

Acetate turnover and methanogenic pathways in Amazonian lake sediments

Ralf Conrad^a, Melanie Klose^a, Alex Enrich-Prast^{b,c}

- ^aMax Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- ^bDepartment of Thematic Studies Environmental Change, Linköping University, Linköping, Sweden

^c Departamento de Botânica, Instituto de Biologia, University Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

Corresponding author:

Ralf Conrad, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany Tel. +49-6421-178801; Fax: +49-6421-178809; email: <u>Conrad@mpi-marburg.mpg.de</u>

1 Abstract

- 2 Lake sediments in Amazonia are a significant source of CH₄, a potential greenhouse gas.
- 3 Previous studies of sediments using ¹³C analysis found that the contribution of
- 4 hydrogenotrophic versus aceticlastic methanogenesis to CH₄ production was relatively high.
- 5 Here, we determined the methanogenic pathway in the same sediments (n = 6) by applying
- 6 [¹⁴C]bicarbonate or [2-¹⁴C]acetate, and confirmed the high relative contribution (50-80%) of
- 7 hydrogenotrophic methanogenesis. The respiratory index (RI) of [2-¹⁴C]acetate, which is
- 8 14 CO₂ relative to 14 CH₄ + 14 CO₂, divided the sediments into two categories, i.e., those with an
- 9 RI < 0.2 being consistent with the operation of aceticlastic methanogenesis, and those with an
- 10 RI > 0.4 showing that a large percentage of the acetate-methyl was oxidized to CO₂ rather
- 11 than reduced to CH₄. Hence, part of the acetate was probably converted to CO₂ plus H₂ via
- 12 syntrophic oxidation, thus enhancing hydrogenotrophic methanogenesis. This happened
- 13 despite the presence of potentially aceticlastic *Methanosaetaceae* in all the sediments.
- 14 Alternatively, acetate may have been oxidized with a constituent of the sediment organic
- 15 matter (humic acid) serving as oxidant. Indeed, apparent acetate turnover rates were larger
- 16 than CH₄ production rates except in those sediments with a R < 0.2. Our study demonstrates
- 17 that CH₄ production in Amazonian lake sediments was not simply caused by a combination of
- 18 hydrogenotrophic and aceticlastic methanogenesis, but probably involved additional acetate
- 19 turnover.
- 20

21 **1. Introduction**

22	Acetate is an important intermediate in the anoxic degradation of organic matter and is
23	produced by fermentation processes and chemolithotrophic homoacetogenesis (Conrad, 2019;
24	Conrad et al., 2014; Ye et al., 2014). The contribution of these two processes to acetate
25	production is difficult to determine, but seems to be quite different for different environments
26	(Fu et al., 2018; Hädrich et al., 2012; Heuer et al., 2010). The degradation of acetate requires
27	a suitable oxidant such as oxygen, nitrate, ferric iron or sulfate. If such oxidants are not or no
28	longer available, such as in many freshwater environments (e.g., paddy fields, lake sediments,
29	peat) acetate sometimes accumulates until suitable electron acceptors become again available.
30	Temporal accumulation and subsequent oxidative consumption has for example been
31	observed in peatlands during increase and decrease, respectively, of the water table
32	(Duddleston et al., 2002). Normally, however, acetate degradation in the absence of inorganic
33	electron acceptors is accomplished by aceticlastic methanogenesis (Conrad, 2019). If
34	aceticlastic methanogenesis is operative, the methyl group of the acetate is converted to CH ₄ .
35	If methanogenesis is the exclusive final step in the anaerobic degradation of organic
36	matter, polysaccharides (one of the most important compounds from primary production) will
37	be dismutated to equal amounts of CH ₄ and CO ₂ . Furthermore, acetate usually accounts for
38	more than two third of total methane production, especially if polysaccharides are the
39	predominant degradable organic matter (Conrad, 2019). However, CO ₂ has often been found
40	to be the main product in many anoxic environments despite the absence of inorganic electron
41	acceptors (O2, nitrate, ferric iron, sulfate) (Keller et al., 2009; Yavitt and Seidmann-Zager,
42	2006). Such results have been explained by the assumption that organic substances (e.g.
43	humic acids) may also serve as electron acceptors (Gao et al., 2019; Keller et al., 2009;
44	Klüpfel et al., 2014). Organic electron acceptors also allow the oxidation of acetate (Coates et
45	al., 1998; Lovley et al., 1996). The role of organic electron acceptors during anaerobic
46	degradation of organic matter is potentially important, but still not well known (Corbett et al.,
47	2013)
48	There are also many reports that methane production in lake sediments is dominated by

