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Abstract. Current rates of climate and atmospheric change are likely higher than during the last millions of years. Even higher

rates of change are projected in CMIP5 climate model ensemble runs for some RCP scenarios. The speed of ecological pro-

cesses such as leaf physiology, demography or migration, can differ from the speed of changes in environmental conditions.

Such mismatches imply lags between the actual vegetation state and the vegetation state expected under prevailing environmen-

tal conditions. Here, we used a dynamic vegetation model, the aDGVM, to study lags between actual and expected vegetation5

in Africa under changing atmospheric CO2 mixing ratio. We hypothesized that lag size increases with more rapidly changing

CO2 mixing ratio as opposed to slower changes in CO2, and that disturbance by fire further increases lag size. Our model

results confirm these hypotheses, revealing lags between vegetation state and environmental conditions and enhanced lags in

fire-driven systems. Biome states, carbon stored in vegetation and tree cover in Africa are most sensitive to changes in CO2

under recent and near-future levels. When averaged across all biomes and simulations with and without fire, times to10

reach an equilibrium vegetation state increase from approximately 242 years for 200 ppm to 898 years for 1000 ppm.

These results have important implications for vegetation modellers and for policy making. Lag effects imply that vegetation

will undergo substantial changes in distribution patterns, structure and carbon sequestration even if emissions of fossils fuels

and other greenhouse gasses are reduced and the climate system stabilizes. We conclude that modelers need to account for lag

effects in models and in data used for model testing. Policy makers need to consider lagged responses and committed changes15

in the biosphere when developing adaptation and mitigation strategies.

Copyright statement.

1 Introduction

Climate and the composition of the atmosphere have been subject to substantial changes during Earth’s history (Beerling

and Royer, 2011). For instance, paleo-records indicate that the expansion of forest vegetation during the Devonian (419.2-20
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358.9 Ma) dramatically reduced the atmospheric CO2 mixing ratio (Le Hir et al., 2011) and Milankovitch cycles cause periodic

changes in the climate system and the atmosphere on millennial time scales (Milankovic, 1941; Hays et al., 1976). In addition

to natural variability, anthropogenic emissions of CO2 and other green house gasses have caused global warming during the

last decades. The 5th assessment report of the Intergovernmental Panel of Climate Change (IPCC) indicates further changes

of the climate system in the future (IPCC, 2013, 2014a, b). Since the pre-industrial era, CO2 increased from approximately25

280 ppm to a current value of approximately 400 ppm, and the Representative Concentration Pathway (RCP) 8.5 climate

change scenario projects CO2 increases to approximately 950 ppm by 2100 (Meinshausen et al., 2011). Proxy data suggest

that such CO2 levels have not occurred since the Eocene/early Oligocene, more than 30 Myr ago (Beerling and Royer, 2011).

Current carbon emission rates are unprecedented and higher than during the Paleocene-Eocene Thermal Maximum (PETM), a

period with high carbon emissions some 56 million years ago (Zeebe et al., 2016). During the PETM, temperature increased30

by approximately 5-8K due to massive carbon release likely caused by volcanic activity. As temperature increased by

6K within a 20ky period, the PETM is often considered as best analogue for current and future climate change (Zeebe

et al., 2016).

The CO2 increase projected in the IPCC RCP 8.5 scenario corresponds to an average increase of more than 6 ppm per year

until the end of the century. In comparison, an increase from approximately 190 ppm during the last glacial maximum to a35

pre-industrial value of 280 ppm during 26,000 years corresponds to an average rate of 3.5×10−3 ppm per year (Barnola et al.,

1987). Within this period, Monnin et al. (2001) report peak rates of 2.7×10−2 ppm per year in a 300 year period at 13.8ky B.P.

A decrease from approximately 900 ppm to 300 ppm during the Oligocene took approximately 10 million years (Beerling and

Royer, 2011), which translates into an average rate of −6× 10−5 ppm per year. As the current rates of CO2 change are likely

unprecedented, no proxy analogues exist to deduce vegetation responses to the ongoing atmospheric and climatic changes40

(Prentice et al., 1993; Foster et al., 2017). Due to the coarse temporal resolution of many paleo-records, it is, however, still

challenging to calculate rates at decadal or even finer temporal resolution for a direct comparisons of past, present and future

rates of change (but see Zeebe et al., 2016).

Environmental conditions such as CO2, precipitation, temperature or soil properties influence plant ecophysiological pro-

cesses that ultimately drive plant growth, demographic rates, competitive hierarchies, community assembly and biogeographic45

patterns across the Earth’s land surface. These processes are sensitive to both the actual values and to variation of environmental

drivers. Different ecological processes operate at various temporal and spatial scales (Penuelas et al., 2013) and determine how

ecosystems respond to environmental change. On short time scales (days to months), plasticity allows photosynthesis (Gun-

derson et al., 2010), carbon allocation and other processes to adapt to changes in environmental conditions (Penuelas et al.,

2013). At intermediate time scales (years to decades), vegetation is influenced by demographic rates, succession, dispersal,50

migration and community assembly (Penuelas et al., 2013). At long time scales (centuries and longer), evolutionary processes

allow plants to adapt to changing environments and speciation and extinction modify the species pool.

The substantial difference between the rate of change in environmental forcing and ecological responses of vegetation

implies that vegetation is not in an equilibrium state with the environment, that is a state where averages of key ecosystem

functions such as carbon and water fluxes or vegetation structure remain constant if averages of environmental drivers remain55
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constant. Rather, forcing lags emerge where the transient vegetation state lags behind rates of change of environmental drivers

(Bertrand et al., 2016). Quantifying these lags is crucial for our understanding of ecosystem dynamics because they imply that

the observed vegetation state does not fully reflect prevailing environmental conditions and that ecosystems are committed to

further changes even if environmental conditions stabilize (Jones et al., 2009; Port et al., 2012). We expect that the size of the

lag between equilibrium and transient vegetation states will be influenced by actual values of environmental conditions, the60

rate at which they change, and by the plant community composition and community-specific ecological processes. Vegetation

might have been closer to equilibrium with the environment, with smaller lags, in the past when rates of environmental changes

were low, while it is committed to large changes under current and future, rapidly changing climate.

Disturbances such as fire, drought, heat waves or herbivory rapidly modify vegetation states and thereby create disturbance

lags, i.e., deviations from the committed vegetation state purely defined by environmental conditions in the absence of distur-65

bance. Lag size is related to the intensity of the respective disturbance. Abrupt and repeated disturbances imply that vegetation

is regularly forced into early or intermediate successional states. In such a situation, vegetation may never reach the final

successional stage but it may be in a dynamic equilibrium state. The ecological resilience of an ecosystem (Holling, 1973;

Walker et al., 2004) influences whether the system can return into a pre-disturbed state or whether it tips into an alternative

vegetation state (Scheffer et al., 2001; van Nes and Scheffer, 2007; Veraart et al., 2012). Savannas exemplify an ecosystem type70

that is strongly influenced by and often reliant on disturbances (Scheiter and Higgins, 2007), and subject to both disturbance

and forcing lags. In savannas, fire reduces woody biomass to the benefit of grasses. However, once fire disturbance is removed,

fire-driven savannas are committed to transition to higher tree cover (Sankaran et al., 2004; Higgins et al., 2007; Higgins and

Scheiter, 2012). It has been argued that alternative vegetation states are possible in areas currently covered by savannas, be-

cause depending on their history and fire activity, they can adopt an open savanna state or a closed forest state (Higgins and75

Scheiter, 2012; Moncrieff et al., 2014). We expect that in areas that allow both savanna and forest states, fire amplifies forcing

lags. In such systems, environmental forcings need to cross a tipping point such that vegetation shifts from one ecosystem state

into an alternative state (Scheffer et al., 2001).

