, 349 382, 445-448, 1996.
- 350 Müller, B., Sun, L., Westerholm, M., Schnürer, A.: Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal 351 352 novel syntrophic acetate-oxidising bacteria, Biotechnol. Biofuels, 9, 48doi:10.1186/s13068-016-0454-9, 2016. 353
- 354 Nüsslein, B., Chin, K. J., Eckert, W., Conrad, R.: Evidence for anaerobic 355 syntrophic acetate oxidation during methane production in the profundal 356 sediment of subtropical Lake Kinneret (Israel), Environ. Microbiol., 3, 460-357 470, 2001.
- Oren, A.: The family Methanotrichaceae, in: The Prokaryotes, edited by: 358 359 Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., 360 Springer, Berlin, 298-306, 2014.
- 361 Phelps, T. J. and Zeikus, J. G.: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake, Appl. Environ. Microbiol., 48, 362 1088-1095, 1984. 363
- Rothfuss, F. and Conrad, R.: Vertical profiles of CH4 concentrations, dissolved 364 substrates and processes involved in CH4 production in a flooded Italian rice 365 field, Biogeochem., 18, 137-152, 1993. 366
- 367 Schnürer, A., Zellner, G., Svensson, B. H.: Mesophilic syntrophic acetate 368 oxidation during methane formation in biogas reactors, FEMS Microbiol. 369 Ecol., 29, 249-261, 1999.
- Schütz, H., Seiler, W., Conrad, R.: Processes involved in formation and emission 370 371 of methane in rice paddies, Biogeochem., 7, 33-53, 1989.
- 372 Vavilin, V., Rytov, S., Conrad, R.: Modeling methane formation in sediments of 373 tropical lakes, focusing on syntrophic acetate oxidation: dynamics and static 374 isotope equations, Ecol. Modeling, 363, 81-95, 2017.
- 375 Weimer, P. J. and Zeikus, J. G.: Acetate metabolism in Methanosarcina barkeri, Arch. Microbiol., 119, 175-182, 1978. 376
- 377 Winfrey, M. R. and Zeikus, J. G.: Anaerobic metabolism of immediate methane 378 precursors in Lake Mendota, Appl. Environ. Microbiol., 37, 244-253, 1979.
- 379 Yavitt, J. B. and Seidmann-Zager, M.: Methanogenic conditions in northern peat 380 soils, Geomicrobiol. J., 23, 119-127, 2006.
- 381 Ye, R., Jin, O., Bohannan, B., Keller, J. K., Bridgham, S. D.: Homoacetogenesis: 382 A potentially underappreciated carbon pathway in peatlands, Soil Biol. Biochem., 68, 385-391, 2014. 383

384	Zhang, C., Yuan, Q., Lu, Y.: Inhibitory effects of ammonia on methanogen mcrA
385	transcripts in anaerobic digester sludge, FEMS Microbiol. Ecol., 87, 368-377,
386	2014.

- Zinder, S. H.: Physiological ecology of methanogens, in: Methanogenesis. Ecology, Physiology, Biochemistry and Genetics, edited by: Ferry, J. G., Chapman & Hall, New York, 128-206, 1993. 388

- 392 Table 1: Identity of sediment samples (same as those in Ji et al. (2016)),
- 393 percentage content of putatively aceticlastic methanogens (*Methanosaetaceae*)
- 394 relative to total archaea, and concentrations of acetate; mean \pm SE.

Lake #	Name	Туре	Methanosaetaceae (%)	Acetate (nmol g ⁻¹ dry weight)
P1	Jua	clear water	21 ± 1	93 ± 5
P8	Tapari	clear water	19 ± 3	261 ± 39
P9	Verde	clear water	19 ± 11	126 ± 12
P10	Jupinda	clear water	27 ± 4	110 ± 6
A1	Cataldo	white water	42 ± 1	50 ± 3
A2	Grande	white water	36 ± 3	35 ± 1

398 Figure captions

399	Fig. 1: Methane production in sediments of different Amazonian lakes: (A) rates
400	of CH ₄ production, and (B) fractions of hydrogenotrophic methanogenesis,
401	both determined in the absence and the presence of radioactive bicarbonate.
402	The data in the absence of radioactive bicarbonate are the same as published in
403	Ji et al. (2016), when f_{H2} was determined from values of $\delta^{13}C$; mean ±SE.
404	Fig. 2: Conversion of radioactive bicarbonate in sediments of different Amazonian
405	lakes: (A) specific radioactivities in CH4; (B) specific radioactivities in gaseous
406	CO ₂ ; and (C) fractions (f_{H2}) of hydrogenotrophic methanogenesis; mean ±SE.
407	Fig. 3: Conversion of [2-14C]acetate in sediments of different Amazonian lakes:
408	(A) accumulation of radioactive CH4; (B) accumulation of radioactive gaseous
409	CO ₂ ; and (C) acetate turnover rate constants; mean ±SE.
410	Fig. 4: (A) Rates of total and acetate-derived CH ₄ production in sediments of
411	different Amazonian lakes and (B) respiratory indices (RI) of the turned over
412	[2- ¹⁴ C]acetate; mean ±SE.
413	Fig. 5: Scheme of the pathways involved in acetate turnover in sediments of
414	Amazonian lakes; (1) aceticlastic methanogenesis; (2) syntrophic acetate
415	oxidation; (3) hydrogenotrophic methanogenesis; (4) acetate oxidation with

416 organic electron acceptors.