49 hydrogenotrophic rather than aceticlastic methanogenesis (Conrad et al., 2011; Ji et al., 2016).

- 50 Such observations were explained (1) by incomplete degradation of organic matter producing
- 51 predominantly H₂ and CO₂ without concomitant acetate production (Conrad et al., 2010;
- 52 Hodgkins et al., 2014; Liu et al., 2017), (2) by acetate oxidation coupled to the reduction of
- 53 organic substances (see above), or (3) by syntrophic acetate oxidation coupled with
- 54 hydrogenotrophic methanogenesis (Lee and Zinder, 1988; Vavilin et al., 2017). If syntrophic
- 55 acetate oxidation is operative, the methyl group of the acetate is converted to CO₂, similarly
- 56 as found during acetate oxidation with external inorganic or organic electron acceptors.
- However, syntrophic acetate oxidation does not require a chemical compound (other than H⁺)
 as electron acceptors, since it is the hydrogenotrophic methanogenesis that eventually accepts
 the electrons released during acetate oxidation.
- 60 Syntrophic acetate oxidation can replace aceticlastic methanogenesis and thus, has been 61 found when aceticlastic methanogenic archaea were not present in the microbial community 62 of lake sediment (Nüsslein et al., 2001). This may also happen in other anoxic environments 63 when conditions are not suitable for aceticlastic methanogens, e.g., at elevated temperatures 64 (Conrad et al., 2009; Liu and Conrad, 2010; Liu et al., 2018), in the presence of high concentrations of ammonium (Müller et al., 2016; Schnürer et al., 1999; Zhang et al., 2014), 65 66 or phosphate (Conrad et al., 2000). However, syntrophic acetate oxidation has also been found 67 in lake sediments that contained populations of putatively aceticlastic methanogens (Vavilin 68 et al., 2017). It is presently unkown under which conditions syntrophic acetate oxidizers can 69 successfully compete with aceticlastic methanogens and co-occur with acetate oxidation that 70 is coupled to the reduction of organic substances.

As a further step in understanding the ecology of syntrophic acetate oxidizers versus aceticlastic methanogens, we attempted to document their coexistence by studying lake sediments, which had been reported containing 16S rRNA genes of putatively aceticlastic *Methanosaetaceae* (*Methanotrichaceae* (Oren, 2014)) (Ji et al., 2016). We used these sediments and measured the fractions of hydrogenotrophic methanogenesis and of the methyl group of acetate being oxidized to CO₂ rather than reduced to CH₄, and compared the