Deciphering and quantifying lags between transient and equilibrium vegetation states is highly relevant for understanding

biogeographic patterns and associated biogeochemical fluxes as well as for conservation and management. The importance80

of transient states and forcing lags was already highlighted in the 1980s, but often in the context of paleo-ecological studies

(Davis and Botkin, 1985; Davis, 1986; Webb III, 1986). For instance, Davis and Botkin (1985) found lagged responses of

various species in response to cooling using the JABOWA vegetation model. Changes in the dominance of species were only

visible 50 years after cooling. Several empirical studies quantified lag effects, for example in forests (Bertrand et al., 2011,

2016; Liang et al., 2018), bird and butterfly communities (Devictor et al., 2012; Menendez et al., 2006), or in tropical forests85

at the global scale (Zeng et al., 2013). Most of these studies investigated lags with respect to recent temperature changes or

in mountain areas with steep temperature gradients. Lag effects were also identified in response to drought (Anderegg et al.,

2015). More recently, lag effects received more attention in the context of future climate change. It has been argued that lag

effects need to be taken into account when we aim at forecasting future changes in the biosphere and at developing management

or mitigation strategies (Svenning and Sandel, 2013; Bertrand et al., 2016). Lag effects imply that vegetation features such as90
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carbon stocks or tree cover are committed to changes that will be ongoing even if anthropogenic emissions of greenhouse

gasses level off and the climate system stabilizes (Jones et al., 2009; Port et al., 2012; Huntingford et al., 2013; Pugh et al.,

2018). Yet, previous studies often focused on CO2 levels predicted for 2100, assuming that both CO2 and the climate

system will have stabilized by then. Studies on lag effects for a CO2 gradient ranging from pre-industrial to future levels

are, however, rare.95

In this study, we use the adaptive Dynamic Global Vegetation Model (aDGVM), a complex dynamic vegetation model de-

veloped for tropical grass-tree ecosystems (Scheiter and Higgins, 2009) to investigate how slow and fast changes in atmospheric

CO2 and fire regimes influence transient and equilibrium distributions of grasslands, savannas and forests in Africa, as well as

associated biomass and tree cover. aDGVM is an appropriate modeling tool in this context because it explicitly simulates the

rate at which vegetation changes based on underlying ecophysiological processes and underlying environmental conditions.100

It allows us to simulate both the equilibrium vegetation state for given CO2 mixing ratios, and transient vegetation dynamics,

succession and adaptation of photosynthesis, evapotranspiration, carbon allocation and phenology. We focus on atmospheric

CO2 because it is a main driver of plant growth and both empirical and modeling studies have shown substantial impacts on

vegetation growth (Scheiter and Higgins, 2009; Buitenwerf et al., 2012; Higgins and Scheiter, 2012; Donohue et al., 2013;

Hickler et al., 2015). The CO2 mixing ratio is almost similar at the global scale while other key drivers of plant growth such as105

rainfall and temperature vary in space (i.e. between different regions of the world), time (i.e. inter- and intra-annual variabil-

ity) and between different climate models within the CMIP5 ensemble. Datasets containing continuous time series of CO2

between pre-industrial and future levels and associated climate are rare. While precipitation, temperature, and other

environmental variables influence ecosystems, in this study we focus on CO2 effects. We argue that CO2 is sufficient to

illustrate the general principles underlying lags between environmental conditions and vegetation.110

We test the following predictions: (1) vegetation is, in all transient scenarios that we consider, not in equilibrium with

the environment (in this study with atmospheric CO2), and forcing lags occur; (2) the size of the forcing lag is influenced

by the rate of change of CO2; (3) disturbance lags due to fire amplify forcing lags caused by CO2 change such that biomes with

high fire activity will lag further behind environmental changes; (4) the sensitivity of vegetation to changes in the atmospheric

CO2 mixing ratio is sensitive to the absolute value of the CO2 mixing ratio. We explore the consequences of these predictions115

for projections of climate change impacts on African vegetation under rates of CO2 change as predicted in RCP 2.6, 4.5, 6.0

and 8.5, examining the difference between transient and equilibrium vegetation states as the CO2 mixing ratio change.

2 Methods

2.1 Model description

We used the aDGVM (adaptive Dynamic Global Vegetation Model, Scheiter and Higgins, 2009), a dynamic vegetation model120

developed for tropical grass-tree systems. The aDGVM integrates plant physiological processes generally used in dynamic

global vegetation models (DGVMs, Prentice et al., 2007) with processes that allow plants to dynamically adjust leaf phenology

and carbon allocation to environmental conditions. The aDGVM is individual-based and simulates state variables such as
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biomass, height and photosynthetic rates of individual plants. This approach allows us to model how herbivores (Scheiter and

Higgins, 2012), fire (Scheiter and Higgins, 2009) and land use (Scheiter and Savadogo, 2016; Scheiter et al., 2019) impact125

individual plants as a function of plant traits. Grasses are simulated by two super-individuals, representing grasses beneath or

between tree canopies.

The aDGVM simulates four plant types (Scheiter et al., 2012): C3 grasses, C4 grasses, fire-sensitive forest trees and fire-

tolerant savanna trees. The differences between C3 and C4 grasses are mainly based on physiological differences between C3

and C4 photosynthesis. Savanna and forest tree types differ in fire and shade tolerance (Bond and Midgley, 2001; Ratnam et al.,130

2011). Shade tolerance is implemented by different effects of light availability on tree growth rates. Light availability is

in turn influenced by competitor plants. Fire tolerance is implemented by different topkill functions and re-sprouting

probabilities after fire (Scheiter et al., 2012). The forest tree type is implemented to be more shade-tolerant but less fire-

tolerant whereas the savanna tree type is less shade-tolerant but more fire-tolerant. Hence, forest trees dominate in closed

ecosystems and in the absence of fire, whereas savanna trees dominate in fire-driven and more open ecosystems.135

In the aDGVM, fire intensity is modeled as a function of fuel loads, fuel moisture and wind speed (Higgins et al., 2008).