- turnover of acetate to the production rate of CH₄.
- 78

79 **2.** Materials and Methods

80	The sediment samples were obtained from floodplain lakes in the Amazon region and have
81	already been used for a study on structure and function of methanogenic microbial
82	communities (Ji et al., 2016). In particular, these sediment have been assayed for the
83	percentage of hydrogenotrophic methanogenesis using values of $\delta^{13}C$ of CH ₄ , CO ₂ and
84	acetate-methyl, and for the percentage contribution of putatively aceticlastic methanogens to
85	the total archaeal community (Ji et al., 2016). Here, we used six of these sediments for
86	incubation experiments with radioactive tracers. These sediments are identical to those listed
87	in our previous publication (Ji et al., 2016). The identity of the lake sediments and the
88	percentage content of putatively aceticlastic methanogens is summarized in Table 1.
89	The experiments were carried out at the same time as those in our previous publication and
90	were basically using the same incubation techniques. Briefly, for determination of CH4
91	production rates and the fractions of hydrogenotrophic methanogenesis about 10-15 ml of
92	each replicate (n =3) were filled into 27-ml sterile tubes, flushed with N_2 , closed with butyl
93	rubber stoppers, and incubated at 25°C. After preincubation for 12 days (in order to deplete
94	eventually present inorganic oxidants), 0.5 ml of a solution of NaH ¹⁴ CO ₃ (about 1 μ Ci) was
95	added, the tubes flushed again with N_2 , and incubation was continued at 25°C for about 100
96	days. Partial pressures of CH_4 and CO_2 as well as their contents of ${}^{14}C$ were measured at
97	different time points after mixing the slurries by heavy manual shaking. The gas partial
98	pressures were measured by gas chromatography with a flame ionization detector (Ji et al.,
99	2016), the radioactivities were analyzed with a radiodetector (RAGA) (Conrad et al., 1989).
100	For determination of acetate turnover, the same conditions were used, except that
101	preincubation was for 25 days, 0.5 ml of a solution of carrier-free Na[2-14C]acetate (about 2
102	μ Ci) was added, and incubation was continued for about 8 h. During this time gas samples
103	were repeatedly taken and the radioactivities in CH ₄ and CO ₂ were analyzed in a gas
104	chromatograph with a radiodetector (RAGA) (Conrad et al., 1989). In the end, the sediment
105	samples were acidified with 1 ml of $1M H_2SO_4$ to liberate CO_2 from carbonates, and the
106	radioactivities in CH ₄ and CO ₂ were analyzed again.

- 107 The data were used to calculate the fractions of hydrogenotrophic methanogenesis (f_{H2}), 108 the acetate turnover rate constants (k_{ac}) and the respiratory index (RI) values as described by 109 Schütz et al. (1989). The RI is defined as RI = ${}^{14}CO_2/({}^{14}CO_2 + {}^{14}CH_4)$. The acetate turnover 110 rates were calculated as the product of k_{ac} time the acetate concentration, which was analyzed 111 in the sediments at the end of the incubation using high pressure liquid chromatography. The 112 acetate concentrations are summarized in Table 1.
- 113

114 **3. Results**

115	Six different lake sediments from Amazonia were incubated in the absence and the
116	presence of $H^{14}CO_3$. Although the rates of CH_4 production were different in the two different
117	incubations, the orders of magnitude were similar for the different lake sediments (Fig. 1A).
118	The incubations in the presence of $\mathrm{H^{14}CO_3}$ were used to follow the specific radioactivities of
119	CH_4 (Fig. 2A) and CO_2 (Fig. 2B) over the incubation time. The specific radioactivities of CH_4
120	changed only little but were slightly different for the different lake sediments. The specific
121	radioactivities of CO ₂ decreased with time as expected due to the production of non-
122	radioactive CO ₂ . Both specific radioactivities were used to calculate the fractions of
123	hydrogenotrophic methanogenesis ($f_{\rm H2}$), which increased with incubation time and eventually
124	reached a plateau. The values of f_{H2} averaged between 30 and 60 d of incubation are
125	summarized in Fig. 1B. Only the incubations of sediment "Grande" did not reach a plateau
126	but still increased after 260 d of incubation due to the continuously decreasing specific
127	radioactivities of CO ₂ (data not shown). Averaging these values over the 4 data points
128	between 160 and 260 d resulted in $f_{\rm H2}$ of about 60% (Fig. 1B). The thus determined values of
129	f_{H2} were comparable to those determined in the absence of $H^{14}CO_3$ using values of $\delta^{13}C$,
130	which have already been published (Ji et al. 2016) (Fig.1B).
131	The same sediments were used to determine the turnover of [2-14C]acetate by measuring
132	the increase of radioactive CH ₄ (Fig. 3A) and CO ₂ (Fig. 3B). These data were used to
133	determine the rate constants of acetate turnover (Fig. 3C), which ranged between 0.02 and 1.7
134	h ⁻¹ . The respiratory indices (RI) were generally larger than 0.2 except those of the sediments
135	Tapari and Verde, which were smaller than 0.2 (Fig. 4A). The RI values and the acetate

- turnover rate constants were used to calculate the rates of CH₄ production from acetate in
 comparison to the rates of total CH₄ production (Fig. 4B). Interestingly, acetate-dependent
 CH₄ production was always larger than total CH₄ production, except in those sediments
 exhibiting a RI <0.2.