Fire spreads when (1) the fire intensity exceeds a threshold value of 300 kJ/m/s, (2) a uniformly distributed random number

exceeds the daily fire ignition probability pfire (1%), and (3) an ignition takes place. Ignition sequences, which indicate days

when ignitions take place, are randomly generated. This fire model ensures that fire regimes are influenced by fuel biomass

and climate. However, fire ignitions and the ignition probability are not linked to anthropogenic ignitions or the occurrence of140

lightning. Fire consumes aboveground grass biomass, whereas the response of trees to fire is a function of tree height and fire

intensity (topkill effect, Higgins et al., 2000). Seedlings and juveniles in the flame zone are damaged by each fire while tall

trees with tree crowns above the flame zone are largely fire-resistant and only damaged by intense fires. Grasses and topkilled

trees can regrow from root reserves after fire (Bond and Midgley, 2001). Fire influences tree mortality indirectly due to its

negative effect on the carbon balance. In the aDGVM, a negative carbon balance increases the probability of mortality.145

The performance of the aDGVM was evaluated in previous studies. Scheiter and Higgins (2009) and Scheiter et al. (2012)

show that the aDGVM successfully simulates the distribution of major vegetation formations in Africa in good agreement

with observations. Scheiter and Higgins (2009) show that the aDGVM can simulate biomass dynamics observed in a long

term fire manipulation experiment in the Kruger National Park (Experimental Burn Plots, Higgins et al., 2007). In Scheiter

and Savadogo (2016) we showed that a slightly adjusted model version can reproduce grass biomass and tree basal area under150

different grazing, harvesting and fire treatments in Burkina Faso. In Scheiter and Higgins (2009) and Scheiter et al. (2015)

we showed that aDGVM can simulate broad patterns of fire activity in Africa and Australia, respectively.

2.2 Biome classification

We classify vegetation into biome types using the classification scheme presented in Scheiter et al. (2012) and used in previous

aDGVM studies. When grass biomass in a simulated grid cell is less than 0.5 t/h and total tree cover is less than 10%, vegetation155

is classified as desert or barren. When tree cover is less than 10% and grass biomass exceeds 0.5 t/ha, vegetation is, depending

on the ratio of C3 to C4 grasses, classified as C3 or C4 grassland. At intermediate tree cover between 10% and 80%, the
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ratio of C3 to C4 grass biomass and the cover of savanna and forest trees are used for classification. Vegetation is classified

as a woodland if forest tree cover exceeds savanna tree cover, whereas vegetation is classified as savanna if savanna tree

cover exceeds forest tree cover. We distinguish between C3 savanna and C4 savanna (hereafter simply denoted as savanna),160

depending on the ratio of C3 to C4 grasses. Vegetation is classified as forest when tree cover exceeds 80%, irrespective of

tree type and grass biomass. For simplicity, we aggregate biomes into C3-dominated biomes (woodlands and forests) and

C4-dominated biomes (C4 grasslands and C4 savannas).

2.3 Equilibrium conditions for aDGVM

We assume that an aDGVM state variable Vi at time i (see next paragraph for state variables used in the analysis) is in165

equilibrium if

Y∑
i=Y−l+1

|Vi−Vi−1|< ε, (1)

where Y is the current year of the simulation, l is the number of years used for the calculation of equilibrium conditions (we

use l = 30) and ε is a threshold defining the narrowness of the equilibrium (we use ε= 0.001). Trial simulations show that

these values allow vegetation to reach equilibrium within feasible model simulation runtime. Using different threshold values170

changed the time required to reach the equilibrium state but did not change our basic results. Choosing ε too small will identify

model stochasticity as deviation from equilibrium, whereas choosing ε too large will fail to correctly identify the onset of

equilibrium conditions. Systematic sensitivity analyses for ε and l were not conducted.

We used four modeled state variables V to characterize equilibrium states: savanna tree cover, forest tree cover, aboveground

tree biomass and C3:C4 grass ratio. We assume that the model is in equilibrium when all four variables fulfill eq. (1) simul-175

taneously and we record the first year when the model is in equilibrium, Ye. It is possible that one or several variables leave

the equilibrium state again after year Ye, and that the condition in eq. (1) is no longer met for these variables. This can be for

example due to stochasticity in rainfall or due to fire. However, such situations are not considered in our analysis.

2.4 Simulation experiments

All simulations were conducted for Africa at 2° spatial resolution. In all simulation scenarios, we initialized aDGVM with180

100 small trees of both types with random biomass of up to 150 kg and two super-individuals representing grasses under

and between tree crowns. Initial grass biomass is 10 g/m2. All simulation scenarios in this study manipulated only CO2

whereas long-term averages of other climate variables such as precipitation or temperature were kept constant with monthly

climatology provided by CRU (Climatic Research Unit, New et al., 2002) for the reference period between 1961 and 1990.

This model design allows us to study CO2 effects in isolation and it avoids interactive effects of several forcing variables on the185

system state. For continental-scale simulations, we only conducted one model run for each scenario, but no replicates.

This single run is sufficient, as we aggregate model results per biome in most analyses.
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To test the first prediction, i.e., that vegetation is not in equilibrium with the environment, we simulated (1) the equilibrium

vegetation state for different CO2 mixing ratios, and (2) transient vegetation dynamics with increasing and decreasing CO2

mixing ratio. Deviations between these simulations at a given CO2 level indicate lags between environmental conditions190

and transient vegetation states. For simulations of the equilibrium state, we set CO2 to 100 ppm, 150 ppm, . . ., 1000 ppm,

to cover the entire range of CO2 mixing ratios used in transient simulations. For each CO2 level we ran the model until

an equilibrium vegetation state was reached, and we recorded the year Ye when the equilibrium was reached (eq. 1).

Equilibrium conditions were derived for each simulated 2° grid cell separately. For each grid cell and each CO2 level, we

classified vegetation in year Ye into biome types to obtain maps of biome distributions under equilibrium conditions. We195

calculated the fractional area covered by different biome types in equilibrium. As equilibrium vegetation states were only

simulated for a discrete number of CO2 levels, we used the ‘loess’ smoother in R (R Core Team, 2018) to obtain continuous

response curves of fractional cover of biomes for the entire CO2 range. Smoothing also reduces the effects of stochasticity

in model outputs on the responses. We further created maps of the spatial patterns of Ye.

For simulations of the transient vegetation state, aDGVM was initialized at low (100 ppm) or high (1000 ppm) CO2 mixing200

ratio. In each grid cell, simulations were conducted until vegetation fulfilled the equilibrium condition defined in eq. (1). We

then increased or decreased CO2 linearly to 1000 ppm or 100 ppm by 3.5 ppm per year or 0.9 ppm per year (see next paragraph

for justification of these rates). We used linear CO2 changes between a minimum and a maximum CO2 mixing ratio because

linear changes in forcing variables allow the identification of non-linear and tipping point behaviour in the vegetation state

(Scheffer et al., 2001). Once CO2 reached 1000 ppm or 100 ppm, respectively, simulations were continued until vegetation re-205

established the equilibrium state according to eq. (1), and the duration was tracked. For each grid cell and each simulation year,

we classified vegetation into biomes and calculated fractional cover of each biome type. The difference between the vegetation

state when first reaching a target CO2 mixing ratio in transient runs and the equilibrium vegetation state at the target CO2

mixing ratio is an indicator of the lag size between environmental forcing and vegetation. We used the proportion of Africa

covered by different biome types, woody biomass and tree cover as proxies of lag size.210

To test the second prediction, i.e., that the difference between transient and equilibrium vegetation is influenced by the rate of

change of environmental forcings, we conducted transient model runs where CO2 changed at two different rates. Specifically,

CO2 mixing ratios were changed by 3.5 ppm per year or 0.9 ppm per year to represent current and past rates of change.

The higher rate represents the average CO2 increase in the RCP 6.0 scenario, where CO2 increases from current values to

approximately 700 ppm in 2100. In the simulations, 3.5 ppm per year implies that CO2 changes from 100 ppm to 1000 ppm (or215

vice versa) within 230 years. The 0.9 ppm per year rate of CO2 change implies a change from 100 ppm to 1000 ppm (or vice

versa) within approximately 900 years. This rate overestimates rates of CO2 change at paleo-ecological time scales by a factor

of 100. It nonetheless differs substantially from the higher rate representing the RCP 6.0 scenario, but ensures that model run

time is still feasible.

To test the third prediction, i.e., that fire amplifies lag effects, we conducted all simulations described in the previous para-220

graphs with fire switched on or off.

7



To test the fourth prediction, i.e., that sensitivity of vegetation to changes in CO2 is influenced by the CO2 mixing ratio, we

calculated the sensitivity of modeled state variables in relation to changes in CO2,

δV (C) =
|V (C)−V (C + ∆C)|

∆C
(2)

Here, V (C) is an aDGVM state variable at CO2 mixing ratio C, and ∆C is the increment of the CO2 mixing ratio used to225

calculate sensitivity. Sensitivity was calculated for the entire gradient considered in the study (i.e. 100 ppm to 1000 ppm) and

for all scenarios (i.e. equilibrium and transient, with and without fire). To filter out variability of simulated variables due to

model stochasticity and to account for different rates of change of the CO2 mixing ratio in different scenarios, we used the

‘loess’ function in R (R Core Team, 2018) for smoothing. The smoothed curves were used for calculations of sensitivity.

To explore if vegetation is currently in equilibrium with the atmospheric CO2 mixing ratio or committed to further change230

until 2100, we conducted simulations with CO2 from the RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios between 1765

and 2100 (Meinshausen et al., 2011). Climate conditions were kept constant with monthly climatology provided by New

et al. (2002) to be able to compare simulations for different RCP scenarios to equilibrium simulations described in previous

paragraphs. We compare the simulated vegetation state in these transient runs to the equilibrium vegetation state at selected

CO2 mixing ratios to quantify lags in carbon and tree cover.235

We conducted simulations at one selected savanna study site in South Africa (26°S, 28°E) to illustrate how different processes

and state variables simulated by aDGVM respond to CO2 increases between 100 ppm and 1000 ppm at a rate of 3.5 ppm per

year. To account for stochastic effects in aDGVM we conducted 200 replicate simulation runs. Simulations were conducted

with fire. We analyzed leaf level photosynthetic rates, tree numbers, maximum tree height, mean tree height, forest tree cover

and savanna tree cover, averaged for all replicate runs. We plotted time series of these variables both in their native units and240

normalized between 0 and 1 using minimum and maximum values of the variables to be able to track the temporal lags in these

variables.

3 Results

3.1 Equilibrium vegetation state

Equilibrium simulations for fixed CO2 mixing ratios show that the cover of C4-dominated vegetation (C4 grasslands and245

savannas) in Africa decreases with increasing CO2, whereas the area covered by C3-dominated woody vegetation (woodlands

and forests) increases (Fig. 1, 2). This general pattern is simulated both in the presence and the absence of fire. Fire increases

the cover of C4-dominated vegetation states at the expense of C3 woody vegetation states. This result indicates that large areas

in Africa can be covered by C4- or C3-dominated vegetation if fire is present or absent. The proportions of the area where either

C4- or C3-dominated vegetation is possible peaks at low CO2 (approximately 200 ppm) and decreases at higher CO2 mixing250

ratios. The area covered by C3-dominated woody vegetation is maximized at 1000 ppm and saturates at 69% in the absence

of fire and at 61% in the presence of fire. The area covered by C4-dominated vegetation peaks at 49% at a low CO2 mixing

ratio in the presence of fire and at 16% in the absence of fire. The area covered by deserts decreases from 46% to 24% as CO2
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increases and these areas are replaced by grasslands, savannas and woodlands (Fig. 1, 2). Areas covered by C3 grasslands and

C3 savannas increase as CO2 increases, but even at 1000ppm, coverage is less than 10%, irrespective of the presence or absence255

of fire (Fig. A1).

The time until vegetation reaches an equilibrium state varies substantially in different biomes and for different CO2 mixing

ratios. Times are longest in more open ecosystems, that is in grasslands, woodlands and savannas (Fig. 3). In most biomes,

times tend to increase with CO2. Times are shortest in forests. The duration is generally longer in the presence of fire than in the

absence of fire. When averaged across all biomes and simulations with and without fire, times to reach an equilibrium260

state increase from approximately 242 years for 200 ppm to 898 years for 1000 ppm.

3.2 Transient vegetation state and forcing lags

When vegetation is initialized at a CO2 mixing ratio of 100 ppm or 1000 ppm and CO2 increases or decreases progressively

in transient simulations, the area covered by different biome types at a given CO2 mixing ratio deviates considerably from

the cover in equilibrium simulations (Fig. 4). This pattern is consistent both in simulations with and without fire. Deviance265

indicates that vegetation is not in equilibrium with the environment and that it lags behind the environmental forcing. At low

and increasing CO2, the area covered by grasslands and savanna increases steeply and overshoots the initial cover at 100 ppm,

mainly because grasslands invade into deserts. As CO2 increases, the areas covered by C3- and C4-dominated vegetation

approach the equilibrium state. Trees suppress grasses and eventually fire occurrence, such that forests ultimately manage to

invade most of the vegetated area. The deviation between equilibrium and transient cover of C3-dominated vegetation for slow270

changes of CO2 in the presence of fire (Fig. 4d) is due to transitions from C4 grasslands and savannas to C3 grasslands and C3

savannas.

The aDGVM simulates similar lag effects when CO2 decreases, indicating hysteresis, which is a signature of alternative

ecosystem states. The change of vegetation cover in transient simulation runs is non-linear although the CO2 forcing changes

linearly. In summary, this result confirms our first prediction, i.e. transient vegetation states deviate from the equilibrium state275

and forcing lags occur.

The rate at which CO2 increases or decreases has a strong impact on the size of the forcing lags (Fig. 4). Fast changes in

CO2 imply larger lags than slow changes in CO2. Lags are larger at low and intermediate CO2 mixing ratios and decrease at

higher CO2, irrespective of the rate of change of CO2. This result verifies the second prediction.

3.3 Fire and disturbance lags280

A comparison of simulations with and without fire shows that fire increases the lag between the CO2 forcing and vegetation

(Fig. 4). In the scenario with rapidly changing CO2 mixing ratio, the maximum lag size averaged for entire Africa for C4-

dominated biomes is 20% and 16.3% with and without fire, respectively, the maximum lag size for C3-dominated biomes is

19.4% and 16% with and without fire, respectively. In scenarios with increasing CO2, lag size is maximized between approx-

imately 200ppm and 300ppm. When integrated along the entire CO2 gradient, the mean lag size for C4-dominated biomes is285

11.8% and 6.7% with and without fire, respectively, the mean lag size for C3-dominated biomes is 11.9% and 6.4% with and
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without fire, respectively. These patterns are similar in simulations with slowly changing CO2 mixing ratio, but percentages are

systematically lower. The time to reach equilibrium is longer in simulations with fire than in simulation without fire (Fig. 3),

in particular in fire-driven biome types. Times are similar in forests with dense tree canopy, where aDGVM does not simulate

fire.290

When CO2 is held constant after the transient phase, vegetation converges towards the equilibrium state. In simulations

without fire, times to reach equilibrium were similar in equilibrium simulations and in transient simulations with both slow or

fast increases or decreases of CO2 (Figs. 5, 6). In simulations with fire, we generally observed longer times than in simulations

without fire, particularly in grassland and savanna areas and for decreasing CO2 (Fig. 6). Longer times in the presence

of fire can be attributed to hysteresis effects. High fire activity traps vegetation in a fire-driven state and prevents295

biome transitions into alternative vegetation states. In simulations with decreasing CO2 and fire included, times to reach

equilibrium in grasslands and savannas were considerably longer in transient simulations than in equilibrium simulations

(Fig. 6). These findings support our third prediction that disturbance lags amplify forcing lags and are particularly relevant in

fire-driven systems.