141 **4. Discussion**

142 The RI value quantifies the fraction of the methyl group of acetate that is oxidized to CO₂ 143 rather than reduced to CH₄. Since some oxidation of acetate methyl is also happening in pure 144 cultures of aceticlastic methanogens (Weimer and Zeikus, 1978), and since a RI of around 0.2 145 has often been found in environments where acetate turnover was dominated by aceticlastic 146 methanogenesis (Phelps and Zeikus, 1984; Rothfuss and Conrad, 1993; Winfrey and Zeikus, 147 1979), an RI value of 0.2 may in practice be used as the threshold for the change of 148 methanogenic to oxidative acetate turnover. Based on this criterion, i.e. RI < 0.2, the lake 149 sediments of Tapari and Verde behaved as when acetate turnover was exclusively caused by 150 aceticlastic methanogenesis. The percentage of acetate-dependent CH₄ production was fairly 151 consistent with the fraction of hydrogenotrophic methanogenesis, which made up the 152 remainder of total CH₄ production. In conclusion, the acetate turnover and CH₄ production in 153 these lake sediments behaved as expected as when aceticlastic methanogenesis was the sole 154 process of acetate consumption (Fig. 5). 155 However, the sediments of Jua and in particular those of Jupinda, Cataldo, and Grande 156 exhibited RI values >0.2, showing that a substantial fraction of the acetate-methyl was 157 oxidized to CO_2 . Hence, acetate was not exclusively consumed by aceticlastic 158 methanogenesis, but it was oxidized, for example by syntrophic acetate oxidation producing 159 H_2 and CO_2 . The H_2 and CO_2 may subsequently have been used as methanogenic substrates, 160 thus supporting CH₄ production (Fig. 5). Such support would be consistent with the relatively high fractions (f_{H2}) of hydrogenotrophic methanogenesis observed in these sediments. 161 162 However, it would not explain why acetate turnover rates were higher than necessary for 163 supporting the observed rates of total CH₄ production. A possible conclusion is that acetate 164 was converted to CO₂ without concomitant production of H₂. Possibly, electrons from acetate

165	were transferred to organic electron acceptors (Fig. 5), such as suggested in the literature
166	(Coates et al., 1998; Lovley et al., 1996). In conclusion, these lake sediments behaved as
167	when acetate consumption was accomplished not only by aceticlastic methanogenesis, but
168	also by oxidative consumption.
169	Our conclusions are mainly based on radiotracer measurements, which may be biased. For
170	example, acetate turnover rate constants are calculated from acetate concentrations and
171	turnover rate constants. Acetate concentrations were only measured at the end of incubation
172	and thus, may not have been representative for much of the incubation time. Furthermore,
173	acetate in the sediment may occur in several pools with different turnover (Christensen and
174	Blackburn, 1982). Therefore, acetate turnover rates and acetate-dependent CH ₄ production
175	rates may be overestimated, if the actual acetate turnover depends on a pool size that is
176	smaller than that analyzed. Such overestimation in sediments of Jua, Jupinda, Cataldo and
177	Grande cannot be completely excluded, although rates in sediments of Tapari and Verde were
178	in a realistic range.
179	The determination of fractions of hydrogenotrophic methanogenesis (f_{H2}) depends on the
180	specific radioactivity of the dissolved CO ₂ pool that is involved in CH ₄ production. However,
181	it is the pool of gaseous CO ₂ that is analyzed in the assay, assuming that its specific
182	radioactivity is identical to that of the active dissolved pool. Since non-radioactive CO_2 is
183	permanently produced from oxidation of organic matter, there may be disequilibrium.
184	Nevertheless, determinations of $f_{\rm H2}$ using radioactive bicarbonate exhibited the same
185	tendencies as those based on δ^{13} C values, and thus are probably quite reliable.
186	Despite these reservations, our results collectively demonstrated that acetate turnover in
187	tropical lake sediments did not necessarily follow a canonical pattern with aceticlastic
188	methanogenesis as sole or predominant process of acetate turnover, despite the fact that all
189	these sediments contained populations of putative aceticlastic methanogenic archaea. Acetate
190	consumption in Methanosaeta species is known to have a relatively high affinity and a low
191	threshold for acetate (Jetten et al., 1992). Therefore, the question arises why oxidative
192	processes, including syntrophic acetate oxidation, could successfully compete with
193	aceticlastic methanogenesis.

194

195 **5.** Author contribution

- 196 RC designed the experiments, evaluated the data and wrote the manuscript; MK did the
- 197 experiments; AEP provided the samples and contributed to the discussion of the data.
- 198

199 6. Competing interests

- 200 The authors declare that they have no conflict of interest.
- 201

202 7. Acknowledgements

- 203 AEP acknowledges funding from the Swedish Research Council Vinnova and Linköping
- 204 University and for funding from the Brazilian Research Council FAPERJ.
- 205

206 **8.** References

 Christensen, D. and Blackburn, T. H.: Turnover of ¹⁴C-labelled acetate in marine sediments, Mar. Biol., 71, 113-119, 1982.

209	Coates, J. D., Ellis, D. J., Blunt-Harris, E. L., Gaw, C. V., Roden, E. E., Lovley, D. R.:
210	Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ.
211	Microbiol., 64, 1504-1509, 1998.

Conrad, R.: Importance of hydrogenotrophic, aceticlastic, and methylotrophic methanogenesis
 for CH₄ production in terrestrial, aquatic, and other anoxic environments: a mini review,
 Pedosphere, 29, doi:10.1016/S1002-0160(18)60052-9, 2019.

- Conrad, R., Claus, P., Casper, P.: Stable isotope fractionation during the methanogenic
 degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse
 Fuchskuhle, Limnol. Oceanogr., 55, 1932-1942, 2010.
- Conrad, R., Claus, P., Chidthaisong, A., Lu, Y., Scavino, A., Liu, Y., Angel, R., Galand, P.,
 Casper, P., Guerin, F., Enrich-Prast, A.: Stable carbon isotope biogeochemistry of
 propionate and acetate in methanogenic soils and lake sediments, Org. Geochem., 73, 1-7,
 2014.
- Conrad, R., Klose, M., Claus, P.: Phosphate inhibits acetotrophic methanogenesis on rice
 roots, Appl. Environ. Microbiol., 66, 828-831, 2000.

Conrad, R., Klose, M., Noll, M.: Functional and structural response of the methanogenic
 microbial community in rice field soil to temperature change, Environ. Microbiol., 11,
 1844-1853, 2009.