3.4 Carbon and tree cover debt300

Forcing lags and disturbance lags imply carbon and tree cover debt (for increasing CO2, Fig. 7) or surplus (for decreasing

CO2, Fig. A2). Debt means that at a given CO2 mixing ratio, tree cover and carbon stocks are lower in transient simulations

than in equilibrium simulations at the same CO2 level. Hence, we define debt as carbon storage potential that has not been

realized yet, and carbon that the atmosphere owes to vegetation. Accordingly, surplus means that tree cover and carbon are

higher in transient simulations than in equilibrium simulations, and that vegetation owes carbon to the atmosphere. Where305

debts and surpluses occur, carbon and tree cover are committed to further changes, even if environmental forcings stabilize,

unless tipping point behavior inhibits vegetation change or allows rapid vegetation changes that compensate debt or surplus.

Carbon debt increases over the entire CO2 gradient. At current CO2 levels of 400 ppm, carbon debt for Africa is between

-6.3 and -13.6 PgC for different scenarios and it increases to values between -24.8 and -39.9 PgC for 1000 ppm. At high CO2,

debt is higher for simulations without fire than for simulations with fire due to the combined effects of forcing and disturbance310

lags.

Tree cover debt in the presence of fire peaks at values around -15% between 300 ppm and 400 ppm, i.e. at current CO2 levels.

Debt decreases at higher CO2 mixing ratios to values between -5.8% and -10%, depending on the scenario. Debt is generally

larger in presence of fire and when CO2 changes rapidly. The maximum deviance between transient and equilibrium state

(maximum debt and surplus) varies spatially with higher deviance in savannas and woodlands surrounding the central African315

forest and in the presence of fire. Tree cover debt saturates or decreases at higher CO2 mixing ratios because tree cover

in a grid cell is constrained by canopy closure. At higher CO2 mixing ratios large fractions of Africa reach a forest state

and canopy closure. Tree cover debt in these areas is zero. In contrast, biomass in a grid cell and hence biomass debt

can further increase even if canopy closure occurs.
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3.5 Sensitivity of carbon and tree cover change320

The sensitivity of the fractional cover of different biome types to changes in CO2 is influenced by the actual values of CO2

(Fig. 8a, b). In equilibrium simulations, the cover of C3-dominated biomes is most sensitive at low CO2 mixing ratios and it

decreases as CO2 increases. In simulations with fire, sensitivity of C4-dominated biomes is hump-shaped with a peak at ca.

380 ppm. In transient simulations, both C3- and C4-dominated biomes are most sensitive to changes in CO2 mixing ratios

between 200 and 600 ppm, depending on the specific scenario (Fig. 8c, d). Sensitivity is generally higher in the presence of fire325

than in the absence of fire. For rapidly changing CO2, the peak is found at higher CO2 mixing ratios than for slowly changing

CO2. These results support our fourth prediction.

3.6 Responses to RCP scenarios

Simulations for CO2 mixing ratios following trajectories of different RCP scenarios indicate carbon debt (Fig. 9a) and tree

cover debt (Fig. 9b) as the CO2 mixing ratio increases, similar to the simulations with linear changes of CO2 (Fig. 7). At330

the current CO2 mixing ratio of approximately 400 ppm, aboveground tree carbon debt is between -8.9 PgC without fire and

-16.5 PgC with fire. In the RCP 2.6 and 4.5 scenarios, carbon debt in Africa accumulates to peak values between -9.9 and

-18 PgC and between -12.9 and -22 PgC, respectively and then decreases because in these scenarios, CO2 decreases (RCP 2.6)

or saturates (RCP 4.5) at the middle of the century. In RCP 6.0, debt accumulates to values between -21.2 and -31 PgC, in

RCP 8.5 it accumulates to values between -47.5 and -60 PgC until 2100. In contrast, tree cover debt peaks between ca. 300335

and 350 ppm at values between -3.3 and -17% in the presence or absence of fire, respectively. As in the simulations with

constant changes in CO2, tree cover debt decreases as the CO2 mixing ratio increases towards the end of the century, with a

rate depending on the specific RCP scenario. Generally, both carbon and tree cover debt are higher in the presence of fire than

under fire suppression.

4 Discussion340

Using a dynamic vegetation model, we predict that vegetation exposed to transient environmental forcing is not in equi-

librium with environmental conditions, and that such transient vegetation states deviate from the vegetation state expected

for the prevailing environmental conditions. Vegetation development lags behind changing environmental drivers due to forcing

lags. The size of the forcing lag depends both on actual environmental conditions and on the rate at which conditions change.

Disturbance lags caused by fire can amplify forcing lags in areas where multiple vegetation states are possible such as savanna345

areas that also support forest. Our results indicate that vegetation in Africa is most sensitive to changes in the atmospheric

CO2 mixing ratio at current conditions. Hence, even if anthropogenic emissions of CO2 and the accumulation of CO2 in the

atmosphere were to level off in near future, ecosystems will still be committed to considerable changes.

Our model simulations are consistent with previous aDGVM model results indicating that biome distributions over large

areas of Africa are dependent on fire (Higgins and Scheiter, 2012), and that these distributions are contingent on historic350
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vegetation states and likely to change under elevated CO2 (Scheiter and Higgins, 2009; Higgins and Scheiter, 2012; Moncrieff

et al., 2014). While we only considered transient vegetation dynamics in previous aDGVM studies, we now show that these

results also hold true for simulations with equilibrium conditions. In our transient simulations we further show that linear

forcing in CO2 can cause non-linear responses in vegetation states. This result indicates internal feedback loops and tipping

point behaviour in the climate-fire-vegetation system (Scheffer et al., 2001) and supports our previous findings (Higgins355

and Scheiter, 2012). The potential for alternate biomes, dependent on fire, and hysteresis effects occur both in equilibrium

simulations with fixed CO2 and in transient simulations with variable CO2 mixing ratio. These effects occur over the entire

CO2 gradient between 100 and 1000 ppm.

4.1 Understanding forcing, disturbance and successional lags

Lags between environmental conditions and vegetation states occur if environmental conditions change faster than vegetation360

can respond. In such a situation, transient vegetation states deviate from the vegetation states that one would expect if prevailing

environmental conditions remained constant for a sufficiently long duration. The lag size is defined by the integrated effect of

interacting processes including delayed responses in ecophysiology, demography, migration and succession, and by the differ-

ent timescales on which these processes operate (Penuelas et al., 2013). Rates of change in environmental forcing and intensity

and frequency of disturbances further influence lag size. In aDGVM simulations we find a sequence of vegetation responses365

to changes in the CO2 mixing ratio that operate at different temporal scales. When CO2 increases, leaf level photosynthesis

and respiration increase instantaneously following the ecophysiology models implemented in aDGVM (Farquhar et al., 1980;

Collatz et al., 1991, 1992, Fig. 10). These adaptations imply higher carbon gain, water use efficiency and growth of individual

trees in the growing season as well as higher reproduction rates, because in aDGVM, the amount of carbon allocated to repro-

duction is a function of peak carbon gain. Free air carbon enrichment (FACE) experiments and open top chamber experiments370

for elevated CO2 indicate similar responses at the leaf level (e.g., Hickler et al., 2015; Kgope et al., 2010, Raubenheimer,

Ripley, et al., unpublished).

In aDGVM, higher growth and reproduction rates of individual plants modify plant population dynamics and vegetation

structure. The model simulates an increase in mean tree height after CO2 starts increasing (Fig. 10). After a delay of approxi-

mately 70 years, trees can establish more successfully and tree number and savanna tree cover increase. Tree cover increases375

can be attributed to both increases in tree height, which in aDGVM is linked to an increase in a tree’s crown area, and in

tree number. Increases in maximum tree height lag behind mean tree height and tree numbers (Fig. 10). All population-level

responses in the model are slower than leaf-level responses and lag behind ecophysiological adaptations.

Observing population-level responses to elevated CO2 in reality is challenging. Historic data from field surveys (Stevens

et al., 2017; O’Connor et al., 2014) and remote sensing (Donohue et al., 2013; Skowno et al., 2017) indicate woody encroach-380

ment in many savanna areas. These changes were often attributed to historic increases in CO2 (Midgley and Bond, 2015), but

also to land use activities such as over-grazing (Roques et al., 2001). Yet, the strength of CO2 fertilization effects is debated

(Körner et al., 2005) and free air carbon enrichment (FACE) experiments indicate complex responses of vegetation to elevated

CO2 at population level (Hickler et al., 2015). Nutrient limitations (Hickler et al., 2015) and effects of mycorrhizal associa-
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tions on nutrient economy (Terrer et al., 2016) may add to the complexity of these responses. FACE experiments in savannas385

and sub-tropical ecosystems are rare. An exception is OzFACE in Queensland, Australia (Stokes et al., 2005) which found

increased growth rates for Eucalyptus and Acacia species. Previous studies showed that CO2 fertilization effects are strong in

aDGVM and that the strong CO2 effects can compensate for other predicted changes in climate drivers, such as reduced

rainfall (Scheiter et al., 2015). If aDGVM overestimates the strength of CO2 fertilization effects and the sensitivity of

vegetation to elevated CO2, the size of carbon debt due to lag effects may be overestimated, while the lag size may be390

underestimated. We are however confident that even with reduced CO2 sensitivity the overall response pattern would

remain, although the quantities might change. In Scheiter et al. (2018) we show that simulated woody cover increases in the

Limpopo Province, South Africa, under current conditions broadly agree with remote sensing observations from Stevens et al.

(2017), indicating that aDGVM simulates plausible responses to climate change for historic and current conditions.

Disturbance lags in fire-driven savannas are created by a well-known feedback mechanism between fire and vegetation395

(Higgins and Scheiter, 2012; Hoffmann et al., 2012). Regular fire is a demographic bottleneck for tree establishment and traps

trees in a juvenile state (Higgins et al., 2000). At the population scale, fire preserves a characteristic, open savanna vegetation

state (Scheiter and Higgins, 2009) and keeps vegetation from reaching an equilibrium vegetation state, typically woodland or

forest with higher tree cover, expected under the prevailing environmental conditions. Yet, reduced fire activity (Hoffmann

et al., 2012) or increased tree growth rates due to CO2 fertilization (Bond and Midgley, 2000) allow more trees to escape400

the fire trap due to increased growth rates. As a consequence, the increasing tree cover starts to exclude grasses and curtails

fire frequency due to reduced fine fuel loads. This dynamic feedback between vegetation and fire dynamics implies that rapid

transitions between savanna and forest states are possible.

Once fire is excluded at high CO2 mixing ratio, successional lags delay the establishment of an equilibrium state. These lags

are a direct consequence of disturbances and they emerge if plant community composition in the equilibrium state deviates from405

transient, post-disturbance community composition. The aDGVM simulates fire-tolerant but shade-intolerant savanna trees and

fire-intolerant but shade-tolerant forest trees (Scheiter et al., 2012). At low CO2 and intermediate rainfall, aDGVM simulates

a fire-driven savanna state with predominantly savanna trees. Reduced fire activity and transitions to woody plant-dominated

habitats imply that savanna trees and grasses are out-competed and gradually replaced by forest trees (Fig. 10). Successional

dynamics are slow and delay the adaptation of community composition to elevated CO2. Empirical studies support successional410

lags in communities (Fauset et al., 2012; Esquivel-Muelbert et al., 2019), although, these studies reported community responses

to drought rather than CO2.

We found that fire-driven savanna and grassland ecosystems take longer to reach equilibrium after the CO2 forcing stabilizes

than forests. Forests are faster to stabilize and to balance their carbon and tree cover debt. In our simulations, this behavior

is driven by disturbance-related lags caused by fire. Fire generates a dynamic disequilibrium between climate and vegetation,415

and it prevents both savanna and forest trees to recruit, to transition into the adult state, and to develop a closed canopy.

When tree cover exceeds a critical threshold, fire is suppressed and rapid canopy closure is possible. Fire rarely occurs in

simulated forests, and therefore they reach equilibrium faster than other biome types. Fire activity in forests is, however,

sufficient to slightly increase times to reach equilibrium when compared to simulations with fire suppressed. Moreover,
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forests represent the final stage in succession in ecosystems simulated by aDGVM. Hence, forests do not allow for further420

succession in contrast to grasslands and savannas, where savanna trees can invade grasslands, and be replaced by forest trees

in later successional stages. aDGVM might underestimate lags in forest systems in contrast to alternative DGVMs or forest

models that simulate a higher number of PFTs or species (e.g. Hickler et al., 2012), or that allow plant traits and community

composition within a forest system to adapt to changing environmental drivers (Scheiter et al., 2013).

4.2 Implications for adaptation, mitigation and policy425

Lags between transient and equilibrium coverage of different vegetation types or biome types imply debt or surplus in tree

cover (Jones et al., 2009), carbon storage, biogeochemical fluxes and community composition (Bertrand et al., 2016). These

lags commit ecosystems to further changes even if the rate of climate change is reduced and the climate system converges

towards an equilibrium state (Jones et al., 2009; Port et al., 2012; Pugh et al., 2018). This finding has important implications

for the development of adaptation and mitigation strategies for climate change.430

First, it indicates that such strategies cannot be developed purely based on observed contemporary transient states when

attempting to mitigate further changing of climatic drivers. There is an urgent need to understand equilibrium vegetation states,

committed changes in vegetation states, and to take them into account in management policies (Svenning and Sandel, 2013).

Lag effects are also central to understanding resilience of an ecosystem (Holling, 1973; Walker et al., 2004).