- 227 Conrad, R., Mayer, H. P., Wüst, M.: Temporal change of gas metabolism by hydrogen-
- syntrophic methanogenic bacterial associations in anoxic paddy soil, FEMS Microbiol.
 Ecol., 62, 265-274, 1989.
- Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W. R., Enrich-Prast, A.: Stable carbon
 isotope discrimination and microbiology of methane formation in tropical anoxic lake
- sediments, Biogeosciences, 8, 795-814, 2011.
- 233 Corbett, J., Tfaily, M. M., Burdige, D. J., Cooper, W. T., Glaser, P. H., Chanton, J. P.:
- Partitioning pathways of CO₂ production in peatlands with stable carbon isotopes, Biogeochem 114, 327, 340, 2013
- 235 Biogeochem., 114, 327-340, 2013.
- Duddleston, K. N., Kinney, M. A., Kiene, R. P., Hines, M. E.: Anaerobic microbial
 biogeochemistry in a northern bog: Acetate as a dominant metabolic end product, Global
- 238 Biogeochem. Cycles, 16, 1063, doi:10.1029/2001GB001402, 2002.
- Fu, B., Conrad, R., Blaser, M.: Potential contribution of acetogenesis to anaerobic degradation
 in methanogenic rice field soils, Soil Biol. Biochem., 119, 1-10, 2018.
- Gao, C., Sander, M., Agethen, S., Knorr, K. H.: Electron accepting capacity of dissolved and
 particulate organic matter control CO₂ and CH₄ formation in peat soils, Geochim.
 Cosmochim. Acta, 245, 266-277, 2019.
- Hädrich, A., Heuer, V. B., Herrmann, M., Hinrichs, K. U., Küsel, K.: Origin and fate of
 acetate in an acidic fen, FEMS Microbiol. Ecol., 81, 339-354, 2012.
- Heuer, V. B., Krüger, M., Elvert, M., Hinrichs, K. U.: Experimental studies on the stable
 carbon isotope biogeochemistry of acetate in lake sediments, Org. Geochem., 41, 22-30,
 2010.
- Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R.,
 Rich, V. I., Chanton, J. P.: Changes in peat chemistry associated with permafrost thaw
 increase greenhouse gas production, Proc. Natl. Acad. Sci. USA, 111, 5819-5824, 2014.
- Jetten, M. S. M., Stams, A. J. M., Zehnder, A. J. B.: Methanogenesis from acetate A
 comparison of the acetate metabolism in *Methanothrix soehngenii* and *Methanosarcina*spp., FEMS Microbiol. Rev., 88, 181-197, 1992.
- Ji, Y., Angel, R., Klose, M., Claus, P., Marotta, H., Pinho, L., Enrich-Prast, A., Conrad, R.:
 Structure and function of methanogenic microbial communities in sediments of Amazonian
 lakes with different water types, Environ. Microbiol., 18, 5082-5100, 2016.
- Keller, J. K., Weisenhorn, P. B., Megonigal, J. P.: Humic acids as electron acceptors in
 wetland decomposition, Soil Biol. Biochem., 41, 1518-1522, 2009.
- Klüpfel, L., Piepenbrock, A., Kappler, A., Sander, M.: Humic substances as fully regenerable
 electron acceptors in recurrently anoxic environments, Nature Geoscience, 7, 195-200,
 2014.
- Lee, M. J. and Zinder, S. H.: Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows
- acetogenically on H₂-CO₂, Appl. Environ. Microbiol., 54, 124-129, 1988.

266 267	Liu, F. H. and Conrad, R.: <i>Thermoanaerobacteriaceae</i> oxidize acetate in methanogenic rice field soil at 50°C, Environ. Microbiol., 12, 2341-2354, 2010.
268 269 270	Liu, P. F., Klose, M., Conrad, R.: Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil, Soil Biol. Biochem., 124, 236-244, 2018.
271 272 273	Liu, Y., Conrad, R., Yao, T., Gleixner, G., Claus, P.: Change of methane production pathway with sediment depth in a lake on the Tibetan plateau, Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 279-286, 2017.
274 275	Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., Woodward, J. C.: Humic substances as electron acceptors for microbial respiration, Nature, 382, 445-448, 1996.
276 277 278	Müller, B., Sun, L., Westerholm, M., Schnürer, A.: Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria, Biotechnol. Biofuels, 9, 48, doi:10.1186/s13068-016-0454-9, 2016.
279 280 281	Nüsslein, B., Chin, K. J., Eckert, W., Conrad, R.: Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel), Environ. Microbiol., 3, 460-470, 2001.
282 283	Oren, A.: The family <i>Methanotrichaceae</i> , in: The Prokaryotes, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Springer, Berlin, 298-306, 2014.
284 285	Phelps, T. J. and Zeikus, J. G.: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake, Appl. Environ. Microbiol., 48, 1088-1095, 1984.
286 287 288	Rothfuss, F. and Conrad, R.: Vertical profiles of CH ₄ concentrations, dissolved substrates and processes involved in CH ₄ production in a flooded Italian rice field, Biogeochem., 18, 137-152, 1993.
289 290	Schnürer, A., Zellner, G., Svensson, B. H.: Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors, FEMS Microbiol. Ecol., 29, 249-261, 1999.
291 292	Schütz, H., Seiler, W., Conrad, R.: Processes involved in formation and emission of methane in rice paddies, Biogeochem., 7, 33-53, 1989.
293 294 295	Vavilin, V., Rytov, S., Conrad, R.: Modeling methane formation in sediments of tropical lakes, focusing on syntrophic acetate oxidation: dynamics and static isotope equations, Ecol. Modeling, 363, 81-95, 2017.
296 297	Weimer, P. J. and Zeikus, J. G.: Acetate metabolism in <i>Methanosarcina barkeri</i> , Arch. Microbiol., 119, 175-182, 1978.
298 299	Winfrey, M. R. and Zeikus, J. G.: Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol., 37, 244-253, 1979.
300 301	Yavitt, J. B. and Seidmann-Zager, M.: Methanogenic conditions in northern peat soils, Geomicrobiol. J., 23, 119-127, 2006.

- 302 Ye, R., Jin, Q., Bohannan, B., Keller, J. K., Bridgham, S. D.: Homoacetogenesis: A
- 303 potentially underappreciated carbon pathway in peatlands, Soil Biol. Biochem., 68, 385-
- 304 391, 2014.
- 305 Zhang, C., Yuan, Q., Lu, Y.: Inhibitory effects of ammonia on methanogen mcrA transcripts
- 306 in anaerobic digester sludge, FEMS Microbiol. Ecol., 87, 368-377, 2014.

- 309 Table 1: Identity of sediment samples (same as those in Ji et al. (2016)),
- 310 percentage content of putatively aceticlastic methanogens (Methanosaetaceae)
- 311 relative to total archaea, and concentrations of acetate; mean \pm SE.

Lake #	Name	Туре	Methanosaetaceae (%)	Acetate (nmol g ⁻¹ dry weight)
P1	Jua	clear water	21 ± 1	93 ± 5
P8	Tapari	clear water	19 ± 3	261 ± 39
P9	Verde	clear water	19 ± 11	126 ± 12
P10	Jupinda	clear water	27 ± 4	110 ± 6
A1	Cataldo	white water	42 ± 1	50 ± 3
A2	Grande	white water	36 ± 3	35 ± 1

312

315	Figure captions
316	Fig. 1: Methane production in sediments of different Amazonian lakes: (A) rates of CH ₄
317	production, and (B) fractions of hydrogenotrophic methanogenesis, both determined in the
318	absence and the presence of radioactive bicarbonate. The data in the absence of radioactive
319	bicarbonate are the same as published in Ji et al. (2016), when f_{H2} was determined from
320	values of δ^{13} C; mean ±SE.
321	Fig. 2: Conversion of radioactive bicarbonate in sediments of different Amazonian lakes: (A)
322	specific radioactivities in CH4; (B) specific radioactivities in gaseous CO2; and (C)
323	fractions (f_{H2}) of hydrogenotrophic methanogenesis; mean ±SE.
324	Fig. 3: Conversion of [2-14C]acetate in sediments of different Amazonian lakes: (A)
325	accumulation of radioactive CH ₄ ; (B) accumulation of radioactive gaseous CO ₂ ; and (C)
326	acetate turnover rate constants; mean \pm SE.
327	Fig. 4: (A) Rates of total and acetate-derived CH ₄ production in sediments of different
328	Amazonian lakes and (B) respiratory indices (RI) of the turned over [2-14C]acetate; mean
329	±SE.
330	Fig. 5: Scheme of the pathways involved in acetate turnover in sediments of Amazonian
331	lakes; (1) aceticlastic methanogenesis; (2) syntrophic acetate oxidation; (3)
332 333	hydrogenotrophic methanogenesis; (4) acetate oxidation with organic electron acceptors.

16

Fig. 2

Fig. 3

Fig. 4

Fig. 5