Second, our findings imply a high priority and potential for managing fire-dependent ecosystems such as savannas. It has435

been argued that in these ecosystems, elevated CO2 is the main driver for shrub encroachment and transitions to forest (Higgins

and Scheiter, 2012; Midgley and Bond, 2015). Suitable management intervention can oppose CO2 fertilization effects and

delay undesired vegetation changes (Scheiter and Savadogo, 2016). For instance, the introduction of fire can increase lags

between transient and equilibrium vegetation states, whereas fire suppression for example by grazing (Pfeiffer et al., 2019) or

fire management (Scheiter et al., 2015) can reduce disturbance-related lags. Other disturbances or land use activities such as440

herbivory or fuelwood harvesting have similar effects (Scheiter and Savadogo, 2016). Hence the potential for these ecosystems

to persist in a disequilibrium state relative to climate and CO2 creates the opportunity to mitigate changes brought about by

global change through management interventions. Conversely, allowing these systems to reach their equilibrium state has the

potential to increase the global land carbon sink. While such management is relevant for carbon sequestration (Bastin et al.,

2019), it is likely to lead to loss of biodiversity concomitant with losses of open savanna and grassland ecosystems (Veldman445

et al., 2015; Bond et al., 2019). Given the increasing lag size between transient and equilibrium vegetation states, management

should decide at the local scale if current or desired vegetation states should be maintained as long as possible or if ecosystems

should be managed to account for vegetation changes expected in near future. Ignoring committed changes might imply rapid

vegetation shifts that inhibit sustainable management actions.

Third, we found that the rate at which environmental conditions change determines the size of the lag between transient450

and equilibrium vegetation. Following the RCP 8.5 trajectory instead of the RCP 2.6 trajectory will therefore increase carbon

debt both due to higher CO2 mixing ratio and the acceleration of CO2 enrichment in the atmosphere. If emissions follow the

RCP 2.6 scenario and stabilize after 2100, then ecosystems in Africa would continue to absorb 9 PgC or 18 PgC from the
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atmosphere in the presence or absence of fire to reach an equilibrium state with environmental conditions. In contrast,

ecosystems would absorb 47.5 PgC or 60 PgC in the presence or absence of fire in the RCP 8.5 scenario.455

Finally, climate and greenhouse gas concentrations in the atmosphere are likely to change at an unprecedented rate (Prentice

et al., 1993; Foster et al., 2017). Our results indicate that vegetation is most sensitive to changes in atmospheric CO2 at the

currently prevailing levels and values expected in near future (between approximately 350 ppm and 500 ppm, depending on

the simulation scenario and response variable investigated). Hence, we are currently in a period where small changes in CO2

are likely to have large impacts on long-term vegetation change. The results also show that restoring savannas from heavily460

encroached wood-dominated states is a long process, particularly if fire is lost from these ecosystems. This finding raises the

urgent need for society to act and reduce greenhouse gas emissions as the window of opportunity where human intervention

can contribute to reverse climate change impacts might close soon.

4.3 Implications for vegetation modeling

The lag effects identified in our study have important implications for vegetation modelling and the process of testing and465

benchmarking models. Lag effects are prevalent both in results from transient model simulations using time series of climate

data, and in data used for benchmarking, including remote sensing products (Saatchi et al., 2011; Simard et al., 2011; Avitabile

et al., 2016) or data collected in field surveys. Previous studies identified sources of uncertainty in data-model comparisons

(Scheiter and Higgins, 2009; Langan et al., 2017) related to model uncertainties or data uncertainties. We argue that the presence

of forcing and disturbance lags can add to disagreement between benchmarks and simulation results, such as modeled and470

satellite-derived productivity (Smith et al., 2016), carbon stocks, vegetation type, or species composition. Although DGVMs

typically simulate transient vegetation states based on time series obtained from climate models, we argue that to improve the

benchmarking process, we need to ensure that data and models represent similar successional stages. This can be achieved, e.g.

by applying appropriate model initialization methods using historical climate data, land use and fire history, or by considering

effects of historic legacies on vegetation (Moncrieff et al., 2014). For example, Rödig et al. (2017) used the Simard et al.475

(2011) vegetation height product to ensure that successional stages simulated with the FORMIND model agree with

observed successional stages. We concede that this is not an easy task as large-scale data on equilibrium vegetation states

or lag sizes are typically not available, and as vegetation states have been modified by human land use for millennia. Remote

sensing products such as the GEDI mission (gedi.umd.edu) may provide high-resolution data required to initialize models with

biomass and vegetation structure.480

The emergence of lag effects also highlights the relevance of adequate representation of demography, succession and dis-

turbance regimes in vegetation models and makes a case for cohort- or individual-based approaches. Understanding and quan-

tifying lags necessitates prioritization and further model development with respect to these processes (Fisher et al., 2018) as

well as improved knowledge of the rates at which these processes operate. Accurate representation of rates of changes may

contribute to improve data-model agreement (Smith et al., 2016). In-depth model testing against available long-term observa-485

tions of successional changes in response to climate change and disturbance can further reduce model uncertainties. Fire or

herbivore manipulation experiments conducted in Kruger National Park (Higgins et al., 2007) or in Burkina Faso (Savadogo
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et al., 2009) exemplify such data sets, in particular because they not only provide time series for benchmarking but also include

relevant and documented disturbance processes under controlled conditions.

In this study, we only considered natural fire regimes as simulated by aDGVM. However, to understand the full complexity490

of vegetation lags, further disturbances need to be taken into consideration. This includes anthropogenic fire (planned man-

agement fires as well as accidental fires), but also herbivory (grazing and browsing), fuelwood harvesting, deforestation or

conversion of natural land to agricultural or forestry areas. In this study we only quantified lags in biome shifts, tree cover

and aboveground carbon storage, but our framework can be extended to further ecosystem services in follow-up studies. In

addition, we only considered changes in CO2 in this study whereas changes in other key variables influencing vegetation, par-495

ticularly precipitation and temperature, were ignored. Previous aDGVM studies show that change in CO2 is the main driver of

simulated future vegetation change due to strong CO2 fertilization effects (Scheiter and Higgins, 2009; Scheiter et al., 2015,

2018, Martens et al., unpublished). We therefore expect that using time series of both CO2 and climatic drivers following RCP

scenarios will not change the fundamental results of our study. This expectation is supported by simulation results using various

climatic drivers for RCP 8.5 and 4.5 (Pfeiffer et al., unpublished).500

4.4 Further lags in the climate-vegetation system

In this study, we identified three lags between transient and equilibrium vegetation, namely forcing, disturbance and succes-

sional lags. Yet, due to the design of aDGVM our study ignores other lag effects in the climate-vegetation system.

Migration lags occur due to a limited speed of seed dispersal and migration under variable climate. Dispersal and migration

can, particularly in vegetation, typically not keep pace with climate change (Loarie et al., 2009). Migration lags have been505

investigated, but often using statistical approaches such as species distribution modelling (Thuiller et al., 2005). Extending

DGVMs or forest models with dispersal models is, however, possible. For instance, Blanco et al. (2014) used a spatially

explicit version of aDGVM to show that forest expansion rates in Araucaria forest-grassland mosaics in southern Brazil

are sensitive to characteristics of the dispersal traits of Araucaria trees. Sato and Ise (2012) showed with SEIB-DGVM that

including dispersal in projections of African vegetation until 2100 implies lagged responses in simulated biome boundary shifts.510

Nabel et al. (2013) used the TreeMig model to illustrate the complexity of simulating seed dispersal and migration in

heterogeneous and variable environments.

Once a species has migrated into another suitable region, establishment lags due to competition between established and

invading species can occur and prevent establishment of invading species. To quantify establishment lags in DGVMs, an

accurate description of competition, demography and succession is necessary. Scheiter et al. (2013) argued that competition is515

often not adequately described in DGVMs. More advanced models are required that simulate competitive interactions between

individual plants for space, light, nutrients and water, and consider allelopathic interactions. Novel approaches based on trait

variation such as aDGVM2 (Scheiter et al., 2013; Langan et al., 2017), JEDI-DGVM (Pavlick et al., 2013) or LPJmL-FIT

(Sakschewski et al., 2015) can be applied to identify establishment lags based on their detailed description of individual plants

and plant communities that are characterized by variable and dynamic traits instead of relying on a fixed number of static plant520

functional types.
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At longer time scales, evolutionary lags occur due to evolution of species adapted to changing environmental conditions or to

disturbance regimes (e.g., Simon et al., 2009; Guerrero et al., 2013). More advanced vegetation models are required to simulate

how evolutionary processes such as trait inheritance, mutation and cross-over allow plants to adapt to changing environmental

conditions over many generations. While aDGVM2 (Scheiter et al., 2013) includes these mechanisms, the model has so far not525

been applied in an evolutionary context. Such an application would require a re-parametrization of mutation and cross-over

rates using empirical data to account for the temporal component of evolutionary processes.

Finally, atmosphere-biosphere lags can occur where delayed responses of vegetation change to environmental change feed

back to delay responses of the environment. For example, increasing forest cover due to CO2 fertilization and resulting in-

crease in carbon sequestration may reduce CO2 enrichment in the atmosphere and associated amplification of radiative forcing.530

Investigation of atmosphere-biosphere lags requires fully coupled models that simulate biogeochemical fluxes between atmo-

sphere and biosphere. Jones et al. (2009) used such a fully coupled model to investigate lags in Amazon forest die-back, but

feed-backs to the climate system were not explicitly considered. Port et al. (2012) used the fully coupled MPI ESM to show

that lagged responses of vegetation may, in a scenario where CO2 emissions are zero after 2120, reduce atmospheric CO2 by

approximately 40ppm until 2300. Another well-studied example is the Sahel greening phenomenon where smooth changes in535

rainfall regimes trigger abrupt and delayed responses in vegetation cover due to vegetation-atmosphere feed-backs (Brovkin

et al., 1998; Claussen et al., 1999; Foley et al., 2003).

5 Conclusions

To conclude, our study indicates that vegetation generally lags behind changing atmospheric CO2 mixing ratios. We are

currently in a phase of high carbon storage and tree cover debt and vegetation cover deviates substantially from the committed540

vegetation state. Our study predicts that vegetation is most sensitive to changes in atmospheric CO2 at current levels of

atmospheric CO2 and those expected in near future. This finding indicates the need to act and reduce greenhouse gas emissions.

Lags are larger in fire-dependent systems such as savannas than in arid grasslands or forests. Lag effects in vegetation status

need to be considered for the development of management plans or mitigation strategies because we expect further changes in

vegetation even if emissions of CO2 and other greenhouse gasses are reduced and the climate system stabilizes. There is an545

urgent need to understand lag effects not only in response to variable CO2, but also to other key variables of the climate system

such as temperature and precipitation, as well as to extreme events such as heat waves or drought.

Code availability. The aDGVM code as well as scripts to conduct the model experiments and analyze the results are available upon request.

Please contact any of the authors.
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Figure 1. Area of Africa covered by (a) C4-dominated (C4 grassland and savanna) and (b) C3-dominated (woodland and forest) vegetation

under equilibrium conditions. Simulations were conducted until vegetation reached an equilibrium state under fixed CO2. Differences be-

tween simulations without fire (solid lines) and with fire (dashed lines) indicate that both C3- and C4-dominated vegetation states are possible.

Fig. A1 shows cover fractions separated by biome type.
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Figure 2. Biome distribution at different CO2 mixing ratios and in the presence or absence of fire. Simulations were conducted until vegetation

reached an equilibrium state under a constant CO2 mixing ratio.
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Figure 3. Time required to reach the equilibrium biome state in simulations with fixed CO2 mixing ratio. Time was averaged for different

biome types and different CO2 mixing ratios. Times to reach equilibrium are shortest in forest, and do not respond strongly to CO2. In more

open ecosystems (grassland, savanna, woodland) times to reach equilibrium are longer than in forests, and equilibration times increase as

CO2 increases. Times to reach equilibrium are shorter under fire suppression (b) than in the presence of fire (a).
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Figure 4. Percentages covered by C3- and C4-dominated vegetation in the presence and absence of fire. CO2 is increased or decreased at

two different rates between 100 ppm and 1000 ppm. The gray lines indicate vegetation cover in equilibrium simulations (similar to Fig. 1).

Arrows indicate whether CO2 increases or decreases.
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Figure 5. Time required to reach equilibrium in equilibrium simulations and transient simulations with both slow and fast increases of CO2.

Note that 3000 years in the legend means ≥3000 years, because simulations were run for a maximum of 3000 years.
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Figure 6. Time required to reach equilibrium in equilibrium simulations and transient simulations with both slow and fast decreases of CO2.

Note that 3000 years in the legend means ≥3000 years, because simulations were run for a maximum of 3000 years.
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Figure 7. Debt of vegetation carbon and tree cover when the atmospheric CO2 mixing ratio increases. Lines represent differences between

transient and equilibrium simulations averaged for all study sites in Africa (simulated at 2° resolution). See Fig. A2 for decreasing CO2 and

associated tree cover and carbon surplus.
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Figure 8. Sensitivity of vegetation cover change to changes in the atmospheric CO2 mixing ratio (in % change of vegetation cover per ppm

increase). Upper panels (a, b) show equilibrium simulations, lower panels (c, d) show transient simulations.
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Figure 9. Vegetation carbon and tree cover debt when the atmospheric CO2 mixing ratio increases according to different RCP scenarios.

Lines represent differences between transient and equilibrium simulations averaged for all study sites in Africa (simulated at 2° resolution).

Solid lines represent simulations without fire, dashed lines represent simulations with fire. Arrows indicate time between 1950 and 2100.
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Figure 10. Vegetation responses to increasing CO2. Panels show (a) time series of different state variables at a savanna study site in South

Africa (26°S, 28°E), and (b) a schematic illustration of processes. State variables represent averages of 200 replicate simulation runs for the

site. Normalization of state variables between zero and one based on minimum and maximum values was applied to be able to illustrate

temporal lags between variables. Fig. A3 provides the time series without normalization and with units of respective variables.
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Figure A1. Area of Africa covered by different biome types. Simulations were conducted until vegetation reached an equilibrium state under

a given and fixed CO2 mixing ratio. Differences between simulations without fire (solid lines) and with fire (dashed lines) indicate that fire

influences cover fractions of different biome types.
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Figure A2. Surplus of tree cover and carbon when the atmospheric CO2 mixing ratio decreases in transient simulations. Lines represent the

differences between transient and equilibrium simulations averaged for all study sites in Africa (simulated at 2° resolution).
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Figure A3. Time series of different state variables at a savanna study site in South Africa (26°S, 28°E). State variables represent averages of

200 replicate simulation runs for the site.
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